
A conceptual model of optimisation problems
Cristina C. Vieira∗

∗Faculdade de Ciências e Tecnologia
Universidade do Algarve

Faro, Portugal
cvieira@ualg.pt

Carlos M. Fonseca∗†
†CEG-IST - Centre for Management Studies

Instituto Superior Técnico
Lisboa, Portugal

cmfonsec@ualg.pt

Abstract—This paper proposes a conceptual model of optimi-
sation problems to support their implementation in software.
Solution representation, search space structure, and solution
evaluation, are the central concepts of the proposed model. The
desired separation between the problem and the search methods
is achieved by recognising that neighbourhood structures are an
integral part of a local optimisation problem definition, while
considering that optimisers should be formulated independently
of specific neighbourhood structures and of their implementation
details. The proposed model has been prototyped in Python, as a
research and teaching tool. A framework foundation component
and an application example based on a genetic algorithm for the
N-Queens problem are presented.

I. INTRODUCTION

In the last decade there has been great interest in software
environments for optimisation [1]–[8]. One of the main chal-
lenges when designing such an environment consists of achiev-
ing a clear separation between problems and solvers, so that
solvers may be written independently of the problems they will
be applied to, and that problems may be written independently
of the specific search operators employed by the solvers. This
is usually a difficult task, because the implementation of local
search operators, including mutation and recombination oper-
ators in evolutionary algorithms, typically requires knowledge
of how solutions are represented. As a result, search operators
are often seen as establishing a connection between problems
and solvers, which amounts to placing them in a class of their
own [7]. Arguably, a clearer understanding of the problem-
specific and solver-specific aspects of search operators would
lead to an even greater separation between problem and solver
implementation. In turn, this would facilitate deployment,
improve the understanding of the optimisers themselves, and
enable a fairer assessment and comparison of the performance
of different optimisation methods.

In this work, a new model for the software implementation
of optimisation problems is proposed. Emphasis is placed
on the problem-specific aspects, whereas problem-independent
search strategies are left to be implemented by the solver.
Solution representation, search-space structure, and solution
evaluation, are the central concepts of the proposed model.
The desired separation between the problem and the solver is
achieved by recognising that neighbourhood structures are an
integral part of a local optimisation problem definition. This
implies that optimisers should be formulated at a higher level,

independently of specific neighbourhood structures and, thus,
of their implementation details.

This paper is organised as follows. The basic entities and
relationships needed to formulate an optimisation problem are
identified in section II, starting from some basic mathematical
definitions. In section III, a conceptual model of optimisation
problems is proposed. Finally, in section IV, a short descrip-
tion of the model implementation in software is presented.
Section V introduces an application example based on the N-
Queens problem. The last section discusses the benefits and
potential drawbacks of the proposed approach.

II. PROBLEM ANALYSIS

Since an optimisation problem exists independently of any
method which may be used to solve it, it should be possible to
identify, and model, the entities and relationships involved in
a complete formulation of an optimisation problem, without
referring to any specific optimiser. In order to arrive at a
general optimisation problem formulation, the analysis begins
with some general mathematical definitions.

A. Optimisation problems

Consider the basic problem definition given in [9]:
Definition 1 (Abstract problem): An abstract problem Q is

a binary relation on a set I of problem instances and a set S
of problem solutions.
This definition is very general, but it immediately suggests the
decomposition of a problem into two separate entities, a set
of instances and a set of solutions. Clearly, an optimisation
problem may be seen as a special case of such an abstract
problem. Although optimisation problems are usually formu-
lated in terms of numerical functions, a more general definition
based on pre-order relations [10] may be given, as suggested
in [11], [12]. Note that functions are special cases of relations.

Definition 2 (Optimisation problem): An optimisation pro-
blem is an abstract problem where each instance in I is a pre-
order � on the set of problem solutions S. An element of S
is a solution of a problem instance in I if and only if it is a
minimal element [10] of S under the corresponding pre-order
(alternatively, maximal).
This definition refines the previous one by specifying the
nature of problem instances, namely, that they must consist of
binary relations on S and possess certain properties (reflexivity
and transitivity), but does not introduce any new entities. It



does, however, make problem instances depend on the solution
space, as it happens in practice. Definition 2 encompasses a
number of different optimisation scenarios, namely:

Discrete and continuous optimisation:
Suitable pre-orders � may be defined regardless of
whether S is discrete (finite or countably infinite) or
continuous.

Single-objective and multiobjective optimisation:
Pareto-dominance defines a (partial) pre-order, and
so do other preference relations [13]. Considering
Pareto-dominance and n objective functions, one
may write:

∀s1, s2 ∈ S, s1 � s2 ⇔
(f1(s1), . . . , fn(s1)) ≤ (f1(s2), . . . , fn(s2))

where the inequality between vectors must be veri-
fied in a componentwise fashion.

Multimodal optimisation:
The problem of finding all minimal elements of
S under a given pre-order � may be formulated
as a new problem, defined in terms of a suitable
pre-order 2 on the power-set 2S [14], [15]. This
includes finding all Pareto-optimal solutions in the
multiobjective case.

B. Local optimisation problems

Definition 2 formalises global optimisation problems, since
the notion of minimal element is taken with respect to the
whole set of solutions, S. In practice, global optimisation
problems are usually very difficult to solve directly, and local
optimisation problems are often considered instead.

Definition 3 (Local optimisation problem): A local opti-
misation problem is an abstract problem such that each in-
stance in I is a pair (�, N), where � is a pre-order on
the set of problem solutions S, and N(s) : S → 2S is a
neighbourhood function. An element s ∈ S is a solution of a
problem instance in I if and only if it is a minimal element of
the subset N(s) ⊆ S, under the corresponding pre-order. The
neighbourhood function N endows S with a neighbourhood
structure.
Note the introduction of a new entity, the neighbourhood
structure, its direct dependence on the solution set S, and
the fact that the local problem differs from its global coun-
terpart only in the mapping between I and S. This makes
the neighbourhood structure an integral part of the problem
definition, independently of how it may be exploited by any
given solving strategy. Also, note that the global optimisation
problem remains a special case of the local optimisation
problem, where N(s) = S, ∀s ∈ S.

III. THE CONCEPTUAL MODEL

The model consists of three main components: a solution
space, an optional neighbourhood structure, and an evaluator.
Each component provides a representation of the correspond-
ing mathematical entity, as well as mechanisms capable of
supporting the optimisation process, such as: (1) Solution

initialisation and solution space sampling; (2) Neighbourhood
sampling, distance measuring and shortest path generation and
(3) Solution comparison and evaluation, including incremental
evaluation. Such mechanisms should be made available to
the optimiser in a problem-independent way, using a standard
interface for all problems.

A. Solution space

The solution space is independent of the remaining com-
ponents of the model. Its main purpose is to specify how
candidate solutions are represented and to provide mechanisms
for solution initialisation and, eventually, stochastic sampling
of the solution space. Solution initialisation should encapsulate
any data needed to describe concrete solutions (including
user-supplied initial solutions, regardless of how they were
obtained) in such a way that, once initialised, solutions may
be handled independently of the underlying representation
adopted. Stochastic sampling of the solution space is important
because it enables an optimiser to obtain candidate solutions
in a problem-independent way. Sampling may be implemented
with replacement and, eventually, also without replacement.
The availability of a stochastic space-sampling mechanism,
with and without replacement, is also required to implement
random search and exhaustive enumeration, respectively.

B. Neighbourhood structure

The neighbourhood structure depends directly on the solu-
tion space component, and must know about how solutions are
represented. Its main purpose is to support local optimisation
methods and, as such, it should offer a number of important
mechanisms. At the most basic level, it should implement
the neighbourhood function in some way. Since the value of
this function is a set, determining the neighbourhood function
may be reinterpreted as sampling the neighbourhood without
replacement, at least when the neighbourhood is finite. Ad-
ditionally, mechanisms to enable sampling with replacement,
determining the distance between two solutions (under the
given neighbourhood structure), and determining paths from
one solution to another should be provided, so that search
techniques such as path-relinking [16] and certain recombina-
tion operators [17], [18] may be implemented by the optimiser
independently of the problem. Where the solution space pos-
sesses stronger mathematical properties (as in the continuous
case), these may be used to define the neighbourhood struc-
ture in alternative ways. Finally, the neighbourhood structure
may define a representation for the “difference” between two
neighbouring solutions, which is usually described as a move,
in which case it should also provide mechanisms to apply
moves to solutions and compute the resulting neighbours. This
usually becomes advantageous at the evaluator level.

C. Evaluator

The evaluator must allow solutions to be compared with
one another, either directly, by implementing a comparison
operator, or indirectly, by implementing one or more objective
functions. In both cases, the implementation of the evaluator is



*

 construct

Sample

Move

Neighbourhood

*

 construct

Solution

Problem

Point

Space

 reference

evaluate

*

*

 construct
 reference

Fig. 1. Metamodel class diagram

intimately dependent on the solution space. Provided that the
neighbourhood structure also defines moves, it may become
possible for the evaluator to evaluate moves in connection with
given pre-evaluated solutions. Incremental, or partial, solution
evaluation may be much more computationally efficient than
the full evaluation of solutions, and is one of the most
important features of local search methods.

IV. MODEL IMPLEMENTATION

The proposed model was implemented in Python as a
set of interrelated abstract classes, representing the model’s
high-level abstraction concepts, and forming the framework
foundation. Python is a general-purpose aspect-oriented lan-
guage that promotes the fast development of prototypes for
experimentation and application development purposes, and
can be used in multiple platforms. Moreover, the availability
of numeric package NumPy has made it extremely interesting
for scientific computing.

The metamodel class diagram is depicted in Figure 1.
Concrete spaces must be derived from the abstract class Space,
which represents all generic space properties. The abstract
class Neighbourhood represents generic neighbourhood struc-
tures and, as with the Space abstract class, concrete neigh-
bourhoods must be derived from it. Concrete neighbouhoods
must also reference a concrete space.

Concrete problems are derived from the abstract class Prob-
lem, and must reference a concrete space, possibly through
a concrete neighbourhood structure. Problem objectives are
implemented as solution evaluators, and must provide solution
comparison or objective function evaluation, or both. Option-
ally, incremental evaluation and/or comparison may also be
provided.

Point, Move and Solution are special classes containing
single or multiple elements that only exist in connection with
concrete Space, Neighbourhood and Problem class instances.

Space classes provide mechanisms to generate and manip-
ulate single or multiple points, while Neighbourhood classes
provide mechanisms to generate moves and manipulate single
or multiple points and moves, such as applying moves to
points and determining the distance between pairs of points.
Problem classes provide mechanisms to construct Solution
instances, often defined in terms of the methods implemented

by Space. Solution instances combine Point instances with the
logic (methods and attributes) needed to implement solution
comparison and evaluation, including incremental evaluation.
In addition, they are endowed with neighbourhood-related
methods, which may often be provided automatically based
on the corresponding implementations made available by the
Neighbourhood and Move classes. As a result, optimisers may
simply rely on the Problem and Solution classes to provide all
the funcionality they need.

V. APPLICATION EXAMPLE

A. Modelling and implementing the N-Queens problem
The N-Queens problem is a generalisation of the classic 8-

Queens combinatorial optimisation problem proposed by chess
player Max Bazzel in 1848. The problem consists in placing n
queens on a chessboard so that no two attack each other, i.e.,
no more than one queen may be on the same row, on the same
column and on the same diagonal. By representing solutions
as permutations, where the ith-value represents the row in
which the queen in column i is placed, it becomes sufficient
to check for diagonal conflicts, which considerably simplifies
solution evaluation. The swap (or exchange) neighbourhood is
considered a suitable neighbourhood for this problem [19].

The proposed NQueens problem class implementation de-
rives from the abstract class Problem, and implements the con-
structor and the Solution class evaluate hotspot methods. The
constructor initialises problem instances with the chessboard
length n, and instantiates concrete Permutation and Swap
classes to describe the corresponding representation space and
neighbourhood. The Solution evaluate method computes the
number of pairs of queens on the same diagonal, providing
incremental as well as full solution evaluation.

B. A simple genetic algorithm for the N-Queens problem
A simple genetic algorithm implementation (see Algo-

rithm 1) uses the random solution sampling mechanism pro-
vided by the problem to generate the initial population in a
a problem-independent way. The solution evaluation mecha-
nisms are called whenever the population is queried for its
objective values, e.g. by the termination condition. Evaluation
results are cached by the solution objects so that subsequent
queries for the objective values may be returned without a re-
evaluation (e.g., during selection). This also provides the basis
for incremental evaluation.

Algorithm 1 Genetic algorithm

problem← NQueens(n)
pop← problem.randomSolution(m)
while not termination condition do

pop← select(pop)
recombine(pop)
mutate(pop)

end while

Geometric mutation and recombination operators [20] are
implemented by calling the relevant solution mechanisms,



which are, in turn, provided by the problem neighbourhood
instance. The mutation operator is implemented as the appli-
cation of random moves to individuals, using the randomMove
solution method and an overloaded in-place addition operator.

Algorithm 2 Mutation operator

idx← mutateIdx(m,mutationRate)
pop[idx] += pop[idx].randomMove()

The recombination operator uses the distanceTo and the
randomMoveTowards solution methods to generate offspring
which lie at a random distance between the two parents.

Algorithm 3 Recombination operator

idx← crossIdx(m, crossoverRate)
p1← pop[idx]
p2← shuffle(p1)
d← random(1, p1.distanceTo(p2)/2)
for i = 0 to len(p1) do

for j = 0 to d[i] do
p1[i] += p1[i].randomMoveTowards(p2[i])

end for
end for
pop[idx]← p1

Note how problem-independent aspects (mutation and re-
combination rates, the pairing of individuals and the amount of
information to exchange during recombination) remain clearly
separated from the problem-specific, representation related
aspects of these operators.

VI. CONCLUSION AND FUTURE WORK

In this paper, a conceptual model of optimisation problems
was proposed in which problem-specific aspects are clearly
identified as such, and are presented to the solver as problem-
independent mechanisms. The main components of the model
were identified and the model was implemented in software.
An application example was given to illustrate the achieved
separation between problem-specific and problem-independent
aspects of the recombination and mutation operators.

In contrast with other approaches, the proposed model has
the advantage of isolating the application expert from the
details of specific search operators, such as mutation and
recombination operators. Instead, the problem implementation
is only required to provide low-level mechanisms directly
related to the concrete problem neighbourhood. The actual
search operators can then be implemented at a higher level
by the optimiser, as long as they are clearly formulated with
respect to an underlying (abstract) neighbourhood. The model
also contemplates the caching of intermediate results and
incremental solution evaluation as peformance enhancement
techniques.

Although the model described in this paper is quite general
and should cover many problem formulations not considered

here, this must be demonstrated on additional application
cases. The development of a complete optimisation framework
based on this model is the subject of on-going work.

REFERENCES

[1] A. Fink and S. Voß, “HotFrame: A heuristic optimisation framework,”
in Optimization Software Class Libraries, D. Woodruff, Ed. Kluwer
Academic Publishers, 2002, ch. 4, pp. 81–154.

[2] L. Gaspero and A. Schaerf, “EasyLocal++: an object-oriented framework
for the flexible design of local-search algorithms,” Software – Practice
and Experience (SPE), vol. 33, no. 8, pp. 733–765, 2003.

[3] S. Cahon, N. Melab, and E.-G. Talbi, “ParadisEO: A framework for the
reusable design of parallel and distributed metaheuristics,” Journal of
Heuristics, vol. 10, no. 3, pp. 357–380, 2004.

[4] S. Luke, L. Panait, G. Balan, Z. Skolicki, J. B. R. Hubley, and
A. Chircop, “ECJ 18 – A Java-based evolutionary computation and
genetic programming research system,” 2008. [Online]. Available:
http://cs.gmu.edu/∼eclab/projects/ecj/

[5] C. Voudouris and R. Dorne, “HSF: A generic framework to easily
design meta-heuristic methods,” in MIC’2001: Proceedings of the 4th
Metaheuristics International Conference, Porto, Portugal, 2001, pp. 423–
428.

[6] J. A. Parejo, J. Racero, F. Guerrero, T. Kwok, and K. A. Smith, “FOM:
A framework for metaheuristic optimization,” in Computational Science
– ICCS 2003, Proceedings, Part IV, ser. LNCS. Springer, 2003, vol.
2660, pp. 886–895.

[7] S. Wagner and M. Affenzeller, “HeuristicLab: A generic and extensible
optimization environment,” in ICANNGA: Proceedings of the 7th Inter-
national Conference on Adaptive and Natural Computing Algorithms,
Coimbra, Portugal, 2005, pp. 538–541.

[8] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, “PISA: A platform
and programming language independent interface for search algorithms,”
in EMO 2003: International Conference on Evolutionary Multi-Criterion
Optimization, ser. LNCS. Springer-Verlag, 2003, vol. 2632, pp. 494–
508.

[9] T. H. Cormen., C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. MIT Press, 2001.

[10] P. Taylor, Practical Foundations of Mathematics. Cambridge University
Press, 1999.

[11] C. M. Fonseca, “Evolutionary multi-criterion optimisation,” in Soft Com-
puting and Complex Systems. Coimbra, Portugal: Centro Internacional
de Matemática, 2003, pp. 63–75.

[12] C. C. Vieira and C. M. Fonseca, “A unified model of optimisation
problems,” in GECCO ’07: Proceedings of the Annual Conference on
Genetic and Evolutionary Computation. New York: ACM, 2007, pp.
1537–1537.

[13] C. M. Fonseca and P. J. Fleming, “Multiobjective optimization and mul-
tiple constraint handling with evolutionary algorithms. Part I: A unified
formulation,” IEEE Transactions on Systems, Man, and Cybernetics,
Part A, vol. 28, no. 1, pp. 26–37, 1998.

[14] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective
search,” in PPSN VIII: 8th Internationl Conference on Parallel Problem
Solving from Nature, ser. LNCS. Springer, 2004, vol. 3242, pp. 832–
842.

[15] L. Paquete, T. Schiavinotto, and T. Stützle, “On local optima in mul-
tiobjective combinatorial optimization problems,” Annals of Operations
Research, vol. 156, no. 1, pp. 83–97, 2007.

[16] F. Glover, M. Laguna, and R. Marti, “Fundamentals of scatter search
and path relinking,” in Control and Cybernetics, vol. 29, no. 3, 2000,
pp. 653–684.

[17] C. R. Reeves, “Genetic algorithms and neighbourhood search,” in
Evolutionary Computing, AISB Workshop, ser. LNCS. Springer, 1994,
vol. 865, pp. 115–130.

[18] R. Poli and C. R. Stephens, “Theoretical analysis of generalised recom-
bination,” in CEC 2005: Proceedings of the Congress on Evolutionary
Computation. Edinburgh, UK: IEEE, 2005, pp. 411–418.

[19] R. Sosic and J. Gu, “Efficient local search with conflict minimization: A
case study of the n-Queens problem,” IEEE Transactions on Knowledge
and Data Engineering, vol. 6, no. 5, pp. 661–668, 1994.

[20] A. Moraglio and R. Poli, “Topological interpretation of crossover,” in
GECCO ’04: Proceedings of the Annual Conference on Genetic and
Evolutionary Computation, ser. LNCS. Springer, 2004, pp. 1377–1388.


