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Abstract. The attainment function has been proposed as a measure of
the statistical performance of stochastic multiobjective optimisers which
encompasses both the quality of individual non-dominated solutions in
objective space and their spread along the trade-off surface. It has also
been related to results from random closed-set theory, and cast as a
mean-like, first-order moment measure of the outcomes of multiobjec-
tive optimisers. In this work, the use of more informative, second-order
moment measures for the evaluation and comparison of multiobjective
optimiser performance is explored experimentally, with emphasis on the
interpretability of the results.

1 Introduction

Stochastic multiobjective optimisers, such as evolutionary algorithms and other
metaheuristics, produce Pareto-set approximations which consist of sets of non-
dominated points in objective space. Given the stochastic nature of the optimis-
ers, such non-dominated point sets may be seen as realisations of corresponding
random non-dominated point sets, the stochastic behaviour of which is tied both
to the problem and to the optimiser considered.
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The performance of a multiobjective optimiser is intimately related to the
quality of the Pareto-set approximations it produces. In the literature, several
attempts have been made to quantify the quality of (deterministic) Pareto-set
approximations through so-called unary quality indicators, which are functions
which assign real values to each Pareto-set approximation. In the face of ran-
dom Pareto-set approximations, unary quality indicators provide a convenient
transformation from random sets to random variables. However, this approach
suffers from inherent limitations of unary quality indicators. In fact, even a fi-
nite number of unary quality indicators which, in combination with each other,
would completely describe a deterministic set of non-dominated points in objec-
tive space cannot exist in practice [1]. As a result, information is irremediably
lost by finite-dimensional unary quality indicators even before any statistical
analysis takes place.

To be able to retain all of the information available in the original non-
dominated sets, a quality indicator must be infinite-dimensional, such as the
binary field [2] derived from the set of goals attained by a Pareto-set approxi-
mation (attained set or attained region). Describing a Pareto-set approximation
by a (real-valued) function defined over the whole of the objective space may
not seem to be very sensible in the deterministic case. However, in the random
case, it provides a useful link to existing random set theory, where distributions
of random sets are studied directly (possibly, up to a complete distributional
description) and not indirectly through distributions of summary measures (in-
dicators) of the sets. The attainment function of a random Pareto-set approx-
imation, for example, has been identified as the first-order moment measure of
the binary random field derived from the corresponding random attained set [3],
and, as such, is a concept perfectly integrated in random set theory.

By combining fundamentally different features of the quality of Pareto-set ap-
proximations, such as the quality of individual solutions and their spread along
the trade-off surface, into a real-valued function of the goals, the attainment
function can already effectively describe an important aspect of the distribution
of random Pareto-set approximations, namely its location. To address the de-
pendence structure of individual solutions within these approximation sets, two
additional measures of performance are considered in this work, both of which
are of second-order moment type: the second-order attainment function and its
centred version, the covariance function.

In section 2, background is given on the attainment function. In section 3,
the second-order attainment function and the covariance function are introduced.
Empirical estimates of the two functions, obtained from experimental data, are
presented graphically, and their interpretation is discussed. Section 4 is devoted
to the comparison of optimiser performance using statistical hypothesis tests
based on first-order or second-order attainment functions. To illustrate the ap-
plication of the attainment function approach, experimental results obtained on
two different optimisation problems are presented and discussed in section 5. The
paper concludes with some remarks and directions for further work in section 6.
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Fig. 1. RNP-set X with non-dominated realisations x1, x2, and x3 and the attained set
Y (here as a realisation); compare with Grunert da Fonseca et al. [3].

2 Background

The outcome of a multiobjective optimiser is considered to be the set of non-
dominated objective vectors evaluated during one optimisation run. If the opti-
miser is stochastic, such Pareto-set approximations are random, and their distri-
bution becomes of interest when assessing the optimiser’s performance. Consider
the following definitions (assuming minimisation of all objective functions with-
out loss of generality):

Definition 1 (Random non-dominated point set). A random point-set

X = {X1, . . . , XM ∈ R
d : P (Xi ≤ Xj) = 0, i 6= j},

where both the number of elements M and the elements Xj themselves are ran-
dom and P (0 ≤ M < ∞) = 1, is called a random non-dominated point set
(RNP-set).

Random Pareto-set approximations produced by stochastic multiobjective
optimisers on d-objective problems are RNP-sets in R

d.

Definition 2 (Attained set). The random set

Y = {y ∈ R
d | X1 ≤ y ∨ X2 ≤ y ∨ . . . ∨ XM ≤ y}

= {y ∈ R
d | X E y}

is the set of all goals y ∈ R
d attained by the RNP-set X (see Figure 1).

The distributions of both random sets, X and Y, are equivalent, i.e. a char-
acterisation of the distribution of X automatically provides a characterisation of
the distribution of Y, and vice versa.

Definition 3 (Attainment indicator). Let I{·} = I{·}(z) denote the indica-
tor function. Then, the random variable bX (z) = I{X E z} is called the attain-
ment indicator of X at goal z ∈ R

d.



The set of all attainment indicators indexed by z ∈ R
d is the binary ran-

dom field {bX (z), z ∈ R
d}. For the deterministic case, this binary field fully

characterises a single Pareto-set approximation, as one can always be obtained
from the other. As an infinite-dimensional quality indicator, it can be used to
construct a comparison method which is complete and compatible with respect
to weak-dominance [1]. Although this may not seem to be very useful in the
deterministic case, such a quality indicator provides an interesting assessment
tool in the random case:

Definition 4 (Attainment function). The function αX : R
d 7−→ [0, 1] with

αX (z) = P
(

bX (z) = 1
)

is called the attainment function of X .

As identified in Grunert da Fonseca et al. [3], the attainment function is the
first-order moment measure of the binary random field {bX (z), z ∈ R

d} derived
from Y (the set attained by X ) and, as such, it offers a useful description of the lo-
cation of the distribution of Y (and also of X ). Note that for M = 1, the optimiser
produces a single random objective vector X per run, and the attainment func-
tion reduces to the usual multivariate distribution function FX(z) = P (X ≤ z).
A natural empirical counterpart of the (theoretical) attainment function αX (·)
may be defined as follows:

Definition 5 (Empirical attainment function). Let b1(z), . . . , bn(z) be n

realizations of the attainment indicator bX (z), z ∈ R
d. Then, the function defined

as αn : R
d 7−→ [0, 1] with

αn(z) =
1

n
·

n
∑

i=1

bi(z)

is called the empirical attainment function of X (EAF).

The realizations b1(z), . . . , bn(z) correspond to n runs of the optimiser under
study. In Figure 2, contour plots of the EAFs obtained from 21 independent
runs each of two simple multiobjective genetic algorithm variants (MOGA-A
and MOGA-B) on a bi-objective optimal control problem are presented (see
section 5 for additional information). While the theoretical attainment function
is continuous, the EAF is a discontinuous function which exhibits transitions not
only at the data points but also at other points, the coordinates of which are
combinations of the coordinates of the data points, much like in the case of the
multivariate empirical distribution function [4]. Contours are drawn (from left to
right) at the ǫ-, 0.25-, 0.5-, 0.75- and (1− ǫ)-levels, for arbitrarily small positive
ǫ. The function value αn(z) at a given goal z ∈ R

d indicates the proportion
of optimisation runs (Pareto-set approximations) which produced at least one
solution in objective space attaining that goal. Hence, all goals z ∈ R

d which are
located on the 0.5-level of the EAF, for example, were attained in 50% of the
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(b) MOGA-B

Fig. 2. EAF contour plots (first example).

optimisation runs carried out. This line may also be called the 50%-attainment
surface [5].

The EAF serves as an estimator for the theoretical attainment function
αX (z), in the same way as the multivariate empirical distribution function esti-
mates the (theoretical) multivariate distribution function FX(z), for all z ∈ R

d.
Thus, the performance of an optimiser on a given optimisation problem, un-
derstood in terms of location of the corresponding RNP-set distribution, may
be assessed via EAF estimates. The farther down and to the left the weight
of the attainment function, the greater is the probability of attaining tighter
goals (independently from one another), and the better is the performance of
the algorithm.

In the above sense, performance of two (or more) optimisers operating on
the same optimisation problem can be compared by comparing the correspond-
ing attainment functions. A suitable, Smirnov-like, statistical testing procedure
based on (two) EAFs has been applied earlier by Shaw et al. [6]. Rejecting the
null-hypothesis of equal attainment functions in a statistically significant way
supports the conclusion that the optimisers under study exhibit different per-
formance. However, if such a null hypothesis cannot be rejected, optimisers may
still exhibit different performance, not only because of the statistical error in-
volved, but also because the RNP-set distribution, and thus the performance,
of a stochastic multiobjective optimiser is not completely characterised by the
attainment function.

Whereas the attainment function, as a measure of first-order moment type,
describes the distribution of the RNP-set X in terms of location, it does not ad-
dress the dependence structure within the non-dominated elements of X . Mea-
sures of second-order moment type will now be defined for that purpose.



3 Second-Order Moment Measures

Measures of second-order moment type allow the pairwise relationship between
the elements of a random Pareto-set approximation X to be studied. Consider
the following definitions (again assuming a minimisation problem, without loss
of generality):

Definition 6 (Second-order attainment function). The function defined

as α
(2)
X : R

d × R
d 7−→ [0, 1], with

α
(2)
X (z1, z2) = P

(

bX (z1) = 1 ∧ bX (z2) = 1
)

is called the second-order attainment function of X .

The second-order attainment function is the second, non-centred, moment
measure of the binary random field {bX (z), z ∈ R

d} derived from the attained set
Y [3]. In random set theory terminology, the second-order attainment function
would be called the covariance of the attained set Y (see, for example, Stoyan
et al. [7]). It expresses the probability of (the elements of) the same Pareto-
set approximation X simultaneously attaining two different goals, z1, z2 ∈ R

d.
Obviously, the second-order attainment function is symmetric in its arguments,
and includes all the information of the (first-order) attainment function, as

α
(2)
X (z, z) = αX (z) for all z ∈ R

d,

and
α

(2)
X (z1, z2) = α

(2)
X (z2, z1) = αX (z1) for all z1 ≤ z2 ∈ R

d.

A natural empirical counterpart of the (theoretical) second-order attainment
function may be defined as follows:

Definition 7 (Second-order empirical attainment function). Let b1(z),
. . . , bn(z) be n realizations of the attainment indicator bX (z), z ∈ R

d. Then, the

function α
(2)
n : R

d × R
d 7−→ [0, 1] with

α(2)
n (z1, z2) =

1

n
·

n
∑

i=1

bi(z1) · bi(z2)

is called the second-order empirical attainment function of X (second-order EAF).

The second-order EAF is a discontinuous function, with the values α
(2)
n (z1, z2)

representing the proportion of optimisation runs (Pareto-set approximations)
which attained goals z1 and z2 simultaneously.

The visualisation of the second-order EAF is more difficult than that of the
first-order EAF, as it is defined in R

2d. Even with only two objectives, this
results in four dimensions, and direct visualisation is impossible. A useful work-
around consists of fixing one goal z∗ ∈ R

2 and depicting the contours of the
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(b) With a different fixed goal z∗ ∈ R
2

Fig. 3. Contour plot of the marginal second-order EAF (MOGA-A)

marginal function α
(2)
n (z, z∗) = α

(2)
n (z∗, z), defined over all z ∈ R

2, at given
levels. Figure 3(a) shows the contours of the marginal second-order EAF at
levels ǫ, 0.25, and 0.5 (from left to right), considering a fixed goal z∗ ∈ R

2.
Higher-level contours are not shown, because αn(z∗) < 0.75 in this case, and so

must α
(2)
n (z, z∗) be, for all z ∈ R

2.
A better impression of the second-order EAF would be offered by an interac-

tive session. By changing the position of the goal z∗ in the plot of the marginal

function α
(2)
n (z, z∗), it is possible to explore how the marginal second-order EAF

changes as a function of the goal z∗. By pulling the goal z∗ further downwards,
Figure 3(b) is obtained. Note how another contour disappears, and how the ones
that remain tend to move away from the best Pareto-set approximation known.
Continuing to pull the goal z∗ downwards until it cannot be attained by any of
the runs, all contours would disappear as the marginal second-order EAF be-
came equal to zero over the whole objective space. On the other hand, moving
the goal z∗ upwards until it can be attained by all optimisation runs will lead
to the contours of the (first-order) EAF.

An alternative way of studying the optimiser’s second-order behaviour is
given by the second, centred, moment measure of the binary random field {bX (z),
z ∈ R

d}. In line with the random set theory literature [7], this will be referred
to as the covariance function.

Definition 8 (Covariance function). The function covX : R
d × R

d 7−→
[−0.25, 0.25] with

covX (z1, z2) = α
(2)
X (z1, z2) − αX (z1) · αX (z2)

is called the covariance function of X .

For each pair of goals (z1, z2) ∈ R
d ×R

d, the value of the covariance function
indicates the direction and strength of the relationship between the two (ran-



dom) attainment indicators bX (z1) and bX (z2). If the value covX (z1, z2) equals
zero the two random variables are uncorrelated, i.e. there exists no linear rela-
tionship between them. On the other hand, if all elements of X were independent
covX (z1, z2) would equal zero for all z1, z2 ∈ R

d, z1 6= z2. Moreover, if the value
covX (z1, z2) is positive, there is a positive correlation between bX (z1) and bX (z2),
in the sense that the differences bX (z1) − αX (z1) and bX (z2) − αX (z2) will be
likely to show the same sign. In other words, the attainment of goal z1 tends to
coincide with the attainment of goal z2. The tendency not to attain two particu-
lar goals simultaneously is reflected by a negative covariance function value. The
maximum of covX (z1, z2) equals 0.25 and is reached by the variance function

varX (z) = covX (z, z)

at all z ∈ R
d where αX (z) = 0.5. The minimum possible value of covX (z1, z2)

is −0.25 and will be reached at any pairs of goals which cannot be attained
together, but where each goal has probability of being attained individually
equal to 0.5.

An empirical counterpart of the covariance function may be defined as fol-
lows:

Definition 9 (Empirical covariance function). The function covn : R
d ×

R
d 7−→ [−0.25, 0.25] with

covn(z1, z2) = α(2)
n (z1, z2) − αn(z1) · αn(z2)

is called the empirical covariance function of X (ECF).

As with the second-order EAF, visualisation of the ECF requires a work-
around. In Figure 4, the pairs of goals (z1, z2) ∈ R

2 ×R
2 which exhibit a covari-

ance above or below a certain threshold are indicated in objective space by a
solid bracket beginning at one goal and ending at the other, while the contours
of first-order EAF are plotted as a reference in the background. Figure 4(a)
shows that goals which are likely to be attained simultaneously by MOGA-B are
generally located close to each other in objective space, whereas goals which are
likely to be attained in alternative to each other are located farther apart, as
Figure 4(b) indicates.

4 Comparison of optimiser performance

The performance of two multiobjective stochastic optimisers may be compared
through statistical hypothesis tests of Smirnov-type based on either the (first-
order) attainment function or the second-order attainment function.

4.1 First-order attainment function comparison

Given two optimisers A and B applied to the same optimisation problem indepen-
dently from each other, the following two-sample test problem can be formulated
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(a) Covariance value greater than 0.21
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(b) Covariance value less than -0.21

Fig. 4. Pairs (z1, z2) showing a covariance below or above a threshold (MOGA-B)

for first-order comparison:

H0 : αXA
(z) = αXB

(z) for all z ∈ R
d

v.s.

H1 : αXA
(z) 6= αXB

(z) for at least one z ∈ R
d,

where αXA
(·) and αXB

(·) represent the (first-order) attainment function for op-
timiser A and optimiser B, respectively. Note that the equality of the two at-
tainment functions stated in the null hypothesis H0 is not equivalent to the
equality of the performance of the two optimisers, since attainment functions
solely address the location of the RNP-set distributions in objective space.

Let αA
n (·) and αB

m(·) be the EAF of optimiser A and B, respectively, after
n and m optimisation runs. The above null hypothesis H0 is rejected when the
observed value of the test statistic

Dn,m = sup
z∈Rd

|αA
n (z) − αB

m(z)|

is large. The test is a generalisation of the multivariate two-sided Kolmogorov-
Smirnov test for two independent samples, and like the latter it is not distribution-
free under H0. However, critical values can be obtained by using the permutation
argument [8], i.e. reject H0 if Dn,m is greater than the (1 − α)-quantile of the
resulting permutation distribution of the test statistic under H0. Note that, the
permutation approach has also been used to formulate a distribution-free version
for the multivariate two-sample Kolmogorov-Smirnov test [9].



4.2 Second-order attainment function comparison

A similar test problem can be formulated based on the second-order attainment
function:

H0 : α
(2)
XA

(z1, z2) = α
(2)
XB

(z1, z2) for all z1, z2 ∈ R
d

v.s.

H1 : α
(2)
XA

(z1, z2) 6= α
(2)
XB

(z1, z2) for at least one pair (z1, z2) ∈ R
d × R

d,

where α
(2)
XA

(·, ·) and α
(2)
XB

(·, ·) represent the second-order attainment function for
optimiser A and optimiser B, respectively. Again, the equality of the two second-
order attainment functions stated in H0 is not equivalent with the equality of the
performance of the two optimisers. However, the Smirnov-like test formulated in
the following should already inherit more statistical power than the respective
test based on the (first-order) attainment function as it uses more information
from the data. In other words, not rejecting H0 is generally less likely to be a
wrong decision.

As before, construct a permutation test which rejects H0 if

D(2)
n,m = sup

z1,z2∈Rd

|αA(2)
n (z1, z2) − αB(2)

m (z1, z2)|

is greater than the (1 − α)-quantile of the resulting permutation distribution of

the test statistic under H0. Here, α
A(2)
n (·, ·) and α

B(2)
n (·, ·) are the second-order

EAF of optimiser A and optimiser B, respectively, after n and m optimisation
runs.

5 Experimental results

To illustrate how the first-order and the second-order attainment functions may
be used to study the performance of stochastic multiobjective optimisers, two
application examples are considered here.

The first example consists of the optimisation of a multiobjective Linear-
Quadratic-Gaussian controller design problem proposed by Barratt and Boyd [10]
under controller complexity constraints, as formulated in [11], with multiobjec-
tive genetic algorithms (MOGA). Two MOGAs were applied to the problem, one
without sharing or mating restriction (MOGA-A) and another one with sharing
and mating restriction in the decision variable domain (MOGA-B), as described
in [12]. Each algorithm was run 21 times for 100 generations, and the cumula-
tive set of non-dominated objective vectors found in each run was taken as the
outcome of that run.

The second example consists of the optimisation of a multiobjective Travel-
ling Salesman Problem (TSP) by stochastic local search techniques. The prob-
lem itself is a benchmark instance based on a pair of 100-city TSP instances,
kroA100.tsp and kroB100.tsp, available at TSPLIB5. The optimiser used was

5 http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/



Table 1. Pareto-set approximation statistics

No. of elements
Optimiser No. of runs min average max

MOGA-A 21 48 120.38 191
MOGA-B 21 87 170.95 259
PLS-A 25 1973 2386.1 2891
PLS-B 25 2052 2541.5 3032

Table 2. Hypothesis test results (α = .05)

Optimiser Hypothesis test Test statistic Critical value p-value decision

MOGA 1st-order EAF 0.571 0.571 0.091 do not reject H0

MOGA 2nd-order EAF 0.762 0.714 0.016 reject H0

PLS 1st-order EAF 0.680 0.560 0.004 reject H0

PLS 2nd-order EAF 0.840 0.720 0.002 reject H0

the Pareto local search (PLS) algorithm proposed in Paquete et al. [13], which
uses an archive of non-dominated solutions and an acceptance criterion which
takes into account the concept of Pareto optimality. Two different neighbour-
hoods were considered, the standard 2-opt neighbourhood and a 2-opt extension
proposed by Bentley [14] and known as 2H-opt, leading to two variants of the
algorithm, respectively PLS-A and PLS-B. Each variant was run 25 times until
all solutions in the archive were locally Pareto-optimal, and the corresponding
non-dominated objective vectors were taken as the outcome of each run. Table 1
gives some additional information about the Pareto-set approximations obtained
in the two examples.

For each set of runs, the (first-order) EAF was computed at all relevant
goals in objective space (where the EAF exhibits transitions) and a record was
kept of which runs attained which goals. This record was used to compute the
second-order EAF and the corresponding empirical covariance function values.
The observed values of the test statistic of each of the two Smirnov-like tests
were determined by pooling the outcomes of the two optimisers involved in the
test, and computing the first-order EAF of the resulting pooled sample. Then,
the maximum absolute difference between the two individual EAFs to be com-
pared (whether first or second-order) was determined over the the set of goals (or
pairs of goals) at which the corresponding EAF of the pooled sample exhibited
transitions. Finally, the permutation distribution of the two test statistics was
simulated by considering 10000 random permutations of the runs in the corre-
sponding pooled samples, assigning half of the runs to each algorithm variant,
and recomputing the test statistic for each permutation. The results of the tests
are summarised in Table 2, and will be discussed separately for each example.

5.1 First example

First-order EAF plots for the outcomes of MOGA-A and MOGA-B have already
been presented in Figure 2. Visual inspection suggests that MOGA-B may be
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(b) Difference between second-order EAFs
exceeding the critical value

Fig. 5. Additional results (first example)

more likely to attain certain goals than MOGA-A, as the weight of the EAF
of MOGA-B seems to be more concentrated downwards and to the left than in
the case of MOGA-A. However, the hypothesis test based on the first-order EAF
does not lead to the rejection of the null hypothesis at the 0.05-significance level,
indicating that any differences between the first-order attainment functions of
the two algorithms are not statistically significant.

With respect to second-order behaviour, MOGA-B was shown in Figure 4
to exhibit strong negative covariance at certain pairs of goals. In comparison,
MOGA-A does not exhibit as strong a negative covariance anywhere in objective
space. Thus, the effect of the niche induction techniques used in MOGA-B seems
to be the imposition of stronger dependencies between the elements of the Pareto-
set approximations. As for strong positive covariance, the analogue to Figure 4(a)
for MOGA-A is presented in Figure 5(a). MOGA-A seems to exhibit stronger
positive covariance between more distant goals in objective space, which may
simply be due to the fact that the corresponding Pareto-set approximations
generally contain fewer points than those produced by MOGA-B.

Finally, the hypothesis test based on the second-order EAF does lead to
rejection of the null hypothesis at the 0.05-significance level. Hence, there is
evidence for a statistically significant difference between the second-order at-
tainment functions and, consequently, in the performance of the two algorithms.
Figure 5(b) represents the pairs of goals where the absolute difference between
second-order EAFs exceeded the critical value, with the contours of the first-
order EAF of the pooled sample plotted in the background. Closer inspection of
the individual second-order EAFs indicates that MOGA-B has a greater proba-
bility of attaining these pairs of goals than MOGA-A, which supports the idea
that niche induction techniques had a positive effect on the performance of
MOGA-B.
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Fig. 6. EAF contour plots (second example)

5.2 Second example

First-order EAF contour plots for the outcomes of PLS-A and PLS-B on the
multiobjective TSP example are presented in Figure 6. Due to the characteristics
of both EAFs, only the ǫ-, 0.5- and (1 − ǫ)-levels are displayed. The hypothesis
test based on the first-order EAF leads to a clear rejection of the null hypothesis,
even at significance level 0.01. In Figure 7(a), the goals at which the critical value
of the test statistic is exceeded are marked with black dots. Inspection of the
individual EAFs shows that PLS-B is more likely to attain those goals than
PLS-A, which is hardly surprising since the 2H-opt neighbourhood contains the
2-opt neighbourhood and both algorithms were run until the archive contained
exclusively local optima.

Also not surprisingly, the hypothesis test based on the second-order EAF
leads to an even clearer rejection of the null hypothesis, with absolute differences
in second-order EAF values greater than the critical value being observed at
many pairs of goals (see Figure 7(b)). Again, the probability of PLS-B attaining
these pairs of goals is greater than that of PLS-A, confirming the benefits of a
larger neighbourhood under the experimental conditions considered.

6 Concluding remarks

In this paper, it was shown how the performance of multiobjective optimisers
may be studied using the attainment function approach. Whereas the first-order
attainment function expresses the probability of given goals being attained inde-
pendently from each other in one optimisation run, the second-order attainment
function and the covariance function consider the probability of pairs of goals
being attained simultaneously and, thus, take the dependence between the non-
dominated elements of individual Pareto-set approximations into account.
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(a) Difference between first-order EAFs
exceeding the critical value
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(b) Difference between second-order EAFs
exceeding the critical value

Fig. 7. Hypothesis test results (second example)

By relating the probability of simultaneously attaining given pairs of goals
with the probability of attaining them independently from each other, the co-
variance function provides information about the behaviour of the optimiser. In
the first example, the use of niche induction techniques in a MOGA lead to a dif-
ferent covariance structure, suggesting stronger dependencies between the points
in each random Pareto-set approximation when those techniques were used.

The second-order attainment function, on the other hand, may be said to
extend the first-order attainment function in the task of assessing the ability of an
optimiser to consistently produce good solutions, not only in isolation, but also
in combination with each other. This is particularly relevant when comparing the
performance of two optimisers, as differences in performance may not be related
only to the quality of the non-dominated solutions produced, but also to whether
or not they are likely to occur together. In the first example, only the hypothesis
test based on the second-order attainment function was able to detect significant
performance differences between the two algorithms. In the second example, the
first-order attainment function could already distinguish the performance of the
two optimisers in a statistically significant way. In that case, it is reasonable
to expect even larger differences between second-order attainment functions to
arise, as was observed in this example.

The two examples presented here show that the attainment function approach
to optimiser assessment is currently applicable to bi-objective problems, using
realistic sample sizes (numbers of runs) and large non-dominated point sets.
Determining critical values for the second-order EAF hypothesis tests is by far
the most computationally demanding aspect of the approach (6.5 hours and 40
days on a single Athlon MP 1900+ processor for the first and second examples,
respectively, using 10000 permutations). Clearly, there is still much scope for



work on the computational aspects of the approach, especially as the number of
objectives and/or the size of the data sets grow.
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