
Greedy Hypervolume Subset Selection in Low
Dimensions∗

Andreia P. Guerreiro apg@dei.uc.pt
CISUC, Department of Informatics Engineering, University of Coimbra, Pólo II,
P-3030 290 Coimbra, Portugal

Carlos M. Fonseca cmfonsec@dei.uc.pt
CISUC, Department of Informatics Engineering, University of Coimbra, Pólo II,
P-3030 290 Coimbra, Portugal

Luı́s Paquete paquete@dei.uc.pt
CISUC, Department of Informatics Engineering, University of Coimbra, Pólo II,
P-3030 290 Coimbra, Portugal

Abstract

Given a non-dominated point set X ⊂ Rd of size n and a suitable reference point
r ∈ Rd, the Hypervolume Subset Selection Problem (HSSP) consists of finding a subset
of size k ≤ n that maximizes the hypervolume indicator. It arises in connection with
multiobjective selection and archiving strategies, as well as Pareto-front approximation
post-processing for visualization and/or interaction with a decision maker. Efficient
algorithms to solve the HSSP are available only for the 2-dimensional case, achieving
a time complexity of O(n(k + logn)). In contrast, the best upper bound available
for d > 2 is O(nd/2 logn + nn−k). Since the hypervolume indicator is a monotone
submodular function, the HSSP can be approximated to a factor of (1 − 1/e) using a
greedy strategy. In this paper, greedy O(n(k+ logn))-time algorithms for the HSSP in
2 and 3 dimensions are proposed, matching the complexity of current exact algorithms
for the 2-dimensional case, and considerably improving upon recent complexity results
for this approximation problem.

Keywords

Hypervolume Indicator, Multiobjetive Optimization, Subset Selection, Monotone Sub-
modular Function, Greedy Algorithm

1 Introduction

Multiobjective optimization consists of finding solutions that minimize, without loss of
generality, a vector of d > 1 objective functions, f(x) = (f1(x), . . . , fd(x)). Each solu-
tion x is an element of a decision space, and is mapped onto a point in a d-dimensional
objective space. Due to conflicting objectives, there is usually no ideal solution to a

∗ This paper is an extended version of a GECCO 2015 paper (Guerreiro et al., 2015) providing a more
thorough analysis of the algorithms proposed, both with respect to time complexity and to experimental
results. Additionally, improved illustrative examples are used in the description of the main algorithm.

c©2016 by the Massachusetts Institute of Technology Evolutionary Computation 24(3): 521-544

A. P. Guerreiro, C. M. Fonseca and L. Paquete

multiobjective optimization problem, but multiple Pareto-optimal, or efficient, solu-
tions (Ehrgott, 2005). In this paper, only the points in objective space are considered.

Let u and v be two points in objective space. Point u is said to weakly dominate
point v, denoted by u ≤ v, if ui ≤ vi for all i = 1, . . . , d, and to dominate v if, in addition,
u 6= v. If neither u ≤ v nor v ≤ u, then u and v are said to be incomparable, or mutually
non-dominated. A point is said to be non-dominated if no other point dominates it,
and the set of all non-dominated points is called the Pareto front (Ehrgott, 2005; Deb,
2001).

Quality indicators map a set of n (mutually non-dominated) points onto a real
value, and are used to evaluate the quality of discrete Pareto-front approximations.
Due to its seemingly unique properties (Auger et al., 2009), the hypervolume indi-
cator (Zitzler and Thiele, 1998; Knowles et al., 2003) is used extensively, both in per-
formance studies and in multiobjective selection and archiving strategies. Unfortu-
nately, the hypervolume indicator becomes computationally demanding as the num-
ber of objective dimensions grows. Its time complexity is Θ(n log n) in up to 3 dimen-
sions (Beume et al., 2009), but, for general d, the best upper bound known to date is
O(nd/3 polylog n) (Chan, 2013). So far, the fastest algorithms in practice (HV4D, Guer-
reiro et al. (2012), for d = 4, and WFG, While et al. (2012), for d > 4) are asymptotically
slower.

The problem of selecting k out of n points that maximize the hypervolume indica-
tor commonly arises in multiobjective selection and archiving. This is known as the Hy-
pervolume Subset Selection Problem (HSSP) (Bader and Zitzler, 2011), and algorithms
to solve it exactly are available only for 2 dimensions, with O(n(k+ log n)) (Bringmann
et al., 2014) and O(k(n − k) + n log n) (Kuhn et al., 2016) time complexity. For d > 2,
the equivalent problem of determining a subset of n− k points that contribute the least
hypervolume to the original set can be solved in O(n

d
2 log n + nn−k) (Bringmann and

Friedrich, 2010).

Since the hypervolume indicator is a monotone submodular function (Ulrich and
Thiele, 2012), and the HSSP consists of maximizing it subject to a cardinality constraint,
an (1− 1/e)-approximation to the hypervolume of an optimal subset may be obtained
with an (incremental) greedy strategy (Nemhauser et al., 1978). Based on this result,
Friedrich and Neumann (2014) show that a particular EMO algorithm (GSEMO) ob-
tains such an approximation in an expected O(n2(k + log n)) number of steps, for any
number of dimensions. However, their analysis does not take into account the time
required to compute the hypervolume of the subsets evaluated in the process.

Greedy heuristics for the HSSP were also considered by Bradstreet et al. (2007),
who studied both incremental and decremental strategies. In the incremental case, k
points are greedily selected one at a time so as to maximize the increase in hypervolume
at each step. In contrast, in the decremental case, n − k points are removed one at a
time from the original set of n points so as to minimize the loss of hypervolume in each
step. The decremental case was also considered by Bader and Zitzler (2011), and was
analyzed by Bringmann and Friedrich (2010), who showed that the decremental greedy
solution may be very far from optimal, considering the volume left out by the n−k > 1
points discarded. In other words, the ratio between the volumes left out in the greedy
solution and in the optimal solution may be very large.

As noted also by Bradstreet et al. (2007), both incremental and decremental greedy

2 Evolutionary Computation Volume 24, Number 3

Greedy Hypervolume Subset Selection

solutions for the HSSP can be easily computed using existing algorithms to com-
pute hypervolume contributions (e.g. Emmerich and Fonseca (2011); Bringmann and
Friedrich (2010)) or even just the hypervolume indicator (e.g. Guerreiro et al. (2012);
While et al. (2012)). For example, for d = 3, a decremental greedy algorithm with
O((n − k)n log n)-time complexity is obtained using the EF algorithm (Emmerich and
Fonseca, 2011) to compute all contributions in O(n log n) time. For the incremen-
tal greedy approach, an O(nk2)-time complexity is achieved by iterating over the
procedure used in the HV4D (Guerreiro et al., 2012) algorithm to compute single 3-
dimensional contributions in linear time.

Directly solving the HSSP, even if only approximately, provides an interesting
means of implementing selection in Evolutionary Multiobjective Optimization Algo-
rithms (EMOAs). Indeed, EMOAs frequently work as a combination of generation and
archiving strategies, where k solutions are maintained in the parental population (the
archive), and a number, m, of offspring are generated from the parental population at
each generation. Then, the next parental population is obtained by selecting a new set
of k individuals from the n = k + m parent and offspring individuals available, often
using the hypervolume indicator as the selection criterion (Knowles et al., 2003; Beume
et al., 2007; Bader and Zitzler, 2011). Furthermore, since discarded solutions cannot be
recovered unless they are generated again by the genetic operators, assessing the ap-
proximation quality of the intermediate and/or final populations with respect to the
quality of the best subset that may be selected from all solutions evaluated up to the
corresponding generation becomes of interest (Bringmann et al., 2011). The incremental
greedy approximation to the HSSP allows lower bounds on the quality of such optimal
subsets to be determined, and may also be used to select a (possibly) better set of solu-
tions than the final population for further consideration by a Decision Maker.

In this paper, incremental greedy algorithms for the HSSP in 2 and 3 dimensions
are proposed, providing a (1 − 1/e)-approximation to the optimal subset. Rather than
simply iterating over existing algorithms to compute hypervolume contributions (or
the hypervolume indicator) in order to determine the greatest hypervolume contrib-
utor at each step, the algorithms proposed here exploit the incremental nature of the
greedy approach, and efficiently update only those contributions that are changed by
the selection of a new point at each iteration. In particular, in 3 dimensions, partially
overlapping regions are specifically considered, and computing the volume of the same
common sub-region more than once is avoided. Careful analysis shows that both al-
gorithms proposed have O(n(k + log n)) time complexity, which improves upon the
O(n2)-time bound previously reported for 3 dimensions (Guerreiro et al., 2015), and
reveals the suitability of that algorithm for post-processing analysis, where n may be
very large, but k is typically constant and relatively small.

The next section introduces relevant definitions, and reviews an existing approach
to the computation of 3-dimensional hypervolume contributions in linear time. In Sec-
tion 3, the general strategy is outlined first, and the simpler 2-dimensional case is con-
sidered before the main algorithm proposed is described in detail and illustrative ex-
amples are given. Experimental results are presented in Section 4, and are followed by
some concluding remarks.

Evolutionary Computation Volume 24, Number 3 3

A. P. Guerreiro, C. M. Fonseca and L. Paquete

r

x

y

p1

p2

p3

p4

1

1

2 3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

(a) H({p1, . . . , p4})

r

x

y

1

1

2 3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

p1

p2

p3

p4

(b) H(p3, {p1, p2, p4})

r

x

y

1

1

2 3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

p1

p2

p3

p4

(c) H(p2, p3, {p1, p4})

r

x

y

1

1

2 3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

p1

p2

p3

p4

(d) delimiters of p3

Figure 1: Two-dimensional examples: (a) hypervolume indicator (dark gray region), (b)
hypervolume contribution (light gray region), (c) joint hypervolume contribution (mid
gray region), and (d) delimiters of p3 (p2 and p4), as well as dominated point (p3 ∨ p1),
represented by a filled circle, and non-dominated points (p3∨p2) and (p3∨p4), elements
of J, represented by hollow circles.

2 Preliminaries

The following definitions are useful in stating the problem of interest and explaining
the algorithm proposed. Illustrative examples are given in Figures 1(a)–(d).

Definition 1 (Hypervolume Indicator) Given a point set S ⊂ Rd and a reference point
r ∈ Rd, the hypervolume indicator of S is the measure of the region weakly dominated by S and
bounded above by r, i.e.

H(S) = λ({q ∈ Rd | ∃p ∈ S : p ≤ q ∧ q ≤ r})

where λ denotes the Lebesgue measure.

A fixed reference point is assumed throughout the paper.

Definition 2 (Hypervolume Contribution) Given a point p ∈ Rd, a point set S ⊂ Rd, and
a reference point r ∈ Rd, the (hypervolume) contribution of p to S is:

H(p, S) = H(S ∪ {p})−H(S)

In some cases, such as when determining the decrease in the contribution of a given
point p ∈ Rd to a set S ⊂ Rd due to the addition of another point q ∈ Rd to S, it is also
useful to consider the contribution dominated simultaneously and exclusively by two
points:

Definition 3 (Joint Hypervolume Contribution) The joint hypervolume contribution of
p, q ∈ Rd to S ⊂ Rd is:

H(p, q,S) = H(S ∪ {p ∨ q})−H(S)

where ∨ denotes the join, or component-wise maximum between two points.

Moreover, the contribution of a point p to a set S is bounded above by certain points
q ∈ S that shall be referred to as delimiters, and are defined as follows:

Definition 4 (Delimiter) Given a point set S ⊂ Rd and a point p ∈ Rd, let J =
nondominated({(p ∨ q) | q ∈ S}). Then, q ∈ S is called a (weak) delimiter of the contri-
bution of p to S iff (p ∨ q) ∈ J. If, in addition, H(p, q,S\{q}) > 0, then q is also a strong
delimiter of the contribution of p to S.

4 Evolutionary Computation Volume 24, Number 3

Greedy Hypervolume Subset Selection

where nondominated(X) = {q ∈ X | t ≤ q ⇒ t = q,∀t ∈ X} denotes the set of non-
dominated points in X ⊂ Rd. Note that J is the smallest set of points weakly dominated
by p that delimits its contribution to S, that is, H(p, S) = H(p, J). Consequently, all
q ∈ J are such that H(p, q, J\{q}) > 0, and J is such that H(p,S) = H(p, {})−H(J). For
example, in Figure 1(d), the contribution of p3 is delimited only by p2 and p4, where
both p2 and p4 are strong delimiters. Non-strong delimiters can only exist when S
contains points with repeated coordinates. In the same example, if there were a fifth
point, p5, such that p5x = p4x and p5y < p4y , then both p4 and p5 would be weak delimiters
but not strong delimiters. This means that, in practice, only one in such a group of
delimiters is needed to bound the contribution of p. If one of them is deleted, then the
contribution of p is kept unchanged, whereas it increases if all are deleted. Finally, the
HSSP problem (Bader and Zitzler, 2011) is formally defined here as:

Problem 1 (Hypervolume Subset Selection Problem (HSSP)) Given a point set S ⊂ Rd

and an integer k ∈ {0, 1, . . . , |S|}, find a subset A ⊆ S such that |A| ≤ k and:

H(A) = max
B⊆S
|B|≤k

H(B)

In the example of Figure 1(a), where n = 4, subset {p1, p3} is the (single) optimal solu-
tion of the HSSP with k = 2. Any other subset of {p1, . . . , p4} with at most two points
has a hypervolume indicator value lower than H({p1, p3}) = 39.

2.1 Computing hypervolume contributions

The efficient computation of hypervolume contributions in 3 dimensions is an im-
portant aspect of the greedy algorithm for the HSSP developed in this work. In
HV4D (Guerreiro et al., 2012), an algorithm for hypervolume computation in 4 dimen-
sions, the 3-dimensional contribution of each new point visited in the main loop is
computed in linear time. This is achieved using a dimension-sweep approach based on
another algorithm by Emmerich and Fonseca (2011) for the problem of computing all
contributions in 3 dimensions. A simplified version of that approach, which does not
explicitly use a box-division of the contribution, is described next using Figure 2 for
illustration. It will be referred to as IHV3D. Moreover, let px, py and pz denote the x, y
and z coordinate of a point p ∈ R3 in an (x, y, z)-space, respectively.

Given a point p ∈ R3 and a set S ⊂ R3 of n points, the contribution H(p,S) is
computed in IHV3D by sweeping the points q ∈ S such that qz > pz in ascending order
of the z coordinate, and partitioning the 3-dimensional contribution in horizontal slices.
The contribution of p is the sum of the volumes of all slices. The volume of a slice is
the area of the base of that slice multiplied by its height. The height of a slice is the
absolute difference between the two consecutive points defining that slice. The base
is delimited by the projection onto the (x, y)-plane of the first point defining that slice
and the points below it in z. Thus, S is split into two sets, S1 = {q ∈ S | qz ≤ pz} and
S2 = {q ∈ S | qz > pz}. In addition, a set of points whose projections on the (x, y)-plane
delimit the area exclusively dominated by p in each iteration, S′, is maintained. This set
of mutually non-dominated points is initialized with such points in S1 to represent the
base of the first slice.

Both the splitting of S and the initialization of S′ are performed in linear time. In
the example of Figure 2(a), S1 = {s1, . . . , s7}, S2 = {s8, . . . , s12} and S′ = {s2, . . . , s7}.

Evolutionary Computation Volume 24, Number 3 5

A. P. Guerreiro, C. M. Fonseca and L. Paquete

r

x

y

p

s1s2 s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

(a) Base area

b1b2

b3
b4b5

r

x

y

p

s2 s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

(b) Base partitioning

r

x

y

p

s2 s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

(c) Area cut above

b1
b2

r

x

y

p

s4

s5

s6

s7

s8

s9

s10

s11

s12

(d) Area cut to the right

Figure 2: Example of the computation of the contribution H(p,S), where S =
{s1, . . . , s12}. It is assumed that s1z < · · · < s7z < pz < s8z < · · · < s12z .

Note that at most two points in S′ are not dominated by p on the (x, y)-plane, one above
and to the left, and another below and to the right (s2 and s7 in the example).

The area of the base of the first slice is computed by adding up the areas of the non-
overlapping rectangles into which the base is partitioned (see Figure 2(b)) as the points
in S′ are visited in ascending order of y. Then, the points in S2 are visited in ascending
order of z. For each new point, the volume of the current slice is computed and the area
of its base is updated to obtain the base area of the next slice. In the example, the first
point visited is s8. Therefore, the area of the base of the bottom slice is multiplied by
s8z − pz . Then, the base area is updated by subtracting the area of the region that is now
dominated also by s8 (see Figure 2(c)). This area is computed by visiting the points in
S′ that are dominated by s8 on the (x, y)-plane. In the example, these are points s2 and
s3, which are subsequently replaced in S′ by s8. Hence, S′ becomes S′ = {s8, s4, . . . , s7}.
The procedure for s9 is similar (see Figure 2(d)). Visited points that do not dominate
part of the region dominated by p are skipped (e.g. s10).

The algorithm continues until a point in S2 that dominates p on the (x, y)-plane
is found, s12 in the example. The volume of the last slice is computed by multiplying
the current base area by (s12z − s11z). In IHV3D, all sets are implemented as sorted lists,
and sentinels are used to ensure that limiting points such as s2, s7 and s12 always exist.
IHV3D has an amortized O(n) time complexity because each point in S is visited once
when it is added to S′ and a second time when it is removed from S′, and all operations
on S′ are performed in constant time.

3 Greedy HSS Algorithm

In this section, a general greedy algorithm (Bradstreet et al., 2007) for the HSSP is
explained. Subsequently, specialized algorithms for 2 and 3 dimensions are proposed.

6 Evolutionary Computation Volume 24, Number 3

Greedy Hypervolume Subset Selection

Algorithm 1 gHSS(X, k, r)

Require: X ⊂ Rd, k ∈ N+, r ∈ Rd

1: S← {}
2: for all q ∈ X do
3: q.c← H(q,S)
4: for i = 1..k do
5: p← arg maxq∈X{q.c}
6: X← X\{p}
7: for all q ∈ X do
8: q.c← q.c−H(p, q,S)
9: S← S ∪ {p}

10: return S

3.1 General Case

Given a non-dominated point set X ⊂ Rd, where |X| = n, in the greedy algorithm
for the HSSP (Problem 1), k ≤ n points from X are chosen and stored in S, one at a
time, always selecting the point that contributes the most hypervolume to the set of
points already chosen. For that reason, in gHSS (Algorithm 1), the contribution of each
point q ∈ X to the initially empty set S (line 3) is computed first and is stored in q.c.
Afterwards, the point p in X with maximal contribution is picked (line 5). Then, the
contribution of the remaining points in X to S ∪ {p} is updated (line 8), i.e., the portion
of the contribution of each q ∈ X that is dominated by p is removed. Finally, p is moved
from X to S (lines 6 and 9). Lines 5 to 9 are repeated until S contains k points.

Note that ties may occur, i.e., at some point, more than one point may have the
(same) highest contribution. In such cases, it is correct to choose any of the tied points.
However, ties that are solved differently, will possibly result in different subsequent
intermediate and final greedy solutions, both with respect to the set of points selected
and, thus, to the corresponding hypervolume indicator value.

It is clear from Definition 3 that, in the absence of an efficient algorithm to com-
pute the Joint Hypervolume Contribution (line 8), an algorithm for the Hypervolume
Indicator can be used to determine this quantity. Furthermore, the whole contribution
H(q,S ∪ {p}) could be simply recomputed in line 8. Updating the contributions of all
points p in a set X to the corresponding sets X\{p} under single-point changes to X
can already be performed efficiently in 2 dimensions (Hupkens and Emmerich, 2013).
However, in the incremental greedy algorithm, the contributions of points in X have
to be updated w.r.t. a set S and not to X itself. Thus, the algorithm proposed by Hup-
kens and Emmerich (2013) cannot be used directly by the greedy algorithm. The same
is true for algorithms to compute the contributions of all points p in X to X\{p} (Em-
merich and Fonseca, 2011; Bringmann and Friedrich, 2010). In contrast, the procedure
explained in Subsection 2.1 to compute a single 3-dimensional contribution in linear
time could be adapted to this case, resulting in a O(k2n)-time algorithm.

3.1.1 Example

Figure 3 shows an example of how the greedy algorithm can be applied to a set of non-
dominated points X = {p1, . . . , p7} in two-dimensional space for k up to 7. Figure 3

Evolutionary Computation Volume 24, Number 3 7

A. P. Guerreiro, C. M. Fonseca and L. Paquete

r

x

y

1

1

2 3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

p2

p3

p5

p7

p1

p4

p6

(a) S = {}
X = {p1, . . . , p7}

r

x

y

1

1

2 3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

p2

p3

p5

p7

p1

p4

p6

(b) S = {p3}
X = {p1, p2, p4, . . . , p7}

r

x

y

1

1

2 3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

p2

p3

p5

p7

p1

p4

p6

(c) S = {p3, p5}
X = {p1, p2, p4, p6, p7}

r

x

y

1

1

2 3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

p2

p3

p5

p7

p1

p4

p6

(d) S = {p3, p5, p2}
X = {p1, p4, p6, p7}

|S|
H(p,S) 0 1 2 3 4 5 6

p

p1 9 2 2 1 1 - -
p2 24 3 3 - - - -
p3 28 - - - - - -
p4 25 5 1 1 1 1 -
p5 24 8 - - - - -
p6 14 6 2 2 1 1 1
p7 9 5 3 3 - - -

(e) Contributions with respect to S

Figure 3: Example of the incremental greedy algorithm (gHSS2D) for the HSSP in 2
dimensions.

illustrates which points are selected by the greedy algorithm and in which order. Fig-
ures 3(a), 3(b), 3(c) and 3(d) show the evolution of sets X and S in the first 4 iterations,
and depict the corresponding contributions of the points in X to S. The table in Fig-
ure 3(e) shows the values of these contributions for every iteration of the algorithm.
Each column corresponds to an iteration of the algorithm, and is labeled with the size
of the set of selected points, |S|. Each row shows the contribution of a point in X as set
S grows. Consequently, column i shows the contribution to S of each point not yet se-
lected at iteration i. The values in bold indicate which point from X is selected in each
iteration. Note that column i shows both the points in the greedy solution for k = i (the
dashed cells) and an intermediate solution for k > i. Thus, any particular case where
k < n leads to performing just the first k steps of the example.

The first step of the algorithm (line 3 in Algorithm 1) is to compute the contribution
of every point p ∈ X to S = {}, which corresponds to the first column in the table. Then,
in iteration 1 of the for loop in line 4, since p3 contributes the most to S = {}, it is selected

8 Evolutionary Computation Volume 24, Number 3

Greedy Hypervolume Subset Selection

and moved from X to S (lines 6 and 9). The contributions of the points remaining in X
are updated (line 8) to account for the addition of p3 to S. For example, the contribution
of p1 is updated by subtracting the area of its contribution that becomes dominated by
p3 (the area between (3, 9) and r). Formally, H(p1, {p3}) = H(p1, {}) −H(p1, p3, {}) =
9− 7 = 2. The same calculations are performed for p2, p4, . . . , p7. After the contribution
update step, the contributions of every point still in X to S = {p3} are known as shown
in the second column of the table. In iteration 2, p5 is the point that contributes the
most to S = {p3}, and so it is selected and moved from X to S. Note that, in such a
case, the contributions of p1 and p2 remain the same with the addition of p5 to S, and
so only those of p4, p6 and p7 have to be updated. The algorithm repeats the select and
update steps until k points are selected. In Figure 3, the greedy solution for k ≤ n is
formed by the first k points of the sequence: p3, p5, p2, p7, p1, p4, p6. For a given k < n,
the greedy solution contains the points that, in the column k, correspond to dashed
cells. For example, for k = 3, the greedy solution can be seen in the fourth column,
which corresponds to |S| = 3, and is S = {p2, p3, p5}.

The following subsections show how H(p, q,S) can be efficiently computed in the
2- and 3-dimensional cases.

3.2 2-dimensional Case

The algorithm proposed in this subsection (gHSS2D) deals with the particular case of
gHSS in 2 dimensions. In gHSS2D, a simple procedure can be used to update the con-
tributions of the unchosen points in line 8 of Algorithm 1. Assume that points in X ∪ S
are kept sorted in ascending order of the y-coordinate (and in descending order of the
x-coordinate). Therefore, every point q ∈ X ∪ S needs to keep the information of the
next and of the previous point in X ∪ S which is determined once by sorting X in a
pre-processing step.

Because a contribution is represented by a rectangle, every q ∈ X stores its con-
tribution (q.c) and also the corresponding upper bound. All upper bounds are ini-
tially set to the reference point. Let t1 and t2 be the closest points in S to the left
and to the right of p, respectively. Then, for each point p chosen, the points to its
left are visited, in ascending order of coordinate y, until t1 is reached. Similarly, the
points to its right are visited until t2 is reached. Every point q ∈ X between t1 and p
has the upper bound previously set to (t2x, t

1
y) and therefore, the quantity H(p, q,S) is

(t2x − px)× (t1y − qy), and the upper bound is set to (px, t
1
y). Points q ∈ X between p and

t2 have H(p, q,S) = (t2x − qx)× (t1y − py) and their upper bound is set to (t2x, py).

The time complexity of gHSS2D is Θ(n(k + log n)) because the initial sorting costs
Θ(n log n)-time and, for each point p chosen, up to n contributions have to be computed,
where each contribution is computed in constant time. A worst case example is the set
of n points {(−i,−2n−i+1 + 1) | i ∈ {1, . . . , n}} with r = (0, 0). Note that gHSS2D
and the exact algorithms (Bringmann et al., 2014; Kuhn et al., 2016) have similar time
complexities. However, the greedy version should be easier to implement and, because
it is very simple and uses simple data structures, it is very fast in practice.

3.3 3-dimensional Case

The algorithm that deals with the particular case of gHSS in 3 dimensions (gHSS3D)
is presented in this subsection. This subsection starts by defining the data structures,

Evolutionary Computation Volume 24, Number 3 9

A. P. Guerreiro, C. M. Fonseca and L. Paquete

-y-x

-z

(a) 3D example

-y-x

-z

(b) H(S) and H(p, S)

r

x

y

q1

p

s1

s2

s3

s4

s5
s6

s9

q2

q3
q4

q5
q6

s7

s8

s10

q7

(c) 2D projection with H(S∗)
and H(p∗, S∗) at z = pz

Figure 4: Example where X = {q1, . . . , q7}, S = {s1, . . . , s10} and p is the last point re-
moved from X and to be added to S. (a) shows X, S and p, (b) shows how much volume
p will add to S (transparent region). (c) shows a cut at z = pz and the 2-dimensional
projection of all points in (a). In (c), points in X are represented with circles, and points
in S are represented with squares. The squares and circles painted gray have higher
z coordinate than p and the remaining ones have lower z coordinate than p. As can
be seen in (a), when X ∪ S ∪ {p} is sorted in ascending order of the z coordinate, the
following sequence is obtained: q1, s1, . . . , s7, q2, . . . , q4, p, s8, q5, q6, s9, q7, s10.

some notation and procedures used by the algorithm. Then, the algorithm itself and, in
particular, the update of the contribution of the points in X in line 8 of Algorithm 1 are
detailed. This subsection finishes with a discussion of the time complexity of gHSS3D.

The main aspect of gHSS3D is how the contributions of points in X are updated.
For an easier understanding of how those are performed in gHSS3D, the problem de-
picted in Figure 4 will be used as an example. The Figure shows an intermediate iter-
ation of Algorithm 1, where some points have already been moved from X to S. Note
that Figure 4 does not intend to illustrate an actual choice of points by gHSS3D, and
that the update procedure presented here is independent of the choice of points moved
from X to S. The only assumptions about X and S are that they are disjoint sets and
X ∪ S is a non-dominated point set. In Figure 4(a), the contribution to S of every point
in X is shown. The transparent (yellow) volume in Figure 4(b) shows more clearly the
volume that p adds to S. Any point in X whose contribution to S lies partially in that
yellow region has to have that volume removed from its contribution, as it becomes
dominated. 2D projections as the one in Figure 4(c) will be used further in this paper.

3.3.1 Data structures and procedures

In gHSS3D, doubly linked lists are used to maintain the sets of points sorted, and sen-
tinels ensure that there is always a point in the limiting conditions. Algorithm 2 keeps
both sets X and S sorted in ascending order of all coordinates. Each point q ∈ X keeps
some information associated to it, such as area (q.a), volume (q.v), height (q.z) and con-
tribution (q.c). The first three values are temporary values that are used to compute the
volumeH(p, q,S) which will be subtracted from q.c, the contribution of q. The value q.z
indicates the value of the third coordinate up to which volume q.v has been updated,
and q.a keeps the area dominated at height q.z. p∗ and S∗ will denote the projections of
p and S onto the (x, y)-plane, respectively.

10 Evolutionary Computation Volume 24, Number 3

Greedy Hypervolume Subset Selection

Algorithm 2 gHSS3D(X, k, r)

Require: X ⊂ Rd, k ∈ N+, r ∈ Rd

1: X is sorted in ascending order of all dimensions
2: S← {(rx,−∞,−∞), (−∞, ry,−∞), (−∞,−∞, rz)}
3: for all q ∈ X do
4: q.c← (rx − px)× (ry − py)× (rz − pz)
5: for i = 1..k do
6: initialize q.v to 0 for all q ∈ X
7: p← arg maxq∈X{q.c}
8: X← X\{p}
9: X′ ← X

10: for all o ∈ {(x, y, z), (z, x, y), (y, z, x)} do
11: (x, y, z)← o // Change coordinate order
12: X1 ← {q ∈ X′ | p∗ ≤ q∗ ∧ pz ≥ qz}
13: X2 ← {q ∈ X′ | p∗ ≥ q∗ ∧ pz ≤ qz}
14: S1,S2 ← splitz(S, pz)
15: jointContributions1(p,S1,S2,X1, r)
16: jointContributions2(p,S1,S2,X2, r)
17: X′ ← X′\(X1 ∪X2)
18: for all q ∈ X do
19: q.c← q.c− q.v
20: S← S ∪ {p}
21: return S

Given X,S ⊂ R3 represented by sorted lists and the points p, q ∈ R3 and h ∈ R, the
following procedures are available.

nexty(p,S) The point following p in S with respect to coordinate y, for p ∈ S.

heady(S) The point q ∈ S with the least qy .

miny(p, S) The point q ∈ S with the least qy > py such that qx ≤ px.

addFirsty(p, S) Add point p to S where p becomes heady(S).

minima(S) Return the points that are not dominated on the (x, y)-plane , i.e., {q ∈ S |
@t ∈ S : t∗ ≤ q∗, t 6= q}.

splity(S, h) Given h ∈ R, split S in two sets, S1 and S2 such that S1 = {q ∈ S | qy ≤ h}
and S2 = {q ∈ S | qy > h} and return S1 and S2.

area(p, S) The quantity H(p∗,S∗).

updateVolume(X, h) Given h ∈ R, for each point q ∈ X, update its volume, save it in
q.v and update q.z, i.e., compute q.v ← q.v + q.a× (h− qz) and set q.z ← h.

initializeBases(X, p,S) For each point q ∈ X, compute H(p∗, q∗,S∗) and save it in q.a.

updateAreas(p,X,S) For each q ∈ X compute q.a← q.a−H(p∗, q∗,S∗).

Evolutionary Computation Volume 24, Number 3 11

A. P. Guerreiro, C. M. Fonseca and L. Paquete

Procedures next, head, min, addFirst and split are also available for coordinates x and z
and, apart from split and min, they all run in constant time. splity has a cost of O(|S2|)
because it is the cost of finding the break point by sweeping points in descending order
of coordinate y. The remaining procedures have linear cost w.r.t. the total size of the
input sets, i.e., eitherO(|X|),O(|S|) orO(|S|+|X|). Both initializeBases and updateAreas
will be explained in more detail in Subsection 3.3.3. All procedures that modify or
return a subset of a given sorted set guarantee that the returned sets are also sorted
according to the coordinate used for sweeping the points. These procedures may also
guarantee that those points are sorted according to other coordinates, if needed. More
information about those procedures will be given in the next subsections. Note that, if
a set of non-dominated points on the (x, y)-plane is sorted in ascending order of one
coordinate, then it is also sorted according to the other coordinate, but in descending
order.

3.3.2 Main loop of gHSS3D

gHSS3D follows the same working principle as gHSS, but, instead of updating the con-
tributions of points in X one by one (lines 7 and 8 in Algorithm 1), the (x, y, z)-space is
divided into 8 octants with a common vertex at p, and the contributions of the points in
each pair of opposite octants are updated at the same time (lines 9 to 17 in Algorithm 2).

The two octants corresponding to the region that dominates p and the region dom-
inated by p are ignored because they do not contain any points. The remaining three
pairs of octants are all updated in the same way, except that a different coordinate order
is considered for each pair. The order is set in such a way that a different dimension is
used as the z-coordinate in each case (lines 10-17 of Algorithm 2).

Given a coordinate order o ∈ {(x, y, z), (z, x, y), (y, z, x)}, the two octants consid-
ered when order o is selected are those that contain sets X1 ⊆ X and X2 ⊆ X, defined as
follows. X1 contains the points in X that are dominated by p in the first two dimensions
of o, but are equal to or better (i.e., lower) than p in the third dimension. X2 contains the
points in X that dominate p in the first two dimensions of o but are equal to or worse
(i.e., higher) than p in the third dimension. Figure 5 shows how the set X from the ex-
ample in Figure 4 is split into octants, and shows X1 and X2 according to the objective
order considered. In Figure 5(a), points are assigned colors, each associated with a sin-
gle octant. Figures 5(b), 5(c) and 5(d) show the corresponding sets X1 and X2 according
to objective order (x, y, z), (y, z, x) and (z, x, y), respectively. Note that considering a
different objective order is equivalent to rotating the space.

Lines 9 and 17 of Algorithm 2 guarantee that no point in X is updated more than
once in case there are points with repeated coordinates, i.e., points on the boundary
between two octants. The computation of q.v = H(p, q,S) for q ∈ X1 and q ∈ X2 is
detailed in Algorithms 4 and 3, respectively.

3.3.3 Updating contributions of points in X

Consider the case where the order considered is o = (x, y, z). In the example given,
X1 = {q1, q3, q4} and X2 = {q6, q7}, as depicted in Figure 5(b). The update procedure
for the remaining coordinate orders is similar (Figures 5(c) and 5(d)). Figure 6 shows
(in red) the joint contributions of p with each point in X1 (Figures 6(a) to 6(c)) and with
each point in X2 (Figures 6(d) and 6(e)), which have to be computed and removed.

12 Evolutionary Computation Volume 24, Number 3

Greedy Hypervolume Subset Selection

-y-x

-z

(a) Base example

-y-x

-z

(b) o = (x, y, z),
X1 = {q1, q3, q4},
X2 = {q6, q7}

-z-y

-x

(c) o = (y, z, x), X1 = {},
X2 = {q2}

-x-z

-y

(d) o = (z, x, y), X1 = {q5},
X2 = {}

Figure 5: The subproblems X1 and X2 for the three objective orders considered, o =
{(x, y, z), (y, z, x), (z, x, y)}.

Note that, in the case of q1, there is no joint contribution with p. Furthermore, note that
some of the joint contributions (partially) overlap, for example, those of p with q3 and
of p with q4.

The update procedure will be explained first for X2 and then for X1. In both cases,
the algorithms are built upon IHV3D (explained in Section 2). Therefore, Algorithm 2
splits S into S1 and S2. In this case only, function split takes O(n)-time as it has to guar-
antee that S1 and S2 are sorted according to all dimensions. Set S′ is also maintained
along the execution of both Algorithms 4 and 3, and is initialized as the subset of S1

that delimits the area dominated by p. In the example, we have that S1 = {s1, . . . , s7},
S2 = {s8, . . . , s10} and S′ = {s3, . . . , s7} (initial set).

In the case of X2 (X2 = {q6, q7}), all points dominate p on the (x, y)-plane, and
have higher z-coordinate. Therefore, if X2 is sorted in ascending order of z, then, given
any q ∈ X2 and its previous point u in X2, the joint contribution of q with p is equal
to the joint contribution of u with p above the value qz of coordinate z. Moreover,
the contribution of q when it is headz(X2) is equal to the contribution of p above the
value qz of coordinate z. Figure 7(a) shows the joint contributions of p with each point
in X2 = {q6, q7}. Note that the joint contribution of q7 with p is equal to the joint
contribution of q6 with p for z ≥ q7z . The joint contribution of q6 with p is equal to
the contribution of p for z ≥ q6z . Thus, if the volume between z = uz and z = qz

Evolutionary Computation Volume 24, Number 3 13

A. P. Guerreiro, C. M. Fonseca and L. Paquete

(a) H(q1, S) (b) H(q3,S) (c) H(q4, S)

(d) H(q6,S) (e) H(q7,S)

Figure 6: Individual contributions to S (dark gray plus red region) of the points in X1 =
{q1, q3, q4} and in X2 = {q6, q7}. The region of each contribution that is dominated by
p is in red.

is associated only to u, then the joint contribution of every q ∈ X2 can be calculated
by accumulating the volume associated to each point while visiting X2 in descending
order of z. Hence, in Algorithm 3, the previous point u ∈ X2 of each q ∈ X2 is stored in
q.prev .

Algorithm 3 behaves just like IHV3D, i.e., in the algorithm, S′ is used to maintain
the points delimiting the area of p at height z = qz , and points in S2 are visited in
ascending order of z in order to update the area of p and to compute the slice volume
(lines 8 to 15). Additionally, X2 is swept along with S2 in ascending order of the z-
coordinate by merging the two lists (line 4). The last point visited from X2 is recorded
as u (except for first initialization of u, which is a sentinel), and its volume (line 16) and
area (line 17) are updated when the area of p (p.a) is updated. Whenever the current
point q ∈ X2 ∪ S2 belongs to X2, the volume simultaneously dominated by u and p
bounded below by uz becomes bounded above by qz (line 19) and stays associated
to (and only to) u. The contribution of p above qz becomes associated to q (lines 20
and 21) and q is set as the new u (line 23). In that way, each part of the contribution p
(a consecutive set of slices) is associated to a single point of X2. When the first point
from S2 that dominates p on the (x, y)-plane is found (s10), the volume of the last point
from X2 is updated (line 25). Figures 7(b) and 7(c) show the two slices (whose volume
is) associated to q6, and Figure 7(d) shows the only slice associated to q7. Lastly, q ∈ X2

are visited again but in descending order of the z-coordinate, and their volumes are

14 Evolutionary Computation Volume 24, Number 3

Greedy Hypervolume Subset Selection

Algorithm 3 jointContributions2(p,S1,S2,X2, r)

1: S′ ← {q ∈ minima(S1) | p∗ ≤ q∗} ∪ {minx(S1),miny(S1)}
2: p.a← area(p,S′)
3: u← p
4: L← X2 ∪ S2

5: q ← headz(L)
6: while q ∈ X2 or q∗ � p∗ do
7: if q ∈ S2 then
8: if qx ≤ px then
9: S′,T← splity(S′, qy)

10: p.a← p.a− area(p ∨ q,T ∪ {headx(S′)})
11: addFirstx(q,S′)
12: else
13: S′,T← splitx(S′, qx)
14: p.a← p.a− area(p ∨ q,T ∪ {heady(S′)})
15: addFirsty(q,S′)
16: updateVolume({u}, qz)
17: u.a← p.a
18: else
19: updateVolume({u}, qz)
20: q.a← p.a
21: q.z ← qz
22: q.prev ← u
23: u← q
24: q ← nextz(q,L)
25: updateVolume({u}, qz)
26: vol ← 0
27: while u 6= p do
28: vol ← vol + u.v
29: u.v ← vol
30: u← u.prev

accumulated and added to the next visited points (lines 27 to 30). In the example, the
volume associated to q6 is stored in vol , and corresponds to its joint contribution with
p. Then the volume associated to q7 is added to vol , corresponding now to the joint
contribution of q7 and p.

In the case of points q ∈ X1, not every point has its contribution reduced with
the addition of p to S, as it is the case of q1 in Figure 6(a). In Algorithm 4, a set X′ ⊆
X1 is used to keep the points of X1 whose joint contributions with p are still being
computed. X′ is initialized in linear time with the points in X1 that need to be updated,
i.e., those points such that q∗ ∈ X1∗ is not dominated by S′∗. Figure 8(a) shows the
joint contributions of p with every point in the initial set X′ = {q3, q4}, which partially
overlap. Figures 8(b) to 8(d) show how these joint contributions are split into slices by
the algorithm. The computation of H(p, q,S) for each q ∈ X′ is performed in two main
steps, the computation of the base area of the volume H(q ∨ p,S′) (line 3) and the area
updates (lines 13 and 21). Figures 9 and 10 will be used as examples of these steps,
respectively. Note that the base areas of the volumes H(q ∨ p,S′) correspond to the

Evolutionary Computation Volume 24, Number 3 15

A. P. Guerreiro, C. M. Fonseca and L. Paquete

(a) H(p, q6, S) and
H(p, q7, S)

(b) Slice 1 (c) Slice 2 (d) Slice 3

Figure 7: The (partially overlapping) joint contributions of every point in X2 = {q6, q7}
with p and their division into slices.

(a) H(p, q3, S) and
H(p, q4, S)

(b) Slice 1 (c) Slice 2 (d) Slice 3

Figure 8: The (partially overlapping) joint contributions of every point in {q3, q4} ⊂ X1

with p and their division into slices.

base areas in the red volume in Figure 8(b), while the base areas of the red volumes of
Figures 8(c) and 8(b) correspond to the subsequently updated areas.

Figure 9(a) corresponds to Figure 8(b) in the cut plane at z = pz and shows, also
in red, the base areas of q3 and q4 to be computed, which overlap partially. The base
areas are initialized in linear time by computing H(p∗,S′∗)−H(p∗,S′∗ ∪ {q∗}), for each
q ∈ X′. The areas associated to points in X′ are initialized with H(p∗,S′∗), which was
previously computed in linear time in line 2 of Algorithm 3. The valueH(p∗,S′∗∪{q∗})
is computed in two sweeps. Points q ∈ S′ ∪ X′ are first visited in ascending order of
x and the area dominated by p between px and each qx is computed in a cumulative
way. When a point from X′ is visited, the area accumulated so far is subtracted from
the area associated with that point. In Figures 9(b) and 9(c), the striped area is the
accumulated area that is subtracted from q4.a and q3.a, respectively. The remaining
area to be subtracted, i.e., the area between py and qy to the right of px, is computed in
an analogous way by sweeping points in S′∪X′ in ascending order of the y-coordinate.
Note that, in the second sweep, it is also necessary to add to q.a the area bounded below
by p and above by q, for each q ∈ X′, as it was subtracted twice.

Figure 10 shows the update of the areas of points in X′ (lines 13 and 21). The
volumes are updated in lines 12 and 20. This corresponds to the cases where a point in
S′ cuts above the area dominated by p (lines 7 to 14 and s8 in Figures 10(a) and 10(b))
or to the right (line 16 to 22 and s9 in Figure 10(c) and 10(d)). Points q ∈ S2 are visited
in ascending order of z-coordinate, as in IHV3D. Looking at the case where q = s8,

16 Evolutionary Computation Volume 24, Number 3

Greedy Hypervolume Subset Selection

Algorithm 4 jointContributions1(p,S1,S2,X1, r)

1: S′ ← {q ∈ minima(S1) | p∗ ≤ q∗} ∪ {minx(S1),miny(S1)}
2: X′ ← {q ∈ X1 | p∗ ≤ q∗ and @t ∈ S′ : t∗ ≤ q∗}
3: initializeBases(X′, p,S′)
4: L← S2

5: q ← headz(L)
6: while q∗ � p∗ do
7: if qx ≤ px then
8: S′,T← splity(S′, qy)
9: t← headx(S′)

10: X′,A← splity(X′, qy)
11: B← {u ∈ X′ | ux < tx}
12: updateVolume(A ∪ B, qz)
13: updateAreasy(p ∨ q,B,T ∪ {headx(S′)})
14: addFirstx(q,S′)
15: else
16: S′,T← splitx(S′, qx)
17: t← heady(S′)
18: X′,A← splitx(X′, qx)
19: B← {u ∈ X′ | uy < ty}
20: updateVolume(A ∪ B, qz)
21: updateAreasy(p ∨ q,B,T ∪ {heady(S′)})
22: addFirsty(q,S′)
23: q ← nextz(q,L)

let T be the set of points in S′ with higher y-coordinate than s8y (T = {s5, . . . , s7}). In
Algorithm 4, set T is first removed from S′ (S′ = {s3, . . . , s7}), in O(|T|)-time, through
function split. Thus, S′ becomes S′ = {s3, s4}). T is kept sorted according to the y-
coordinate. Similarly, set A is removed from X′ (X′ = {q3, q4}) in O(|A|)-time, also
through split (line 10). Set A contains the points that are dominated by q∗ on the (x, y)-
plane, i.e., those that have no more contribution above qz (A = {}). Finally, the areas
associated with the points in X′ to the left of the point that delimits q at right (t = s4)
have to be updated. Therefore, those points are stored in B (line 11, B = {q3, q4}). The
volumes of points in B∪A are updated inO(|A|+|B|)-time (line 12). Then, in procedure
updateAreas (line 13), points u ∈ B ∪ T are visited in descending order of coordinate
x. For each u visited, the area dominated by p ∨ q to the right of u is accumulated.
Whenever the visited point u belongs to B, the area computed so far is subtracted from
u.a. Therefore, the update of the areas of points in B costs O(|B| + |T|). At last, q
is added to S′ (S′ = {s8, s4, s3}). The updated areas (and the updated X′ and S′) are
depicted in Figure 9(b), which corresponds to Figure 8(c) at the cut plane z = s8z .

When qy ≤ py , the procedure is analogous. Note that, in the example of Fig-
ure 10(c), q = s9 and A = {q3}. Therefore, q3 is removed from X′ and its volume
is updated. X′ becomes {q4}, then t = s8, B = {q4}, and, at the end of that itera-
tion, S′ = {s8, s9} and X′ = {q4}. The updated areas (and the updated X′ and S′) are
depicted in Figure 10(d), which corresponds to Figure 8(d) at the cut plane z = s9z .
Algorithm 4 terminates when the first point q that dominates p on the (x, y)-plane is
found (s10).

Evolutionary Computation Volume 24, Number 3 17

A. P. Guerreiro, C. M. Fonseca and L. Paquete

r

x

y

p
s3

s4

s5
s6

q3
q4

s7

(a) Areas of q3 and q4

r

x

y

p
s3

s4

s5
s6

q3
q4

s7

(b) Update q4.a

r

x

y

p
s3

s4

s5
s6

q3
q4

s7

(c) Update q3.a

Figure 9: Example of how the base area of each points in X′ = {q3, q4} is computed in
initializeBases(X′, p,S′).

r

x

y

p
s3

s4

s5
s6

s9

q3
q4

s7

s10

s8

(a) Areas cut above

r

x

y

p
s3

s4

s9

q3
q4

s10

s8

(b) After cut above

r

x

y

p
s3

s4

s9

q3
q4

s10

s8

(c) Areas cut to the right

r

x

y

p

s9

q4

s10

s8

(d) After cut to the right

Figure 10: Example of how points from S2 are used in Algorithm 4 to update the areas
of points in X′.

3.3.4 Time complexity

In Algorithm 2 (gHSS3D), points are sorted in O(n log n)-time and their contributions
are initialized in linear time. Then, the contributions of points in X are updated k
times by sweeping those points considering three different coordinate orders. For each
coordinate order, the points of two disjoint sets are updated, X1 and X2 in Algorithms 4
and 3, respectively. Lines 11 to 14 and 17 have linear cost, while Algorithm 3 (line 16)
has amortized linear time. Algorithm 4 (line 15) has amortized O(nk)-time, but the
amortization is along the entire execution of Algorithm 2.

Algorithm 3 inherits the O(n) time complexity of IHV3D. As in IHV3D, the base
area associated with p is computed in linear time (line 2). Afterwards, points in S are
only visited once when they are added to S′ (line 1, 11 or 15), and once again if they are
removed from S′ (lines 9 and 13) and are used to update the area of p (lines 10 and 14).
Points in X2 are used in constant time operations in the first while loop (lines 16 to 25),
and are all visited once again, to update their volumes (lines 27 to 30).

The time complexity of Algorithm 4 is analyzed by considering all calls (a max-
imum of k ≤ n) from Algorithm 2. The analysis shows that some steps amortize to
O(n)-time for each call of Algorithm 4, while others are worse than linear in a single
call, but result in O(nk)-time across the k possible calls. In the worst scenario of the
latter case (a single call), each point in the final set S (the greedy solution) may be com-
pared against all other points a constant number of times.

In Algorithm 4, it is guaranteed that each point is visited only if its area or vol-
ume has to be updated or if it delimits the contribution of the area being computed.

18 Evolutionary Computation Volume 24, Number 3

Greedy Hypervolume Subset Selection

The operations performed to maintain S′ (lines 8, 16, 14 and 22) are the same as in Al-
gorithm 3, so these operations amortize to linear time. As with S′, points from X1 are
added once to X′ (line 2) and are removed once from X′ (line 10 or 18). Therefore, main-
taining X′ also amortizes to linear time. It remains to explain how many times points in
B ⊂ X′ are visited. Constructing B has a cost O(|B|), and procedure updateAreas has
a cost of O(|B|+ |T|). Since the points in T were previously removed from S′, they are
used by updateAreas only once. However, in the worst case, B is equal to X′ in every
iteration of Algorithm 4, and points are never removed from X′. This means that pro-
cedure updateAreas has a cost of O(n), leading to O(kn)-time complexity over |S2| ≤ k
iterations.

Basically, the role of updateAreas is to compare each point in X with points in
S. However, in this procedure, each point in X is compared against each point in S
once throughout the execution of gHSS3D. As |S| ≤ k always holds, all executions of
updateAreas, and of updateVolume, amortize to O(nk). This can be checked by noting
that a point u ∈ X1 ⊆ X is only compared to a point s ∈ S2 ⊂ S if s delimits the
contribution of u. These points are compared only because the region where s delimits
the contribution of u is dominated by p. Therefore, after p is added to S, the point s
will not delimit the contribution of u anymore. This is because p ≤ (u ∨ s) and pz < sz ,
which means that u has no contribution to S ∪ {p} above the value pz of coordinate z
(H(u, s, (S ∪ {p})\{s}) = 0). Moreover, note that (p ∨ u) < (s ∨ u), and, thus, according
to Definition 4 i.e., the definition of delimiter, s is not a delimiter of the contribution
of u to S ∪ {p}. Consequently, u will not be compared again with s. In the example of
Figure 10, neither q3 nor q4 will be compared against s8 or s9 in any future execution
of procedure updateAreas. In the examples of Figures 6(b) and 6(c) it can be seen that,
after removing the part of the point contribution in red, the remaining volume, in dark
gray, is delimited by neither s8 nor s9. Therefore, Algorithm 2 has amortized O(nk)-
time complexity.

Although gHSS3D has O(n(k + log n))-time complexity, if it is used repeatedly for
a fixed k and a growing set of n solutions by iteratively adding new small sets ofm� n
solutions, then these sets may be previously sorted in O(m logm), and inserted in the
data structures (linked lists) in O(n+m) time. Therefore, the set of k solutions selected
can be updated in O((n+m)k +m logm) time in such a scenario.

4 Results

The proposed algorithms, gHSS2D and gHSS3D, were implemented in C and compiled
with gcc version 4.7.2. All tests were run on an Intel(R) Core(TM) i7-3612QM CPU @
2.10GHz with 6 MB of cache and 8 GB of RAM.

The first results (see Figure 11) concern approximation quality. The results pro-
duced by gHSS2D were compared against those obtained with the exact algorithm
by Bringmann and Friedrich (2010), HypSSP. Regarding gHSS3D, optimal results
were obtained by adapting the HSSP Integer Linear Programming (ILP) formulation
by Kuhn et al. (2016) to the 3-dimensional case, and solving it with the GNU Linear
Programming Toolkit. Figure 11 shows the ratio between the hypervolume indicator
values of the approximate and exact solutions for various sets, for growing values of
k. Spherical concave fronts consisted of points randomly located on the positive quad-
rant/octant of a unit circle/sphere with center at the origin of the coordinate axes.

Evolutionary Computation Volume 24, Number 3 19

A. P. Guerreiro, C. M. Fonseca and L. Paquete

0 10 20 30 40 50 60 70 80 90 100
k

0.6

0.7

0.8

0.9

1.0

hy
pe

rv
ol

um
e

ra
ti

o

gHSS
bound

(a) 2D linear, n = 100

0 10 20 30 40 50 60 70 80 90 100
k

0.6

0.7

0.8

0.9

1.0

hy
pe

rv
ol

um
e

ra
ti

o

gHSS
bound

(b) 2D convex, n = 100

0 1 2 3 4 5 6 7 8 9 10
k

0.6

0.7

0.8

0.9

1.0

hy
pe

rv
ol

um
e

ra
ti

o

gHSS
bound

(c) 2D wave-10, n = 10

0 2 4 6 8 10 12 14 16 18 20
k

0.6

0.7

0.8

0.9

1.0

hy
pe

rv
ol

um
e

ra
ti

o

gHSS
bound

(d) 3D linear, n = 20

0 4 8 12 16 20 24 28 32 36 40
k

0.6

0.7

0.8

0.9

1.0

hy
pe

rv
ol

um
e

ra
ti

o

gHSS
bound

(e) 3D convex, n = 40

0 4 8 12 16 20 24 28 32 36 40
k

0.6

0.7

0.8

0.9

1.0

hy
pe

rv
ol

um
e

ra
ti

o

gHSS
bound

(f) 3D concave, n = 40

Figure 11: The ratio between the hypervolume indicator of the approximate and the
exact solutions for a fixed set size n and variable subset size k.

Spherical convex fronts consisted of points randomly located on the negative quad-
rant/octant of a unit circle/sphere, but with center at (1, 1) or (1, 1, 1), as appropriate.
Linear fronts were such that 0 ≤ xi ≤ 1 for i = 1, 2 and i = 1, 2, 3, respectively, and∑

i xi = 1 in both cases. The reference point was set to (1, 1) and (1, 1, 1) for 2 and 3
dimensions, respectively. Moreover, in two-dimensions, a “wave-w” data set with both
concave and convex regions was considered, where w ∈ [1, . . . , 5, 10] is the number
of convex regions. This data set represents a front defined by a cosine function over
the diagonal between (0, 1) and (1, 0) on the positive quadrant and with magnitude of
0.2/w.

The hypervolume ratio between the greedy and the optimal solution was always
found to be greater than 0.89 (observed for the 2-dimensional ”wave-10” data set in
Figure 11(c)), which is much better than the theoretical bound of (1 − 1/e) ' 0.63212.
Moreover, the approximation ratio was generally lower for smaller values of k, with
k = 2 being the subset size that most often led to the lowest approximation ratio. For
k ≥ n/2, the ratio was found to be either 1 (an optimum was found) or very close to 1.
Figures 12 and 13 show the solutions selected by the greedy and the exact algorithms
for different fronts, for the 2- and the 3-dimensional case, respectively. One can observe
that, as expected, the greedy solutions are not optimal in general, but they are still
quite similar to the optimal ones, and the corresponding hypervolume indicator values
are very close to optimal. It is worth noting that, in the cases depicted in Figures 12
and 13, the corresponding hypervolume ratios are indeed much better than the theo-
retical bound. For example, for the concave case in Figures 12(a) and 12(d), the ratio
between the greedy solution (by gHSSD2D) and the optimal solution (by HypSSP) is
0.1827
0.1847 = 0.9892. Similarly, for the 3-dimensional convex case in Figures 13(e) and 13(h),

20 Evolutionary Computation Volume 24, Number 3

Greedy Hypervolume Subset Selection

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 HypSSP (0.1847)

(a) concave

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 HypSSP (0.7486)

(b) convex

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 HypSSP (0.4544)

(c) linear

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 gHSS (0.1827)

(d) concave

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 gHSS (0.7448)

(e) convex

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 gHSS (0.4503)

(f) linear

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 HypSSP (0.7570)

(g) wave-1

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 HypSSP (0.5705)

(h) wave-3

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 HypSSP (0.5339)

(i) wave-5

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 gHSS (0.7564)

(j) wave-1

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 gHSS (0.5703)

(k) wave-3

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 gHSS (0.5315)

(l) wave-5

Figure 12: Greedy and optimal subsets produced by gHSS2D and HypSSP, respectively,
for 2-dimensional concave, convex and linear fronts (from left to right, the top two
rows), and for mixed convex/concave fronts (bottom two rows). The selected solutions
are represented as black dots, and the region dominated by them is shaded gray. The
corresponding area is given in the title of each plot. The remaining solutions (blue
crosses, ×) are discarded. The data corresponds to cases where n = 100 and k = 10.

Evolutionary Computation Volume 24, Number 3 21

A. P. Guerreiro, C. M. Fonseca and L. Paquete

(a) concave, n=40 (b) convex, n=40 (c) linear, n=20

(d) concave, n=40, k=10 (e) convex, n=40, k=10 (f) linear, n=20, k=5

(g) concave, n=40, k=10 (h) convex, n=40, k=10 (i) linear, n=20, k=5

Figure 13: The optimal and the greedy subsets produced by ILP and gHSS3D, respec-
tively, for 3-dimensional concave, convex and linear fronts (from left to right). The top
row shows the n solutions given (black dots) and the corresponding dominated region.
The middle and bottom rows show the subsets of solutions selected by ILP and gHSS,
respectively. The corresponding hypervolume indicator values are displayed in the
upper-right corners.

22 Evolutionary Computation Volume 24, Number 3

Greedy Hypervolume Subset Selection

1000 10000
number of points (n)

0.001

0.01

0.1

1

10

se
co

nd
s

gHSS3D
gHSS2D

(a) linear, k = n/2

1000 10000
number of points (n)

0.001

0.01

0.1

1

10

se
co

nd
s

(b) linear, k = 500

1000 10000
subset size (k)

0.001

0.01

0.1

1

10

se
co

nd
s

(c) linear, n = 104

1000 10000
number of points (n)

0.001

0.01

0.1

1

10

se
co

nd
s

gHSS3D
gHSS2D

(d) convex, k = n/2

1000 10000
number of points (n)

0.001

0.01

0.1

1

10
se

co
nd

s

(e) convex, k = 500

1000 10000
subset size (k)

0.001

0.01

0.1

1

10

se
co

nd
s

(f) convex, n = 104

Figure 14: Runtime of gHSS2D and gHSS3D for the linear and the convex data sets for:
varying n and k (first column); varying n and a fixed k (second column); and a fixed n
and varying k (third column).

the ratio between the greedy solution (by gHSSD3D) and the optimal solution (by ILP)
is 0.3616

0.3628 = 0.9967.

The second set of experiments concerned runtime. Figure 14 shows the behavior of
gHSS2D and gHSS3D for different settings of n and k. The average runtimes of 13 runs
on the linear and convex fronts with the characteristics described earlier are depicted
(concave fronts produced very similar results, and thus the corresponding plots are not
shown). Figure 14 clearly shows the quadratic growth of the runtime of both algorithms
for growing set size n and k = n/2. Still, selecting k = 5000 out of n = 10000 points
was performed in less than 1 second in 2 dimensions, and in about 2 seconds in the
3-dimensional case.

The second column of plots (Figures 14(b) and 14(e)) shows the runtime for grow-
ing set size n and fixed k = 500. Although runtimes appear to grow slightly faster than
linearly for small n, for n > 3000, the runtime growth of both gHSS2D and gHSS3D
is essentially linear. The same can be observed for growing subset size k and fixed
n = 10000, in the third column of plots (Figures 14(c) and 14(f)). The observed run-
times are in agreement with their time complexity of O(n(k + log n)).

Evolutionary Computation Volume 24, Number 3 23

A. P. Guerreiro, C. M. Fonseca and L. Paquete

5 Concluding Remarks

In this paper, incremental greedy algorithms for the HSSP in two and three dimen-
sions were proposed, providing a (1 − 1/e)-approximation to the optimal solution in
each case. The two-dimensional version, gHSS2D, has a worst-case time complexity of
Θ(n(k+log n)), which is similar to the complexity of exact algorithms for the same prob-
lem (Bringmann et al., 2014; Kuhn et al., 2016). However, it does have the advantage
of being very simple to implement and very fast in practice. The O(n(k + log n)) time
complexity of the three-dimensional version, on the other hand, is considerably lower
than that of the corresponding exact algorithms, which are O(n

3
2 log n + nn−k) (Bring-

mann and Friedrich, 2010) and Ω(n3) due to the Ω(n3) constraints in the ILP formula-
tion (Kuhn et al., 2016). It is also better than other incremental greedy approaches based
on iterating over existing algorithms to compute hypervolume indicator/contributions.
For example, only O(k2n) would be achieved by adapting HV4D (Guerreiro et al.,
2015). In practice, gHSS3D was at most 3 times slower than gHSS2D on the data sets
used for testing.

Regarding the quality of the approximation, the results obtained experimentally
were much better than the guaranteed approximation factor, staying within at least
0.89 of the optimal values, in comparison to the theoretical (1− 1/e) ' 0.63212. There-
fore, gHSS3D should provide an interesting alternative to much more computationally
expensive exact algorithms for hypervolume-based multiobjective selection and/or
archiving in the three-objective case.

Finally, the proposed algorithms are suited for post-processing evaluation of
EMOAs (fixed k and variable n scenario), providing bounds on the hypervolume
of the best subset of k solutions among all solutions generated by the EMOA up
to given points in its execution. In this case, such bounds could be updated in
O((n + m)k + m logm) when m new solutions are added to an existing set of n pre-
viously processed solutions.

Acknowledgments

This work was supported by national funds through the Portuguese Foundation for Science and
Technology (FCT), by the European Regional Development Fund (FEDER) through COMPETE
2020 – Operational Program for Competitiveness and Internationalization (POCI), and by the
iCIS project (CENTRO-07-ST24-FEDER-002003), which was co-financed by QREN in the scope of
the Mais Centro Program and FEDER. A. P. Guerreiro acknowledges FCT for Ph.D. studentship
SFHR/BD/77725/2011, co-funded by the European Social Fund and by the State Budget of the
Portuguese Ministry of Education and Science in the scope of NSRF–HPOP–Type 4.1–Advanced
Training.

References

Auger, A., Bader, J., Brockhoff, D., and Zitzler, E. (2009). Theory of the hypervolume in-
dicator: Optimal µ-distributions and the choice of the reference point. In Foundations
of Genetic Algorithms (FOGA 2009), pages 87–102, New York, NY, USA. ACM.

Bader, J. and Zitzler, E. (2011). HypE: An algorithm for fast hypervolume-based many-
objective optimization. Evolutionary Computation, 19(1):45–76.

Beume, N., Fonseca, C., López-Ibáñez, M., Paquete, L., and Vahrenhold, J. (2009). On

24 Evolutionary Computation Volume 24, Number 3

Greedy Hypervolume Subset Selection

the complexity of computing the hypervolume indicator. IEEE Transactions on Evolu-
tionary Computation, 13(5):1075–1082.

Beume, N., Naujoks, B., and Emmerich, M. (2007). SMS-EMOA: Multiobjective se-
lection based on dominated hypervolume. European Journal of Operational Research,
181(3):1653–1669.

Bradstreet, L., While, L., and Barone, L. (2007). Incrementally maximising hypervolume
for selection in multi-objective evolutionary algorithms. In 2007 IEEE Congress on
Evolutionary Computation, pages 3203–3210.

Bringmann, K. and Friedrich, T. (2010). An efficient algorithm for computing hypervol-
ume contributions. Evolutionary Computation, 18(3):383–402.

Bringmann, K., Friedrich, T., and Klitzke, P. (2014). Two-dimensional subset selec-
tion for hypervolume and epsilon-indicator. In Conference on Genetic and Evolutionary
Computation, GECCO ’14, pages 589–596, New York, NY, USA. ACM.

Bringmann, K., Friedrich, T., Neumann, F., and Wagner, M. (2011). Approximation-
guided evolutionary multi-objective optimization. In Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence - Volume Volume Two, IJCAI’11,
pages 1198–1203. AAAI Press.

Chan, T. M. (2013). Klee’s measure problem made easy. In IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 410–419, Los Alamitos, CA, USA. IEEE Com-
puter Society.

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley
& Sons, Inc., New York, NY, USA.

Ehrgott, M. (2005). Multicriteria Optimization. Springer, second edition.

Emmerich, M. T. M. and Fonseca, C. M. (2011). Computing hypervolume contributions
in low dimensions: Asymptotically optimal algorithm and complexity results. In
Takahashi, R. H. C., Deb, K., Wanner, E. F., and Greco, S., editors, EMO 2011, volume
6576 of LNCS, pages 121–135. Springer, Berlin, Heidelberg.

Friedrich, T. and Neumann, F. (2014). Maximizing submodular functions under ma-
troid constraints by multi-objective evolutionary algorithms. In Parallel Problem Solv-
ing from Nature (PPSN) XIII, volume 8672 of LNCS, pages 922–931. Springer Interna-
tional Publishing.

Guerreiro, A. P., Fonseca, C. M., and Emmerich, M. T. M. (2012). A fast dimension-
sweep algorithm for the hypervolume indicator in four dimensions. In Canadian
Conference on Computational Geometry (CCCG) 2012, pages 77–82.

Guerreiro, A. P., Fonseca, C. M., and Paquete, L. (2015). Greedy hypervolume subset
selection in the three-objective case. In Conference on Genetic and Evolutionary Compu-
tation, GECCO ’15, pages 671–678. ACM.

Hupkens, I. and Emmerich, M. (2013). Logarithmic-time updates in SMS-EMOA and
hypervolume-based archiving. In Emmerich, M., Deutz, A., Schuetze, O., Bäck, T.,
Tantar, E., Tantar, A.-A., Moral, D. P., Legrand, P., Bouvry, P., and Coello, A. C., ed-
itors, EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary

Evolutionary Computation Volume 24, Number 3 25

A. P. Guerreiro, C. M. Fonseca and L. Paquete

Computation IV, volume 227 of Advances in Intelligent Systems and Computing, pages
155–169. Springer, Heidelberg”.

Knowles, J. D., Corne, D. W., and Fleischer, M. (2003). Bounded archiving using the
Lebesgue measure. In Evolutionary Computation, 2003. CEC ’03. The 2003 Congress on,
volume 4, pages 2490–2497.

Kuhn, T., Fonseca, C. M., Paquete, L., Ruzika, S., Duarte, M. M., and Figueira, J. R.
(2016). Hypervolume subset selection in two dimensions: Formulations and algo-
rithms. Evolutionary Computation, 24(3):411–425.

Nemhauser, G., Wolsey, L., and Fisher, M. (1978). An analysis of approximations for
maximizing submodular set functions–I. Mathematical Programming, 14(1):265–294.

Ulrich, T. and Thiele, L. (2012). Bounding the effectiveness of hypervolume-based
(µ + λ)-archiving algorithms. In Learning and Intelligent Optimization, volume 7219
of LNCS, pages 235–249. Springer.

While, L., Bradstreet, L., and Barone, L. (2012). A fast way of calculating exact hyper-
volumes. IEEE Transactions on Evolutionary Computation, 16(1):86–95.

Zitzler, E. and Thiele, L. (1998). Multiobjective optimization using evolutionary algo-
rithms – A comparative case study. In Parallel Problem Solving from Nature (PPSN) V,
volume 1498 of LNCS, pages 292–301. Springer.

26 Evolutionary Computation Volume 24, Number 3

