
Genetic Algorithms for Multiobjective Optimization:
Formulation, Discussion and Generalization∗

Carlos M. Fonseca† and Peter J. Fleming‡

Dept. Automatic Control and Systems Eng.
University of Sheffield
Sheffield S1 4DU, U.K.

Abstract

The paper describes a rank-based fitness as-
signment method for Multiple Objective Ge-
netic Algorithms (MOGAs). Conventional
niche formation methods are extended to this
class of multimodal problems and theory for
setting the niche size is presented. The fit-
ness assignment method is then modified to
allow direct intervention of an external deci-
sion maker (DM). Finally, the MOGA is gen-
eralised further: the genetic algorithm is seen
as the optimizing element of a multiobjective
optimization loop, which also comprises the
DM. It is the interaction between the two
that leads to the determination of a satis-
factory solution to the problem. Illustrative
results of how the DM can interact with the
genetic algorithm are presented. They also
show the ability of the MOGA to uniformly
sample regions of the trade-off surface.

1 INTRODUCTION

Whilst most real world problems require the simulta-
neous optimization of multiple, often competing, cri-
teria (or objectives), the solution to such problems is
usually computed by combining them into a single cri-
terion to be optimized, according to some utility func-
tion. In many cases, however, the utility function is
not well known prior to the optimization process. The
whole problem should then be treated as a multiobjec-
tive problem with non-commensurable objectives. In
this way, a number of solutions can be found which
provide the decision maker (DM) with insight into the
characteristics of the problem before a final solution is
chosen.

∗in Genetic Algorithms: Proceedings of the Fifth Inter-
national Conference (S. Forrest, ed.), San Mateo, CA: Mor-
gan Kaufmann, July 1993.

†
C.Fonseca@shef.ac.uk

‡
P.Fleming@shef.ac.uk

Multiobjective optimization (MO) seeks to optimize
the components of a vector-valued cost function. Un-
like single objective optimization, the solution to this
problem is not a single point, but a family of points
known as the Pareto-optimal set. Each point in this
surface is optimal in the sense that no improvement
can be achieved in one cost vector component that does
not lead to degradation in at least one of the remaining
components. Assuming, without loss of generality, a
minimization problem, the following definitions apply:

Definition 1 (inferiority)
A vector u = (u1, . . . , un) is said to be inferior to v =
(v1, . . . , vn) iff v is partially less than u (v p< u), i.e.,

∀ i = 1, . . . , n , vi ≤ ui ∧ ∃ i = 1, . . . , n : vi < ui

Definition 2 (superiority)
A vector u = (u1, . . . , un) is said to be superior to
v = (v1, . . . , vn) iff v is inferior to u.

Definition 3 (non-inferiority)
Vectors u = (u1, . . . , un) and v = (v1, . . . , vn) are said
to be non-inferior to one another if v is neither infe-
rior nor superior to u.

Each element in the Pareto-optimal set constitutes
a non-inferior solution to the MO problem. Non-
inferior solutions have been obtained by solving ap-
propriately formulated NP problems, on a one at a
time basis. Methods used include the weighted sum
approach, the ε-constraint method and goal program-
ming. Within the goal programming category, the
goal attainment method has shown to be particu-
larly useful in Computer Aided Control System Design
(CACSD) (Fleming, 1985; Farshadnia, 1991; Fleming
et al., 1992). Multicriteria target vector optimization
has recently been used in combination with genetic al-
gorithms (Wienke et al., 1992).

By maintaining a population of solutions, genetic al-
gorithms can search for many non-inferior solutions in
parallel. This characteristic makes GAs very attrac-
tive for solving MO problems.

2 VECTOR EVALUATED GENETIC

ALGORITHMS

Being aware of the potential GAs have in multiob-
jective optimization, Schaffer (1985) proposed an ex-
tension of the simple GA (SGA) to accommodate
vector-valued fitness measures, which he called the
Vector Evaluated Genetic Algorithm (VEGA). The se-
lection step was modified so that, at each generation,
a number of sub-populations was generated by per-
forming proportional selection according to each ob-
jective function in turn. Thus, for a problem with q
objectives, q sub-populations of size N/q each would
be generated, assuming a population size of N . These
would then be shuffled together to obtain a new popu-
lation of size N , in order for the algorithm to proceed
with the application of crossover and mutation in the
usual way.

However, as noted by Richardson et al. (1989), shuf-
fling all the individuals in the sub-populations together
to obtain the new population is equivalent to linearly
combining the fitness vector components to obtain a
single-valued fitness function. The weighting coeffi-
cients, however, depend on the current population.

This means that, in the general case, not only will
two non-dominated individuals be sampled at differ-
ent rates, but also, in the case of a concave trade-off
surface, the population will tend to split into differ-
ent species, each of them particularly strong in one of
the objectives. Schaffer anticipated this property of
VEGA and called it speciation. Speciation is unde-
sirable in that it is opposed to the aim of finding a
compromise solution.

To avoid combining objectives in any way requires a
different approach to selection. The next section de-
scribes how the concept of inferiority alone can be used
to perform selection.

3 A RANK-BASED FITNESS

ASSIGNMENT METHOD FOR

MOGAs

Consider an individual xi at generation t which is dom-

inated by p
(t)
i individuals in the current population. Its

current position in the individuals’ rank can be given
by

rank(xi, t) = 1 + p
(t)
i .

All non-dominated individuals are assigned rank 1, see
Figure 1. This is not unlike a class of selection meth-
ods proposed by Fourman (1985) for constrained opti-
mization, and correctly establishes that the individual
labelled 3 in the figure is worse than individual labelled
2, as the latter lies in a region of the trade-off which is
less well described by the remaining individuals. The

13511211f1f21 3
5

1
1 2

1

1

f1

f2

Figure 1: Multiobjective Ranking

method proposed by Goldberg (1989, p. 201) would
treat these two individuals indifferently.

Concerning fitness assignment, one should note that
not all ranks will necessarily be represented in the pop-
ulation at a particular generation. This is also shown
in the example in Figure 1, where rank 4 is absent.
The traditional assignment of fitness according to rank
may be extended as follows:

1. Sort population according to rank.

2. Assign fitnesses to individuals by interpolating
from the best (rank 1) to the worst (rank n∗ ≤ N)
in the usual way, according to some function, usu-
ally linear but not necessarily.

3. Average the fitnesses of individuals with the same
rank, so that all of them will be sampled at the
same rate. Note that this procedure keeps the
global population fitness constant while maintain-
ing appropriate selective pressure, as defined by
the function used.

The fitness assignment method just described appears
as an extension of the standard assignment of fitness
according to rank, to which it maps back in the case of
a single objective, or that of non-competing objectives.

4 NICHE-FORMATION METHODS

FOR MOGAs

Conventional fitness sharing techniques (Goldberg and
Richardson, 1987; Deb and Goldberg, 1989) have been
shown to be to effective in preventing genetic drift, in
multimodal function optimization. However, they in-
troduce another GA parameter, the niche size σshare,
which needs to be set carefully. The existing theory
for setting the value of σshare assumes that the solu-
tion set is composed by an a priori known finite num-
ber of peaks and uniform niche placement. Upon con-
vergence, local optima are occupied by a number of
individuals proportional to their fitness values.

On the contrary, the global solution of an MO prob-
lem is flat in terms of individual fitness, and there is
no way of knowing the size of the solution set before-
hand, in terms of a phenotypic metric. Also, local
optima are generally not interesting to the designer,
who will be more concerned with obtaining a set of
globally non-dominated solutions, possibly uniformly
spaced and illustrative of the global trade-off surface.
The use of ranking already forces the search to concen-
trate only on global optima. By implementing fitness
sharing in the objective value domain rather than the
decision variable domain, and only between pairwise
non-dominated individuals, one can expect to be able
to evolve a uniformly distributed representation of the
global trade-off surface.

Niche counts can be consistently incorporated into the
extended fitness assignment method described in the
previous section by using them to scale individual fit-
nesses within each rank. The proportion of fitness allo-
cated to the set of currently non-dominated individuals
as a whole will then be independent of their sharing
coefficients.

4.1 CHOOSING THE PARAMETER σshare

The sharing parameter σshare establishes how far apart
two individuals must be in order for them to decrease
each other’s fitness. The exact value which would allow
a number of points to sample a trade-off surface only
tangentially interfering with one another obviously de-
pends on the area of such a surface.

As noted above in this section, the size of the set of so-
lutions to a MO problem expressed in the decision vari-
able domain is not known, since it depends on the ob-
jective function mappings. However, when expressed
in the objective value domain, and due to the defini-
tion of non-dominance, an upper limit for the size of
the solution set can be calculated from the minimum
and maximum values each objective assumes within
that set. Let S be the solution set in the decision
variable domain, f(S) the solution set in the objective
domain and y = (y1, . . . , yq) any objective vector in
f(S). Also, let

m = (min
y

y1, . . . , min
y

yq) = (m1, . . . , mq)

M = (max
y

y1, . . . , max
y

yq) = (M1, . . . , Mq)

as illustrated in Figure 2. The definition of trade-off
surface implies that any line parallel to any of the axes
will have not more than one of its points in f(S), which
eliminates the possibility of it being rugged, i.e., each
objective is a single-valued function of the remaining
objectives. Therefore, the true area of f(S) will be less
than the sum of the areas of its projections according
to each of the axes. Since the maximum area of each
projection will be at most the area of the correspond-
ing face of the hyperparallelogram defined by m and

f3(m1,m2,m3)(M1,M2,M3)f2f1

f3

(m1, m2, m3)

(M1, M2, M3)

f2

f1

Figure 2: An Example of a Trade-off Surface in 3-
Dimensional Space

M, the hyperarea of f(S) will be less than

A =

q
∑

i=1

q
∏

j=1

j 6=i

(Mj − mj)

which is the sum of the areas of each different face of
a hyperparallelogram of edges (Mj −mj) (Figure 3).

In accordance with the objectives being non-
commensurable, the use of the ∞-norm for measuring
the distance between individuals seems to be the most
natural one, while also being the simplest to compute.
In this case, the user is still required to specify an indi-
vidual σshare for each of the objectives. However, the
metric itself does not combine objective values in any
way.

Assuming that objectives are normalized so that all
sharing parameters are the same, the maximum num-
ber of points that can sample area A without in-
terfering with each other can be computed as the
number of hypercubes of volume σq

share that can be
placed over the hyperparallelogram defined by A (Fig-
ure 4). This can be computed as the difference in vol-
ume between two hyperparallelograms, one with edges
(Mi−mi +σshare) and the other with edges (Mi−mi),
divided by the volume of a hypercube of edge σshare,
i.e.

N =

q
∏

i=1

(Mi − mi + σshare) −
q
∏

i=1

(Mi − mi)

σq
share

Conversely, given a number of individuals (points), N ,
it is now possible to estimate σshare by solving the

f3(M1,M2,M3)f2f1(m1,m2,m3)

f3

(m1, m2, m3)

(M1, M2, M3)

f2

f1

Figure 3: Upper Bound for the Area of a Trade-
off Surface limited by the Parallelogram defined by
(m1, m2, m3) and (M1, M2, M3)

(q − 1)-order polynomial equation

Nσq−1
share −

q
∏

i=1

(Mi − mi + σshare) −
q
∏

i=1

(Mi − mi)

σshare
= 0

for σshare > 0.

4.2 CONSIDERATIONS ON MATING
RESTRICTION AND CHROMOSOME
CODING

The use of mating restriction was suggested by Gold-
berg in order to avoid excessive competition between
distant members of the population. The ability to cal-
culate σshare on the objective domain immediately sug-
gests the implementation of mating restriction schemes
on the same domain, by defining the corresponding pa-
rameter, σmating.

Mating restriction assumes that neighbouring fit in-
dividuals are genotypically similar, so that they can
form stable niches. Extra attention must therefore be
paid to the coding of the chromosomes. Gray codes,
as opposed to standard binary, are known to be useful
for their property of adjacency. However, the coding
of decision variables as the concatenation of indepen-
dent binary strings cannot be expected to consistently
express any relationship between them.

On the other hand, the Pareto set, when represented
in the decision variable domain, will certainly exhibit
such dependencies. In that case, even relatively small
regions of the Pareto-set may not be characterized by
a single, high-order, schema and the ability of mating
restriction to reduce the formation of lethals will be
considerably diminished. As the size of the solution

f3(m1,m2,m3)s-share(M1,M2,M3)f2f1

f3

(m1, m2, m3)

σshare

(M1, M2, M3)

f2

f1

Figure 4: Sampling Area A. Each Point is σshare apart
from each of its Neighbours (∞-norm)

set increases, an increasing number of individuals is
necessary in order to assure niche sizes small enough
for the individuals within each niche to be sufficiently
similar to each other.

Given a reduced number of individuals, the Pareto set
of a given vector function may simply be too large for
this to occur. Since, on the other hand, the designer is
often looking for a single compromise solution to the
MO problem, reducing the size of the solution set by
deciding at a higher level which individuals express a
good compromise would help to overcome the prob-
lems raised above.

5 INCORPORATING

HIGHER-LEVEL DECISION

MAKING IN THE SELECTION

ALGORITHM

When presented with the trade-off surface for a given
function, the decision maker (DM) would have to de-
cide which of all of the non-dominated points to choose
as the solution to the problem. First, the regions of the
Pareto set which express good compromises according
to some problem-specific knowledge would be identi-
fied. Then, having a clearer picture of what is achiev-
able, the idea of compromise would be refined until the
solution was found. As a consequence, a very precise
knowledge of the areas that end up being discarded is
of doubtful utility. Only the “interesting” regions of
the Pareto set need to be well known.

Reducing the size of the solution set calls for higher-
level decision making to be incorporated in the selec-
tion algorithm. The idea is not to reduce the scope of
the search, but simply to zoom in on the region of the

Pareto set of interest to the DM by providing external
information to the selection algorithm.

The fitness assignment method described earlier was
modified in order to accept such information in
the form of goals to be attained, in a similar way
to that used by the conventional goal attainment
method (Gembicki, 1974), which will now be briefly
introduced.

5.1 THE GOAL ATTAINMENT METHOD

The goal attainment method solves the multiobjective
optimization problem defined as

min
x∈Ω

f(x)

where x is the design parameter vector, Ω the feasible
parameter space and f the vector objective function,
by converting it into the following nonlinear program-
ming problem:

min
λ,x∈Ω

λ

such that
fi − wiλ ≤ gi

Here, gi are goals for the design objectives fi, and
wi ≥ 0 are weights, all of them specified by the de-
signer beforehand. The minimization of the scalar λ
leads to the finding of a non-dominated solution which
under- or over-attains the specified goals to a degree
represented by the quantities wiλ.

5.2 A MODIFIED MO RANKING
SCHEME TO INCLUDE GOAL
INFORMATION

The MO ranking procedure previously described was
extended to accommodate goal information by altering
the way in which individuals are compared with one
another. In fact, degradation in vector components
which meet their goals is now acceptable provided it
results in the improvement of other components which
do not satisfy their goals and it does not go beyond
the goal boundaries. This makes it possible for one to
prefer one individual to another even though they are
both non-dominated. The algorithm will then identify
and evolve the relevant region of the trade-off surface.

Still assuming a minimization problem, consider two
q-dimensional objective vectors, ya = (ya,1, . . . , ya,q)
and yb = (yb,1, . . . , yb,q), and the goal vector g =
(g1, . . . , gq). Also consider that ya is such that it meets
a number, q − k, of the specified goals. Without loss
of generality, one can write

∃ k = 1, . . . , q − 1 : ∀ i = 1, . . . , k ,

∀ j = k + 1, . . . , q , (ya,i > gi) ∧ (ya,j ≤ gj) (A)

which assumes a convenient permutation of the objec-
tives. Eventually, ya will meet none of the goals, i.e.,

∀ i = 1, . . . , q , (ya,i > gi) (B)

or even all of them, and one can write

∀ j = 1, . . . , q , (ya,j ≤ gj) (C)

In the first case (A), ya meets goals k + 1, . . . , q and,
therefore, will be preferable to yb simply if it domi-
nates yb with respect to its first k components. For
the case where all of the first k components of ya are
equal to those of yb, ya will still be preferable to yb

if it dominates yb with respect to the remaining com-
ponents, or if the remaining components of yb do not
meet all their goals. Formally, ya will be preferable to
yb, if and only if

(

ya,(1,...,k) p< yb,(1,...,k)

)

∨
{(

ya,(1,...,k) = yb,(1,...,k)

)

∧
[(

ya,(k+1,...,q) p< yb,(k+1,...,q)

)

∨

∼
(

yb,(k+1,...,q) ≤ g(k+1,...,q)

)]}

In the second case (B), ya satisfies none of the goals.
Then, ya is preferable to yb if and only if it dominates
yb, i.e.,

ya p< yb

Finally, in the third case (C) ya meets all of the goals,
which means that it is a satisfactory, though not nec-
essarily optimal, solution. In this case, ya is preferable
to yb, if and only if it dominates yb or yb is not satis-
factory, i.e.,

(ya p< yb)∨ ∼(yb ≤ g)

The use of the relation preferable to as just described,
instead of the simpler relation partially less than, im-
plies that the solution set be delimited by those non-
dominated points which tangentially achieve one or
more goals. Setting all the goals to ±∞ will make the
algorithm try to evolve a discretized description of the
whole Pareto set.

Such a description, inaccurate though it may be, can
guide the DM in refining its requirements. When goals
can be supplied interactively at each GA generation,
the decision maker can reduce the size of the solution
set gradually while learning about the trade-off be-
tween objectives. The variability of the goals acts as
a changing environment to the GA, and does not im-
pose any constraints on the search space. Note that
appropriate sharing coefficients can still be calculated
as before, since the size of the solution set changes in
a way which is known to the DM.

This strategy of progressively articulating the DM
preferences, while the algorithm runs, to guide the
search, is not new in operations research. The main
disadvantage of the method is that it demands a higher
effort from the DM. On the other hand, it potentially
reduces the number of function evaluations required
when compared to a method for a posteriori articula-
tion of preferences, as well as providing less alternative

@@
��

@@
��

��@@

@@
��DM

a priori

knowledge
GA

objective function values

fitnesses

(acquired knowledge)

results

Figure 5: A General Multiobjective Genetic Optimizer

points at each iteration, which are certainly easier for
the DM to discriminate between than the whole Pareto
set at once.

6 THE MOGA AS A METHOD FOR

PROGRESSIVE ARTICULATION

OF PREFERENCES

The MOGA can be generalized one step further. The
DM action can be described as the consecutive evalu-
ation of some not necessarily well defined utility func-
tion. The utility function expresses the way in which
the DM combines objectives in order to prefer one
point to another and, ultimately, is the function which
establishes the basis for the GA population to evolve.
Linearly combining objectives to obtain a scalar fit-
ness, on the one hand, and simply ranking individuals
according to non-dominance, on the other, both corre-
spond to two different attitudes of the DM. In the first
case, it is assumed that the DM knows exactly what
to optimize, for example, financial cost. In the second
case, the DM is making no decision at all apart from
letting the optimizer use the broadest definition of MO
optimality. Providing goal information, or using shar-
ing techniques, simply means a more elaborated atti-
tude of the DM, that is, a less straightforward utility
function, which may even vary during the GA process,
but still just another utility function.

A multiobjective genetic optimizer would, in general,
consist of a standard genetic algorithm presenting the
DM at each generation with a set of points to be as-
sessed. The DM makes use of the concept of Pareto
optimality and of any a priori information available
to express its preferences, and communicates them to
the GA, which in turn replies with the next generation.
At the same time, the DM learns from the data it is
presented with and eventually refines its requirements
until a suitable solution has been found (Figure 5).

In the case of a human DM, such a set up may require
reasonable interaction times for it to become attrac-
tive. The natural solution would consist of speeding

up the process by running the GA on a parallel ar-
chitecture. The most appealing of all, however, would
be the use of an automated DM, such as an expert
system.

7 INITIAL RESULTS

The MOGA is currently being applied to the step
response optimization of a Pegasus gas turbine en-
gine. A full non-linear model of the engine (Han-
cock, 1992), implemented in Simulink (MathWorks,
1992b), is used to simulate the system, given a num-
ber of initial conditions and the controller parameter
settings. The GA is implemented in Matlab (Math-
Works, 1992a; Fleming et al., 1993), which means that
all the code actually runs in the same computation en-
vironment.

The logarithm of each controller parameter was Gray
encoded as a 14-bit string, leading to 70-bit long chro-
mosomes. A random initial population of size 80 and
standard two-point reduced surrogate crossover and
binary mutation were used. The initial goal values
were set according to a number of performance require-
ments for the engine. Four objectives were used:

tr The time taken to reach 70% of the final output
change. Goal: tr ≤ 0.59s.

ts The time taken to settle within ±10% of the final
output change. Goal: ts ≤ 1.08s.

os Overshoot, measured relatively to the final output
change. Goal: os ≤ 10%.

err A measure of the output error 4 seconds after the
step, relative to the final output change. Goal:
err ≤ 10%.

During the GA run, the DM stores all non-dominated
points evaluated up to the current generation. This
constitutes acquired knowledge about the trade-offs
available in the problem. From these, the relevant
points are identified, the size of the trade-off surface
estimated and σshare set. At any time in the optimiza-

tr ts ov err
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
es

Objective functions

0.59s 1.08s 10% 10%

Figure 6: Trade-off Graph for the Pegasus Gas Turbine
Engine after 40 Generations (Initial Goals)

tion process, the goal values can be changed, in order
to zoom in on the region of interest.

A typical trade-off graph, obtained after 40 genera-
tions with the initial goals, is presented in Figure 6
and represents the accumulated set of satisfactory non-
dominated points. At this stage, the setting of a much
tighter goal for the output error (err ≤ 0.1%) reveals
the graph in Figure 7, which contains a subset of the
points in Figure 6. Continuing to run the GA, more
definition can be obtained in this area (Figure 8). Fig-
ure 9 presents an alternative view of these solutions,
illustrating the arising step responses.

8 CONCLUDING REMARKS

Genetic algorithms, searching from a population of
points, seem particularly suited to multiobjective opti-
mization. Their ability to find global optima while be-
ing able to cope with discontinuous and noisy functions
has motivated an increasing number of applications in
engineering and related fields. The development of the
MOGA is one expression of our wish to bring decision
making into engineering design, in general, and control
system design, in particular.

An important problem arising from the simple Pareto-
based fitness assignment method is that of the global
size of the solution set. Complex problems can be
expected to exhibit a large and complex trade-off sur-
face which, to be sampled accurately, would ultimately
overload the DM with virtually useless information.
Small regions of the trade-off surface, however, can still
be sampled in a Pareto-based fashion, while the deci-
sion maker learns and refines its requirements. Niche
formation methods are transferred to the objective
value domain in order to take advantage of the prop-
erties of the Pareto set.

tr ts ov err
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
es

Objective functions

0.59s 1.08s 10% 0.1%

Figure 7: Trade-off Graph for the Pegasus Gas Turbine
Engine after 40 Generations (New Goals)

tr ts ov err
0

0.2

0.4

0.6

0.8

1
N

or
m

al
iz

ed
 o

bj
ec

tiv
e

va
lu

es

Objective functions

0.59s 1.08s 10% 0.1%

Figure 8: Trade-off Graph for the Pegasus Gas Turbine
Engine after 60 Generations (New Goals)

0 1 2 3 4 5
70

70.5

71

71.5

72

72.5

73

73.5

Time (s)

Lo
w

-p
re

ss
ur

e
sp

oo
l s

pe
ed

 (
%

)

Figure 9: Satisfactory Step Responses after 60 Gener-
ations (New Goals)

Initial results, obtained from a real world engineering
problem, show the ability of the MOGA to evolve uni-
formly sampled versions of trade-off surface regions.
They also illustrate how the goals can be changed dur-
ing the GA run.

Chromosome coding, and the genetic operators them-
selves, constitute areas for further study. Redundant
codings would eventually allow the selection of the ap-
propriate representation while evolving the trade-off
surface, as suggested in (Chipperfield et al., 1992).
The direct use of real variables to represent an indi-
vidual together with correlated mutations (Bäck et al.,
1991) and some clever recombination operator(s) may
also be interesting. In fact, correlated mutations
should be able to identify how decision variables re-
late to each other within the Pareto set.

Acknowledgements

The first author gratefully acknowledges support by
Programa CIENCIA, Junta Nacional de Investigação
Cient́ıfica e Tecnológica, Portugal.

References

Bäck, T., Hoffmeister, F., and Schwefel, H.-P. (1991).
A survey of evolution strategies. In Belew, R.,
editor, Proc. Fourth Int. Conf. on Genetic Algo-
rithms, pp. 2–9. Morgan Kaufmann.

Chipperfield, A. J., Fonseca, C. M., and Fleming,
P. J. (1992). Development of genetic optimiza-
tion tools for multi-objective optimization prob-
lems in CACSD. In IEE Colloq. on Genetic Algo-
rithms for Control Systems Engineering, pp. 3/1–
3/6. The Institution of Electrical Engineers. Di-
gest No. 1992/106.

Deb, K. and Goldberg, D. E. (1989). An investigation
of niche and species formation in genetic func-
tion optimization. In Schaffer, J. D., editor, Proc.
Third Int. Conf. on Genetic Algorithms, pp. 42–
50. Morgan Kaufmann.

Farshadnia, R. (1991). CACSD using Multi-Objective
Optimization. PhD thesis, University of Wales,
Bangor, UK.

Fleming, P. J. (1985). Computer aided design of
regulators using multiobjective optimization. In
Proc. 5th IFAC Workshop on Control Applica-
tions of Nonlinear Programming and Optimiza-
tion, pp. 47–52, Capri. Pergamon Press.

Fleming, P. J., Crummey, T. P., and Chipperfield,
A. J. (1992). Computer assisted control system
design and multiobjective optimization. In Proc.
ISA Conf. on Industrial Automation, pp. 7.23–
7.26, Montreal, Canada.

Fleming, P. J., Fonseca, C. M., and Crummey, T. P.
(1993). Matlab: Its toolboxes and open struc-

ture. In Linkens, D. A., editor, CAD for Control
Systems, chapter 11, pp. 271–286. Marcel-Dekker.

Fourman, M. P. (1985). Compaction of symbolic lay-
out using genetic algorithms. In Grefenstette,
J. J., editor, Proc. First Int. Conf. on Genetic
Algorithms, pp. 141–153. Lawrence Erlbaum.

Gembicki, F. W. (1974). Vector Optimization for Con-
trol with Performance and Parameter Sensitivity
Indices. PhD thesis, Case Western Reserve Uni-
versity, Cleveland, Ohio, USA.

Goldberg, D. E. (1989). Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-
Wesley, Reading, Massachusetts.

Goldberg, D. E. and Richardson, J. (1987). Genetic
algorithms with sharing for multimodal function
optimization. In Grefenstette, J. J., editor, Proc.
Second Int. Conf. on Genetic Algorithms, pp. 41–
49. Lawrence Erlbaum.

Hancock, S. D. (1992). Gas Turbine Engine Controller
Design Using Multi-Objective Optimization Tech-
niques. PhD thesis, University of Wales, Bangor,
UK.

MathWorks (1992a). Matlab Reference Guide. The
MathWorks, Inc.

MathWorks (1992b). Simulink User’s Guide. The
MathWorks, Inc.

Richardson, J. T., Palmer, M. R., Liepins, G., and
Hilliard, M. (1989). Some guidelines for genetic
algorithms with penalty functions. In Schaffer,
J. D., editor, Proc. Third Int. Conf. on Genetic
Algorithms, pp. 191–197. Morgan Kaufmann.

Schaffer, J. D. (1985). Multiple objective optimiza-
tion with vector evaluated genetic algorithms. In
Grefenstette, J. J., editor, Proc. First Int. Conf.
on Genetic Algorithms, pp. 93–100. Lawrence Erl-
baum.

Wienke, D., Lucasius, C., and Kateman, G. (1992).
Multicriteria target vector optimization of analyt-
ical procedures using a genetic algorithm. Part I.
Theory, numerical simulations and application to
atomic emission spectroscopy. Analytica Chimica
Acta, 265(2):211–225.

