
CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

A Fast Dimension-Sweep Algorithm for the Hypervolume Indicator
in Four Dimensions

Andreia P. Guerreiro∗† Carlos M. Fonseca† Michael T. M. Emmerich‡

Abstract

The Hypervolume Indicator is one of the most widely
used quality indicators in Evolutionary Multiobjective
Optimization. Its computation is a special case of
Klee’s Measure Problem (KMP) where the upper end of
all rectangular ranges coincides with a given reference
point (assuming minimization, without loss of general-
ity). Although the time complexity of the hypervolume
indicator in two and three dimensions is known to be
Θ(n log n), improving upon the O(nd/2 log n) complex-
ity of Overmars and Yap’s algorithm for the general
KMP in higher dimensions has been a challenge. In
this paper, a new dimension-sweep algorithm to com-
pute the hypervolume indicator in four dimensions is
proposed, and its complexity is shown to be O(n2).

1 Introduction

In multiobjective optimization, solutions may be seen
as points in a decision space, S, which are mapped onto
a multi-dimensional objective space, Rd, by means of a
vector-valued objective function, f : S → Rd. Min-
imization of all objective function components is as-
sumed throughout this work without loss of generality.

In this context, a solution x ∈ S is said to dom-
inate another solution z ∈ S iff f(x) ≤ f(z) and
f(x) 6= f(z), where the inequality ≤ applies compo-
nentwise. A solution x ∈ S is said to be Pareto-optimal
iff ∀z ∈ S, f(z) ≤ f(x) ⇒ f(z) = f(x). The set of all
Pareto-optimal solutions in decision space is called the
Pareto-optimal set, and the corresponding set of points
in objective space is called the Pareto-optimal front.

Since enumerating the whole Pareto-optimal set, or
even the Pareto-optimal front, is usually infeasible,
multiobjective optimization typically aims at finding
a good, discrete approximation to the Pareto-optimal
front. In comparative studies, the quality of such ap-
proximations is often assessed in a quantitative man-

∗INESC-ID, Instituto Superior Técnico, Technical Univer-
sity of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
apg@dei.uc.pt
†CISUC, Department of Informatics Engineering, Uni-

versity of Coimbra, Pólo II, 3030-290 Coimbra, Portugal
cmfonsec@dei.uc.pt
‡LIACS, Faculty of Science, Leiden University, P.O. Box 9512,

2300 RA Leiden, The Netherlands emmerich@liacs.nl

ner by means of quality indicators, which map a set of
points in objective space to a real value. Such quality
indicators have also been integrated into some evolu-
tionary multiobjective optimizers [3, 14], which leads to
the quality indicator being evaluated many times in the
course of an optimization run, and imposes a need for
efficient algorithms to compute it.

One of the most widely used quality indicators is
the hypervolume indicator [18]. Given a set of points
X ⊂ Rd and a reference point r ∈ Rd, the hypervolume
indicator H(X) is the Lebesgue measure, λ(·), of the
region dominated by X and bounded above by r, i.e.
H(X) = λ({q ∈ Rd | ∃p ∈ X : p ≤ q ∧ q ≤ r}). Alter-
natively, the hypervolume indicator may be written as
the measure of the union of n isothetic hyperrectangles
in d dimensions:

H(X) = λ

⋃
p∈X
p≤r

[p, r]


where [p, r] = {q ∈ Rd | p ≤ q∧ q ≤ r}, which highlights
its connection to Klee’s Measure Problem (KMP) [13].
Furthermore, given a point p ∈ X and a reference point
r ∈ Rd, the individual contribution of p is the Lebesgue
measure of the region exclusively dominated by p. It
can be obtained by subtracting H(X−{p}) from H(X).

It is known that the hypervolume indicator and, thus,
Klee’s measure problem cannot be computed exactly
in time polynomial in the number of dimensions unless
P = NP [6]. While asymptotically optimal, O(n log n)-
time algorithms for the hypervolume indicator in two
and three dimensions are known [2], no tight complex-
ity bounds are available for d ≥ 4. For a long time,
the best upper bounds for d ≥ 4 stemmed from algo-
rithms for the more general KMP. Chan’s algorithm [8],
with time bound O(nd/2 2O(log∗ n)), where log∗ denotes
the iterated logarithm function, provides the best gen-
eral upper bound to date. It slightly improves upon
Overmars and Yap’s algorithm, which has time com-
plexity O(nd/2 log n) [13]. Beume [1] developed a sim-
plified version of Overmars and Yap’s algorithm for the
hypervolume indicator, but with the same complexity.1

1A gap in the analysis presented in N. Beume and G. Rudolph,
Faster S-Metric Calculation by Considering Dominated Hypervol-
ume as Klee’s Measure Problem, in Proc. 2nd IASTED Conf. on
Comp. Intelligence, 231–236, 2006, is acknowledged in [1].



24th Canadian Conference on Computational Geometry, 2012

Better bounds have been obtained for the KMP on unit
cubes [7] and on fat boxes [5], for example, but reducing
the hypervolume indicator to such problems is not possi-
ble in general. Only very recently has a tighter, general
upper bound of O(n(d−1)/2 log n) on the time complex-
ity of the hypervolume indicator been obtained [17].

In this paper, a fast dimension-sweep algorithm for
the hypervolume indicator in four dimensions is pro-
posed. Although its quadratic time complexity ex-
ceeds Yıldız and Suri’s new upper bound by a factor
of n1/2/ log n, it can be easily implemented based on
simpler data structures, and runs much faster than the
currently available implementations of alternative algo-
rithms on standard benchmark instances [11].

The paper is structured as follows: the next section
reviews some of the existing algorithms for the hyper-
volume indicator and their time complexities. Section 3
describes the proposed algorithm to compute the hy-
pervolume indicator in four dimensions, and states its
complexity. Concluding remarks are drawn in Section 4.

2 Related work

Several algorithms for the hypervolume indicator have
been proposed in the literature in addition to the afore-
mentioned simplified algorithm by Beume, known as
HOY [1]. Fonseca et al.’s algorithm [10] is a recursive
dimension-sweep algorithm which improves upon a pre-
vious algorithm known as HSO (Hypervolume by Slicing
Objectives) [16] by caching intermediate results without
sacrificing linear space complexity, and using the asymp-
totically optimal O(n log n) algorithm later detailed by
Beume et al. [2] as its three-dimensional base case. Its
O(nd−2 log n) time complexity for d > 2 matches HOY’s
for d = 4, but is worse for greater values of d.

Two other algorithms, IIHSO (Iterated Incremental
HSO) [4] and WFG (Walking Fish Group) [15], have
been reported to be the fastest known algorithms in
practice, the former for d = 4 and the latter for d > 4,
based on experimental results on a set of benchmark
instances [15]. However, IIHSO has O(nd−1) time com-
plexity and WFG is reported to be exponential in the
number of points in the worst case [15]. Finally, Yıldız
and Suri’s new algorithm [17] is asymptotically the
fastest to date, and it will be interesting to see how
well it performs in practice.

3 New dimension-sweep algorithm for the four-di-
mensional case

Like WFG [15], the new algorithm proposed here fol-
lows a dimension-sweep approach, and implements an
iterated incremental computation of the hypervolume
indicator. However, its time complexity can be shown
to be at most quadratic.

The next subsection presents the main ideas behind
the proposed algorithm. An algorithm to compute the
individual contribution of a point in three dimensions,
on which the main algorithm relies, is described in Sub-
section 3.2. The data structures used and the operation
of the overall algorithm are described in Subsections 3.3
and 3.4, respectively. Subsection 3.5 discusses in detail
how the O(n2) time complexity is achieved.

3.1 General description

An asymptotically optimal, O(n log n)-time algorithm
to compute the hypervolume indicator in three-
dimensions is described by Beume et al. [2], and is a
natural extension of Kung et al.’s algorithm for max-
ima in three dimensions [12]. In a minimization setting,
the algorithm operates by sweeping input points in as-
cending order of z-coordinate values. While sweeping,
the set S of the points seen so far whose (orthogonal)
projections on the (x,y)-plane are not dominated by the
projection of any other points already seen is efficiently
maintained, using a balanced search tree with either the
x or y coordinate as the key. At each step, the volume of
a slice bounded below by the current point and bounded
above by the next point is computed.

Algorithm 1 details this approach, and generalizes it
to any number of dimensions. For each new point, p,
the volume of a slice is computed by determining the
measure, v, of the region dominated by the projection of
S∪{p} onto (d−1)-dimensional space, denoted S∗∪{p∗},
and multiplying it by the difference between the last
coordinate of the next point, q, and that of p. Note that
the asterisk is used to denote projection onto (d − 1)-
dimensional space.

The currently dominated (d − 1)-dimensional hyper-
volume, v, is updated by finding the points in S∗ that
are dominated by p∗ and subtracting their individual
contributions from v in turn as they are removed from
S∗, before adding the individual contribution of p∗ to v
and inserting p∗ into S∗. Once v has been updated, the
height, and thus the hypervolume, of the current slice
can be easily computed by fetching the next point.

In Algorithm 1, contribution(p∗,S∗, r∗) denotes the in-
dividual contribution of a point p∗ to a non-dominated
point set S∗, given a reference point r∗. Each point is
swept and removed at most once, resulting in a total
of O(n) computed contributions. In the 3-dimensional
case, individual 2-dimensional contributions can be
computed in constant time, and the complexity of the
algorithm is dominated by the time needed to find each
dominated projection, s∗. In the 4-dimensional case,
the contribution of each point (in three dimensions) to
a non-dominated point set can be computed in (amor-
tized) O(n) time as it will be seen next. Since all dom-
inated projections, s∗, can also be found in linear time,
the 4-dimensional hypervolume indicator may be com-



CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Algorithm 1 General algorithm

Input: X // a set of n points in Rd

Input: r // r ∈ Rd is the reference point
Output: h // Total hypervolume

1: s← (−∞, ...,−∞, rd) ∈ [−∞,+∞]d

2: Q is a queue containing X ∪ s sorted in ascending
order of dimension d

3: S∗ ← ∅
4: v ← 0
5: h← 0
6: p← dequeue(Q)
7: while Q 6= ∅ do
8: for all s∗ ∈ S∗ : p∗ ≤ s∗ do
9: S∗ ← S∗ − {s∗}

10: v ← v − contribution(s∗,S∗, r∗)
11: v ← v + contribution(p∗,S∗, r∗)
12: S∗ ← S∗ ∪ {p∗}
13: q ← dequeue(Q)
14: h← h+ (qd − pd) · v
15: p← q
16: return h

puted in O(n2) time.

3.2 Individual contribution of a point in three di-
mensions

In order to achieve O(n) time complexity in the compu-
tation of a single point contribution to a non-dominated
point set S∗ in the conditions imposed by Algorithm 1
(i.e., p∗ ∈ R3, S∗ ⊂ R3 and @q∗ ∈ S∗ : p∗ ≤ q∗),
a method inspired in Emmerich and Fonseca’s algo-
rithm [9] is proposed.

Given a non-dominated point set S ⊂ R3 and a refer-
ence point r ∈ R3, the individual contribution of each
point p in S may be efficiently determined using the
method proposed by Emmerich and Fonseca [9]. The
volume dominated exclusively by each point is divided
into cuboids (or boxes), and the sum of their volumes
is computed. To this end, S is swept in ascending order
of the z-coordinate2 and the region of the (x,y)-plane
exclusively dominated by each point p at z = pz is par-
titioned into smaller non-overlapping rectangular areas.
This partitioning can be obtained by sweeping those
points that have coordinate z lower than pz along one
of the dimensions x or y, and is used in the algorithm
proposed here. Unlike in [9], where all contributions
are computed, in Algorithm 2 only the contribution of
a single point needs to be updated.

The example in Figure 1 will be used throughout the
remainder of this Section to illustrate the computation
of single-point contributions. The base problem is de-

2Note that, in [9], maximization is assumed. For clarity and
consistency, the description here considers minimization instead.

r

x

y

q1

p

s1

s2

s3 s4

s5
s6

s7

s8

q2

q3

q4

q5

q6

(a) Base example

x

y
r

b1
b2

b3

b4
b5

p

s1

s2

s3 s4

s5
s6

s7

s8

q2

q3

q4

q5

q6

(b) Initialize boxes

r

x

y

b7

b6

b1
b2

b3

b4
b5

p

s3 s4

s5
s6

s7

s8

q2

q3

q4

q5

q6

(c) Simulate closeBoxesLeft and
closeBoxesRight

x

y

3
3

3

2 2

5

6r3

5

r

p

s3 s4

s5
s6

s7

s8

q2

q3

q4

q5

q6

(d) Expected result

Figure 1: Example of a problem in 3 dimensions, where
the goal is to determine the contribution of p to S (S =
{q1, ..., q6} ∪ {s1, ..., s8}), given the reference point r.
In this problem, szt ≤ pz (t = 1, ..., 8) and qzi > pz

(i = 1, ..., 6). It is assumed that pz = 0 and qzi = i.

Algorithm 2 HV4D - contribution

Input: p ∈ R3

Input: S ⊂ R3

Input: r ∈ R3 // The reference point
Output: c // contribution

1: S1,S2 ← split(S, pz) // S1 = {q | q ∈ S : qz ≤ pz},
2: // S2 = {q | q ∈ S : qz > pz}
3: B← initializeBoxes(p, S1)
4: c← determineContrib(p,S2,B, r)
5: return c

picted in Figure 1a. Ignoring the presence of q1 in the
example of Figure 1a, as it would have been removed in a
previous step, the contribution of p would be computed
as the sum of the volumes of the boxes depicted in Fig-
ure 1d, where the numbers indicate the corresponding
heights.

The main steps of the computation of the contribu-
tion of a point p ∈ R3 to a set S ⊂ R3, as described
above, are detailed in Algorithm 2. All of them can
be implemented in O(n) time, as long as S is a non-
dominated point set and there are no points in S which
are dominated by p, which is guaranteed to happen by
Algorithm 1. Furthermore, points must be kept sorted
with respect to dimension two, in order to delimit the
base of the boxes (see Figure 1b), and to dimension
three, to allow their heights to be determined.



24th Canadian Conference on Computational Geometry, 2012

3.3 Data structures

Algorithm 1 receives a non-dominated point set X ⊂ R4

as input, and sets up a queue Q containing all points
in X in ascending order of the fourth coordinate. A
sentinel is added to Q in order to ensure that point
q, which is used to determine the height of the slice,
always exists in line 13. The set S∗ is stored in a data
structure that maintains all points sorted in ascending
order of coordinates y and z, using two doubly-linked
lists. Such sorted lists are used also for the two subsets
S1 and S2 of S in Algorithm 2, and support the following
operations:

nexty(p, S) The point following p in S with respect to
coordinate y, for p ∈ S.

highery(p, S) The point q ∈ S with the least qy > py,
for p /∈ S.

getXRightBelow(p,S) The point q ∈ S with the least
qx ≥ px such that qy ≤ py

Operations nextz and higherz, analogous to nexty and
highery, are available as well. Operation next is per-
formed in constant time as long as p itself is in S, while
the remaining operations are performed in linear time.

In Algorithm 2, the volume exclusively dominated
by a point is partitioned into cuboids, here referred to
as boxes. Each box b is defined by its lower corner
(lx, ly, lz) and its upper corner (ux, uy, uz). Boxes are
kept in a doubly-linked list, B, so that boxes that need
to be updated or removed may be accessed easily (in
constant time). Since there is no overlap between boxes
in the list, it is possible to keep the list of boxes sorted
in ascending order of coordinate x. When a box is cre-
ated, only (lx, ly, lz) and (ux, uy) are known. Boxes are
kept in the list as long as the corresponding value of uz

is not known. Once this value is determined, the box
is closed, i.e., its volume is computed, and the box is
removed from the list. Then, the volume is added to
the accumulated volume c.
In order to manage the list of boxes, the following op-
erations are implemented:

pushLeft(B, b) Add box b to the left of the box list B

closeAllBoxes(B, z) Close all boxes in list B, setting the
corresponding value of uz to z, and return the sum
of the volumes of those boxes.

closeBoxesLeft(B, y, z) From left to right, close all
boxes in list B for which uy > y, setting the corre-
sponding value of uz to z and ly to y. After closing
those boxes, push to the left of B a new box whose
lower corner coincides with p, and has uy = y and
ux equal to the ux of the last box removed. Finally,
return the total volume of the closed boxes.

Algorithm 3 HV4D - contribution - initializeBoxes

Input: p ∈ R3

Input: S1 ⊂ R3 // ∀q ∈ S⇒ qz ≤ pz
Input: r ∈ R3 // The reference point
Output: B // Box list

1: S1 ← S1 ∪ {(rx,−∞,−∞), (−∞, ry,−∞)}
2: B← ∅
3: q ← highery(p,S1)
4: m← getXRightBelow(p,S1)
5: while qx > px do
6: if qx < mx then
7: b← ((qx, py, pz), (mx, qy, pz))
8: pushLeft(B, b)
9: m← q

10: q ← nexty(q,S1)
11: b← ((px, py, pz), (mx, qy, pz))
12: pushLeft(B, b)
13: return B

closeBoxesRight(B, x, z) From right to left, close all
boxes in list B for which ux > x, setting their uz

to z. If the last removed box is such that lx < x,
lx is updated to x before closing it, and a new box
is pushed to the right of B with the same corners,
but with ux set to x. Return the total volume of
the closed boxes.

Operation pushLeft is performed in constant time.
Operation closeAllBoxes is performed in k steps, and
the remaining operations in k + 1 steps. Therefore, all
have a cost of O(k), where k ≤ n represents the number
of boxes removed.

3.4 Detailed description

Algorithm 1 sweeps through every point p in Q and
determines the contribution of its projection on (x,y,z)-
space, p∗, to the volume dominated by S∗. This may
cause the removal of points in S∗ that are dominated by
p∗. Point removal can be performed in constant time,
but requires the computation of the corresponding con-
tributions, as well. After computing its individual con-
tribution, p∗ is added to S∗ while keeping the lists used
to maintain S∗ sorted in ascending order of both y and
z coordinates, which can be implemented in linear time.
Furthermore, Algorithm 1 guarantees that, when calcu-
lating the contribution of any point p∗, all points in S∗

are kept sorted in ascending order of coordinates y and
z, and that no point in S∗ is dominated by any other
point in S∗ or by p∗ itself. As explained before, these
constraints allow linear-time computation of a point’s
contribution.

Algorithm 2 computes the 3-dimensional contribution
of p to a set of points S. The computation consists
of two parts: the bases of an initial set of boxes are



CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Algorithm 4 HV4D - contribution - determineContrib

Input: p ∈ R3

Input: S2 ⊂ R3 // ∀q ∈ S⇒ qz > pz

Input: B is a list of boxes
Output: c // contribution

1: S2 ← S2 ∪ {(−∞,−∞, rz)}
2: q ← higherz(p, S2)
3: while not empty(B) do
4: if qx ≤ px then
5: if qy ≤ py then
6: c← c+ closeAllBoxes(B, qz) // Case 3
7: else
8: c← c+ closeBoxesLeft(B, qy, qz) // Case 1
9: else

10: c← c+ closeBoxesRight(B, qx, qz) // Case 2
11: q ← nextz(q,S2)
12: return c

determined first (Algorithm 3), and then box heights
are found (Algorithm 4).

To determine the bases of the boxes, the points in
S whose z coordinate is lower than or equal to pz (S1)
and which are dominated by p with respect to the x
and y coordinates, but not by any other point in S1,
are swept (points s4, ..., s7 in Figure 1a). Boxes are cre-
ated from right to left by sweeping through points in S1

in ascending order of coordinate y, starting from point
highery(p,S1) (s7), which is the lowest point in S1 higher
than py, and stopping when a point to the left of p is
found (s3). Note that such points always exist because
of the presence of the sentinel (−∞, ry,−∞), although
this is not shown in Figure 1. All points between the
starting point (s7) and the end point (s3) that do not
fulfill all the above conditions are skipped (s2). Each
of the points that satisfy the above conditions (s7, s6,
s5, s4) defines lx and uy of a box as well as ux of the
next box. For example, in Figure 1b, point s5 defines
lx and uy of box b3 and ux of box b4. The value of ux

for the first and rightmost box created is determined by
getXRightBelow(p) (s8), and is guaranteed to exist due
of the sentinel (rx,−∞,−∞). Finally, the end point s3
only defines uy of the last and leftmost box. In the ex-
ample of Figure 1a, after executing the first part of the
algorithm, B contains b1, ..., b5 as depicted in Figure 1b.

The next step, determineContrib, consists of determin-
ing the height of boxes and closing them and, in some
cases, initializing a new box (Algorithm 4). The total
area covered by boxes in the (x, y)-plane shrinks after
each step. Only points with coordinate z higher than pz

(S2) need to be considered (q2, ..., q6). Therefore, points
in S2 are swept in ascending order of coordinate z as long
as there are still boxes to be closed. While processing
each point q, three cases are considered, depending on
the projection of q on the (x, y)-plane:

Case 1: q is to the left of and above p (e.g. q2, q5)

Case 2: q is to the right of and below p (e.g. q3, q4, q6)

Case 3: q dominates p (e.g. the sentinel (−∞,−∞, rz),
which is not represented in Figure 1)

Note that q is never dominated by p on the (x,y)-plane,
because it would also be dominated in (x, y, z)-space in
that case, but those points were previously removed in
Algorithm 1.

Cases 1, 2 and 3 cause the algorithm to call func-
tions closeBoxesLeft, closeBoxesRight and closeAllBoxes,
respectively. Figure 1c shows an example of what hap-
pens when cases 1 or 2 occur. The darker regions of
boxes b5 and b4 (respectively, b1, b2 and b3) represent
the boxes that are shrunk and closed when case 1 (case
2) occurs while processing q2 (q3). After closing those
boxes, box b6 (b7) is inserted to the left (right) of the
box list to account for the area left uncovered due to
the shrinking of the boxes before they are closed. Every
function returns the total volume of the closed boxes.
When case 3 occurs, all boxes are closed and the algo-
rithm can terminate, as there are no more box heights
to be determined.

3.5 Complexity

It is not difficult to see that the complexity of Algo-
rithm 2 is O(n). Splitting S into two subsets (S1 and
S2), and each of the two remaining stages of the algo-
rithm can be performed in O(n) time. Regarding the
first stage (initializeBoxes), note that for each point in S1

with coordinate y greater than py, of which there are at
most n points, at most one box is created (in constant
time). Therefore, O(n) complexity is achieved. The sec-
ond stage processes all points with coordinate z greater
than pz, which are also at most n points. For each of
these points, k boxes are closed, k ∈ [0, n]. Moreover,
at most one box is created, which can happen only if at
least one box is closed. Note that if there are t points
with third coordinate lower or equal to pz, then the first
stage can create up to t boxes, while the second stage
can create at most n− t boxes, which gives a total of up
to n boxes created. Therefore, the maximum number of
closed boxes is also n. Independently of which function
is used to close boxes (closeBoxesRight, closeBoxesLeft
or closeAllBoxes) k steps are performed if boxes are only
closed, or k + 1 steps, if a box is also created, leading
to O(k) cost either way. Therefore, the total cost of the
operations of Algorithm 2 amortizes to O(n).

Algorithm 1 sweeps through n points and, for each
point p, it determines the points in S∗ with great-
est y and z coordinates lower than py and pz, respec-
tively, in order to keep the lists of points associated
with S∗ sorted, at a cost of O(n). Moreover, for each



24th Canadian Conference on Computational Geometry, 2012

point swept, the individual contributions of k domi-
nated points and the contribution of the current point
are computed. Since each point in the original set X is
added to S∗ and removed from it at most once, the algo-
rithm computes at most 2n contributions, each at a cost
of O(n) using Algorithm 2, leading to O(n2) amortized
time complexity.

4 Concluding remarks

A C-language implementation of the algorithm pro-
posed here confirms that it can be implemented effi-
ciently, and that no large constants hide in the O nota-
tion [11]. Following the same ideas, it may be possible
to obtain a dimension-sweep algorithm for d = 5 with
complexity O(n2 log n), since at least a 4-dimensional
analogue of initializeBoxes with O(n log n) complexity
would be easily constructed. This would match Yıldız
and Suri’s upper bound [17] for the 5-dimensional case.

Acknowledgement Andreia P. Guerreiro gratefully
acknowledges funding from Fundação para a Ciência
e Tecnologia (FCT), Portugal, through Ph.D. grant
SFRH/BD/77725/2011.

References

[1] N. Beume. S-metric calculation by considering domi-
nated hypervolume as Klee’s measure problem. Evol.
Comput., 17:477–492, Dec. 2009.

[2] N. Beume, C. M. Fonseca, M. López-Ibáñez, L. Pa-
quete, and J. Vahrenhold. On the complexity of com-
puting the hypervolume indicator. IEEE Trans. Evol.
Comput., 13(5):1075–1082, 2009.

[3] N. Beume, B. Naujoks, and M. Emmerich. SMS-
EMOA: Multiobjective selection based on dominated
hypervolume. Eur. J. Oper. Res., 181(3):1653–1669,
2007.

[4] L. Bradstreet, L. While, and L. Barone. A fast many-
objective hypervolume algorithm using iterated incre-
mental calculations. In IEEE Congress on Evolutionary
Computation (CEC 2010), pages 179–186, July 2010.

[5] K. Bringmann. Klee’s measure problem on fat boxes in
time O(n(d+2)/3). In 26th Symposium on Computational
geometry (SoCG), pages 222–229, New York, NY, USA,
2010. ACM.

[6] K. Bringmann and T. Friedrich. Approximating the
volume of unions and intersections of high-dimensional
geometric objects. In S.-H. Hong et al., editors, Algo-
rithms and Computation, volume 5369 of LNCS, pages
436–447. Springer Berlin / Heidelberg, 2008.

[7] T. M. Chan. Semi-online maintenance of geometric op-
tima and measures. In Proceedings of the thirteenth
annual ACM-SIAM symposium on Discrete algorithms,
SODA ’02, pages 474–483, Philadelphia, PA, USA,
2002. Society for Industrial and Applied Mathematics.

[8] T. M. Chan. A (slightly) faster algorithm for Klee’s
measure problem. Computational Geometry, 43:243–
250, 2010.

[9] M. Emmerich and C. M. Fonseca. Computing hypervol-
ume contributions in low dimensions: Asymptotically
optimal algorithm and complexity results. In R. H. C.
Takahashi et al., editors, EMO 2011, volume 6576 of
LNCS, pages 121–135. Springer Berlin / Heidelberg,
2011.

[10] C. M. Fonseca, L. Paquete, and M. López-Ibáñez. An
improved dimension-sweep algorithm for the hypervol-
ume indicator. In IEEE Congress on Evolutionary
Computation (CEC 2006), pages 1157–1163, Piscat-
away, NJ, July 2006. IEEE Press.

[11] A. P. Guerreiro. Efficient algorithms for the assessment
of stochastic multiobjective optimizers. Master’s thesis,
IST, Technical University of Lisbon, Portugal, 2011.

[12] H. T. Kung, F. Luccio, and F. P. Preparata. On finding
the maxima of a set of vectors. Journal of the ACM,
22(4):469–476, 1975.

[13] M. H. Overmars and C.-K. Yap. New upper bounds
in Klee’s measure problem. SIAM J. Comput.,
20(6):1034–1045, 1991.

[14] T. Wagner, B. Nicola, and B. Naujoks. Pareto-,
aggregation-, and indicator-based methods in many-
objective optimization. In S. Obayashi et al., edi-
tors, EMO 2007, volume 4403 of LNCS, pages 742–756,
Berlin, Heidelberg, 2007. Springer-Verlag.

[15] L. While, L. Bradstreet, and L. Barone. A fast way
of calculating exact hypervolumes. IEEE Trans. Evol.
Comput., 16(1):86–95, 2012.

[16] L. While, P. Hingston, L. Barone, and S. Huband. A
faster algorithm for calculating hypervolume. IEEE
Trans. Evol. Comput., 10(1):29–38, Feb. 2006.

[17] H. Yıldız and S. Suri. On Klee’s measure problem on
grounded boxes. In 28th Symposium on Computational
Geometry (SoCG), Chapel Hill, North Carolina, USA,
June 2012.

[18] E. Zitzler and L. Thiele. Multiobjective optimization
using evolutionary algorithms – A comparative case
study. In A. E. Eiben et al., editors, Parallel Problem
Solving from Nature, PPSN V, volume 1498 of LNCS,
pages 292–301. Springer, Heidelberg, 1998.


