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Abstract. This paper investigates the relationship between the covered
fraction, completeness, and (weighted) hypervolume indicators for as-
sessing the quality of the Pareto-front approximations produced by mul-
tiobjective optimizers. It is shown that these unary quality indicators
are all, by definition, weighted Hausdorff measures of the intersection
of the region attained by such an optimizer outcome in objective space
with some reference set. Moreover, when the optimizer is stochastic, the
indicators considered lead to real-valued random variables following par-
ticular probability distributions. Expressions for the expected value of
these distributions are derived, and shown to be directly related to the
first-order attainment function.
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1 Introduction

The performance assessment of stochastic multiobjective optimizers (MOs) has
become an emerging area of research, enabling the comparison of existing op-
timizers and supporting the development of new ones. In general, stochastic
MO performance can be associated with the distributional behavior of the ran-
dom outcomes produced in one optimization run, seen either as random non-
dominated point (RNP) sets in objective space or, alternatively, as the corre-
sponding random unbounded attained sets [7].

Typically, realizations of such random closed sets in R
d can be observed

arbitrarily often through multiple optimization runs. This allows stochastic MO
performance assessment and comparison to be carried out with frequency-based
statistical inference methodology using (simple) random samples of independent
and identically distributed MO outcome sets.
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2 The Covered Fraction, Completeness and Hypervolume Indicators

However, employing the frequency argument for MO outcome sets is not an
easy task. Often, the overall outcome-set distribution is very complex – too com-
plex to be considered as a whole in most practical situations. Therefore, in order
to formulate suitable estimators and/or hypothesis tests for MO performance
assessment and comparison, it needs to be agreed upon what partial aspect of
this set distribution one is interested in.

Currently, two main stochastic MO performance assessment approaches are
in use, but without really exploiting the relationship between them: the attain-

ment function approach [8, 5, 7] and the quality indicator approach [17, 15].

The first approach describes the optimizer outcome distribution directly via
a hierarchy of nested, increasingly informative attainment functions, where all
functions beyond a certain order lead to a full performance description. It is
known that the first-order attainment function relates to the location and spread

of an outcome-set distribution, while second and higher-order versions address
the corresponding inter-point dependence structures [7]. However, to the authors’
knowledge, third- and higher-order attainment functions have not yet been con-
sidered in practice, due to computational difficulties [5, 6].

The quality indicator approach addresses the complexity of the outcome-set
distribution in a different way, through the definition of so-called (unary) quality
indicators which somehow transform each realized outcome set into a scalar.
The corresponding, much simpler, univariate distributions of indicator values are
usually studied via an estimate of their expected value (average indicator value),
although other statistics could be considered as well. Even though this approach
clearly implies a loss of information about the overall MO performance, there
is hardly any discussion in the literature about what aspect of the outcome-set
distribution is, or is not, addressed by each indicator.

On the whole, it is generally difficult to combine or compare results of differ-
ent MO performance studies, unless exactly the same assessment methodology
is used. Little is known about which indicators can complement each other and
which, when used together, supply redundant information. Hence, there is a
need to classify quality indicators with respect to the information they provide.
Acknowledging the fact that unary quality indicators are transformations of the
original optimizer outcome set, it seems natural to explore this link and at-
tempt to relate the resulting indicator-value distributions with the attainment
function hierarchy. As a first step in this direction, the present paper discusses
the covered fraction, the completeness and the (weighted) hypervolume indica-
tors with respect to their definition and to the mean (or expected value) of the
corresponding distributions.

In Section 2, the attainment function and the quality indicator approaches are
briefly outlined. Subsequently, the covered fraction indicator, the completeness
indicator and the (weighted) hypervolume indicator are considered in Sections 3
to 5, respectively. The paper ends with a discussion of the results in Section 6
and some concluding remarks in Section 7.

72

2011 EA 2011 - Proceedings ISBN 978-2-9539267-1-2

Editors: Jin-Kao Hao, Pierrick Legrand, Pierre Collet, Nicolas Monmarché, Evelyne Lutton, Marc Schoenauer



The Covered Fraction, Completeness and Hypervolume Indicators 3

2 Approaches to MO Performance Assessment

In the context of performance assessment, the outcome set of a multiobjective
optimizer is considered to be the image in objective space of the non-dominated
solutions produced in one optimization run (obeying some stopping criterion).
When the optimizer is stochastic, such a set of objective vectors is random, and
its probability distribution reflects the performance of the optimizer on a given
optimization problem instance.

Mathematically, the outcome set of a d-objective stochastic optimizer can
be interpreted as a random closed set [11]. More specifically, it is a random
non-dominated point set (RNP set) [7]

X = {X1, . . . , XM ∈ IRd : P (Xi ≤ Xj) = 0, i 6= j} , (1)

where both the cardinality M and the elements Xi, i = 1, . . . ,M , are random,
and P (0 ≤ M < ∞) = 1. In other words, X has a finite, but random, number
of elements which do not weakly dominate one another in the Pareto sense [17].
Therefore, stochastic MO performance is related to

1. the (identical) multivariate distribution of the random vectors X1, . . . , XM ,
2. the way in which these random vectors depend on each other (in pairs,

triples, quadruples, etc.) and, finally,
3. the univariate distribution of the discrete random variable M .

For simplicity, it has been common practice to condition on M with realiza-
tions up to a certain value m∗ and/or to study only partial aspects of this set
distribution. The two main approaches in this context are outlined below.

2.1 Attainment Function Approach

Let m∗ be the maximum number of non-dominated objective vectors in R
d

that may be generated by a d-objective optimizer. Then, increasing amounts of
distributional information about the corresponding outcome set X with growing

k = 1, . . . ,m∗ are comprised in the attainment functions α
(k)
X : IRd×k −→ [0, 1],

where
α
(k)
X (z1, . . . , zk) = P (X E z1 ∧ . . . ∧ X E zk) , (2)

and the event
[

X E z
]

⇐⇒
[

X1 ≤ z ∨ X2 ≤ z ∨ . . . ∨ XM ≤ z
]

(3)

denotes the attainment of a goal z ∈ R
d by X, assuming minimization without

loss of generality. Thus, (2) gives the probability that the outcome set X weakly
dominates the set of goals {z1, . . . , zk}. The random unbounded but closed set
Y = {z ∈ R

d : X E z}, which contains all goals z ∈ R
d dominated by at least

one element of X, is known as the attained set [7].
A complete distributional performance description (given that M ≤ m∗) is

provided by the attainment function of order k = m∗, while the first-order at-

tainment function α
(1)
X (·) = αX(·) is sufficient to characterize where in objective
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4 The Covered Fraction, Completeness and Hypervolume Indicators

space goals tend to be attained (location) and with what degree of variability
this happens across multiple runs (spread).

The above (theoretical) attainment functions can be estimated from a ran-
dom sample of independent and identically distributed RNP sets X1,X2, . . . ,Xn

via the cumulative frequencies of the corresponding (combinations of) events of
the type

[

X E z
]

. For k = 1, for example, the non-parametric estimator is the
empirical first-order attainment function

αn(z) =
1

n

n
∑

i=1

I{z ∈ Yi} =
1

n

n
∑

i=1

I{Xi E z} , (4)

where IA(·) = I{· ∈ A} denotes the indicator function of the set A defined over
R

d. Estimators for higher-order attainment functions can be constructed in a
similar way [7].

2.2 Quality Indicator Approach

Here, the outcome RNP set X is transformed into a single real-valued random
variable I(X), usually with respect to some non-empty, deterministic, closed
reference set Zref ⊂ R

d. A variety of such set-transformations are currently in
use, each of which defining a particular unary quality indicator that reflects
stochastic MO performance, in a restricted sense, via the associated univariate

probability distribution of indicator values.
Like the distribution of X, these indicator (value) distributions are unknown

for a given MO application. Arising from the transformation applied to X, they
depend on the distribution of X itself, which can be described through the attain-
ment function hierarchy. Hence, determining the form of this dependence should
reveal what aspect(s) of the optimizer outcome-set distribution each indicator
actually addresses.

Indicator distributions can, in principle, be estimated as a whole using the
information of n independent optimization runs, in a non-parametric way. For
simplicity, however, it is common to begin by estimating their expected values
E[I(X)] through the sample average 1

n

∑n

i=1 I(Xi). Similarly, this work focuses
on the expected value of the distributions produced by the quality indicators
considered.

3 Covered Fraction Indicator

The original version of the (unary) covered fraction indicator, or coverage in-
dicator, considers the fraction of the Pareto-optimal front X∗ (assumed to be
a finite point set in R

d) that is attained by the outcome set X [13, 15]. In this
work, a more general definition will be used which, instead of referring to X∗,
may refer to any deterministic, non-empty, compact (i.e., closed and bounded)
reference set Zref in objective space R

d.
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The Covered Fraction, Completeness and Hypervolume Indicators 5

3.1 Definition

Given a general subset A ⊂ R
d, denote its (normalized) Hausdorff measure of

dimension j by Hj(A), where j ≥ 0. Provided that A is non-empty, there is a
single value of j, known as the Hausdorff dimension of A, for which Hj(A) is
finite and positive [1, 12, p. 105]. Then, Hj(A) may be understood as the “size”
of A. For example:

– H0(·), also known as the counting measure, measures the cardinality of a
point set in R

d (where any such set has Hausdorff dimension zero),

– H1(·) measures the length of a Hausdorff one-dimensional smooth curve in
R

d (for example a straight line, a circle or an ellipse),

– H2(·) measures the area of a Hausdorff two-dimensional smooth surface4 in
R

d (for example a plane or the surface of a sphere), and finally

– Hd(·) measures the hypervolume of a Hausdorff d-dimensional set in R
d, and,

as such, corresponds to the usual Lebesgue measure on R
d.

Thus, taking a Hausdorff j-dimensional reference set Zref ⊂ R
d, 0 ≤ j ≤ d,

the covered fraction indicator of X can be generally defined as5

ICF(X, Zref) =
Hj({z ∈ Zref : X E z})

Hj(Zref)
(5)

=
1

∫

Rd

I{z ∈ Zref} Hj(dz)

·

∫

Zref

I{X E z} Hj(dz) . (6)

For Hausdorff d- and zero-dimensional reference sets in objective space R
d, the

above definition (with integrals with respect to the measure Hj) can be written
in more familiar ways, as follows:

1. For a reference set Zref ⊂ R
d of Hausdorff dimension d, the covered fraction

indicator of X can be defined as a quotient of Lebesgue integrals:

ICF(X, Zref) =
1

∫

Rd

I{z ∈ Zref} dz

·

∫

Zref

I{X E z} dz . (7)

4 A j-dimensional smooth surface is the image of a continuously differentiable mapping
(i.e. of class C1) from R

j onto R
d, where j < d [9, p. 355]. Note that a countable

union of Hausdorff j-dimensional sets preserves the Hausdorff dimension [4, p. 112],
i.e. any such union of smooth sets is also of integer Hausdorff dimension. A non-
mathematical discussion of the concept of “smoothness” can be found in [3, p. 335].

5 The Hausdorff dimension of any realization of the outcome set X is equal to zero,
and the Hausdorff dimension of a non-empty attained set realization is equal to d.
Non-smooth reference sets, such as fractal sets, may have a non-integer Hausdorff
dimension.
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6 The Covered Fraction, Completeness and Hypervolume Indicators

2. For a discrete reference set Zk
ref = {z1, . . . , zk} of k not necessarily non-

dominated points in R
d, the definition simplifies to

ICF(X, Z
k
ref) =

1

k
·

k
∑

j=1

I{X E zj} . (8)

In any case, the covered fraction indicator of X takes realizations in [0, 1], where a
larger observed indicator value is considered to represent a “better” optimization
result (in the particular sense of the indicator).

3.2 Expected Value

Due to the “linearity property of expectation”, and since the binary random vari-
able I{X E z} follows a Bernoulli distribution with expected value P (X E z) =
αX(z), for all z ∈ R

d, it can be seen that the expected value of the covered
fraction indicator distribution is related to the first-order attainment function.
For a Hausdorff j-dimensional reference set Zref, 0 ≤ j ≤ d, it holds that

E[ICF(X, Zref)] =
E[Hj({z ∈ Zref : X E z})]

Hj(Zref)
(9)

=
1

∫

Rd

I{z ∈ Zref} Hj(dz)

·

∫

Zref

αX(z) H
j(dz) , (10)

where (10) can be obtained by applying Robbins’s theorem [11, p. 59] to the
random compact set {z ∈ Zref : X E z}, since Hj is locally finite on a Hausdorff
j-dimensional Zref.

For Hausdorff d- and zero-dimensional reference sets, the above formula can
again be simplified:

1. For a reference set Zref ⊂ R
d of Hausdorff dimension d,

E[ICF(X, Zref)] =
1

∫

Rd

I{z ∈ Zref} dz

·

∫

Zref

αX(z) dz . (11)

2. For a discrete reference set Zk
ref = {z1, . . . , zk} of Hausdorff dimension zero,

E[ICF(X, Z
k
ref)] =

1

k
·

k
∑

j=1

αX(zj) . (12)

4 Completeness Indicator

In its original form, the completeness indicator is defined for a given (observed)
solution set in decision space (after one optimization run), as the probability
of selecting a point uniformly at random from the feasible set which is weakly
dominated by that solution set [10, 15].
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The Covered Fraction, Completeness and Hypervolume Indicators 7

4.1 Definition

For a random outcome set X in objective space, the original completeness indica-
tor can be defined as the conditional probability of X attaining a non-uniformly
distributed random reference point V from the image of the feasible set, given X.
However, the indicator may also be defined more generally by considering some
deterministic, non-empty, closed reference set Zref ⊂ R

d (which may or may
not be the image of the feasible set), together with a random vector V taking
realizations in Zref and following an explicitly defined distribution. Hence,

ICO(X, V, Zref) = P (X E V | X) . (13)

Like the covered fraction indicator of X, the completeness indicator of X is a
random variable which takes realizations in [0, 1], where larger values correspond
to “better” optimization results.

In fact, it can be seen that the definitions of the two indicators are very simi-
lar, when interpreting ICO(X, V, Zref) as the conditional expectation of I{X E V }
given X : with a Hausdorff j-dimensional reference set Zref ⊂ R

d, 0 ≤ j ≤ d,
and a random vector V supported on Zref, stochastically independent from the
outcome set X, and for which the probability density function fV (·) exists with
respect to Hausdorff measure Hj , it holds that

ICO(X, V, Zref) = P (X E V | X) (14)

= E [I{X E V } | X] (15)

=

∫

Zref

I{X E z} · fV |X(z) H
j(dz) (16)

=

∫

Zref

I{X E z} · fV (z) H
j(dz) . (17)

Clearly, the particular choice of a uniform distribution for V = Vu over some
compact reference set Zref, again stochastically independent from X, leads to the
identity of the covered fraction indicator and the completeness indicator. In this
case,

fVu
(z) = fu(z) = 1/Hj(Zref) (18)

for all z ∈ Zref, and fu(z) = 0 otherwise.
Finally, note that for both Hausdorff d-dimensional reference sets and zero-

dimensional reference sets, the formulation in (17) can be simplified, respectively
in the sense of (7) and (8), by substituting the Hausdorff measure Hj either by
the usual Lebesgue measure on R

d or by the counting measure for point sets.

4.2 Expected Value

From (17) and the argumentation given in subsection 3.2, it immediately follows
that

E[ICO(X, V, Zref)] =

∫

Zref

αX(z) · fV (z) H
j(dz) , (19)
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8 The Covered Fraction, Completeness and Hypervolume Indicators

while more familiar formulations can be achieved for Hausdorff d- and zero-
dimensional reference sets:

1. For a reference set Zref ⊂ R
d of Hausdorff dimension d,

E[ICO(X, V, Zref)] =

∫

Zref

αX(z) · fV (z) dz . (20)

2. For a discrete reference set Zk
ref = {z1, . . . , zk} of Hausdorff dimension zero,

E[ICO(X, V, Z
k
ref)] =

k
∑

j=1

αX(zj) · P (V = zj) . (21)

5 Hypervolume Indicator

The hypervolume indicator (also known as dominated space), introduced in [16],
considers the size of the portion of a deterministic, non-empty, closed reference
set in objective space R

d that is attained by the outcome set X. Later, this
idea was refined by including a weight function that assigns varying levels of
importance to different regions of the reference set [14].

In contrast to the covered fraction and completeness indicators, the reference
set for the (weighted) hypervolume indicator is usually specified through a single
reference point z∗ref ∈ R

d, and can be written as

Z∗
ref = {z ∈ R

d : z ≤ z∗ref} , (22)

though in some cases the Pareto-optimal front X∗ or some other set of non-
dominated points below z∗ref is used to bound Z∗

ref from below, in such a way
that it is still Hausdorff d-dimensional.

5.1 Definition

For a reference set Z∗
ref as given in (22), the (weighted) hypervolume indicator

is defined as

IH(X, w, Z∗
ref) =

∫

Z∗

ref

I{X E z} · w(z) dz , (23)

where w(·) is a non-negative valued weight function, integrable over Z∗
ref, i.e.

∫

Z∗

ref

w(z) dz < ∞ . (24)

In this general form, the (weighted) hypervolume indicator of X takes realizations
in the interval

[

0,

∫

Z∗

ref

w(z) dz
]

, (25)

where larger observed indicator values are associated with “better” optimization
results.

Some choices for the weight function w(·) deserve special attention:
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The Covered Fraction, Completeness and Hypervolume Indicators 9

– The indicator weight function, w(z) = IZ∗

ref
(z), z ∈ R

d, defines the classical,
non-weighted hypervolume indicator with possible values ranging from 0 to
the size of Z∗

ref, i.e., H
d(Z∗

ref), if the reference set is compact.
– When w(·) is the probability density function [2] of a random variable V ,

∫

Z∗

ref

w(z) dz = 1 , (26)

and all possible indicator values are contained in the interval [0, 1]. Further, if
V is independent from X, the (weighted) hypervolume indicator corresponds
to the completeness indicator with respect to the reference set Z∗

ref.
– For the probability density function w(·) = fu(·) of a random variable Vu,

uniformly distributed over some compact reference set Z∗
ref and independent

from X, all three indicators considered in this paper are identical, i.e.

ICF(X, Z
∗
ref) = ICO(X, Vu, Z

∗
ref) = IH(X, fu, Z

∗
ref) . (27)

5.2 Expected value

Again, from the argumentation given in subsection 3.2, it follows that

E[IH(X, w, Z∗
ref)] =

∫

Z∗

ref

αX(z) · w(z) dz . (28)

6 Discussion

The covered fraction, completeness and weighted hypervolume indicators are all,
by definition, weighted Hausdorff measures of the intersection of the attained set
Y = {z ∈ R

d : X E z} with some reference set Zref in objective space R
d. As

such, they can be seen as special cases of a generalized hypervolume indicator of
X, defined as

IGH(X, w, Zref) =

∫

Zref

I{X E z} · w(z) Hj(dz) , (29)

where

– Zref is a Hausdorff j-dimensional, deterministic, closed reference set in R
d,

0 ≤ j ≤ d, representing the region in objective space which is of interest for
performance assessment, and

– w(·) is a non-negative valued weight function, integrable over Zref, which
assigns different levels of importance to the points in Zref.

Note that, technically, the weight function w(·) alone would be sufficient to
parametrize this indicator, as its support would define the corresponding refer-
ence set Zref. In other words, the generalized hypervolume indicator measures
the mass of the region attained by an optimizer outcome set, as determined by
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10 The Covered Fraction, Completeness and Hypervolume Indicators

Table 1. Indicators as special cases of the generalized hypervolume indicator.

Indicator Reference set Weight function

weighted hypervolume Z∗

ref , closed integrable over Z∗

ref

non-weighted hypervolume Z∗

ref , compact indicator function IZ∗

ref
(·)

density function fV with support
completeness Zref , closed

on Zref , V independent of X

uniform density function
covered fraction Zref , compact

with support on Zref

some mass density function w(·), which may or may not be also a probability
density function. The generalized hypervolume indicator can be reduced to each
of the indicators considered in this paper, as summarized in Table 1.

As a function of the outcome set X, the indicator IGH(X, w, Zref) leads to a
random variable with realizations in the interval

[

0,

∫

Zref

w(z) Hj(dz)
]

, (30)

where larger indicator values indicate a “better” optimization result. At this
point it should be noted, however, that for the purpose of “unit-independent”
comparisons of optimizer performance, it may be preferable to always use a
normalizing density weight function, so that indicator values can be limited to
the interval [0, 1].

For a general weight function w(·), the expected value of the generalized
hypervolume indicator distribution can be expressed as

E[IGH(X, w, Zref)] =

∫

Zref

αX(z) · w(z) H
j(dz) . (31)

For the probability density function of a random vector V , supported on Zref and
distributed independently from the outcome set X, this additionally leads to the
interesting relationship:6

E[IGH(X, fV , Zref)] = E[αX(V )] = P (X E V ) . (32)

Hence, the expected value of the generalized hypervolume indicator, and con-
sequently of all three indicators considered in this paper, can be obtained from
the first-order attainment function.

This result is important because it sheds light on the relationship between
the quality indicator approach and the attainment function approach. It can
be seen that the three indicators considered, unified in the generalized hyper-
volume indicator, convey information related to the location of the optimizer

6 For independent X and V : E
[

P (X E V | V )
]

= E
[

P (X E V | X)
]

= P (X E V ).
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The Covered Fraction, Completeness and Hypervolume Indicators 11

outcome-set distribution via their mean indicator values. Moments of the gener-
alized hypervolume indicator distribution other than the mean may still contain
information beyond that captured by the first-order attainment function.

The generalized hypervolume indicator also allows new indicators to be con-
structed using less usual reference sets and/or weight functions. For example,
assume that the outcome set X of a hypothetical two-objective optimizer, when
applied to a given problem instance, is simply the set of minima [6] of a set of two
stochastically independent random vectors in R

2. Assume also that both vectors
are distributed according to a bivariate exponential distribution with parameter
λ > 0, with density function

f(t1, t2) = λ2 · e−λ·t1−λ·t2 · I[0,∞)2((t1, t2)
′) (33)

and cumulative distribution function

F (t1, t2) =
(

1− e−λ·t1 − e−λ·t2 + e−λ·t1−λ·t2
)

· I[0,∞)2((t1, t2)
′) . (34)

Then, the first-order attainment function of X at a goal z = (t1, t2)
′ ∈ R

2 is

αX(z) = 1−
(

1− F (t1, t2)
)2

. (35)

Given (r1, r2)
′ ∈ R

2
+, the reference set Zseg = {(r1 · t, r2 − r2 · t)

′ : t ∈ [0, 1]} is
a line segment in R

2, and has Hausdorff dimension 1. In this case, the general-
ized hypervolume indicator with weight function IZseg

(·) measures the length of
the intersection of this segment with the attained set. From (31), the expected
indicator value may then be calculated via the line integral

E[IGH(X, IZseg
, Zseg)] =

√

r21 + r22 ·

∫ 1

0

αX ((r1 · t, r2 − r2 · t)
′) dt . (36)

Clearly, the expected value can also be directly evaluated using the standard
integral based on the joint density of the two exponential random vectors, but
the latter leads to much more complicated expressions.

7 Concluding Remarks

In this paper the relationship between three popular quality indicators for mul-
tiobjective optimizer performance assessment has been studied with respect to
their definitions. By considering Hausdorff measures, a single notation was intro-
duced for all indicators, leading to their unification. Furthermore, it was shown
that, when the optimizer is stochastic, the corresponding expected indicator
values depend on the first-order attainment function of the optimizer outcomes.

Investigating how the variance and other aspects of these univariate indicator-
value distributions relate to the attainment function hierarchy will be the subject
of future work, as well as considering other unary quality indicators. In particu-
lar, it would be interesting to see how indicators designed to assess the dispersion
or uniformity of points in observed approximation sets relate in distribution to
(higher-order) attainment functions.
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