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Abstract. Set-quality indicators have been used in Evolutionary Multi-
objective Optimization Algorithms (EMOAs) to guide the search process.
A new class of set-quality indicators, the Sharpe-Ratio Indicator, combin-
ing the selection of solutions with fitness assignment has been recently
proposed. This class is based on a formulation of fitness assignment
as a Portfolio Selection Problem which sees solutions as assets whose
returns are random variables, and fitness as the investment in such
assets/solutions. An instance of this class based on the Hypervolume In-
dicator has shown promising results when integrated in an EMOA called
POSEA. The aim of this paper is to formalize the class of Sharpe-Ratio
Indicators and to demonstrate some of the properties of that particular
Sharpe-Ratio Indicator instance concerning monotonicity, sensitivity to
scaling and parameter independence.
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1 Introduction

Indicator-based Evolutionary Multiobjective Optimization Algorithms (EMOAs)
are currently among the state-of-the-art in Evolutionary Multiobjective Opti-
mization. These EMOAs rely on quality indicators to guide the search, which
map a point set into a scalar value, such as the Hypervolume Indicator [9,5].
Good quality indicators capture in a single value the proximity to the Pareto
front and the sparsity/diversity of the set, which tends to enhance the capability
of indicator-based EMOAs to find well-spread sets of good solutions.

Studies of quality-indicator properties have shown the abilities and limitations
of indicator-based EMOAs. Such properties allow one to better understand, for
example, whether an indicator-based EMOA aiming at the maximization of
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the indicator, is able to converge to the Pareto Front (monotonicity [10]) or
understand which distribution each indicator favors (optimal µ-distributions [1]).

Yevseyeva et al. [8] established a link between the theory of Portfolio Se-
lection and selection in Evolutionary Algorithms (EAs) by making an analogy
between assets and individuals, expected return and individual quality, and re-
turn covariance and lack of diversity. They proposed that individuals be assessed
through the optimization of a Portfolio Selection Problem (PSP), formalized
as the bi-objective problem of assigning investment to a set of assets so as to
maximize expected return while minimizing return covariance (associated to risk).
This translates into the problem of assigning fitness to an EA population so as
to maximize overall population quality while minimizing lack of diversity. Due
to the bi-objective nature of the PSP, different optimal investment strategies
balancing risk and expected return may be defined, such as the Sharpe Ratio,
a risk-adjusted performance index well known in Finance [3]. A new indicator
related to the Hypervolume Indicator, but based on the maximization of the
Sharpe Ratio, was proposed and integrated in an EMOA with promising results.
However, its theoretical properties have not been considered so far.

The goal of this paper is to formalize the class of Sharpe-Ratio Indicators
and to study some of the properties of the indicator proposed by Yevseyeva et
al. [8]. Section 2 provides the background. Section 3 details and formalizes the
class of indicators based on the Sharpe Ratio and reintroduces the indicator
proposed by Yevseyeva et al., which will be called Hypervolume Sharpe Ratio
(HSR) Indicator, as an instance of this class. Then, some properties of the HSR
Indicator regarding monotonicity, reference points, and scaling independence,
will be demonstrated in Section 4. Some conclusions are drawn in Section 5.

2 Background

2.1 Definitions

In multiobjective optimization, each solution is mapped according to d objective
functions onto a point in the objective space, Rd. For simplicity, only those points
in objective space will be considered throughout this paper. Note that a number
in parentheses in superscript is used for enumeration (e.g. a(1), a(2), a(3) ∈ Rd)
while a number in subscript is used to refer to a coordinate of a point/vector (e.g.
vi is the ith coordinate of v ∈ Rd). As the objective space is a partially ordered
set, the Pareto dominance relation is introduced [4,11]:

Definition 1. (Dominance) A point u ∈ Rd is said to weakly dominate a point
v ∈ Rd, iff ui ≤ vi for all 1 ≤ i ≤ d, and this is represented as u ≤ v. If, in
addition u 6= v, then u is said to dominate v and is represented as u < v. If
ui < vi for all 1 ≤ i ≤ d, then u is said to strongly dominate v, and this is
represented as u� v.

Definition 2. (Set dominance) A set A ⊂ Rd is said to weakly dominate a
set B ⊂ Rd iff ∀b∈B, ∃a∈A : a ≤ b. This is represented as A � B. A is said to
dominate a set B iff A � B and B � A, and this is represented as A ≺ B.



2.2 Properties

A set-indicator is a function I that assigns a real value to a non-empty set of
points in Rd [10]. Among the properties a set-indicator may possess [10], this
paper will cover parameter independence, sensitivity to scaling and monotonicity.

Typically, an indicator is easier to use the lower is the number of parameters
that must be set. A scaling invariant indicator (e.g. the cardinality indicator [10])
guarantees that the indicator value for any subset of the objective space remains
unchanged when the objective space is scaled. A weaker form of invariance, called
scaling independence, assures that the order defined by an indicator among all
subsets of the objective space is kept when the objective space is scaled.

Monotonicity is an important property as it formalizes the empirical notion
of agreement between indicator values and set dominance. A monotonic indicator
guarantees that a set of nondominated solutions is never considered to be worse
than another set which it dominates. A definition of (weak) monotonicity of a
set-quality indicator with respect to set dominance is given in [10]:

Definition 3. (Monotonicity) A set-indicator I is weakly monotonic w.r.t set
dominance iff, given two point sets A,B ⊂ Rd, A ≺ B implies I(A) ≥ I(B).

The above properties have been studied for indicators such as the hypervolume
indicator (strictly monotonic [10] for sets of points that strongly dominate the
reference point, parameter-dependent [1], scaling independent [9,5]) and the addi-
tive ε-indicator (weakly monotonic [10], dependent on multiple parameters [10]),
thereby motivating their use in EMOAs as well as in performance assessment.
Not holding such properties may discourage the use of an indicator in EMOAs.
For example, a non-monotonic indicator may prefer non-Pareto Front solutions
over Pareto front solutions dominating them, as is the case with the Average
Hausdorff distance [7] and cardinality [10].

2.3 Sharpe Ratio

A portfolio balancing return and risk, is obtained by optimizing Problem 1:

Problem 1. (Sharpe-Ratio Maximization) Let A = {a(1), ..., a(n)} be a non-
empty set of assets, let vector r ∈ Rn denote the expected return of these assets
and matrix Q ∈ Rn×n denote the return covariance between pairs of assets. Let
x ∈ [0, 1]n be the investment vector where xi denotes the investment in asset a(i).
The Sharpe-Ratio maximization problem is defined as:

max
x∈[0,1]n

h(x) =
rTx− rf√
xTQx

s. t.

n∑
i=1

xi = 1 (1)

where rf represents the return of a riskless asset and h(x) is the Sharpe Ratio [3].

Although Problem 1 is non-linear, h(x) may be homogenized and thus, it may
be restated as an equivalent convex quadratic programming (QP) problem [3]:



Problem 2. (Sharpe-Ratio Maximization - QP Formulation)

min
y∈Rn

g(y) = yTQy (2a)

s. t.

n∑
i=1

(ri − rf )yi = 1 (2b)

yi ≥ 0, i = 1, ..., n (2c)

The optimal investment x∗ for Problem 1, i.e., the optimal risky portfolio, is given
by x∗ = y∗/k, where y∗ is the optimal solution of Problem 2 and k =

∑n
i=1 y

∗
i .

So far, the set of assets A has been considered to be fixed and so have r and
Q. However, in this paper, r and Q are computed as function of a set of assets A
that is not fixed and thus, hA(x) and gA(y) will be used instead of h(x) and g(y),
respectively, to highlight this dependence where needed. Moreover, with a slight
abuse of language, a solution y to Problem 2 will also be called an investment
vector, as for a solution x for Problem 1.

3 Sharpe-Ratio Indicator

In this section, the class of Sharpe-Ratio Indicators is formalized, and the Hyper-
volume Sharpe-Ratio Indicator proposed by Yevseyeva et al. [8] is instantiated.

The return of each individual is related to the preferences of a Decision Maker
(DM) and different methods can be used to model the uncertainty surrounding
DM preferences. Yevseyeva et al.’s [8] interpretation of selection in EAs as a
portfolio selection problem sees the return of each individual asset as a random
variable whose expected values can be computed.

Problem 1 does not state what the expected return and covariance of as-
sets/individuals are. Different preferences lead to different ways of modeling
return (and vice-versa) which may lead to different investment strategies in EAs.
Therefore, a broad class of indicators based on the Sharpe Ratio can be defined:

Definition 4. (Sharpe-Ratio Indicator) Given a non-empty set of assets
A = {a(1), ..., a(n)}, the corresponding expected return, r, and covariance matrix,
Q, the Sharpe-Ratio Indicator, ISR(A), is defined as follows:

ISR(A) = max
x∈Ω

hA(x) (3)

where Ω ⊂ [0, 1]n is the set of solutions that satisfy the constraints of Problem 1.

Note that the Sharpe-Ratio Indicator simultaneously evaluates the quality of the
set A through a scalar, ISR(·), and also the importance of each solution in that
set through the optimal investment vector x∗.

The Hypervolume Sharpe-Ratio Indicator (HSR Indicator) is an instance of
the Sharpe-Ratio Indicator where the expected return vector and the return
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Fig. 1. An example of the region measured to compute pij , given a point set A =
{a(1), a(2)} ⊂ R2. The region measured to compute p1 and p2 and p12 is depicted in
darker gray in Figures (a), (b) and (c), respectively.

covariance matrix are computed based on the Hypervolume Indicator as proposed
by Yevseyeva et al. [8]. The expected return of a solution is the probability of that
solution being satisfactory to the DM, assuming a uniform distribution of the
DM’s goal vector in an orthogonal range [l, u], l, u ∈ Rd. For the ith individual
in the population, this is represented by component pi of a vector p, whereas the
return covariance between the ith and jth individuals is represented by element
qij of a matrix Q (i, j = 1, ..., n). Let:

pij(l, u) =
Λ([l, u] ∩ [a(i),∞[∩[a(j),∞[)

Λ([l, u])
=

∏d
k=1(uk −max(a

(i)
k , a

(j)
k ))∏d

k=1(uk − lk)
(4)

where l, u ∈ Rd are two reference points and Λ(·) denotes the Lebesgue measure [2].
Note that pij is, therefore, the normalized hypervolume indicator of the region
jointly dominated by a(i) and a(j) inside the region of interest, [l, u]. Moreover,
from the formulation [8], ri(l, u) = pi(l, u) = pii(l, u) and qij(l, u) = pij(l, u) −
pi(l, u)pj(l, u). For the sake of readability, P = [pij ]n×n and Q = [qij ]n×n will be
assumed to have been previously calculated and, therefore, parameters l and u
from expression (4) will be omitted as long as no ambiguity arises. Note that,
from the definition of qij , Q = P − ppT .

In Figure 1, assuming w.l.o.g. that l = (0, 0) and u = (1, 1), and thus,
Λ([l, u]) = 1, the area of the darker regions in Figures 1(a) to 1(c) are, exactly,
p1, p2 and p12, respectively. Note that pii is related to the area dominated by a(i)

inside the region [l, u], while pij is related to the area simultaneously dominated
by a(i) and a(j) inside the region [l, u].

The Sharpe Ratio hA(x) for the set of solutions A where r and Q are defined
as in (4) will be represented by hAHSR(x, l, u). Analogously to the Sharpe-Ratio
Indicator, the HSR Indicator is formally defined as follows:

Definition 5. (Hypervolume Sharpe-Ratio Indicator) Given a non-empty
point set A = {a(1), ..., a(n)} ⊂ Rd, the points l, u ∈ Rd, the expected return p
and the covariance Q computed as expressed in 4, the Hypervolume Sharpe-Ratio



Indicator IHSR(A, l, u) is given by:

IHSR(A, l, u) = max
x∈Ω

hAHSR(x, l, u) (5)

where Ω ⊂ [0, 1]n is the set of solutions that satisfy the constraints of Problem 1.

As Yevseyeva et al. [8] pointed out, it follows from the definition of qij that the
riskless asset is such that rf = 0. Consequently, Problem 2 may be simplified by
noting that the constraint (2b) must always be satisfied. Therefore, the following
is true for any solution y in the feasible space Ω:

yTQy =

n∑
i=1

n∑
j=1

pijyiyj −
n∑
i=1

piyi

n∑
j=1

pjyj =

n∑
i=1

n∑
j=1

pijyiyj − 1 = yTPy− 1 (6)

Note that this simplification of Problem 2 is applicable to any DM preference
model where rf is zero.

4 Properties of the HSR Indicator

In the following, the optimal investment is shown to be invariant to the setting
of l under certain conditions. Varying l can also be interpreted as applying linear
transformations to the objective space, under which the indicator is scaling
independent. Finally, the HSR Indicator is shown to be weakly monotonic.

4.1 Reference Points and Linear Scaling

Given a non-empty point set A ⊂ Rd and the reference points l, u ∈ Rd, such
that for all a ∈ A, l ≤ a � u holds, the location of l can be shown to have no
effect on the optimal investment in A as long as {l} ≤ A and u remains fixed.
This is equivalent to applying a linear transformation to the objective space, with
u as the center of the transformation. Thus, in practice, only one parameter of
the HSR Indicator needs to be set (the upper reference point, u). Formally:

Theorem 1. Let A ⊂ Rd be a non-empty point set, let l, u ∈ Rd be two
reference points such that ∀a∈A, l ≤ a� u, and let x∗ ∈ [0, 1]n be such that
IHSR(A, l, u) = hAHSR(x∗, l, u). If l′ ∈ Rd is such that {l′} ≤ A, then x∗ also
satisfies IHSR(A, l′, u) = hAHSR(x∗, l′, u).

Proof. Recall expression (4), of pij , for a given point set A = {a(1), ..., a(n)} ⊂ Rd,
where p = [pii]n×1 and P = [pij ]n×n (i, j = 1, ..., n). P (l′, u) and p(l′, u) may be
defined as functions of P (l, u) and p(l, u), respectively, in the following way:

P (l′, u) =
v

v′
P (l, u) (7a)

p(l′, u) =
v

v′
p(l, u) (7b)



where v = Λ([l, u]) and v′ = Λ([l′, u]).

Assume that y ∈ Rn is the vector of variables of Problem 2 (minimizing
gAHSR(y, l, u) = yTPy − 1), when l is set as the lower reference point and that,
analogously, y′ ∈ Rn is the corresponding vector of variables when l′ is used
instead. Taking into account expressions (7b) and the equality constraint of
Problem 2, the following is derived:

p(l, u)T y = p(l′, u)T y′ ⇔ p(l, u)T y =
v

v′
p(l, u)T y′ ⇔ y =

v

v′
y′ (8)

which implies that when y is such that y = v
v′ y
′, if y′ > 0 then y > 0 and

therefore, if y′ is feasible so is y and vice-versa. Hence, the following holds:

gAHSR(y′, l′, u) = y′TP (l′, u)y′ − 1 =
v′

v
yTP (l, u)y − 1 =

v′

v
gAHSR(y, l, u)− 1 +

v′

v

Therefore, the optimal solution y′∗ for Problem 2, given l′, can be obtained
from the optimal solution y∗, given l, i.e., y′∗ = v′

v y
∗. Consequently, the optimal

solution x∗ for Problem 1:

x∗ =
y∗∑n
i=1 y

∗
i

=
v
v′ y
′∗

v
v′

∑n
i=1 y

′∗
i

=
y′∗∑n
i=1 y

′∗
i

. (9)

Hence, IHSR(A, l, u) = hHSR(x∗, l, u) implies that IHSR(A, l′, u) = hHSR(x∗, l′, u)
thus, Theorem 1 is proved.

Note that moving the lower reference point, l, for example, to a lower value of
one of the objectives while the others are kept the same, is equivalent to scaling
down that objective with respect to the other objectives. Thus, the placement of
l can also be seen as a way of linearly scaling the objective functions (as long as
this reference point continues to dominate A). Therefore, by Theorem 1, scaling
the objective space under such conditions does not affect the optimal investment.

Scaling through l comes down to multiplying pi and pij by a positive constant
as in the proof of Theorem 1. Observing the Sharpe Ratio expression h(x) in
Problem 1, the HSR-indicator is not scaling invariant, i.e., scaling the objective
space will affect the indicator value. However, the HSR-indicator is scaling
independent under these linear transformations, as shown next.

Theorem 2. (Linear-Scaling Independence of IHSR) Consider two point
sets A,B ⊂ Rd and two reference points l, u ∈ Rd such that ∀a∈A,b∈B, l ≤ a, b� u.
Assume w.l.o.g. that A and B are such that IHSR(A, l, u) ≤ IHSR(B, l, u). Then,
IHSR(A, l′, u) ≤ IHSR(B, l′, u) holds for any l′ ∈ Rd such that {l′} ≤ A,B.

Proof. Let pA, PA and QA denote, respectively, the expected return vector, the
matrix of expected return and the return covariance matrix with respect to
point set A. Scaling is applied to A and B in expression h(x) in Problem 1 by
multiplying a constant t > 0 by each pi and pij and, therefore, p′A = tpA and



P ′A = tPA, where t = Λ([l,u])
Λ([l′,u]) . Consequently,

IHSR(A, l′, u) ≤ IHSR(B, l′, u) ⇔
tpTAxA√

txTAPAxA − t2xTApApTAxA
≤ tpTBxB√

txTBPBxB − t2xTBpBpTBxB
⇔

1

t
(xTApAp

T
AxA)(xTBPBxB) ≤ 1

t
(xTBpBp

T
BxB)(xTAPAxA)

(10)

Since the constant t vanishes from the inequality, which includes the case where
the lower reference point is not changed (t = 1), Theorem 2 is proved.

4.2 Monotonicity

The property of monotonicity may now be stated for the HSR Indicator:

Theorem 3. (Weak Monotonicity of the Hypervolume Sharpe-Ratio
Indicator) Consider two reference points l, u ∈ Rd and two point sets A,B ⊂ [l, u[
such that A ≺ B. Then IHSR(A, l, u) ≥ IHSR(B, l, u).

In order to prove this theorem, two auxiliary results are stated first. Lemma 1 is
used to prove Lemma 2, which is then used in the proof of the theorem. Similarly
to expression (4), for any two points a, b ∈ [l, u[, let pab denote the measure of
the region bounded above by u ∈ Rd that is dominated simultaneously by a and
b, and let pa = paa. Note that pc > 0 for any point c ∈ [l, u[.

Lemma 1. Consider two points a, b ∈ [l, u[ such that a < b. Then, for all
c ∈ [l, u[⊂ Rd, pbpac ≤ pbcpa holds.

Proof. Consider w.l.o.g. that l = (0, ..., 0) and u = (1, ..., 1) and therefore,
Λ([l, u]) = 1. Lemma 1 will be proved by contradiction. Hence, suppose that, for
some choice of c ∈ [l, u[:

pbpac > pbcpa ⇔∏d
i=1 (1− bi)(1−max(ai, ci)) >

∏d
i=1 (1−max(bi, ci))(1− ai)

(11)

Thus, there should be, at least, a dimension i for which the following holds:

(1− bi)(1−max(ai, ci)) > (1−max(bi, ci))(1− ai) (12)

However, by manipulating expression (12), it is possible to verify that bi ≥ ci
implies ai > max(ai, ci), and that bi < ci implies ai > bi, which are both untrue.
Consequently, expression (11) does not hold either, and Lemma 1 is proved.

Lemma 2. Consider a point set A = {a(1), ..., a(n)} ⊂ [l, u[, where n ≥ 2, and,
without loss of generality, assume that a(2) < a(1). Then, the investment vector
x∗ ∈ [0, 1]n that maximizes the Sharpe Ratio for the set A is such that the
investment in a(1), denoted by x∗1, is zero.



Proof. Note that, for constraint (2b) to be satisfied, there has to be a strictly
positive investment in, at least one asset and thus, all constraints are linearly
independent for any feasible solution to Problem 2. Thus, the prerequisites of
the first-order necessary optimality conditions (KKT conditions) [6] are satisfied.

Following the notation and definitions in Nocedal and Wright [6], the KKT
conditions state that if a feasible solution y∗ is optimal, then there is a La-
grange multiplier vector λ∗ for which all components associated to an inequality
constraint are nonnegative and the product of each component of λ∗ and the
corresponding constraint at y∗ is zero. Moreover, the gradient of the Lagrangian
function w.r.t y∗ is zero (∇yL(y∗, λ∗) = 0). The Lagrangian function, for the
HSR Indicator (in Problem 2) is:

L(y, λ) = yTPy − 1− λ1pT y −
n+1∑
i=2

λiyi−1 (13)

and the corresponding partial derivative w.r.t. yk at (y∗, λ∗) for k = 1, ..., n is:

∂L(y∗, λ∗)

∂yk
= 2

n∑
i=1

piky
∗
i − pkλ∗1 − λ∗k+1 = 0 (14)

Lemma 2 is proved by contradiction. Let y∗1 and y∗2 represent the investments
in a(1) and a(2), respectively. Since a(2) dominates a(1), the following holds:

p1 = p12 , p1 < p2 and p1i ≤ p2i, i = 3, ..., n (15)

Suppose that the optimal investment y∗ is such that y∗1 > 0. Then, the KKT
conditions imply that λ∗2 = 0. By manipulating equation (14) for k = 1, 2 using
the conditions in (15), the following condition on λ∗3 is obtained:

p1(p12 − p2)y∗1 +
n∑
i=3

(p1p2i − p1ip2)y∗i =
p1λ
∗
3

2 ≥ 0 (16)

λ∗3 ≥ 0 must be true so that it is a valid Lagrange multiplier. Therefore, since
p1 > 0, the left-hand side of expression (16) must be zero or positive. However,
the first term is clearly negative since p12 = p1 < p2, and the sum is non-positive
by Lemma 1.

Therefore, no optimal Lagrange multiplier vector λ∗ exists for which the KKT
conditions hold true when y∗1 is strictly positive, and consequently, y∗ cannot be
optimal. Therefore, y∗1 = 0 which implies that x∗1 = 0 and proves Lemma 2.

Proof (Theorem 3). Consider two point sets A,B ⊂ [l, u[⊂ Rd, such that |A|, |B| ≥
1 and A ≺ B. Since any points in B − A are dominated points in A ∪ B, by
Lemma 2 they are assigned zero investment, and IHSR(A ∪ B) = IHSR(A) must
hold true. Suppose that IHSR(B) > IHSR(A). Then, an investment strategy in
A∪B with Sharpe Ratio greater than IHSR(A∪B) where zero investment is given
to the points in A−B would exist, which leads to a contradiction and proves the
theorem.



5 Concluding Remarks

The Sharpe-Ratio Indicator class has been formalized, and theoretical results on
the particular HSR Indicator have been presented regarding the independence of
one of the reference points, scaling independence and the monotonicity property.
Although the formulation of the HSR Indicator involves two reference points,
only one needs to be set in practice. The second reference point is just a technical
parameter that is required by the formulation. Indeed, the optimal investment
is not affected by the linear objective rescaling implied by changes to this
second reference point, and the indicator is scaling independent under such
transformations. Thus, the HSR Indicator does not require more parameters to
be set than, for example, the Hypervolume Indicator. The HSR Indicator is also
weakly monotonic w.r.t. set dominance.

The study of other properties of interest, including optimal µ-distributions
for the HSR Indicator, will be the subject of future work.
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