Edited conference proceedings

[7] A. Auger, C. M. Fonseca, N. Lourenço, P. Machado, L. Paquete, and D. Whitley, eds., Parallel Problem Solving from Nature -- PPSN XV, 15th International Conference, Coimbra, Portugal, September 8--12, 2018, Proceedings, Part II, vol. 11102 of Lecture Notes in Computer Science. Cham, Switzerland: Springer, 2018. [ DOI ]
[6] A. Auger, C. M. Fonseca, N. Lourenço, P. Machado, L. Paquete, and D. Whitley, eds., Parallel Problem Solving from Nature -- PPSN XV, 15th International Conference, Coimbra, Portugal, September 8--12, 2018, Proceedings, Part I, vol. 11101 of Lecture Notes in Computer Science. Cham, Switzerland: Springer, 2018. [ DOI ]
[5] R. C. Purshouse, P. J. Fleming, C. M. Fonseca, S. Greco, and J. Shaw, eds., Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, vol. 7811 of Lecture Notes in Computer Science. Berlin, Germany: Springer, 2013. [ DOI ]
[4] M. Ehrgott, C. M. Fonseca, X. Gandibleux, J.-K. Hao, and M. Sevaux, eds., Evolutionary Multi-Criterion Optimization, 5th International Conference, EMO 2009, vol. 5467 of Lecture Notes in Computer Science. Berlin, Germany: Springer, 2009. [ DOI ]
[3] D. Corne, Z. Michalewicz, B. McKay, G. Eiben, D. Fogel, C. Fonseca, G. Greenwood, G. Raidl, K. C. Tan, and A. Zalzala, eds., The 2005 IEEE Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press, 2005. [ DOI | http ]
[2] C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele, eds., Evolutionary Multi-Criterion Optimization, Second International Conference, EMO 2003, vol. 2632 of Lecture Notes in Computer Science. Berlin, Germany: Springer, 2003. [ DOI ]
[1] A. Zalzala, C. Fonseca, J.-H. Kim, A. Smith, and X. Yao, eds., Proceedings of the 2000 Congress on Evolutionary Computation (CEC 00). Piscataway, NJ: IEEE Press, 2000. [ DOI | http ]
top

Journal special issues

[3] C. H. Antunes, C. M. Fonseca, L. Paquete, and M. Stiglmayr, “Special issue on exact and approximation methods for mixed-integer multi-objective optimization,” Mathematical Methods of Operations Research, 2022. [ http ]
[2] C. M. Fonseca, K. Klamroth, and M. M. Wiecek, “Special issue on modern trends in multiobjective optimization,” Computers and Operations Research, 2021. [ http ]
[1] P. S. Oliveto, A. Auger, F. Chicano, and C. M. Fonseca, “Guest editorial Special issue on theoretical foundations of evolutionary computation,” IEEE Transactions on Evolutionary Computation, vol. 24, no. 6, pp. 993--994, 2020. [ DOI ]
top

Journal articles

[29] A. Aguiar, P. Fernandes, A. P. Guerreiro, R. Tomás, J. Agnelo, J. L. Santos, F. Araújo, M. C. Coelho, C. M. Fonseca, P. M. d’Orey, M. Luís, and S. Sargento, “MobiWise: Eco-routing decision support leveraging the Internet of Things,” Sustainable Cities and Society, vol. 87, no. 104180, pp. 1--16, 2022. Open access. [ DOI ]
[28] J. Leitão, C. M. Fonseca, P. Gil, B. Ribeiro, and A. Cardoso, “A compressive receding horizon approach for smart home energy management,” IEEE Access, vol. 9, pp. 100407--100435, 2021. Open access. [ DOI ]
[27] A. P. Guerreiro, C. M. Fonseca, and L. Paquete, “The hypervolume indicator: Computational problems and algorithms,” ACM Computing Surveys, vol. 54, no. 6, pp. 1--42, 2021. Open access. [ DOI ]
[26] B. Schulze, M. Stiglmayr, L. Paquete, C. M. Fonseca, D. Willems, and S. Ruzika, “On the rectangular knapsack problem: Approximation of a specific quadratic knapsack problem,” Mathematical Methods of Operations Research, vol. 92, pp. 107--132, 2020. Open access. [ DOI ]
[25] A. P. Guerreiro and C. M. Fonseca, “An analysis of the hypervolume Sharpe-ratio indicator,” European Journal of Operational Research, vol. 283, no. 2, pp. 614--629, 2020. Open access. [ DOI | source code ]
[24] A. P. Guerreiro and C. M. Fonseca, “Computing and updating hypervolume contributions in up to four dimensions,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 3, pp. 449--463, 2018. [ DOI | source code | .pdf ]
[23] A. Riker, C. M. Fonseca, M. Curado, and E. Monteiro, “Energy-efficient multigroup communication,” Transactions on Emerging Telecommunications Technologies, vol. 29, no. 3, pp. e3232:1--16, 2018. [ DOI ]
[22] J. C. Ferreira, C. M. Fonseca, R. Denysiuk, and A. Gaspar-Cunha, “Methodology to select solutions for multiobjective optimization problems: Weighted stress function method,” Journal of Multi-Criteria Decision Analysis, vol. 24, no. 3-4, pp. 103--120, 2017. [ DOI ]
[21] J. R. Figueira, C. M. Fonseca, P. Halffmann, K. Klamroth, L. Paquete, S. Ruzika, B. Schulze, M. Stiglmayr, and D. Willems, “Easy to say they're hard, but hard to see they're easy -- Toward a categorization of tractable multiobjective combinatorial optimization problems,” Journal of Multi-Criteria Decision Analysis, vol. 24, no. 1-2, pp. 82--88, 2017. [ DOI ]
[20] R. Lacour, K. Klamroth, and C. M. Fonseca, “A box decomposition algorithm to compute the hypervolume indicator,” Computers & Operations Research, vol. 79, pp. 347--360, Mar. 2017. [ DOI | source code ]
[19] A. P. Guerreiro, C. M. Fonseca, and L. Paquete, “Greedy hypervolume subset selection in low dimensions,” Evolutionary Computation, vol. 24, no. 3, pp. 521--544, 2016. [ DOI | source code | .pdf ]
[18] T. Kuhn, C. M. Fonseca, L. Paquete, S. Ruzika, M. M. Duarte, and J. R. Figueira, “Hypervolume subset selection in two dimensions: Formulations and algorithms,” Evolutionary Computation, vol. 24, no. 3, pp. 411--425, 2016. [ DOI | source code ]
[17] D. Vaz, L. Paquete, C. M. Fonseca, K. Klamroth, and M. Stiglmayr, “Representation of the non-dominated set in biobjective discrete optimization,” Computers & Operations Research, vol. 63, pp. 172--186, Nov. 2015. [ DOI ]
[16] J. P. Martins, C. M. Fonseca, and A. C. B. Delbem, “On the performance of linkage-tree genetic algorithms for the multidimensional knapsack problem,” Neurocomputing, vol. 146, pp. 17--29, Dec. 2014. [ DOI ]
[15] A. L. F. Cançado, A. R. Duarte, L. H. Duczmal, S. J. Ferreira, C. M. Fonseca, and E. C. D. M. Gontijo, “Penalized likelihood and multi-objective spatial scans for the detection and inference of irregular clusters,” International Journal of Health Geographics, vol. 9, no. 55, 2010. [ DOI ]
[14] E. G. Carrano, R. H. C. Takahashi, C. M. Fonseca, and O. M. Neto, “Nonlinear network optimization---An embedding vector space approach,” IEEE Transactions on Evolutionary Computation, vol. 14, no. 2, pp. 206--226, 2010. [ DOI ]
[13] N. Beume, C. M. Fonseca, M. López-Ibáñez, L. Paquete, and J. Vahrenhold, “On the complexity of computing the hypervolume indicator,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 1075--1082, 2009. [ DOI ]
[12] D. Datta, C. M. Fonseca, and K. Deb, “A multi-objective evolutionary algorithm to exploit the similarities of resource allocation problems,” Journal of Scheduling, vol. 11, no. 6, pp. 405--419, 2008. [ DOI ]
[11] E. G. Carrano, R. T. N. Cardoso, R. H. C. Takahashi, C. M. Fonseca, and O. M. Neto, “Power distribution network expansion scheduling using dynamic programming genetic algorithm,” IET Generation, Transmission & Distribution, vol. 2, no. 3, pp. 444--455, 2008. [ DOI ]
[10] D. Datta, K. Deb, C. M. Fonseca, F. Lobo, P. Condado, and J. Seixas, “Multi-objective evolutionary algorithm for land-use management problem,” International Journal of Computational Intelligence Research, vol. 3, no. 4, pp. 371--384, 2007.
[9] K. Rodríguez-Vázquez, C. M. Fonseca, and P. J. Fleming, “Identifying the structure of nonlinear dynamic systems using multiobjective genetic programming,” IEEE Transactions on Systems, Man and Cybernetics---Part A: Systems and Humans, vol. 34, no. 4, pp. 531--545, 2004. [ DOI ]
[8] A. E. Ruano, P. J. Fleming, C. Teixeira, K. Rodríguez-Vázquez, and C. M. Fonseca, “Nonlinear identification of aircraft gas-turbine dynamics,” Neurocomputing, vol. 55, no. 3--4, pp. 551--579, 2003. [ DOI ]
[7] J. Hüsler, P. Cruz, A. Hall, and C. M. Fonseca, “On optimization and extreme value theory,” Methodology and Computing in Applied Probability, vol. 5, no. 2, pp. 183--195, 2003. [ DOI ]
[6] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert da Fonseca, “Performance assessment of multiobjective optimizers: An analysis and review,” IEEE Transactions on Evolutionary Computation, vol. 7, no. 2, pp. 117--132, 2003. [ DOI ]
[5] V. Grunert da Fonseca and C. M. Fonseca, “A link between the multivariate cumulative distribution function and the hitting function for random closed sets,” Statistics and Probability Letters, vol. 57, no. 2, pp. 179--182, 2002. [ DOI ]
[4] C. M. Fonseca and P. J. Fleming, “Multiobjective optimization and multiple constraint handling with evolutionary algorithms---Part II: Application example,” IEEE Transactions on Systems, Man and Cybernetics---Part A: Systems and Humans, vol. 28, no. 1, pp. 38--47, 1998. [ DOI ]
[3] C. M. Fonseca and P. J. Fleming, “Multiobjective optimization and multiple constraint handling with evolutionary algorithms---Part I: A unified formulation,” IEEE Transactions on Systems, Man and Cybernetics---Part A: Systems and Humans, vol. 28, no. 1, pp. 26--37, 1998. [ DOI ]
[2] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary algorithms in multiobjective optimization,” Evolutionary Computation, vol. 3, no. 1, pp. 1--16, 1995. [ DOI | http | .pdf ]
[1] C. M. Fonseca, “Bayesian estimation of the intensity of low level radiation sources,” Jaderná Energie, vol. 37, no. 3, pp. 83--97, 1991.
top

Conference articles

[48] L. E. Schäfer, T. Dietz, M. V. Natale, S. Ruzika, S. O. Krumke, and C. M. Fonseca, “The bicriterion maximum flow network interdiction problem in s-t-planar graphs,” in Operations Research Proceedings 2019, Selected Papers of the Annual International Conference of the German Operations Research Society (GOR), Dresden, Germany, September 4-6, 2019 (J. S. Neufeld, U. Buscher, R. Lasch, D. Möst, and J. Schönberger, eds.), pp. 133--139, Springer, 2020. [ DOI ]
[47] S. Rebelo, C. M. Fonseca, J. Bicker, and P. Machado, “Evolutionary experiments in the development of typographical posters,” in Proceedings of the 6th Conference on Computation, Communication, Aesthetics & X (A. Rangel, L. Ribas, M. Verdicchio, and M. Carvalhais, eds.), (Madrid, Spain), 2018. [ .pdf ]
[46] J. Macedo, C. M. Fonseca, and E. Costa, “Geometric crossover in syntactic space,” in Genetic Programming, 21st European Conference, EuroGP 2018, Proceedings (M. Castelli, L. Sekanina, M. Zhang, S. Cagnoni, and P. García-Sánchez, eds.), vol. 10781 of Lecture Notes in Computer Science, pp. 237--252, Switzerland: Springer International Publishing, 2018. [ DOI ]
[45] I. Gonçalves, S. Silva, C. M. Fonseca, and M. Castelli, “Unsure when to stop? Ask your semantic neighbors,” in Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '17, (Berlin, Germany), pp. 929--936, ACM, 2017. [ DOI | http ]
[44] K. Yang, M. Emmerich, A. Deutz, and C. M. Fonseca, “Computing 3-D expected hypervolume improvement and related integrals in asymptotically optimal time,” in Evolutionary Multi-Criterion Optimization, 9th International Conference, EMO 2017. Proceedings (H. Trautmann, G. Rudolph, K. Klamroth, O. Schütze, M. Wiecek, Y. Jin, and C. Grimme, eds.), vol. 10173 of Lecture Notes in Computer Science, pp. 685--700, Cham, Switzerland: Springer International Publishing, 2017. [ DOI ]
[43] C. R. Correa, E. F. Wanner, and C. M. Fonseca, “Lyapunov design of a simple step-size adaptation strategy based on success,” in Parallel Problem Solving from Nature -- PPSN XIV, 14th International Conference, Edinburgh, UK, September 17-21, 2016, Proceedings (J. Handl, E. Hart, P. R. Lewis, M. López-Ibáñez, G. Ochoa, and B. Paechter, eds.), vol. 9921 of Lecture Notes in Computer Science, pp. 101--110, Cham, Switzerland: Springer International Publishing, 2016. [ DOI ]
[42] A. P. Guerreiro and C. M. Fonseca, “Hypervolume Sharpe-ratio indicator: Formalization and first theoretical results,” in Parallel Problem Solving from Nature -- PPSN XIV, 14th International Conference, Edinburgh, UK, September 17-21, 2016, Proceedings (J. Handl, E. Hart, P. R. Lewis, M. López-Ibáñez, G. Ochoa, and B. Paechter, eds.), vol. 9921 of Lecture Notes in Computer Science, pp. 814--823, Cham, Switzerland: Springer International Publishing, 2016. [ DOI | .pdf ]
[41] I. Gonçalves, S. Silva, and C. M. Fonseca, “Semantic learning machine: A feedforward neural network construction algorithm inspired by geometric semantic genetic programming,” in Progress in Artificial Intelligence, 17th Portuguese Conference on Artificial Intelligence, EPIA 2015 (F. Pereira, P. Machado, E. Costa, and A. Cardoso, eds.), vol. 9273 of Lecture Notes in Computer Science, pp. 280--285, Cham, Switzerland: Springer International Publishing, 2015. [ DOI ]
[40] A. P. Guerreiro, C. M. Fonseca, and L. Paquete, “Greedy hypervolume subset selection in the three-objective case,” in Proceedings of the 2015 Genetic and Evolutionary Computation Conference, GECCO '15, (Madrid, Spain), pp. 671--678, ACM, 2015. EMO Track Best Paper Award. [ DOI | source code | http ]
[39] I. Gonçalves, S. Silva, and C. M. Fonseca, “On the generalization ability of geometric semantic genetic programming,” in Genetic Programming, 18th European Conference, EuroGP 2015, Proceedings (P. Machado, M. I. Heywood, J. McDermott, M. Castelli, P. García-Sánchez, P. Burelli, S. Risi, and K. Sim, eds.), vol. 9025 of Lecture Notes in Computer Science, pp. 41--52, Switzerland: Springer International Publishing, 2015. [ DOI ]
[38] R. F. Alexandre, F. C. Pinto, J. A. de Vasconcelos, and C. M. Fonseca, “A comparative study of algorithms for solving the multiobjective open-pit mining operational planning problems,” in Evolutionary Multi-Criterion Optimization. 8th International Conference, EMO 2015. Proceedings, Part II (A. Gaspar-Cunha, C. Henggeler Antunes, and C. Coello Coello, eds.), vol. 9019 of Lecture Notes in Computer Science, pp. 433--447, Switzerland: Springer International Publishing, 2015. [ DOI ]
[37] I. Yevseyeva, A. P. Guerreiro, M. T. M. Emmerich, and C. M. Fonseca, “A portfolio optimization approach to selection in multiobjective evolutionary algorithms,” in Parallel Problem Solving from Nature -- PPSN XIII, 13th International Conference, Ljubljana, Slovenia, September 13-17, 2014, Proceeedings (T. Bartz-Beielstein, J. Branke, B. Filipič, and J. Smith, eds.), vol. 8672 of Lecture Notes in Computer Science, pp. 672--681, Springer International Publishing Switzerland, 2014. [ DOI | .pdf ]
[36] A. P. Guerreiro, C. M. Fonseca, and M. T. M. Emmerich, “A fast dimension-sweep algorithm for the hypervolume indicator in four dimensions,” in Proceedings of the 24th Canadian Conference on Computational Geometry (CCCG 2012), (Charlottetown, Prince Edward Island, Canada), Aug. 2012. [ source code | .pdf ]
[35] V. Grunert da Fonseca and C. M. Fonseca, “The relationship between the covered fraction, completeness and hypervolume indicators,” in Artificial Evolution, 10th International Conference, Evolution Artificielle, EA 2011, Angers, France, October 24-26, 2011, Revised Selected Papers (J.-K. Hao, P. Legrand, P. Collet, N. Monmarché, E. Lutton, and M. Schoenauer, eds.), vol. 7401 of Lecture Notes in Computer Science, pp. 25--36, Berlin: Springer, 2012. [ DOI | .pdf ]
[34] M. T. M. Emmerich and C. M. Fonseca, “Computing hypervolume contributions in low dimensions: Asymptotically optimal algorithm and complexity results,” in Evolutionary Multi-Criterion Optimization. Sixth International Conference, EMO 2011 (R. H. C. Takahashi, K. Deb, E. F. Wanner, and S. Greco, eds.), vol. 6576 of Lecture Notes in Computer Science, pp. 121--135, Berlin: Springer, 2011. [ DOI | source code ]
[33] C. M. Fonseca, A. P. Guerreiro, M. López-Ibáñez, and L. Paquete, “On the computation of the empirical attainment function,” in Evolutionary Multi-Criterion Optimization. Sixth International Conference, EMO 2011 (R. H. C. Takahashi, K. Deb, E. F. Wanner, and S. Greco, eds.), vol. 6576 of Lecture Notes in Computer Science, pp. 106--120, Berlin: Springer, 2011. [ DOI | source code | .pdf ]
[32] J. C. Ferreira, C. M. Fonseca, and A. Gaspar-Cunha, “Assessing the quality of the relation beetween scalarizing function parameters and solutions in multiobjective optimization,” in CEC '09, IEEE Congress on Evolutionary Computation, (Trondheim, Norway), pp. 1131--1136, July 2009. [ DOI ]
[31] R. T. N. Cardoso, R. H. C. Takahashi, F. R. B. Cruz, and C. M. Fonseca, “A multi-quantile approach for open-loop stochastic dynamic programming problems,” in IFAC Workshop on Control Applications of Optimization (CAO'09), (Jyväskylä, Finland), May 2009. 6 pages. [ DOI ]
[30] R. T. N. Cardoso, R. H. C. Takahashi, and C. M. Fonseca, “An open-loop invariant-set approach for multiobjective dynamic programming problems,” in IFAC Workshop on Control Applications of Optimization (CAO'09), (Jyväskylä, Finland), May 2009. 6 pages. [ DOI ]
[29] C. C. Vieira and C. M. Fonseca, “A conceptual model of optimization problems,” in Workshop/Summer School on Evolutionary Computing, Lecture Series by Pioneers, (Londonderry, Northern Ireland), Aug. 2008. 4 pages. [ .pdf ]
[28] D. Datta, J. R. Figueira, C. M. Fonseca, and F. Tavares-Pereira, “Graph partitioning through a multi-objective evolutionary algorithm: A preliminary study,” in Genetic and Evolutionary Computation Conference (GECCO 2008), (Atlanta, GA), pp. 625--632, July 2008. [ DOI | http ]
[27] E. G. Carrano, C. M. Fonseca, R. H. C. Takahashi, L. C. A. Pimenta, and O. M. Neto, “A preliminary comparison of tree network encoding schemes for evolutionary algorithms,” in Proceedings of the 2007 IEEE International Conference on Systems, Man and Cybernetics, (Montreal, Canada), pp. 1969--1974, Oct. 2007. [ DOI ]
[26] M. B. Correia and C. M. Fonseca, “How redundancy and neutrality may affect evolution on NK fitness landscapes,” in CEC 2007, IEEE Congress on Evolutionary Computation, (Singapore), pp. 2842--2849, Sept. 2007. [ DOI ]
[25] J. C. Ferreira, C. M. Fonseca, and A. Gaspar-Cunha, “Methodology to select solutions from the pareto-optimal set: A comparative study,” in Genetic and Evolutionary Computation Conference (GECCO 2007), (London, UK), pp. 789--796, July 2007. [ DOI | http ]
[24] J. C. Ferreira, C. M. Fonseca, and A. Gaspar-Cunha, “A new methodology to select the preferred solutions from the Pareto-optimal set: Application to polymer extrusion,” in 10th ESAFORM Conference on Material Forming, vol. 907 of AIP Conference Proceedings, pp. 861--866, AIP, Apr. 2007.
[23] D. Datta, K. Deb, and C. M. Fonseca, “Solving class timetabling problem of IIT-Kanpur using multiobjective evolutionary algorithm,” in NCRSME 2007 -- National Conference of Research Scholars in Mechanical Engineering, (Kanpur, India), Mar. 2007.
[22] E. G. Carrano, R. H. C. Takahashi, C. M. Fonseca, and O. M. Neto, “Bi-objective combined facility location and network design,” in Evolutionary Multi-Criterion Optimization. Fourth International Conference, EMO 2007 (S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, eds.), vol. 4403 of Lecture Notes in Computer Science, pp. 486--500, Berlin: Springer, 2007. [ DOI ]
[21] D. Datta, K. Deb, and C. M. Fonseca, “Multi-objective evolutionary algorithms for resource allocation problems,” in Evolutionary Multi-Criterion Optimization. Fourth International Conference, EMO 2007 (S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, eds.), vol. 4403 of Lecture Notes in Computer Science, pp. 401--416, Berlin: Springer, 2007. [ DOI ]
[20] C. Cabrita, J. Botzheim, T. D. Gedeon, A. E. Ruano, and C. M. Fonseca, “Bacterial memetic algorithm for fuzzy rule base optimization,” in WAC 2006 -- ISSCI Symposium, (Budapest, Hungary), 2006.
[19] C. M. Fonseca, L. Paquete, and M. López-Ibáñez, “An improved dimension-sweep algorithm for the hypervolume indicator,” in CEC 2006, IEEE Congress on Evolutionary Computation, (Vancouver, Canada), pp. 1157--1163, July 2006. [ DOI | source code ]
[18] C. M. Fonseca and M. B. Correia, “Developing redundant binary representations for genetic search,” in The 2005 IEEE Congress on Evolutionary Computation, vol. 2, (Edinburgh, U.K.), pp. 1675--1682, Sept. 2005. [ DOI ]
[17] P. M. Ferreira, A. E. Ruano, and C. M. Fonseca, “Evolutionary multiobjective design of radial basis function networks for greenhouse environmental control,” in Proceedings of the 16th IFAC World Congress, (Prague, Czech Republic), July 2005.
[16] C. M. Fonseca, V. Grunert da Fonseca, and L. Paquete, “Exploring the performance of stochastic multiobjective optimisers with the second-order attainment function,” in Evolutionary Multi-Criterion Optimization. Third International Conference, EMO 2005 (C. A. Coello Coello, A. Hernández Aguirre, and E. Zitzler, eds.), vol. 3410 of Lecture Notes in Computer Science, pp. 250--264, Berlin: Springer, 2005. [ DOI | .pdf ]
[15] P. M. Ferreira, A. E. Ruano, and C. M. Fonseca, “Genetic assisted selection of RBF model structures for greenhouse inside air temperature prediction,” in Proceedings of 2003 IEEE CSS Conference on Control Applications, vol. 1, (Istambul, Turkey), pp. 576--581, June 2003. [ http ]
[14] E. Zitzler, M. Laumanns, L. Thiele, C. M. Fonseca, and V. Grunert da Fonseca, “Why quality assessment of multiobjective optimizers is difficult,” in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2002) (W. B. Langdon et al., ed.), (New York, NY), pp. 666--673, July 2002.
[13] J. M. Lima, A. B. Azevedo, N. Duarte, C. M. Fonseca, A. E. Ruano, and P. J. Fleming, “Neuro-genetic PID autotuning,” in Proceedings of the European Control Conference 2001 (ECC 2001), (Porto, Portugal), pp. 3899--3904, Sept. 2001.
[12] V. Grunert da Fonseca, C. M. Fonseca, and A. O. Hall, “Inferential performance assessment of stochastic optimisers and the attainment function,” in Evolutionary Multi-Criterion Optimization. First International Conference, EMO 2001 (E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne, eds.), vol. 1993 of Lecture Notes in Computer Science, pp. 213--225, Berlin: Springer, 2001. [ DOI | .pdf ]
[11] A. J. Chipperfield, C. M. Fonseca, H. C. Betteridge, and P. J. Fleming, “Design of a wide envelope controller for a STOVL gas turbine engine,” in Proceedings of the 14th IFAC World Congress, vol. C, (Beijing, China), pp. 479--484, 1999.
[10] C. M. Fonseca and P. J. Fleming, “On the performance assessment and comparison of stochastic multiobjective optimizers,” in Parallel Problem Solving from Nature -- PPSN IV (H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, eds.), vol. 1141 of Lecture Notes in Computer Science, pp. 584--593, Berlin: Springer, 1996. [ DOI | .pdf ]
[9] C. M. Fonseca and P. J. Fleming, “Non-linear system identification with multiobjective genetic algorithms,” in Proceedings of the 13th IFAC World Congress, vol. C, (San Francisco, CA), pp. 187--192, 1996.
[8] M. A. Hossain, M. O. Tokhi, A. J. Chipperfield, M. J. Baxter, C. M. Fonseca, and N. V. Dakev, “Adaptive active vibration control using genetic algorithms,” in First IEE/IEEE International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, (Sheffield, U.K.), pp. 175--180, The Institution of Electrical Engineers, 1995. [ DOI ]
[7] C. M. Fonseca and P. J. Fleming, “Multiobjective genetic algorithms made easy: Selection, sharing and mating restriction,” in First IEE/IEEE International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, (Sheffield, U.K.), pp. 45--52, The Institution of Electrical Engineers, 1995. [ DOI ]
[6] A. J. Chipperfield, P. J. Fleming, and C. M. Fonseca, “Genetic algorithm tools for control systems engineering,” in Proceedings of the First International Conference on Adaptive Computing in Engineering Design and Control, (Plymouth Engineering Design Centre, U.K.), pp. 128--133, 1994.
[5] C. M. Fonseca and P. J. Fleming, “Multiobjective optimal controller design with genetic algorithms,” in Proc. IEE Control'94 International Conference, vol. 1, (Warwick, U.K.), pp. 745--749, The Institution of Electrical Engineers, Apr. 1994. [ DOI | http ]
[4] C. M. Fonseca, E. M. Mendes, P. J. Fleming, and S. A. Billings, “Non-linear model term selection with genetic algorithms,” in IEE/IEEE Workshop on Natural Algorithms in Signal Processing, vol. 2, (Essex, U.K.), pp. 27/1--27/8, Nov. 1993.
[3] P. J. Fleming and C. M. Fonseca, “Genetic algorithms in control systems engineering,” in Proceedings of the 12th IFAC World Congress, vol. 2, (Sydney, Australia), pp. 383--390, 1993. Preprints.
[2] C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization,” in Genetic Algorithms: Proceedings of the Fifth International Conference (S. Forrest, ed.), pp. 416--423, San Mateo, CA: Morgan Kaufmann, 1993. [ .pdf ]
[1] C. M. Fonseca, S. Williams, and J. J. O'Reilly, “VLSI implementation of a runlength limited error control coding scheme,” in Third Bangor Symposium on Communications, (Bangor, U.K.), pp. 341--344, Advanced Communication Engineering Laboratories, University of Wales, May 1991.
top

Book chapters

[11] A. P. Guerreiro, K. Klamroth, and C. M. Fonseca, “Theoretical aspects of subset selection in multi-objective optimisation,” in Many-Criteria Optimization and Decision Analysis (D. Brockhoff, M. Emmerich, B. Naujoks, and R. Purshouse, eds.), Natural Computing Series, ch. 8, pp. 213--239, Springer Cham, 2023. [ DOI ]
[10] M. Emmerich, K. Yang, A. Deutz, H. Wang, and C. M. Fonseca, “A multicriteria generalization of Bayesian global optimization,” in Advances in Stochastic and Deterministic Global Optimization (P. M. Pardalos, A. Zhigljavsky, and J. Žilinskas, eds.), vol. 107 of Springer Optimization and Its Applications, pp. 229--242, Springer International Publishing, 2016. [ DOI ]
[9] A. Gaspar-Cunha, J. Ferreira, J. A. Covas, and C. Fonseca, “Extending optimization algorithms to complex engineering problems,” in Optimization in Polymer Processing (A. Gaspar-Cunha and J. A. Covas, eds.), Chemical Engineering Methdos and Technology, ch. 4, pp. 59--83, New York: Nova Science Publishers, 2011.
[8] V. Grunert da Fonseca and C. M. Fonseca, “The attainment-function approach to stochastic multiobjective optimizer assessment and comparison,” in Experimental Methods for the Analysis of Optimization Algorithms (T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, eds.), ch. 5, pp. 103--130, Springer Berlin Heidelberg, 2010. [ DOI ]
[7] D. Datta, K. Deb, and C. M. Fonseca, “Multi-objective evolutionary algorithm for university class timetabling problem,” in Evolutionary Scheduling (K. P. Dahal, K. C. Tan, and P. I. Cowling, eds.), vol. 49 of Studies in Computational Intelligence, ch. 8, pp. 197--236, Berlin: Springer, 2007. [ DOI ]
[6] A. E. Ruano, P. M. Ferreira, and C. M. Fonseca, “An overview of nonlinear identification and control with neural networks,” in Intelligent Control using Intelligent Computational Techniques (A. E. Ruano, ed.), vol. 70 of IEE Control Engineering Series, ch. 2, pp. 37--87, Stevenage, U.K.: The Institution of Electrical Engineers, 2005. [ DOI ]
[5] C. M. Fonseca and P. J. Fleming, “Multiobjective optimization,” in Evolutionary Computation 2: Advanced Algorithms and Operators (T. Bäck, D. B. Fogel, and Z. Michalewicz, eds.), ch. 5, pp. 25--37, Bristol, U.K.: IOP Publishing, 2000.
[4] C. M. Fonseca and P. J. Fleming, “Multiobjective genetic algorithms,” in Genetic Algorithms in Engineering Systems (A. M. S. Zalzala and P. J. Fleming, eds.), vol. 55 of IEE Control Engineering Series, ch. 3, pp. 63--78, Stevenage, U.K.: The Institution of Electrical Engineers, 1997.
[3] C. M. Fonseca and P. J. Fleming, “Multiobjective optimization,” in Handbook of Evolutionary Computation (T. Bäck, D. B. Fogel, and Z. Michalewicz, eds.), ch. C4.5, pp. C4.5:1--C4.5:9, IOP Publishing and Oxford University Press, 1997.
[2] A. J. Chipperfield, P. J. Fleming, and C. M. Fonseca, “Introduction to MATLAB,” in MATLAB toolboxes and applications for control (A. J. Chipperfield and P. J. Fleming, eds.), vol. 48 of IEE Control Engineering Series, ch. 1, pp. 3--20, Stevenage, U.K.: Peter Peregrinus, 1993.
[1] P. J. Fleming, C. M. Fonseca, and T. P. Crummey, “MATLAB: Its toolboxes and open structure,” in CAD for Control Systems (D. A. Linkens, ed.), ch. 11, pp. 271--286, New York: Marcel Dekker, 1993.
top

Theses

[2] C. M. M. Fonseca, Multiobjective Genetic Algorithms with Application to Control Engineering Problems. PhD thesis, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK, 1995. [ .pdf ]
[1] C. M. M. Fonseca, “Runlength limited error control codes: design, realisation and practical evaluation,” project dissertation, School of Electronic Engineering Science, University of Wales, Bangor, UK, 1991. [ .pdf ]
top

Other publications

[5] L. E. Schäfer, S. Ruzika, S. O. Krumke, and C. M. Fonseca, “On the bicriterion maximum flow network interdiction problem.” CoRR abs 2010.02730, 2020. [ arXiv ]
[4] C. M. Fonseca, K. Klamroth, G. Rudolph, and M. M. Wiecek, “Scalability in Multiobjective Optimization (Dagstuhl Seminar 20031),” Dagstuhl Reports, vol. 10, no. 1, pp. 52--129, 2020. [ DOI | http ]
[3] A. P. Guerreiro, C. M. Fonseca, and L. Paquete, “The hypervolume indicator: Problems and algorithms.” CoRR abs 2005.00515, 2020. [ arXiv ]
[2] C. Doerr, C. M. Fonseca, T. Friedrich, and X. Yao, “Theory of Randomized Optimization Heuristics (Dagstuhl Reports 19431),” Dagstuhl Reports, vol. 9, no. 10, pp. 61--94, 2020. [ DOI | http ]
[1] A. P. Guerreiro and C. M. Fonseca, “Computing and updating hypervolume contributions in up to four dimensions,” CISUC Technical Report TR-2017-001, University of Coimbra, 2017. [ source code | .pdf ]
top