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Abstract. In this work, a new approach to selection in multiobjective
evolutionary algorithms (MOEAs) is proposed. It is based on the portfo-
lio selection problem, which is well known in financial management. The
idea of optimizing a portfolio of investments according to both expected
return and risk is transferred to evolutionary selection, and fitness assign-
ment is reinterpreted as the allocation of capital to the individuals in the
population, while taking into account both individual quality and popu-
lation diversity. The resulting selection procedure, which unifies parental
and environmental selection, is instantiated by defining a suitable notion
of (random) return for multiobjective optimization. Preliminary exper-
iments on multiobjective multidimensional knapsack problem instances
show that such a procedure is able to preserve diversity while promoting
convergence towards the Pareto-optimal front.

Keywords: Fitness assignment, portfolio selection, Sharpe ratio, evo-
lutionary algorithms, multiobjective knapsack problem

1 Introduction

In evolutionary algorithms (EAs), selection shapes the direction in which the
search is performed by dictating which individuals are allowed to reproduce.
Typically, better individuals are assigned higher fitness, and are, therefore, se-
lected for breeding. Carrying out selection based exclusively on individual per-
formance (e.g., proportionally to a global objective value or individual rank)
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may work well when a single best solution is sought, but it typically leads to
an undesired loss of population diversity when searching for multiple optimal
solutions to multimodal problems. For this reason, techniques such as crowding
and fitness sharing [I7] are used in several multiobjective EAs (MOEAs) [6l7],
to promote a good coverage of the Pareto-optimal front. Individuals located in
more crowded regions are penalized, and greater chance of reproduction is given
to individuals in less crowded regions.

Another approach is based on the use of quality indicators [20]. It consists of
defining a notion of population quality and then inferring how much each individ-
ual contributes to the quality of the population. Algorithms such as LAHC [12],
SMS-EMOA [] and HyPE [I] instantiate this idea by using the hypervolume
indicator as the measure of population quality, and clearly define what the con-
tribution of each individual to that value is, albeit in different ways. In this
work, the opposite view is adopted. An interpretation of fitness assignment as
a (financial) portfolio selection problem (PSP) is proposed, where individuals
are seen as assets with given (randomly distributed) monetary return values,
and the fitness assigned to each individual represents an investment in that in-
dividual. In this case, it is the quality of the population that is inferred from
the quality of the individuals that compose it, represented by the corresponding
return distributions.

It is known from portfolio selection theory that investing only in one asset,
or in similar assets, carries a risk associated with the variability of the individ-
ual returns, which is directly reflected in the variability of the overall return.
Similarly, it is well known that selecting only a few of the best individuals in an
EA population may lead to loss of population diversity and even to premature
convergence. Therefore, the proposed analogy is completed by associating lack
of population diversity with risk in the financial sense.

This paper is organized as follows. The classical PSP formulation is reviewed
in the next section, leading to the proposed interpretation of fitness assignment
as a portfolio selection problem. In Section |3 a new fitness assignment strategy
for MOEAs is developed based on the classical PSP formulation, by specify-
ing suitable notions of expected return and risk. This strategy is then extended
to encompass solution archiving as well, allowing parental and environmental
selection to be unified into a single selection problem. Preliminary experimen-
tal results on multiobjective multidimensional knapsack problem instances are
presented in Section [4] The paper concludes with a discussion of the proposed
approach.

2 Background

2.1 Portfolio Selection

In the classical Markowitz formulation [I6] of the portfolio selection problem,
asset returns are modeled as random variables, the expected values of which can
usually be estimated from historical data. Risk is assessed as the variance of



A Portfolio Optimization Approach to Selection in MOEAs 3

the overall portfolio return, and depends not only on how much individual asset
returns vary, but also on how they vary in relation to one another. Thus, the
covariance matrix of the joint asset return distribution is considered in addition
to the expected values. A financial portfolio should optimize two conflicting
objectives: maximizing the expected portfolio return and minimizing portfolio
return variance. Formally:

n

maximize Zrixi =rTy (1)
i=1
n n

minimize Z Z gijriv; = 7 Qu (2)
i=1 j=1
n

subject to inzl, z; €[0,1,i=1,...,n (3)
i=1

where n is the number of assets, 7; is the expected return of asset 7, and g¢;; is the
covariance of the returns of assets ¢ and j. The unknown solution is represented
by * = (21,...,2,)T, where each x; denotes the proportion of capital to be
invested in asset i.

Sharpe Ratio The solution to the PSP defined by expressions is a set
of Pareto-optimal portfolios. The portfolios in this set are efficient with respect
to expected return and return variance, and reflect different investor behavior:
portfolios composed mostly of high-return assets are usually riskier, but simply
avoiding risk is seldom profitable. Risk is usually reduced by combining assets
with negatively correlated returns, although the expected return of the portfolio
will necessarily decrease due to the inclusion of lower-return assets.

Several notions of an optimal return-to-risk trade-off have been proposed in
the literature. Among them, the most widely used risk-adjusted performance
index is the Sharpe ratio [5], also called reward-to-volatility ratio. The Sharpe
ratio assesses how well the expected return of a given portfolio compensates the
risk taken by measuring the excess return per unit of deviation from the mean
with respect to a baseline, risk-free investment. The portfolio with the maximum
Sharpe ratio, or optimal risky portfolio, x*, is the solution of the following non-
linear programming problem:

T,

maximize -~ 11 (4)
VT Qx
n

subject to inzl, x; €[0,1], i=1,...,n (5)
i=1

where ry is the (deterministic) return of a reference, riskless asset. Naturally, the
expected return of an efficient portfolio should be at least r¢.
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This non-convex problem can be transformed into the, easier to solve, convex
quadratic programming problem:

minimize y7 Qy (6)
n

subject to Z(Ti—rf)yiz 1, 5,>0,i=1,...,n (7)
i=1

by homogenizing the objective function (4), as detailed in [5]. A standard quad-
ratic programming solver may then be used to determine the optimal risky port-
folio, 2* = y* /k, where k = > | yr.

2.2 Fitness Assignment as a Portfolio Selection Problem

In order to express fitness assignment in EAs as a portfolio selection problem,
suitable analogues of individual expected return, r, and return covariance, @,
must be considered. Having established the values of these parameters, the de-
sired fitness assignment, x, can be obtained by solving the resulting PSP, e.g.
for the maximum Sharpe ratio portfolio.

In particular, when the covariance matrix () is a scalar matrix and the ex-
pected return of each individual is set to the corresponding (single) objective
value to be maximized, maximizing the Sharpe ratio will assign fitness propor-
tionally to the difference between the individual objective values and the refer-
ence return value considered, if this difference is positive, and zero otherwise.

PSPs corresponding to other traditional fitness assignment strategies, such as
linear ranking [3] and sigma-scaling [10], can also be formulated by considering
ranks instead of objective values and/or appropriately selecting the value of the
reference return. Consequently, the portfolio selection interpretation of fitness
assignment eztends conventional proportional fitness assignment by making the
notion of risk explicit in the form of a covariance matrix.

The question remains of how to design the covariance matrix in order to
control the loss of population diversity due to selection, while maintaining an
appropriate level of selective pressure towards better solutions. One possible
answer in the context of multiobjective optimization is proposed next.

3 A New Approach to Multiobjective Selection

Most current MOEASs attempt to drive the individuals in the population towards,
and to distribute them across, the Pareto front of the problem, so that the final
solution may be selected by a Decision Maker (DM) in an a posteriori fashion.
In this way, modeling the (subjective) preferences of the DM is avoided, but
the whole Pareto front must be approximated as well as possible in order to
maximize the chance that at least one of the solutions found satisfies the DM.



A Portfolio Optimization Approach to Selection in MOEAs 5

3.1 Fitness Assignment

In such an a posteriori setting, the return of a given candidate solution may be
seen as a random variable modeling the uncertainty associated with the unknown
preferences of the DM. A simple scenario will be considered:

— Without loss of generality, the problem to be solved consists of the mini-
mization of a d-dimensional objective function, f.

— There are n > 1 individuals in the population. To each individual i, ¢+ =
1,...,n, corresponds an objective vector f; € R%.

— Preferences are expressed by the Decision Maker in terms of a single goal
vector, drawn from some probability distribution over the objective space.
In particular, a uniform distribution on a given orthogonal range [I, u] of the
objective space will be assumed, where I, u € R

— Individuals are either “acceptable” or “not acceptable” depending on whether
or not they weakly dominate such a random goal vector, respectively. There-
fore, each individual will be deemed acceptable with a certain probability,
and the corresponding return (or acceptability) is a Bernoulli random vari-
able taking a value of 1 if the solution is acceptable and 0 otherwise.

Under these conditions, the expected return r; of an individual i is equal to
the proportion of the (given orthogonal range of the) objective space which f;

dominates, i.e.,

A(Lfi, 00[N L u])
A([L u])
where A(+) denotes the Lebesgue measure (or hypervolume) of the given region,

and [f;, oo[ is the region dominated by f;. Since returns are Bernoulli distributed,
the return covariance for a pair of individuals is

(®)

Ty =Di =

qij = Pij — PiPj )
A([fi, 00 [A([[{J;]O)O[ﬁ[l’u]) — pip; (10)
A v f{ﬁji}}m L) o, (1)

where f; V f; denotes the join, or componentwise maximum, of objective vectors
fi and f;, for i,j = 1,...,n. Note that p;; = p;, and that g;; = p; — p? is simply
the variance of the return of individual i. As a consequence, the return of a
riskless asset must be zero (ry = 0) under this model.

The above expressions show that the return covariance relates the size of
the region simultaneously attained by two individuals to the sizes of the regions
attained individually by each one, an idea which is also at the heart of the
definition of an extended dominance relation known as volume dominance [13],
although the details of the two methods are considerably different. Whereas
the aim of volume dominance is to establish whether an individual should be
considered better than another, here the aim is to gauge the (dis)similarity
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Fig. 1. Maximum Sharpe ratio fitness assignment. Left and center: 30 non-dominated
individuals. Right: an arbitrary 30-individual population. Circle area is proportional
to assigned fitness. [ = (0,0), v = (1,1).

between individuals. Positive covariance indicates that two individuals attain
much the same region of the objective space, whereas negative covariance is
a sign that the regions attained do not overlap much. Since portfolio variance
is reduced by combining negatively correlated assets, and greater returns are
preferred, a risk-adjusted portfolio should consist of a diverse set of individuals
along the non-dominated front.

Tllustrative examples are presented in Fig. [II When all individuals are non-
dominated and evenly distributed on a linear front (left), the fitness assigned
to each one by maximizing the Sharpe ratio is the same. On the other hand, if
they are not evenly distributed (center), isolated individuals are assigned greater
fitness values than those in crowded regions of the front. In the more general
case (right), dominated individuals, as well as some non-dominated individuals,
are assigned zero fitness, whereas the remaining non-dominated individuals are
assigned high fitness values. Therefore, the optimal risky portfolio may not max-
imize the hypervolume indicator on an arbitrary front, although it would seem
to correctly identify at least some interesting non-dominated solutions.

3.2 Environmental Selection and Archiving

The portfolio selection model described so far is aimed at parental selection, i.e.,
at the selection of individuals for breeding. Once fitness has been assigned, this
is typically achieved with a sampling procedure such as roulette-wheel selection
(RWS) [8] or stochastic universal sampling (SUS) [2].

Environmental selection, on the other hand, is aimed at replacing old indi-
viduals with new ones, and may be performed based on fitness, the number of
iterations an individual has survived in the population, or even randomly. Also,
offspring may replace the parents unconditionally or depending on whether they
outperform them. A replacement strategy where the best individuals always
survive is known as elitist.

In contrast to the single objective case, the implementation of elitist environ-
mental selection in the multiobjective case must deal with the possible incompa-



A Portfolio Optimization Approach to Selection in MOEAs 7

rability between individuals. If only dominated individuals are ever replaced by
new ones, either the population is allowed to grow indefinitely or the algorithm
will terminate as soon as all individuals in the population are non-dominated. For
this reason, alternative environmental selection strategies where non-dominated
individuals may be replaced by new ones in order to keep the size of the popu-
lation constant have been proposed and extensively studied [T2ITTIT5]. Because
the population acts as an archive of non-dominated solutions, such strategies
have become known as bounded archiving strategies.

MOEASs typically implement environmental selection separately from parental
selection. However, the two can be meaningfully combined into a single portfolio
selection problem with a cardinality constraint. Assuming a parental population
size of n and the production of m offspring at each iteration, the new problem
consists of assigning non-zero fitness to at most n individuals from the n + m
parents and offspring currently available. In this way, environmental selection is
performed so as to maximize the Sharpe ratio of the resulting portfolio. It is not
difficult to see that this approach guarantees that the Sharpe ratio may never
decrease from one iteration to the next. Therefore, this combined environmental
selection and fitness assignment mechanism implements a monotonic bounded
archiving strategy [15].

Unfortunately, portfolio selection with cardinality constraints is no longer a
convex optimization problem, and may be difficult to solve exactly (it is generally
NP-hard). In practice, however, this will depend on how tightly constrained a
particular instance turns out to be. Indeed, solving the relaxed problem will, in
many cases, lead to a solution that satisfies the cardinality constraint, unless
the population is so well distributed that more than n individuals would, in
principle, be assigned non-zero fitness. This simply requires that m is chosen to
be sufficiently small in comparison to n.

4 Experimental Results

The proposed approach to multiobjective selection was implemented in an oth-
erwise conventional mutation-selection evolutionary algorithm with population
size n = 200. The parental population was sampled proportionally to assigned
fitness using SUS [2] to select m = 50 parents that were mutated to produce m
offspring. For simplicity, no recombination operator was used.

The algorithm was applied to multiobjective knapsack instances from [19]
with 100 and 500 items, with 2, 3 and 4 objectives, and as many capacity con-
straints as objectives. For the purpose of constructing the portfolio selection
problems, knapsack values and weights were taken to range from zero to their
maximum values (when all items are included). The return distribution of each
individual was computed as described in section but using the preferability
relation [7] instead of dominance, in order to accommodate constraints and ob-
jectives in the same formulation. Additional (linear) constraints on fitness were
imposed so that no individual could expect to reproduce more than once in each
generation.
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Individuals were represented as binary strings, and mutation consisted of
either flipping one bit at random or exchanging two randomly-selected bits of
different value, so as to uniformly sample the resulting 1-flip-exchange neighbor-
hood [14]. In order to study the long-run behavior of the algorithm, here referred
to as Portfolio Optimization Selection Evolutionary Algorithm (POSEA), and
account for its stochasticity, 13 long runs with 1 million function evaluations
each were performed for each instance. For comparison purposes, equally long
runs were performed using SPEA2 [I8], NSGA-II [6] and SMS-EMOA [] with
the same population size (n = 200) and mutation operator. As before, no recom-
bination was used. The number of offspring per generation, m, was set to the
default in each case: m = n in SPEA2 and NSGA-II and m = 1 in SMS-EMOA.

Experimental results are presented in Figs. 2] and [3] where the maximum,
median and minimum of 13 runs are shown for each algorithm on 2-, 3- and
4-objective instances. SPEA2 and NSGA-II do not use hypervolume informa-
tion, and tend to perform worse or, at most, slighly better than SMS-EMOA
and POSEA with respect to both the hypervolume indicator and the Sharpe
ratio. SMS-EMOA can be seen to perform best with respect to the hypervolume
indicator, whereas POSEA clearly does not cover the Pareto-front as well as
SMS-EMOA. On the other hand, SMS-EMOA achieves lower or, at most, simi-
lar values of Sharpe ratio, indicating that POSEA focused on the most relevant
non-dominated solutions according to the DM model adopted.

5 Conclusions

In this work, a fitness assignment approach based on (financial) portfolio opti-
mization was proposed. By modeling the uncertainty associated with Decision
Maker preferences probabilistically, the quality (or return) of each individual
solution becomes a random variable, and fitness assignment consists of form-
ing a portfolio of individuals balancing overall expected return against return
variance, e.g., based on the Sharpe ratio.

Although the probabilistic Decision Maker model adopted in this work is
rather simplistic, empirical evidence suggests that it possesses some interesting
properties, such as not favoring dominated solutions over non-dominated ones
and promoting diversity in the population, even if it does not maximize the
hypervolume indicator in the general case. A theoretical study of these and other
properties is currently under way [9], but more experimentation is required to
evaluate the performance of POSEA and how the number of offspring, m, may
influence it. Furthermore, since the size of the quadratic programming problem
to be solved at each generation is independent of the number of objectives, the
method is potentially much faster than hypervolume-based selection (depending
on m), especially as the number of objectives grows.

The proposed approach establishes a bridge between multiobjective selection
and optimization under uncertainty. By considering alternative probabilistic DM
models based on other indicators and/or preference articulation strategies, the
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portfolio optimization paradigm should contribute to unifying solution-oriented
preferences and set-oriented preferences under a common framework.
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