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Abstract. This work proposes a quantitative, non-parametric interpre-
tation of statistical performance of stochastic multiobjective optimizers,
including, but not limited to, genetic algorithms. It is shown that, accord-
ing to this interpretation, typical performance can be defined in terms
analogous to the notion of median for ordinal data, as can other measures
analogous to other quantiles.

Non-parametric statistical test procedures are then shown to be useful in
deciding the relative performance of different multiobjective optimizers
on a given problem. Illustrative experimental results are provided to
support the discussion.

1 Introduction

The growing interest devoted to evolutionary algorithms for multiobjective opti-
mization is well reflected by the increasing number of different approaches being
proposed in the literature (see [1] for a review). Unfortunately, and although
the power and usefulness of such techniques is recognized, a well-established
approach for the quantitative characterization of the performance of multiobjec-
tive evolutionary algorithms, which could, in turn, enable their comparison also
in quantitative terms, is still lacking. Arguments for and against the methods
currently available have thus remained largely based on qualitative aspects of
the evolutionary process, e.g. on whether or not the population tends to cover
“well” the, often unknown, trade-off surface of a particular problem.

This work proposes a quantitative, non-parametric interpretation of statisti-

cal performance of stochastic multiobjective optimizers based on the notion of
goal attainment. It then discusses how, and to what extent, the performance of
different multiobjective approaches on a given problem can be compared based
on the proposed interpretation.
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2 Performance of a Stochastic Optimizer

The notion of performance of an optimizer inevitably involves the quality of the
solutions it is able to produce and the amount of computation effort it requires
to arrive at those solutions. In some cases, it is possible to actually guarantee
that the optimum will be found, or at least approached at a certain rate, as
long as the problem itself satisfies certain conditions. More generally, if there is
ultimately no such guarantee, then the performance of the algorithm may still
be evaluated experimentally on selected problems. Depending on the algorithm,
it then may or may not be possible to correctly extrapolate the results obtained
to other problems in the same class as that considered.

In the case of stochastic optimizers, such as evolutionary algorithms and
simulated annealing, and generally, in that of any optimizer for which no per-
formance guarantee exists under the given experimental conditions (e.g. limited
computation time, multiple local optima), performance characterization is often
attempted by repeated, independent experimentation.

In the remainder of this work “performance” will simply refer to the quality
of the final solutions produced by the optimizer under study on a given prob-
lem, regardless of the termination criterion chosen. Evolutionary algorithms,
for example, are often applied under the condition of limited computation time
(typically measured in terms of elapsed time, CPU time, or number of function
evaluations).

2.1 The Single-Objective Case

In the single-objective case, where results from multiple runs of an optimizer
can at least be ordered according to their quality (as measured by the objective
function which defines the problem), the distribution of the quality of such re-
sults can usually be represented easily by means of histograms and/or empirical
distribution functions, and summarized by measures such as the median in com-
bination with other statistics of the same type (e.g. upper and lower quartiles,
best and worst result, other quantiles).

Moreover, a whole range of (non-parametric) statistical test procedures exist
[2] which enable a comparison of the results produced by different optimization
methods on a given problem, provided that each method can be independently
applied to that problem a number of times. Typically, such procedures make
only very weak assumptions about the (unknown) distributions the properties
of which they attempt to compare.

If, additionally, the quality of a solution can be represented in terms of a
numeric figure, then other measures of location and dispersion can also be used,
namely the mean and the standard deviation. Both of these measures are, how-
ever, tied to the particular scale in which the objective function is expressed.
In contrast, a simple genetic algorithm with rank-based fitness assignment, for
example, or an evolution strategy, are insensitive to that scale. Even if the op-
timizer does depend on the scaling of the objective function, as does simulated
annealing and GAs with proportional selection, mean and standard deviation



alone would seem insufficient to summarize the performance of such algorithms.
Note that the distribution of the results of many runs has unknown shape and
cannot generally be expected to approximate a normal distribution (e.g. it is
bounded below, assuming minimization, and thus asymmetric).

2.2 The Multiobjective Case

In the multiobjective case, the outcome of an optimization run will generally
consist of a varying number of non-dominated solutions. Informally, one would
like to obtain a “diverse” sampling of the trade-off surface which was, simultane-
ously, as close to the real trade-off surface as possible. A possible sampling of a
given trade-off surface is illustrated in Fig. 1, for the simultaneous minimization
of two objectives.
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Fig. 1. Visualisation of non-dominated data in two dimensions. From [3].

Interpolating between the data to obtain a smooth representation of the
trade-off surface is, however, not generally correct, firstly because there may
be no guarantee that it will actually be smooth, and secondly because actual
solutions corresponding to those intermediate objective vectors, even if they
exist, are not known. At most, one could draw a boundary in objective space
separating those points which are dominated by or equal to at least one of
the data points, from those which no data point dominates or equals. Such a
boundary (see Fig. 2) can also be seen as the locus of the family of tightest goal

vectors which, given the data, are known to be attainable. It will be called an
attainment surface.

An attainment surface actually combines information about the quality and
the distribution of the corresponding individual non-dominated points across
the trade-off surface. On the one hand, the closer to actually non-dominated the
approximate solutions are, the closer to the real trade-off surface the attainment
surface will be. On the other hand, any “holes” in the distribution of these
solutions will have the opposite effect, i.e., will result in the corresponding region
of the attainment surface being drawn away from the real trade-off surface, as
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Fig. 2. The family of tightest goals known to be attainable as a result. From [3].

Fig. 2 also illustrates. Thus, both types of information are expressed in terms
of the location of the points which constitute the boundary, relative to the real
trade-off surface. However, note that the way in which information is combined
is independent of the scale in which objectives are expressed, as it relies solely
on an ordinal relation, in this case, ≤.

2.3 Multiple Runs

In order to gain some insight into how a certain multiobjective optimizer may
typically perform on a given problem, multiple runs can of course be performed.
Simply super-imposing non-dominated points obtained from various runs of a
multiobjective optimizer does give an idea of how good individual points found
in each run tend to be, but, unfortunately, information on how they tend to be
distributed along the trade-off surface is largely lost, as Fig. 3 illustrates.
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Fig. 3. The superposition of 3 sets of non-dominated points. From [3].



On the other hand, the superposition of the corresponding attainment sur-
faces preserves both kinds of information better. In Fig. 4, the uneven distribu-
tion of some of the sets of non-dominated solutions along the trade-off surface is
more apparent. Nevertheless, for a large number of runs, even these plots rapidly
become too dense and, therefore, difficult to interpret.
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Fig. 4. The superposition of the 3 corresponding boundaries. From [3].

2.4 Statistical Interpretation

Plots such as that in Fig. 4 clearly divide the objective space into three main
areas. The first area, located down and to the left of the attainment surfaces, is
composed of all those objective (or goal) vectors which were never attained in any
of the runs. As the number of runs increases, this area should approximate the
real set of infeasible objective vectors better and better. The second area, located
up and to the right of the attainment surfaces, is composed of those objective
vectors which were attained in all of the runs. This may give some idea of worst-
case performance for the algorithm, but this area must be expected to depend
strongly on the number of runs considered. Finally, the third area, located within
the boundaries, is composed of objective vectors which were attained in some
of the runs, but not in others. This area can be divided further into sub-areas,
according to the percentage of runs in which the corresponding objective vectors
were attained.

This way of looking at the superposition of multiple attainment surfaces
provides a basis on which a quantitative notion of “typical” performance can be
built. In particular, one may now look to identify the family of goal vectors likely
to be attained, each on its own, in exactly 50% of the runs (what will be called
the 50%-attainment surface of the optimizer). In order to estimate this, consider



the points of intersection of a set of attainment surfaces obtained experimentally
with an arbitrary auxiliary straight line, diagonal to the axes and running in the
direction of improvement in all objectives, as illustrated in Fig. 5.
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Fig. 5. The points of intersection with a line diagonal to the axes. From [3].

These points can be seen to define a sample distribution which is essentially
uni-dimensional and, thus, can be strictly ordered. The desired result can be
obtained through the successive estimation of the median of all possible samples
defined in this way. Note that this result is independent of the slope of the
auxiliary lines used to produce it, as long as they remain diagonal to the axes
and running in the direction of improvement in all objectives.

Estimates for the 25% and 75% attainment surfaces could be produced ex-
actly in the same way by estimating the lower and upper quartiles instead of
the median. In Sect. 4, 25%, 50% and 75%-attainment surfaces estimated in this
way from 21 independent runs of each of two different algorithms on a sample
problem will be given, as well as the corresponding experimental lower and upper
bounds.

3 Performance Comparison

The above considerations on how the performance of a multiobjective optimiza-
tion approach may be described apply equally well when the performance of two
or more different approaches is to be compared. In that case, the intersection of
an auxiliary line with the experimental attainment surfaces will define not one,
but two (or more) univariate-like samples, each sample corresponding to one ap-
proach. The properties of their underlying distributions can then be compared,
one set of samples at a time, by means of standard non-parametric statistical
test procedures. Provided that



1. the result of testing on a pair (or set) of samples can be associated with a
point (or a region) in objective space, and that

2. the result associated with a point (or a region) in objective space is the same
independently of the auxiliary line used to arrive at it,

it should be possible to identify those regions in objective space where a statis-
tically significant difference between (the relevant aspects of) the localized per-
formance of the methods under study can be found. As in the single-objective
case, the tests should not assume any similarity in shape of the distributions
involved, since such similarities cannot in principle be expected.

Suitable test procedures include the median test, its extensions to other quan-
tiles, and tests of the Kolmogorov-Smirnov type [2]. The result of the median
test, for example, can be associated with the median of the combined samples (or
grand median), as it only depends on how many observations from each sample
there are to the left (or to the right) of the grand median. For each point on the
grand 50%-attainment surface, this number is the same whatever the slope of
the auxiliary line adopted to formulate the test.

On the other hand, the result of a test of the Kolmogorov-Smirnov type could
be associated with the points in objective space where the Kolmogorov-Smirnov
distance exceeds the critical value of the test statistic. Again, the result of the
test would not depend on the slope of the auxiliary line adopted to formulate it.

4 Experimental Results

Two different multiobjective genetic algorithms were run for 100 generations, 21
times each, on the optimal regulator design problem described in [4]. Algorithm A
did not include sharing or mating restriction, whereas Algorithm B included
sharing and mating restriction in the phenotypic domain. In this case, the niche
sizes were computed at each generation depending on the distribution of the
population, as proposed in [5]. The results for each algorithm are presented in
Figs. 6 and 7.

In both plots, the lower grey line indicates the best trade-off approximation
known as a consequence of all the runs, while the upper grey line delimits the set
of goal vectors attained in all the runs. The thick black line provides an estimate
of the real 50%-attainment surface of each algorithm, and the thin black lines
provide analogous estimates, but for 25% and 75%.

These plots can be seen to convey information about the location, dispersion,
and even skewness of the distributions of the results in each region (considered
in isolation) of the trade-off surface, much like the box plot used in statistics.

By looking at the 50%-attainment surface in each plot, Algorithm B would
appear to produce better results more often than Algorithm A in the upper-left
region of the trade-off surface. Differences in other regions of the trade-off surface
are not clearly apparent. To assess in which regions of the trade-off surface the
two methods may have significantly different 50%-attainment performance, the
grand 50%-attainment surface may be computed, and a sufficiently large number
of median tests performed along this surface, as suggested above. In practice,
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Fig. 6. Representation of the statistical performance of Algorithm A (21 runs).
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Fig. 7. Representation of the statistical performance of Algorithm B (21 runs).

since the samples are finite, so is the number of different tests that may be
performed.

Figure 8 presents test results, plotted on the grand 50%-attainment surface,
for a 95% confidence level. The regions where no significant difference between
the points of the 50%-attainment surfaces of the two algorithms could be found
are indicated in light grey, whereas those regions where the points of the two
surfaces were found to differ with the given confidence level are plotted in black.
The labels A and B indicate on which side of the grand 50%-attainment surface
each algorithm has its own 50% attainment surface.

It is interesting to note that, although the addition of niche induction tech-
niques in Algorithm B may be said to have improved performance in the extreme
regions of the trade-off surface, this was at the expense of degradation in the
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Fig. 8. Comparison of the 50%-attainment surfaces of algorithms A and B (95% con-
fidence).
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Fig. 9. Comparison of the 50%-attainment surfaces of algorithms A and B (99% con-
fidence).

middle region. This could be explained by the fact that forcing the population to
spread more actually weakens its exploitative ability in those regions of the trade-
off surface where it would otherwise be more concentrated. However, choosing
a higher confidence level (99%) for the individual tests, this degradation is no
longer statistically significant. The corresponding plot is shown in Fig. 9.

5 Concluding Remarks

The proposed interpretation of the statistical performance of a multiobjective
optimizer in terms of the probability of the optimizer attaining arbitrary goals
provides the grounds on which a much needed assessment and comparison of the
performance of current and future multiobjective evolutionary approaches can



be based. Rather than attempting such a comparison here, a simple example
was given in order to illustrate the proposed methodology.

From the initial results presented, such a comparative study would most
likely fail to elect an overall “best” algorithm, even for the same optimization
problem. Instead, it might find a number of “non-dominated” approaches, in the
same spirit of multiobjective optimization itself. On what basis a single, overall
“best” approach could be selected, and with what significance level, are questions
which are still difficult to answer, especially due to the multiple testing involved
and to the likely dependence between tests performed close to each other in
objective space.

Perhaps the main limitation of the present results is that the notion of proba-
bility of attainment applies only to individual points, separately. How to estimate
similar surfaces for given probabilities of attaining the whole surface simultane-

ously, if at all possible, remains unclear.
Finally, although all examples given here involve two objectives only, the

considerations made are clearly valid for any number of objectives. The devel-
opment of software and visualisation tools to support more than two objectives
is the subject of further work.

Acknowledgement The authors wish to acknowledge the support of the UK
Engineering and Physical Sciences Research Council under Grant GR/J70857.

References

1. C. M. Fonseca and P. J. Fleming, “An overview of evolutionary algorithms in mul-
tiobjective optimization,” Evolutionary Computation, vol. 3, pp. 1–16, Spring 1995.

2. W. J. Conover, ed., Practical Nonparametric Statistics. New York: Wiley, 1971.
3. C. M. Fonseca, Multiobjective Genetic Algorithms with Application to Control En-

gineering Problems. PhD thesis, University of Sheffield, 1995.
4. C. M. Fonseca and P. J. Fleming, “Multiobjective optimal controller design with

genetic algorithms,” in Proc. IEE Control’94 International Conference, vol. 1, (War-
wick, U.K.), pp. 745–749, 1994.

5. C. M. Fonseca and P. J. Fleming, “Multiobjective genetic algorithms made easy:
Selection, sharing and mating restriction,” in First IEE/IEEE International Confer-
ence on Genetic Algorithms in Engineering Systems: Innovations and Applications,
(Sheffield, UK), pp. 45–52, The Institution of Electrical Engineers, 1995.


