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Computing and Updating Hypervolume
Contributions in Up to Four Dimensions

Andreia P. Guerreiro and Carlos M. Fonseca

Abstract—Arising in connection with multiobjective selec-
tion and archiving, the Hypervolume Subset Selection Problem
(HSSP) consists in finding a subset of size k ≤ n of a set X ⊂ Rd

of n nondominated points in d-dimensional space that maximizes
the hypervolume indicator. The incremental greedy approxima-
tion to the HSSP has an approximation guarantee of 1−1/e, and
is polynomial in n and k, while no polynomial exact algorithms
are known for d ≥ 3. The decremental greedy counterpart has
no known approximation guarantee, but is potentially faster for
large k, and still leads to good approximations in practice. The
computation and update of individual hypervolume contributions
are at the core of the implementation of this greedy strategy.

In this paper, new algorithms for the computation and
update of hypervolume contributions are developed. In three
dimensions, updating the total hypervolume and all individual
contributions under single-point changes is performed in linear
time, while in the four-dimensional case all contributions are
computed in O(n2) time. As a consequence, the decremental
greedy approximation to the HSSP can now be obtained in
O(n(n − k) + n logn) and O(n2(n − k)) time for d = 3 and
d = 4, respectively. Experimental results show that the proposed
algorithms significantly outperform existing ones.

Index Terms—Hypervolume Indicator, Hypervolume Contri-
butions, HSSP, Incremental Algorithms

I. INTRODUCTION

IN multiobjective optimization, solutions in a decision
space S are evaluated by means of d objective functions

and mapped onto corresponding points in objective space
Rd. Formally, a vector function f : S → Rd where
f(x) = (f1(x), . . . , fd(x)) is considered. Assuming mini-
mization without loss of generality, the ideal solution would
have the lowest possible function value in every objective.
Since such a Utopian solution seldom exists, the concept of
Pareto-dominance [1] is often used to define what an optimal
solution is in this context.

Given two solutions a, b ∈ S and their corresponding
images in objective space, u = f(a) and v = f(b), solution
a is said to weakly dominate solution b in the Pareto sense
iff ui ≤ vi for all i = 1, . . . , d. In this case, vector u is also
said to weakly dominate v, which is represented by u ≤ v. If
neither u ≤ v or v ≤ u are true, solutions a and b are said to
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(a) Hypervolume Indicator (b) Hypervolume Contribution

Fig. 1. Example of the hypervolume indicator of a point set X =
{s1, . . . , s5} ⊂ R2 and of the contribution of a point p ∈ R2 to X.

be incomparable, and so are u and v. When u = v, a and b
are said to be indifferent [1].

A solution a ∈ S is said to be a Pareto-optimal, or efficient,
solution iff f(b) ≤ f(a)⇒ f(b) = f(a), ∀ b ∈ S. Since weak
dominance is generally a partial order on Rd (and a partial
pre-order on S), there may be multiple incomparable Pareto-
optimal solutions. The set of all Pareto-optimal solutions of a
given problem instance is called the Pareto-optimal set of that
instance, while the corresponding set of points in objective
space is called the Pareto-optimal front [1], [2].

In practice, the Pareto-optimal front may be a very large or
even infinite set, and determining it exactly may therefore be
infeasible or, at least, impractical. For that reason, the problem
of finding good finite approximations to the Pareto front is usu-
ally considered instead. The evaluation of the quality of such
approximation sets currently relies mainly on unary quality
indicators, such as the hypervolume indicator [3], [4], which
map a point set to a real value. The hypervolume indicator
measures the size of the region that is weakly dominated
by any of the points in a set and is bounded above by a
reference point, as illustrated in Figure 1 (a). The hypervolume
contribution of a point to a point set is the size of the region
exclusively dominated by that point. Such a region is depicted
in light gray in Figure 1 (b).

The hypervolume indicator is used as part of the selec-
tion and/or archiving processes in a number of Evolutionary
Multiobjective Optimization (EMO) algorithms [3], [5]–[7].
A typical scenario consists in obtaining the next parental
population by discarding a number of the weakest individuals
in the current population according to some hypervolume-
based figure of merit, such as the hypervolume contribution.

Selecting k out of n points in a set X ⊂ Rd so as to maxi-
mize the hypervolume indicator is known as the Hypervolume
Subset Selection Problem (HSSP) [8]. Although efficient exact
algorithms for the HSSP in two dimensions have recently
become available [9], [10], solving the HSSP in more than
two dimensions still requires time that grows exponentially in
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n − k [11]. To side-step these difficulties, greedy algorithms
to approximate the HSSP have been proposed [12]. The
incremental greedy strategy, whereby k points are selected
from X one at a time so as to maximize the hypervolume
gained at each step, is polynomial in n and k, and guarantees
a (1− 1/e) approximation factor [13], [14].

The decremental greedy counterpart, whereby n− k points
are discarded one at a time so as to maximize the hypervolume
retained at each step, is also polynomial in n and k, but has
no known approximation guarantee. It is also potentially faster
than the incremental strategy when k is large, and still leads
to good approximations in practice [12]. In particular, it is
clearly optimal when k = n − 1, a case commonly arising
in steady-state EMO algorithms such as LAHC [3] and SMS-
EMOA [15]. At each generation of these algorithms, a new
solution/point is generated and inserted in the population, and
the population is subsequently truncated to its original size by
removing a point with the least hypervolume contribution (or
least hypervolume contributor).

The repeated truncation of the population in LAHC and
SMS-EMOA and the decremental greedy approach to the
approximation of the HSSP both require the identification of
a least hypervolume contributor in sets that differ from each
other in a single point. Therefore, rather than computing a least
contributor for each set in isolation, the similarity between
such consecutive point sets should be exploited.

Although computing hypervolume contributions is not
strictly required, a least contributor can be easily determined
by inspection after computing the contributions of all points in
a set. Given an n-point set in Rd, this can be easily achieved
by performing n + 1 computations of the hypervolume indi-
cator, currently leading to an overall time complexity bound
of O(n(1+d/3) polylog n) at best [16]. Dedicated algorithms
for the computation of all contributions in up to 6 dimen-
sions are asymptotically faster, however, with complexities of
Θ(n log n) for d = 2, 3 [17], and O(nd/2 log n) for d > 3 [11].
On the other hand, in two dimensions, the contributions that
are changed by the removal of a point from, or addition of a
point to, a set can be updated in O(log n) time, provided that
the contributions of the points in the original set are known in
advance [18], [19]. For d > 2, existing algorithms [20], [21]
speed up contribution updates by computing the size of the
regions that are simultaneously and exclusively dominated by
the point being updated and each of the remaining points, but
no time-complexity results are reported.

In the following, new algorithms to compute and/or update
all hypervolume contributions in three and four dimensions are
proposed, matching or improving upon the currently known
upper bounds in each case. Alternative algorithms for the
computation and update of the hypervolume indicator are
presented first, and are then extended to the all-contributions
case, leading to the computation of the decremental greedy
approximation to the HSSP in O(n(n − k) + n log n) and
O(n2(n − k)) time for d = 3 and d = 4, respectively. All
algorithms are explained and experimentally compared against
the alternative algorithms available.

This paper is organized as follows. Section II is dedicated
to the state-of-the-art where the most relevant algorithms for

this work are described. Section III first describes the new
algorithms for d = 3, 4 applied only to the computation and
update of hypervolume indicator, and are then extended in Sec-
tion IV to compute contributions. The algorithms proposed in
Sections III and IV are experimentally evaluated in Section V.
Finally, concluding remarks are drawn in Section VI.

II. BACKGROUND

A. Notation

In the following, points are represented by lower case letters,
and sets are represented by capital letters. Letters x, y, z and
w in subscript denote the coordinates of a point in (x, y, z, w)-
space. Numbers in superscript are used to enumerate points in
a set. Projection onto (d − 1)-space by omission of the last
coordinate is denoted by an asterisk. For example, given a set
X ⊂ R3 and a point p ∈ X, X∗ and p∗ denote the projection
on the (x, y)-plane of X and p, respectively.

B. Definitions

The hypervolume indicator [3], [4] is formally defined as
follows:

Definition 1 (Hypervolume Indicator): Given a point set
X ⊂ Rd and a reference point r ∈ Rd, the hypervolume
indicator is:

H(X) = λ

⋃
p∈X

[p, r]


where [p, r] = {q ∈ Rd | p ≤ q ∧ q ≤ r} and λ(·) denotes the
Lebesgue measure.
The hypervolume contribution is formally defined based on
the Hypervolume Indicator [22]:

Definition 2 (Hypervolume Contribution): The hypervolume
contribution of a point p ∈ Rd to a set X ⊂ Rd is:

H(p,X) = H(X ∪ {p})−H(X \ {p})

As pointed out in [22], this definition is consistent with the
case where p ∈ X, and the contribution is the hypervolume
lost when p is removed from X, as well as with the case where
p /∈ X, and the contribution of p is the hypervolume gained
when adding p to X. While this is certainly convenient, it does
not reflect the fact that the hypervolume gained by “adding” a
point p to a set already including it is zero. However, this last
situation can be handled easily as a special case by checking
whether X includes p before applying the definition.

In some cases, it is useful to consider the region dominated
simultaneously and exclusively by two points p, q ∈ Rd:

Definition 3 (Joint Hypervolume Contribution): The joint
contribution of points p, q ∈ Rd to X ⊂ Rd is:

H(p, q,X) = H((X \ {p, q}) ∪ {p ∨ q})−H(X \ {p, q})

where ∨ denotes the component-wise maximum.
Moreover, the contribution of a point p to a set X is bounded
above by certain points q ∈ X that shall be referred to as
delimiters, and are defined as follows [14]:

Definition 4 (Delimiter): Given a point set X ⊂ Rd and a
point p ∈ Rd, let J = nondominated({(p∨ q) | q ∈ X \ {p}),
where nondominated(S) = {s ∈ S | t ≤ s ⇒ s ≤ t,∀ t ∈
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S} denotes the set of nondominated points in S. Then, q ∈ X
is called a (weak) delimiter of the contribution of p to X iff
(p ∨ q) ∈ J. If, in addition, H(p, q,X) > 0, then q is also a
strong delimiter of the contribution of p to X.

The following extension to the notion of delimiter will also
be needed in this work:

Definition 5 (Outer Delimiter): Given a point set X ⊂ Rd

and a point p ∈ Rd, q ∈ X is called an outer delimiter of the
contribution of p to X if it is a delimiter of the contribution of
p to {s ∈ X | p 6≤ s}. A delimiter, q, of the contribution of p
to X is called an inner delimiter if it is not an outer delimiter,
i.e., if p ≤ q.
Non-strong delimiters can only exist when X contains points
with repeated coordinates. Similarly, in general, outer delim-
iters may not be actual, or proper, delimiters in the sense of
Definition 4. In the example of Figure 1 (b), points s3, . . . , s5

are the (proper) delimiters of the contribution of p to X, of
which s3 and s4 are inner delimiters. There are two outer
delimiters, s2 and s5. Point s2 is not a proper delimiter of the
contribution of p to X because (p ∨ s3) = s3 ≤ (p ∨ s2).

C. Related Problems

Many computational problems related to the Hypervolume
Indicator can be found in the literature. The following prob-
lems are needed in the context of this work, and are based on
a previous set of definitions by Emmerich and Fonseca [17].
Note that the reference point is usually considered to be a
constant.

Problem 1. (HYPERVOLUME). Given an n-point set X ⊂ Rd

and a reference point r ∈ Rd, compute the hypervolume
indicator of X, i.e., H(X).

Problem 2. (ONECONTRIBUTION). Given an n-point set X ⊂
Rd, a reference point r ∈ Rd and a point p ∈ Rd, compute
the hypervolume contribution of p to X, i.e., H(p,X).

Problem 3. (ALLCONTRIBUTIONS). Given an n-point set X ⊂
Rd and a reference point r ∈ Rd, compute the hypervolume
contributions of all points p ∈ X to X.

Problem 4. (LEASTCONTRIBUTOR). Given an n-point set X ⊂
Rd and a reference point r ∈ Rd, find a point p ∈ X with
minimal hypervolume contribution to X.

Sometimes, the above problems are computed for a se-
quence of sets that differ from the previous one in a single
point, either by adding a point to (Incremental case), or by
removing a point from (Decremental case), the previous set.

Problem 5. (HYPERVOLUMEUPDATE). Given an n-point set
X ⊂ Rd, the reference point r ∈ Rd, the value of H(X), and
a point p ∈ Rd, compute:
Incremental: H(X∪{p}) = H(X) +H(p,X), where p /∈ X.
Decremental: H(X\{p}) = H(X)−H(p,X), where p ∈ X.

Problem 6. (ALLCONTRIBUTIONSUPDATE). Given an n-point
set X ⊂ Rd, a reference point r ∈ Rd, the value of H(q,X)
for every q ∈ X, and a point p ∈ Rd:

Incremental Compute H(q,X∪{p}) = H(q,X)−H(p, q,X)
for all q ∈ X, and also H(p,X), where p /∈ X.

Decremental Compute H(q,X \ {p}) = H(q,X) +H(p, q,X),
where p ∈ X.

Finally, the HSSP problem [8] is formally defined here as:

Problem 7. (Hypervolume Subset Selection Problem). Given
an n-point set X ⊂ Rd and an integer k ∈ {0, 1, . . . , n}, find
a subset A ⊆ X, such that |A| ≤ k and H(A) ≥ H(B) for all
B ⊆ X, |B| ≤ k.

Note that X is usually a nondominated point set, even
though this is not mandatory. Any dominated point q ∈ X
will have zero contribution to X. However, if q is dominated
by a single point p ∈ X, then the contribution of p to X
will be lower than what it would be if q /∈ X. Moreover, the
incremental scenarios of Problems 5 and 6 explicitly require
that p /∈ X because the adopted definition of hypervolume
contribution does not handle adding a point to a set in which
it is already included, as discussed before, nor does it consider
the multiset that would result from such an operation. If
such cases become relevant, the hypervolume contribution of
repeated points in a multiset should be considered to be zero.

Problem 1 is the most well-studied problem, and several al-
gorithms to compute the hypervolume indicator have been pro-
posed. In the scope of this paper, the asymptotically optimal,
Θ(n log n)-time algorithm for d = 3 by Beume et al. [23],
here referred to as HV3D, and an O(n2)-time algorithm for
d = 4 known as HV4D [24], are the most relevant. Together
with the WFG [25] and QHV [26] algorithms for d > 4,
they are considered to be the fastest in practice. However,
Chan’s algorithm [16] still exhibits the best time-complexity
upper bound of O(nd/3 polylog n) for d ≥ 4. Other important
algorithms include [27]–[29]. A recent HV4DX algorithm [30]
is claimed to improve upon HV4D, but the experimental results
presented in Section V do not support those claims.

It is clear from Definition 2 that any algorithm that
computes HYPERVOLUME can also be used to compute
ONECONTRIBUTION (Problem 2), and vice-versa. More-
over, HYPERVOLUMEUPDATE (Problem 5) can be solved
by computing either HYPERVOLUME given X ∪ {p} or
ONECONTRIBUTION given X and p. IHSO [31] is an algo-
rithm for ONECONTRIBUTION that is used in IIHSO [32]
to compute HYPERVOLUME by solving a sequence of
HYPERVOLUMEUPDATE problems as new points are added
to a set. Similarly, in HV3D and HV4D, HYPERVOLUME is
computed in d = 3 and d = 4 dimensions, respectively, by
iteratively updating the indicator of a (d − 1)-dimensional
projection of a subset of the input set as points are added
to it. Such update operations are performed in (amortized)
time complexity O(log n) and O(n) per point, respectively,
which is faster than recomputing HYPERVOLUME in d − 1
dimensions at each iteration. The same techniques can be used
in the decremental case, as well.

A rather different approach to HYPERVOLUME computation
has been proposed by Lacour et al. [33]. HBDA computes
the hypervolume indicator by partitioning the dominated re-
gion into O(nb

d
2 c) axis-parallel boxes and adding up the
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corresponding hypervolumes. The incremental version of the
algorithm (HBDA-I) runs in O(nb

d
2 c+1) time, and allows

input points to be processed in any order. Since the current
box decomposition must be stored across iterations, O(nb

d
2 c)

space is required. By processing input points in ascending
order of any given coordinate, the memory requirements are
reduced to O(nb

d−1
2 c), and the time complexity is improved to

O(nb
d−1
2 c+1). HBDA-NI has been shown to be competitive in

d ≥ 4 dimensions, but its memory requirements are a limiting
factor for large d.

It should also be clear that any algorithm that
computes ONECONTRIBUTION can be used to compute
ALLCONTRIBUTIONS (Problem 3), and vice-versa. Dedicated
algorithms for ALLCONTRIBUTIONS include Bringmann and
Friedrich’s [11] algorithm for d ≥ 2, with O(nd/2 log n) time
complexity, and Emmerich and Fonseca’s [17] algorithm for
d = 3, referred to as EF, which runs in optimal Θ(n log n)
time. These algorithms can also be used to solve Problem 4
(LEASTCONTRIBUTOR), by computing all contributions and
then selecting a point with minimal contribution, although
this is not strictly required. Algorithms such as IHSO* [31]
and IWFG [34] identify a least contributor while trying
to avoid computing all contributions exactly. Stochastic
approximation algorithms [35], where a point with at most
1 + ε times the minimal contribution is determined with
probability 1 − δ for any ε > 0 and δ > 0, are another
alternative, particularly in high dimensions [36]. Problem 6
(ALLCONTRIBUTIONSUPDATE) can be solved in O(log n)
time when d = 2 [18], [19], but otherwise all contributions
must be recomputed in the absence of dedicated algorithms.

Finally, and as pointed out earlier in Section I, efficient
algorithms for Problem 7 (HSSP) are known only for two di-
mensions, with time-complexity bounds of O(nk+n log n) [9]
and O((n − k)k + n log n) [10]. For d ≥ 3, Bringmann and
Friedrich’s algorithm [11] takes exponential time in n−k, and
the problem is claimed to be NP-hard [37]. Incremental greedy
approaches provide a (1 − 1/e)-approximation to HSSP, i.e.
H(S′)/H(Sopt) ≥ 1−1/e, where S′ ⊂ X and Sopt ⊂ X denote
the greedy and the optimal solutions, respectively. For d = 3,
such an approximation can be computed in O(nk + n log n)
time [14]. Decremental greedy approaches to HSSP have
also been proposed [38], and are potentially faster when k
is large. Currently, time complexities of O(n(n − k) log n)
and O(n2(n − k) log n) can be achieved in 3 and 4 di-
mensions, respectively, by iterating over the corresponding
ALLCONTRIBUTIONS algorithms [11], [17]. However, they
offer no approximation guarantee. In particular, for d ≥ 3, the
decremental greedy approximation may be very far from opti-
mal with respect to the hypervolume lost when 1 < n−k ≤ d
points are discarded, i.e., (H(X)−H(S′))/(H(X)−H(Sopt))
may be arbitrarily large [11]. However, as the following
example shows, a similar result applies to the incremental
case. Consider X = {p, q1, q2}, where p = (−ε− 1,−ε− 1),
q1 = (−ε − 2,−ε), and q2 = (−ε,−ε − 2), arbitrarily
large ε > 1, the reference point (0, 0), and k = 2. Then,
Sopt = {q1, q2} and S′ = {p, q1} (or S′ = {p, q2}), and
(H(X)−H(S′))/(H(X)−H(Sopt)) = ε.

In summary, solving any of the above problems more

(a) (b)

Fig. 2. An example in three-dimensions where s1z < · · · < s14z and p = s10.

efficiently should allow at least some of the other problems to
be solved more efficiently, as well.

D. Dimension-Sweep Algorithms

Dimension sweep is a paradigm which has been widely
used in the development of algorithms for hypervolume-
related problems. In a dimension-sweep algorithm, a problem
involving n points in Rd is solved by visiting all points in
ascending (or descending) order of one of the coordinates,
solving a (d − 1)-dimensional subproblem for each point
visited, and combining the solutions of those subproblems. The
subproblems themselves can often be solved using dimension
sweep as well, until a sufficiently low-dimensional base case
that can be solved by a dedicated algorithm is reached.
However, the time complexity of the resulting algorithms
typically increases by an O(n) factor per dimension, which
may or may not be competitive with other approaches.

A typical dimension-sweep algorithm for Problem 1 [27],
[29] works as follows. Input points are sorted and visited
in ascending order of the last coordinate. The d-dimensional
dominated region is partitioned into n slices by axis-parallel
cut hyperplanes defined by the last coordinate value of each
input point and the reference point. The desired hypervolume
indicator value is the sum of the hypervolumes of all slices,
and the hypervolume of a slice is the hypervolume of its
(d − 1)-dimensional base multiplied by its height. The base
of a slice is the (d− 1)-dimensional region dominated by the
projection of the points below it according to dimension d
onto the corresponding cut hyperplane. The height of a slice
is the difference between the values of the last coordinate of
two consecutive points.

1) HYPERVOLUME in Three Dimensions: HV3D, by
Beume et al. [23], is a dimension-sweep algorithm to compute
HYPERVOLUME in three dimensions that operates by solv-
ing a sequence of two-dimensional HYPERVOLUMEUPDATE
problems. Given an n-point set X ⊂ R3, points in X are
sorted and visited in ascending z-coordinate order. Each point
p ∈ X marks the beginning of a new slice, the base area of
which is computed by updating the area of the base of the
previous slice (if it exists). This is illustrated in Figure 2 (a),
where the shaded region represents the base of the previous
slice to be updated when p = s10 is visited. To that end,
the points visited so far whose projections on the (x, y)-plane
are mutually nondominated, depicted in Figure 2 (b), are kept
sorted in ascending order of the y coordinate using a height-
balanced binary tree, T. For each p ∈ X, the point q ∈ T
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(a) (b)

Fig. 3. Computing the contribution of p∗ to T∗.

with the least qx > px such that qy < py (s9 in the example)
is determined in O(log n) steps by searching T. Then, the
contribution of p∗ to T∗ is computed by visiting the successors
of q in T in ascending order of y until a point is found whose
projection is not dominated by p∗ (in the example, s5).

Let the set of points in T that are weakly dominated by p
on the (x, y)-plane be denoted by Q = {q ∈ T | p∗ ≤ q∗}.
The contribution of p∗ to T∗ can be computed in two different
ways. In HV3D, for each point q ∈ Q ⊆ T, the contribution of
q∗ to T∗ is computed and subtracted from the area of the base
of the previous slice in constant time, and q is removed from
T in O(log n) time (see Figure 3 (a)). Then, the area of the
region exclusively dominated by p∗, (s9x − px)× (s5y − py), is
determined and added to the current base area. Alternatively,
the contribution of p∗ can be computed by partitioning it into
boxes while iterating over Q and adding up the corresponding
areas (see Figure 3 (b)). At each iteration, the current point in
Q is removed from T, as before. In both cases, p is added to
T in O(log n) time once the base area has been updated.

In the above, each point in X is visited twice: once when
it is added to T and again when it is removed from T. Since
all of the corresponding operations are performed in O(log n)
time, the algorithm has O(n log n) time complexity.

2) ALLCONTRIBUTIONS in Three Dimensions: The EF
algorithm [17] extends HV3D to the computation of the contri-
butions of all points in a nondominated set X ⊂ R3. For each
point p ∈ X, a box partition of the contribution of p∗ to T∗, as
previously seen in Figure 3 (b), is stored in a doubly-linked list,
and the box partitions of the corresponding delimiters in T∗

are updated. Individual boxes are characterized by their lower
and upper corners in all three dimensions, although they are
initially unbounded above in the z dimension.

Boxes are stored until another point in X that (partially)
dominates them on the (x, y)-plane is visited. In particular,
for each p ∈ X, all boxes associated to the inner delimiters
of p∗ are closed (in the example, these would be all boxes
associated with points s6, s7 and s8). Closing a box means
setting the z coordinate of its top corner to pz , computing its
volume and adding it to the current value of the contribution of
the associated point, and discarding that box. Boxes partially
dominated by p∗ are also closed, and are replaced by a new
box accounting for the base area that remains not dominated
by p∗. In the example, this would be the case of some of the
boxes associated with s5 or s9.

All box operations are performed in O(1) time, and since at
most O(n) boxes are created and closed, the algorithm retains
the O(n log n) time complexity of HV3D.

3) HYPERVOLUME in Four Dimensions: HV4D [24] is an
extension of HV3D to four dimensions where a sequence
of three-dimensional HYPERVOLUMEUPDATE problems is
solved via the corresponding ONECONTRIBUTION problems
using similar techniques to those in EF. Points in the input set
X ∈ R4 are visited in ascending order of the last coordinate,
partitioning the dominated region into four-dimensional slices.
For each p ∈ X, the base volume of the new slice is computed
by updating the volume of the base of the previous slice with
the contribution of p∗ to the projection on (x, y, z)-space of
the points visited so far.

For that purpose, the points visited so far whose projections
are nondominated are stored in a data structure, L, consisting
of two doubly-linked lists sorted in ascending order of the
y and z coordinates, respectively. Base-volume updates are
performed in two steps. First, for each q ∈ L such that p∗ ≤
q∗, the contribution of q∗ to L∗ is computed and subtracted
from the current base volume, and q is removed from L. Then,
the contribution of p∗ to L∗ is determined and added to the
current base volume, and p is added to L.

Under the above conditions, the contribution of p∗ to L∗ is
computed in linear time. As in EF, the two-dimensional base
of the contribution is partitioned into boxes by sweeping the
points in L in ascending order of y. Then, all points q ∈ L
such that qz > pz are visited in ascending order of z, and for
each of these points, the boxes that are (partially) dominated
by q∗ are updated. Since a three-dimensional contribution is
computed at most twice for each input point, once when it is
added to L and once in case it is removed from L, the time
complexity of HV4D amortizes to O(n2).

III. HYPERVOLUME INDICATOR

In this section, HV3D [23] is modified in order to allow
for incremental and decremental updates in linear time, re-
sulting in a new algorithm that will be called HV3D+. This
is achieved by preprocessing the input points and setting
up a data structure to support the subsequent hypervolume
calculation. Hypervolume updates are performed by updating
the data structure to reflect the insertion or the removal of a
point and either recomputing the new hypervolume as a whole
or computing the corresponding contribution. By iterating over
such updates in three dimensions, a new O(n2)-time algorithm
for four dimensions is obtained as an alternative to HV4D [24].

A. Three Dimensions

1) Data Structures: Maintaining the set of points visited so
far whose projections on the (x, y)-plane are nondominated
and being able to access them in ascending order of the y
coordinate are key aspects of both HV3D and HV3D+. Let
S represent a data structure for that purpose, which can be
either a balanced binary tree, or a linked list. Note that, since
S∗ contains nondominated points only, ascending order of
coordinate y is equivalent to descending order of coordinate x.

Consider the following operations on S, as well as the
corresponding operations obtained by switching the roles of
the x and y coordinates. It is assumed that s ∈ S, p ∈ R3,
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Algorithm 1 genericSweepy(p,S, s)

Require: s = outerDelimiterx(p, S)
1: e← nexty(s,S)
2: procedureA(S, p, s, e)
3: while px ≤ ex do
4: q ← e
5: e← nexty(e)
6: procedureB(S, p, q, e)
7: procedureC(S, p, q, e)
8: return info

and q <L p for all q ∈ S, where q <L p denotes that q is
lexicographic less than p in dimensions z, y, x. Thus, qz ≤ pz .

heady(S) Return the point q ∈ S with the smallest qy .
nexty(s,S) Return q ∈ S with the smallest qy > sy .
remove(s,S) Remove s from S.
outerDelimitery(p,S) Return the point q ∈ S with the

smallest qy > py such that qx < px.
removeDominatedy(p,S, s) If s = outerDelimiterx(p, S),

remove all points q ∈ S such that p∗ ≤ q∗ from S, and
return them sorted in ascending order of qy .

computeAreay(p,S, s) If s = outerDelimiterx(p, S), com-
pute and return the area of the region exclusively domi-
nated by p∗ with respect to S∗.

addy(p,S, s) Insert p into S if sy < py < nexty(s,S) or
py < heady(S). In the latter case, s should be NULL.

Operation outerDelimiter requires time in O(log n) if S is
a binary tree and in O(n) if it is a linked list. Operations
head, next, add and remove take O(1) time on a linked
list (because s ∈ S) and, in general, O(log n) time on a
balanced binary tree. On a tree, head can also be implemented
in constant time just by caching a pointer to the head node.

Operations removeDominated and computeArea both
follow the template presented in Algorithm 1. Points q ∈
S whose projections are dominated by p∗ (inner delim-
iters) are visited in ascending order of qy by starting at
s = outerDelimiterx(p, S), which must be passed as an
input argument, and stopping at the first subsequent point e
such that p∗ 6≤ e∗. Routines procedureA, procedureB and
procedureC, respectively, represent the pre-processing, pro-
cessing and post-processing operations associated with the se-
quence of points visited. In operation removeDominated, an
empty point list is initialized in procedureA. In procedureB,
the visited points q are added to that list, and are removed
from S by invoking remove(q,S), whereas procedureC
does nothing. The list is returned as info. In operation
computeArea, the area of the rectangle [(px, py), (sx, ey)] is
computed, and is stored in info in procedureA. Similarly, the
area of [(px, qy), (qx, ey)] is computed and added to info in
procedureB. As before, procedureC does nothing, but this
routine will become important later, in Section IV.

Returning to the example of Figure 2 (b), given p, S =
{s5, . . . , s9}, and s = s9, the delimiters of p∗ are visited start-
ing at s9 and stopping at s5. Operation removeDominated
removes points s8, s7 and s6 from S, and returns them in
this order in a list, whereas computeArea returns the area

Algorithm 2 HV3D+ – Preprocessing

Require: X ⊂ R3 // a set of n nondominated points
Require: r ∈ R3 // the reference point

1: Q ← X // linked list sorted in ascending lexicographic order
of coordinates z, y, x

2: T← {(rx,−∞,−∞), (−∞, ry,−∞)} // binary tree sorted
in ascending order of dimension y

3: for each p ∈ Q do
4: s← outerDelimiterx(p,T)
5: removeDominatedy(p,T, s)
6: p.cx← s
7: p.cy ← nexty(s,T) // same as outerDelimitery(p,T)
8: addy(p,T, s)
9: return Q

exclusively dominated by p∗, and leaves S unmodified. Since
the processing of each point is dominated by the complexity
of add, next and remove, the resulting time complexity upper
bounds are O(t) on lists and O(t log |S|) on binary trees, where
t denotes the number of inner delimiters of p∗.

2) Preprocessing: Algorithm 2 reproduces the sequence
of binary-tree operations performed in HV3D. Input points
are stored and visited in ascending lexicographic order of
coordinates z, y and x to ensure data-structure consistency
and well-defined operations in the presence of repeated z
coordinates. For each p ∈ Q, its rightmost outer delimiter,
s, is looked up in binary tree T (line 4). Then, the points in T
whose projections are dominated by p∗ are removed (line 5),
and p is added to T (line 8). Pointers to the outer delimiters of
p∗ in T∗ are saved as attributes of p (p.cx and p.cy in lines 6
and 7) for future use. Sentinel nodes in T guarantee that such
outer delimiters always exist.

As in HV3D, each input point is visited at most twice, once
when it is added to T, and again if it has to be removed
from T, at a cost of O(log n) time in both cases. Determining
and saving the outer delimiters of each point (lines 4, 6 and
7) also takes O(log n) time per input point. Therefore, this
preprocessing is performed in O(n log n) time.

Note that, although the input set X is required to be
a nondominated point set, dominated points in Q can be
easily detected and discarded at no extra cost by checking
immediately after line 4 whether nexty(s,S) dominates p, and
skipping to the next input point if it does.

3) Hypervolume Computation: Algorithm 3 can be seen as
a reimplementation of HV3D using a linked list, L, instead of a
binary tree, T, and follows the same structure as Algorithm 2.
However, the outer delimiters of each input point are now
required to be known in advance as a result of preprocessing.
This allows all next, add and remove operations to be imple-
mented in constant time, as explained in Subsection III-A1.

The hypervolume indicator is computed in a similar way to
HV3D. Variables area and vol are used to store, respectively,
the area dominated by the points in L∗ and the volume of the
region dominated by the points visited so far up to the current
point, p. The volume is accumulated in vol at the beginning of
the loop by multiplying the current (base) area by the height
of the current slice (line 4). The area dominated by the points
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Algorithm 3 HV3D+ – HYPERVOLUME computation

Require: X ⊂ R3 // a set of n nondominated points
Require: r ∈ R3 // the reference point
Require: Q // a linked list containing X sorted in ascending order

of dimension z with p.cx and p.cy set for all p ∈ Q

1: L ← {(rx,−∞,−∞), (−∞, ry,−∞)} // linked list sorted
in ascending order of dimension y

2: vol, area, z ← 0
3: for each p ∈ Q do
4: vol← vol + area · (pz − z)
5: s← p.cx
6: area← area+ computeAreay(p,L, s)
7: removeDominatedy(p,L, s)
8: addy(p,L, s)
9: z ← pz

10: vol← vol + area · (rz − z)
11: return vol // H(X)

in L∗ is updated by adding the contribution H(p∗,L∗) to the
current area (line 6). Finally, the total volume is updated with
the volume of the last slice (line 10), and returned.

Since all inner delimiters visited in computeArea are im-
mediately removed in removeDominated, and the complexity
of both of these functions is now linear in the number of such
delimiters, the complexity of Algorithm 3 amortizes to O(n).

4) Data Structure Updates: Adding a new point u to the
data structure maintained by HV3D+ requires setting attributes
u.cx and u.cy, updating the corresponding attributes of the
remaining points in the lexicographically sorted list Q, and
inserting u into Q. These operations are performed in linear
time in a single sweep of Q, as follows (cy attributes are
updated in a similar way, but with the roles of the x and y
coordinates switched):
• Set u.cx to the point q ∈ Q with the smallest qx > ux

such that qy < uy and q <L u. If such a point is not
unique, the alternative with the smallest qy is preferred.

• For q ∈ Q, set q.cx to u iff uy < qy and u <L q,
and either qx < ux < (q.cx)x or ux = (q.cx)x and
uy ≤ (q.cx)y .

• Insert u into Q immediately before the point q ∈ Q with
the lexicographically smallest q such that u <L q.

As an example, let s10 in Figure 2 (a) be the new point u to
be inserted, and Q contain all of the remaining points. Then,
s10.cx is set to s9 and s10.cy is set to s5. Also, s12.cy, which
is s7 before s10 is inserted, is set to s10.

Although one may require that Q∪{u} be a nondominated
point set, handling dominated points arising from the insertion
of u is simple. If u is dominated by points in Q, which can
be checked in constant time per point while sweeping Q, then
u is simply discarded. If some points in Q are dominated by
u, they will not be referenced as delimiters (cx or cy) of any
nondominated point in Q∪{u}. This is because any references
to points dominated by u will either be made by other points
dominated by u or have been updated to refer to u itself. Such
dominated points can either be simply removed from Q or be
marked as such and remain in Q as it will be the case in
Section IV.

Removing a point u ∈ Q also requires updating the cx and
cy attributes of the remaining points, as follows:
• For every p ∈ Q\{u} such that p.cx = u, set p.cx to the

point q ∈ Q \ {u} with the smallest qx > px such that
qy < py and q <L p (and analogously for p.cy). If such
a point is not unique, the alternative with the smallest qy
(respectively, qx) is preferred.

Assuming that Q does not contain any dominated points, this
is also achieved in linear time by performing essentially the
same sequence of operations in Algorithm 2, but using a linked
list, L, instead of binary tree, T, and replacing the call to
outerDelimiterx by p.cx. In addition, if p.cx = u, variable s
should be set to p.cy instead, and the roles of dimensions x
and y should be reversed in lines 5 to 8, for that iteration.

In the example of Figure 2 (a), let s10 be the point u to be
removed from Q, and p = s12 be the current point. Hence,
s12.cx = s9, s12.cy = s10, and L = {s11, s5, s6, s7, s8, s9}.
Then, the points in L whose projections p∗ dominates (s8) are
removed from L, and s12.cy is set to nexty(s12.cx,L) = s7.

5) Hypervolume Updates: Having established how to up-
date the HV3D+ data structure in linear time, it is clear that
HYPERVOLUMEUPDATE can also be computed in linear time
by using Algorithm 3 to recompute HYPERVOLUME after
updating the data structure. Alternatively, the value of the
hypervolume indicator can be updated with the contribution
of the point u to be added to, or removed from, Q. Although
the contribution of u can be computed while the data structure
is being updated in both cases, for simplicity only the case
where the point has not yet been added to or has already been
removed from Q is explained here.

The ONECONTRIBUTION computation begins with the con-
struction of a list containing all points in {p ∈ Q | pz ≤ uz}
whose projections are inner or outer delimiters of the contri-
bution of u∗ to the projection of that set. This list, L, can be
set up in linear time as in Algorithm 3, by sweeping Q while
pz ≤ uz . Having constructed L, the contribution of u∗ to L∗

is computed and stored in a variable, area, and points p ∈ Q
such that pz > uz are visited in ascending order of pz until a
point such that p∗ ≤ u∗ is found.

For each visited point, p, the contribution of u is updated by
accumulating the product of area by the height of the current
slice in another variable, vol, and area is updated by subtract-
ing the joint contribution H(p∗, u∗,L∗) from it. H(p∗, u∗,L∗)
is computed by calling either computeAreay(p ∨ u,L, p.cx)
or computeAreax(p ∨ u,L, p.cy), depending on the relative
position of p with respect to u. Then, all points that are no
longer outer or inner delimiters of the contribution of u∗ on
the plane z = pz are removed from L, and p is added to
L if it made area decrease. When u does not dominate p,
computing the joint contribution of p∗ and u∗ and removing
the required points from L always entails starting at one end of
L, which requires linear time in the number of points removed.
On the other hand, when u ≤ p, such a linear time operation
is made possible by the availability of attributes p.cx and
p.cy, as before. Therefore, the time complexity of the whole
ONECONTRIBUTION computation amortizes to O(n).

The procedures used to compute a three-dimensional contri-
bution in HV3D+ and in HV4D are rather alike, and although
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the latter is tightly integrated in the main algorithm, it also
considers both the incremental and the decremental scenarios,
and could easily be made available standalone. The main
differences lie in the data structures used (a list of points
versus a list of boxes) and, more crucially, in how dominated
points are handled. In HV4D, computing the three-dimensional
contribution of a point u to the current set of points requires
removing any points dominated by u from the current set
first and computing their contributions, as well. Although
this is done in linear time per point when there are no
dominated points, and amortizes to linear time per point over a
complete four-dimensional HYPERVOLUME computation, the
complexity of computing a single contribution in HV4D is not
linear in general, whereas it is always linear in HV3D+.

B. Four Dimensions

The hypervolume indicator in four dimensions can be com-
puted in O(n2) time by performing a sequence of HV3D+

updates, leading to a new algorithm, HV4D+. As in HV4D,
points in X ⊂ R4 are visited in ascending w-coordinate order,
dividing the dominated region into n slices. For each visited
point, p, the volume of the three-dimensional base of the
current slice is computed by adding the contribution of p∗

to the volume of the previous slice. Because p∗ may dominate
points in X∗ visited previously, handling dominated points is
a must. Not having to remove points whose projections are
dominated is an important feature in extending the approach
to the computation of all contributions in four dimensions (see
Section IV-B).

IV. HYPERVOLUME CONTRIBUTIONS

HV3D+ lends itself to further extension to the compu-
tation and update of all hypervolume contributions. A new
ALLCONTRIBUTIONS algorithm for three dimensions, named
HVC3D, supports contribution updates in linear time, and is
proposed next. Two update scenarios are considered:
Nondominated sets Any dominated points are ignored and/or

removed as described in subsections III-A2 and III-A4,
and do not affect the value of the individual contributions
of nondominated points. This is sufficient to implement
SMS-EMOA, for example.

Dominated points A new point may dominate existing ones
(incremental scenario), in which case its individual con-
tribution is also delimited by the points it dominates.
This allows a new O(n2) algorithm to be constructed
for ALLCONTRIBUTIONS in four dimensions.

More general scenarios involving dominated points can in
principle be addressed using similar techniques, but their
relevance is not clear at present.

A. Three Dimensions

1) Data Structures: To support the computation of indi-
vidual contributions, the HV3D+ data structure is extended
with additional point attributes. For each point p ∈ Q, the
area of the current base of its contribution is stored in p.a,
the current volume of this contribution is stored in p.v, and

the z-coordinate value up to which the volume p.v has been
computed is stored in p.z. Moreover, to support the handling
of dominated points, the number of points that dominate p and
a pointer to one of those points are stored in p.nd and p.dom,
respectively. Since the initial set of points, X, is required to
contain only nondominated points, p.nd is initialized to zero
and p.dom is set to NULL. Whenever a point that dominates
p is added to Q, p.nd is incremented, and p.dom is set to that
point. As discussed later in Subsection IV-A2, points which
become dominated by more than one point will be discarded.

In HVC3D, the set of points visited so far whose projections
on the (x, y)-plane are nondominated is maintained in a
doubly-linked list, L, sorted in ascending y-coordinate order
(and, therefore, also in descending order of the x coordinate).
This list plays exactly the same role as L in HV3D+. More-
over, each point q ∈ L maintains in q.L a list of the points
visited so far whose projections are outer or inner delimiters
of the current exclusive contribution of q∗. In the example of
Figure 4 (a), before p is processed, L contains s5, . . . , s9. List
s5.L contains points s6, s4, s3, s1, and a sentinel, in this order.

Finally, a new operation based on Algorithm 1 is defined:

updateVolumesy(p,S, s) If s = outerDelimiterx(p,S), for
each point q ∈ S whose projection q∗ is an outer or inner
delimiter of the contribution of p∗ to S∗, add the volume
of the current contribution slice, q.a · (pz − q.z), to q.v,
and set q.z = pz .

In this case, procedureA, procedureB and procedureC in
Algorithm 1 all perform the same operations, but on different
points, respectively s = outerDelimiterx(p,S), all q ∈ S
such that p∗ ≤ q∗, and e = outerDelimitery(p,S). Just like
the other operations based on Algorithm 1, updateVolumes
requires O(t) time, where t is the number of points dom-
inated by p∗ in S∗. In the example of Figure 4 (a), given
p, L = {s5, . . . , s9} and s = s9, updateVolumes(p,L, s)
updates the values of attributes v and z of points s5, . . . , s9.

2) Computing All Contributions: As an extension of
HV3D+ to the computation of ALLCONTRIBUTIONS, HVC3D
consists of an O(n log n)-time preprocessing step, identical to
Algorithm 2, followed by an actual computation step, which
is detailed in Algorithm 4. Points p ∈ Q are visited in
ascending z-coordinate order, as in Algorithm 3. Considering
that all points are nondominated (first scenario), each point is
processed in lines 6 to 21 of Algorithm 4. In the example
of Figure 4 (a), the regions exclusively dominated by the
projections of the points in L = {s5, . . . , s9} before p is
processed are depicted in medium gray.

The processing of nondominated points is divided into three
main parts. In the first part (lines 6 to 11), the volumes
associated with the outer and inner delimiters of p∗ in L∗ are
updated, and the base area of the contribution of p, depicted in
light gray in Figure 4 (a), is computed. Then, the points whose
projections are dominated by p∗ (s8, s7, s6) are moved from
L to p.L, as their contribution is zero above the plane z = pz ,
and copies of p.cx and p.cy (s9 and s5), corresponding to the
outer delimiters of p∗, are added at each end of p.L, so that
the contribution of p can be updated efficiently in subsequent
iterations. Finally, p is inserted into L.
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(a) Before adding p (b) Reduce areas dominated by p∗ (c) After adding p (d) Dominated point s14

Fig. 4. Example of the contribution of each point, before adding p = s10, when p reduces contributions, after adding p, and when adding a point it dominates.

Algorithm 4 HVC3D – ALLCONTRIBUTIONS Computation

Require: X ⊂ R3 // a set of n points
Require: r ∈ R3 // the reference point
Require: Q // a linked list sorted in ascending order of dimension z

containing X∪ {(−REALMAX,−REALMAX, rz)} with p.cx,
p.cy, p.nd and p.dom set for all p ∈ Q

1: L ← {(rx,−∞,−∞), (−∞, ry,−∞)} // linked list sorted
in ascending order of dimension y

2: for each p ∈ Q do
3: p.v ← 0
4: p.z ← pz
5: if p.nd = 0 then
6: updateVolumesy(p,L, p.cx)
7: p.a← computeAreay(p,L, p.cx)
8: p.L← removeDominatedy(p,L, p.cx)
9: addy(p.cx, p.L,NULL)

10: addx(p.cy, p.L,NULL)
11: addy(p,L, p.cx)
12: q ← p.cy
13: q.a← q.a−computeAreay(p∨ q, q.L,heady(q.L))

14: removeDominatedy(p ∨ q, q.L,heady(q.L))
15: remove(heady(q.L), q.L)
16: addy(p, q.L,NULL)
17: q ← p.cx
18: q.a← q.a−computeAreax(p∨ q, q.L,headx(q.L))

19: removeDominatedx(p ∨ q, q.L,headx(q.L))
20: remove(headx(q.L), q.L)
21: addx(p, q.L,NULL)
22: if p.nd = 1 then
23: q ← p.dom
24: q.v ← q.v + q.a · (pz − q.z)
25: q.z ← pz
26: q.a← q.a− computeAreay(p, q.L, p.cx)
27: removeDominatedy(p, q.L, p.cx)
28: addy(p, q.L, p.cx)

In the second part (lines 12 to 16), the base area of the
contribution of point q = p.cy is updated, as p∗ dominates
part of the region dominated by q∗. To that end, the joint con-
tribution of q∗ and p∗ to q.L∗ is subtracted from q.a, the points
whose projections are dominated by p∗ are removed from q.L,
and the head of this list is replaced by p. Now referring to
Figure 4 (b), q = s5 and q.L contains {s6, s4, s3, s1} plus the
sentinel. The joint contribution of p∗ and q∗ to q.L∗ at z = pz
is the area of the darker region dominated by both points,
and its computation (line 13) involves visiting the points from
s6 to s1. Then, s4 and s3 are discarded (line 14) and s6 is
replaced by p at the head of q.L (lines 15 and 16). At this point,
q.L contains the outer and inner delimiters of the exclusive
contribution of q∗ at z = pz , namely points p, s1 and the
sentinel, as Figure 4 (c) illustrates.

The base area of the contribution of p.cx is updated analo-
gously in the third part (lines 17 to 21). The last point in Q to
be visited is the sentinel (−REALMAX,−REALMAX, rz),
which forces the computation of the contributions of all input
points to complete and the results for all points p ∈ X ⊂ Q
to be made available in p.v at the end of the run. Here,
−REALMAX denotes a finite value less than any coordinate
of any input point.

In the second scenario, Q may contain dominated points
due to incremental updates to the data structure. Such updates
are performed exactly as described in Subsection III-A4 with
respect to point attributes cx and cy, but any points p ∈ Q
which are dominated by a new point u to be inserted are also
marked as such by incrementing p.nd and setting p.dom = u.
Note that, although the hypervolume contribution of a domi-
nated point is zero by definition, if it is dominated by a single
point, it also decreases the contribution of that point, which is
why such dominated points must remain in Q. On the other
hand, points dominated by two or more points do not affect
the exclusive contribution of any of those points, and can
be discarded. The insertion of new dominated points is not
considered in this scenario.

Points p ∈ Q which are dominated by a single point (p.nd =
1) are processed in lines 23 to 28. After updating the volume
q.v associated with q = p.dom, the contribution of p∗ to q.L∗

is computed and subtracted from q.a. Then, any points in q.L
whose projections are simultaneously dominated by p∗ and q∗

are discarded, and p is inserted into q.L. In the example of
Figure 4 (d), p = s14 is dominated (only) by s10. Therefore,
p.nd = 1 and q = p.dom = s10. Also, p.cx = s12, p.cy = s6
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and q.L = {s12, s7, s6, s5}. The contribution of p∗ to q.L∗

(line 26) is computed by visiting points s12, s7 and s6. Then,
s7 is discarded (line 27) and p is added to q.L (line 28). At
the end of the iteration, s10.L = {s12, s14, s6, s5} contains the
points whose projections are delimiters of s10∗ at z = s14z .

In Algorithm 4, each point in p ∈ Q is added to L (line 11)
once. Moreover, each p other than the sentinel is added at
most once to a list associated with a point in L as an inner
delimiter (lines 8 or 28). Although the same point may be
an outer delimiter (cx or cy) of several other points in Q, at
most four outer delimiters are added to lists associated with
points in L in each iteration (p.cx and p.cy are added to p.L in
lines 9 and 10, and p is added to two lists in lines 16 and 21).
Therefore, at most (n+ 1) +n+ 4(n+ 1) = 6n+ 5 points are
added to lists, which is also an upper bound on the number of
points removed. In each iteration of the algorithm, points other
than p are visited only to update the corresponding volumes
or to update some area. This involves O(1)-time operations
on each of those points through calls to updateVolumes
and computeArea. Every point visited in those calls is
either discarded right after (in removeDominated) or is an
outer delimiter, and the number of outer delimiters visited in
each call is a constant. Consequently, the time-complexity of
Algorithm 4 amortizes to O(n).

3) Updating All Contributions: By updating the HVC3D
data structure and recomputing all contributions with Al-
gorithm 4, the ALLCONTRIBUTIONSUPDATE problem can
now be solved in O(n) time. Although HVC3D extends
the HV3D+ data structure with additional point attributes,
attributes cx and cy are still updated in linear time exactly
as described in Subsection III-A4. When new points may
dominate existing ones, attributes nd and dom also need to
be updated as explained in Subsection IV-A2, which is also
carried out in linear time. All other point attributes are for
Algorithm 4’s own use, and do not need to be updated on
single point insertion or removal.

A potentially faster alternative is suggested by the very
definition of the ALLCONTRIBUTIONSUPDATE problem. It
consists in computing the contribution of the point u to be
added to Q as described in Subsection III-A5 (which is not
needed when removing a point), as well as the joint contri-
butions of u and p to Q, for each strong delimiter p ∈ Q of
the contribution of u, thus avoiding unnecessary computations.
Going back to the example depicted in Figure 2 (a), if the
contributions of the points in X = {s1, . . . , s9, s11, . . . , s14}
are known and u = p is the new point to be added to X, the
contributions of s1, . . . , s4, s11 and s13 remain unchanged, and
there is no need to recompute them.

Since it may be difficult to know in advance which delim-
iters are strong and whether an outer delimiter is a proper
delimiter or not, let D1 denote the set of all inner and outer
delimiters of u in Q. Points in D1 are used to compute the
contribution of u, but they are also the points whose exclusive
contribution may be decreased by the addition of u to Q.
Therefore, in order to update their joint contribution with u,
their own inner and outer delimiters must be considered. The
set of points that are inner and outer delimiters of the joint
contribution between u and individual points in D1, but not of

the contribution of u, will be denoted by D2 ⊆ Q\D1. The re-
maining points in X\(D1∪D2) can be ignored. In Figure 2 (a),
D1 = {s5, . . . , s9, s12, s14}, D2 = {s1, s3, s4, s11, s13}, and
s2 can be ignored. Note that points s1, s3, s4 and s11 are in
D2 because they delimit the contribution of (u ∨ s5), but not
that of u.

Recall the computation of the contribution of u to Q
as described in Subsection III-A5. After saving the current
contributions and setting p.v = 0 for all p ∈ Q, the points
in {p ∈ Q | pz ≤ uz} whose projections are inner or outer
delimiters of the contribution of u∗ to the projection of that
set are added to list L ⊆ D1. Then, for each q ∈ L, a list
q.L is constructed containing the outer and inner delimiters
of the joint contribution between u∗ and q∗ at z = uz . All
of these lists can be set up in linear time as in Algorithm 4,
by sweeping Q while pz ≤ uz . In Figure 4 (a), considering
u = p, L = {s5, . . . , s9}. Then, for each point q∗ ∈ L∗, the
area of the region previously dominated exclusively by q∗ that
is also dominated by u∗ at z = uz is computed in linear time,
and stored in q.a. These regions are depicted in dark gray in
Figure 4 (b).

After these initialization steps, the points p ∈ Q such that
pz > uz are visited in ascending order of pz . These points
are skipped unless they decrease the area associated with u or
with any of the points in L. The joint contribution between
p∗ and u∗ is computed and stored in p.a. Moreover, for each
point q ∈ L, the associated volume is updated as usual, and
the area of the region jointly dominated by q∗, u∗ and p∗ is
computed and subtracted from q.a.

The algorithm ends once all points in Q have been visited
or after two points dominating u∗ are encountered, as from
that point onwards the joint contribution of u and any other
point must be zero. Finally, if u is to be added to Q, the com-
puted joint contributions are subtracted from the corresponding
original values, and the HVC3D data structure is updated. If u
was removed from Q, then the data structure has already been
updated, and it suffices to add the computed joint contributions
to their corresponding previous values.

B. Four Dimensions

Similarly to HV4D+, a new algorithm named HVC4D
for the ALLCONTRIBUTIONS problem in four dimensions is
obtained by performing a sequence of HVC3D updates, as
follows. Given a nondominated point set X ⊂ R4, points
in X ∪ {(−∞,−∞,−∞, rw)} are sorted in ascending w-
coordinate order, stored in a linked list Q, and visited in
that order. For each visited point, p, the contribution of p∗

to the projection, S∗, of the (initially empty) set, S, of points
visited before p is computed, and the contributions of its inner
and outer delimiters in S∗ ∪ {p∗} are updated as described in
Subsection IV-A3. Then, p is added to S, and the contribution
of each point in S∗ is multiplied by the difference between
the w-coordinate of the next point in Q and pw to obtain
the hypervolume of the current four-dimensional slice of each
individual contribution. Slice hypervolumes are accumulated
separately for each point to obtain the corresponding con-
tributions in four dimensions. Since the algorithm performs
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n linear-time HVC3D updates, the time complexity of this
algorithm is O(n2).

Handling points which are dominated in three dimensions
is required to correctly compute ALLCONTRIBUTIONS in four
dimensions because a point q∗ ∈ S∗ which is dominated
by a single point p∗ ∈ S∗ decreases the contribution of
p∗. Since dominated points are not considered in the EF
algorithm, iterating over EF without modification to compute
all contributions in four dimensions would not work.

C. Practical Implications

The HVC3D algorithm improves the current upper bound on
the time complexity of ALLCONTRIBUTIONSUPDATE in three
dimensions from O(n log n) to O(n). Using this algorithm in
HVC4D improves the current upper bound on the complexity
of ALLCONTRIBUTIONS in four dimensions from O(n2 log n)
to O(n2) time. Practical implications of these algorithms
include at least the following:
• Faster implementation of the decremental greedy approx-

imation to the HSSP in three and four dimensions, which
can now be computed in at most O(n(n− k) + n log n)
and O(n2(n− k)) time, respectively.

• Faster implementation of archive-based EMO algorithms
such as SMS-EMOA, also in three and four dimensions,
even when the reference point is adjusted as the popula-
tion moves towards the Pareto Front.

In addition, the proposed data structures, preprocessing and
computation techniques are likely to be useful in the develop-
ment of more efficient algorithms for related problems, namely
for the computation and update of the Expected Hypervolume
Improvement (EHVI) [39].

V. EXPERIMENTAL RESULTS

To evaluate the potential impact of the proposed algorithms
in practice, they were evaluated experimentally and compared
to their most direct competitors in the literature, considering
a number of relevant scenarios and concrete data sets.

A. Experimental Setup

The proposed algorithms were implemented in C. All codes
used in the experiments1 were compiled with gcc 5.3.1 and
flags -march=corei7 -O3. Tests were run on an Intel Core i7-
3612QM 2.10GHz CPU with 6 MB cache and 8 GB of RAM.

To evaluate the performance of the algorithms, cliff and
(concave) spherical data sets [17] containing 105 points each
were generated at random. Spherical data sets were generated
as sets of points p ∈ Rd such that pi = |Xi|/‖X‖, where
Xi ∼ N (0, 1) for all i = 1, . . . , d. The cliff data sets were
such that pi = 1 − |Xi|/‖X‖, where Xi ∼ N (0, 1) for
i = 1, 2, and p3 ∼ U(0, 1) if d = 3, whereas pj+2 =
1 − |Yj |/‖Y ‖, Yj ∼ N (0, 1), j = 1, 2 if d = 4. All smaller

1The source code for the proposed algorithms (HVC package), as well as
for HV4D (v1.2), gHSS (v1.1) and HBDA is available through https://eden.
dei.uc.pt/∼cmfonsec/software.html. HV4DX, WFG (1.11) and IWFG (1.01)
implementations are made available by the respective authors at http://www.
wfg.csse.uwa.edu.au/hypervolume/.

Fig. 5. Three-dimensional data sets: cliff (top left) and spherical (bottom
left). Four-dimensional data sets: cliff (top right), spherical (middle right) and
hard (bottom right).

sets of points were generated by sampling the initial sets of
105 points at random. Additionally, hard data sets for d = 4,
as proposed by Lacour et al. [33], were generated for every
set size n ≤ 105 considered. Considering an even set size,
n, the hard data set is the set of points p ∈ R4 such that
pj = (n+2j

2n , n−j−1n , j
n ,

n−2j−2
2n ) for j = 0, ..., n2 − 1 and

pj = (plw, p
l
z, p

l
y, p

l
x) for j = n

2 , ..., n − 1 where l = j − n
2 .

Figure 5 illustrates the various data sets. The reference point
used was (1, . . . , 1).

The plots presented next show runtimes for growing num-
bers of points on the above types of data sets. Because
many algorithms for the hypervolume indicator are sensitive
to objective reordering [32], each data point and the corre-
sponding error bar on a plot represent the average, minimum
and maximum runtimes over all permutations of the objectives
for a single set instance (6 permutations for d = 3, and 24 for
d = 4). Due to the computational effort required, smaller sets
of up to 104 points were considered in some experiments. In
general, greater variability was observed on cliff data sets than
on spherical data sets.

B. Hypervolume Indicator

Figure 6 (a) shows that HV3D+ is generally faster than
the original HV3D at computing HYPERVOLUME in three
dimensions, despite sweeping input sets twice. The runtime
of HBDA-NI appears to grow quadratically, as expected.

Results for the case of an initially empty unbounded archive
whose hypervolume indicator value was updated each time a
single point from a given test set was added to it are presented
in Figure 6 (b). Since all test sets contained only nondominated
points, the size of the archive increased with every new point.
Concerning HV3D, the hypervolume indicator was computed
n times for growing archive size k = 1, . . . , n, resulting

https://eden.dei.uc.pt/~cmfonsec/software.html
https://eden.dei.uc.pt/~cmfonsec/software.html
http://www.wfg.csse.uwa.edu.au/hypervolume/
http://www.wfg.csse.uwa.edu.au/hypervolume/
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(a) HYPERVOLUME computation for d = 3

(b) Sequential incremental HYPERVOLUMEUPDATE for d = 3

(c) HYPERVOLUME computation for d = 4

Fig. 6. Runtime performance of algorithms on different hypervolume indicator
problems and data sets: cliff (left) and spherical (right).

in an O(n2 log n)-time algorithm for this scenario. This is
compared to HV3D+ linear-time updates, where recomputing
the hypervolume indicator for each new point is denoted by
HV3D+-R, and computing and adding the contribution of the
new point to the current value of the indicator is denoted
by HV3D+-U. Both update approaches take O(n2) time on
the whole problem. It can be seen that both HV3D+-R and
HV3D+-U clearly outperform HV3D, with speed-ups of up
to 23 and 47 times on cliff data sets, and up to 25 and 68
times on spherical data sets, respectively. HV3D+-U was up
to 3 times faster than HV3D+-R. HBDA-I is slightly faster
that HV3D+-R, but is still outperformed by HV3D+-U, which
was up to twice as fast as HBDA-I.

Finally, Figures 6 (c) and 7 show that the default HV4D+

(based on single contribution updates) and a variant HV4D+-R
based on full recalculation updates are competitive with HV4D
for HYPERVOLUME computation in four dimensions, with
HV4D+ generally matching or exceeding the performance of
HV4D. Although the quadratic time complexity of HBDA-NI
for d = 4 can be observed on the hard data set (Figure 7, left),
it exhibited sub-quadratic behavior on the cliff data set, where
it clearly outperformed the other algorithms. Nevertheless, it

Fig. 7. Runtime performance of algorithms for HYPERVOLUME computation
for d = 4 on the hard data set.

was up to 3 times slower than HV4D+ on the other data sets.
Finally, the claimed [30] performance improvement of

HV4DX over the O(n2)-time HV4D algorithm could not be
observed. Not only was it up to twice as slow on average as
the original HV4D implementation on the cliff and spherical
data sets (Figure 6 (c)), it also exhibited cubic runtime growth
on the hard data set (Figure 7, right).

C. Hypervolume Contributions

Regarding the computation of ALLCONTRIBUTIONS in
three dimensions, it can be observed in Figure 8 (a) that
HVC3D remains competitive with EF, as expected. In com-
parison to a dedicated adaptation of WFG2, here referred to
as WFG-c, they were 34 to 728 times faster in the tests
performed. Since computing ALLCONTRIBUTIONS can also
be used to identify a least contributor, IWFG was included in
the comparison, but it was nevertheless 21 to 456 times slower
than HVC3D or EF.

Figure 8 (b) shows the runtimes for the sequential update of
all contributions in three dimensions on the unbounded archive
setup described earlier in connection with Figure 6 (b). Simi-
larly to HV3D in that case, EF was called n times when filling
an archive of size n, corresponding to an overall O(n2 log n)
time complexity. The two HVC3D variants, -R (recomputing)
and -U (contribution updates), take overall O(n2) time due
to the linear-time updates. Both HVC3D-U and HVC3D-R
clearly outperform EF in this scenario, showing speed-ups of
up to 56 and 21, respectively. HVC3D-U performed up to 4
times faster than HVC3D-R.

Results for the simulation of a bounded archive similar
to the environmental selection process in SMS-EMOA are
presented in Figure 8 (c). A fixed archive of size 200 was
updated n − 200 times by each algorithm by adding a new
point and then removing a least contributor. In the case of
HVC3D-U, contributions were updated after adding the new
point and again after removing a least contributor. On the
other hand, since contributions only need to be known after a
new point is added in order to identify the least contributor,
with HVC3D-R only the data structure was updated when a
least contributor is removed. Insertion of a new point caused

2Version 1.11 of WFG was adapted to iterate over the function used to
compute the contribution of a single point, which is faster than iterating over
WFG as such.
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(a) ALLCONTRIBUTIONS computation for d = 3

(b) Sequential incremental ALLCONTRIBUTIONSUPDATE for d = 3

(c) Sequential ALLCONTRIBUTIONSUPDATE for d = 3

Fig. 8. Runtime performance of algorithms on different all contribution
problems and data sets: cliff (left) and spherical (right).

a data structure update followed by the computation of all
contributions. Similarly, contributions were recomputed only
on point insertions when using EF. The runtimes include
the computation of the initial archive with 200 solutions, in
O(n log n) time in all cases. HVC3D-U and HVC3D-R were
up to 50 and 30 times faster than EF, respectively. The results
show that, even though contributions were recomputed by
HVC3D-R only half the time, it was still up to 2 times slower
than HVC3D-U.

In Figure 9, results are presented for the decremental greedy
approximation to the HSSP in three dimensions, computed by
iterating over HVC3D-U to discard the least contributor until
k of the initial n = 104 points are left, and denoted gHSSD.
This algorithm has a time complexity of O(n(n−k)+n log n),
which contrasts with the O(nk + n log n) complexity of the
incremental greedy algorithm (gHSS) [14]. Regarding the
quality of the approximation, it can be observed that the
quality of the subsets produced by the two algorithms is very
similar (the hypervolume ratio is very close to one), except
for smaller values of k. Also, the decremental greedy approach
produced slightly worse subsets than the incremental approach
on spherical data for intermediate values of k. Regarding

Fig. 9. Comparison of decremental (gHSSD) and incremental (gHSS) greedy
algorithms for the HSSP: Approximation quality (left) and runtime (right).

Fig. 10. Runtime performance of algorithms for all contributions in four
dimensions on the cliff (top left), spherical (top right) and hard (bottom) data
sets.

runtime, gHSSD was observed to be faster than gHSS for
k ≥ 2n/5 on the spherical front and for k ≥ n/5 on the cliff
front.

Finally, runtimes for ALLCONTRIBUTIONS in four dimen-
sions are shown in Figure 10, where HVC4D is compared
to WFG-c, HV4D and HBDA-NI. HV4D and HBDA-NI are
called n + 1 times for each set, and therefore the whole
computation has a time complexity of O(n3). As expected,
HVC4D significantly outperformed both HV4D and HBDA-
NI, with observed speed-ups ranging between 45 and 1069
and between 81 and 2270, respectively. HV4D and HBDA-NI
were also significantly outperformed by WFG-c, but HVC4D
was still 3 to 372 times faster than WFG-c. IWFG was also
included for reference.

VI. CONCLUDING REMARKS

Computational problems related to the hypervolume indica-
tor frequently arise in connection with the design, implemen-
tation, and experimental evaluation of evolutionary algorithms
and other metaheuristics for multiobjective optimization. Ar-
guably, the development of algorithms for such problems in the
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literature has taken three main directions to date, one aiming
for algorithms that are fast in practice, especially for large
numbers of objectives, a second one focusing on algorithm
complexity in relation to the number of objectives, and a
third directed at low-dimensional cases. The last direction
typically encompasses two and three objectives, with occa-
sional incursions into four objectives, which remain the most
common use cases in multiobjective optimization in spite of
growing interest in so-called many-objective optimization, and
for which it has been possible to develop algorithms that are
both asymptotically efficient, or even optimal, and very fast in
practice.

In this work, new algorithms for the computation and
update of hypervolume contributions were developed by build-
ing upon existing algorithmic approaches to the computa-
tion of the hypervolume indicator in three and four di-
mensions. A novel O(n log n)-time preprocessing step for
the three-dimensional case was the key ingredient in the
development of O(n)-time algorithms for the subsequent
computation of HYPERVOLUME, ONECONTRIBUTION and
ALLCONTRIBUTIONS, as well as for the corresponding
HYPERVOLUMEUPDATE and ALLCONTRIBUTIONSUPDATE
problems in three dimensions, even under reference point
changes. As a direct result, a novel algorithm for
ALLCONTRIBUTIONS in four dimensions was obtained, and
a new time complexity upper bound of O(n2) was estab-
lished for this problem. Using the proposed algorithms, the
decremental greedy approximation to the HSSP can now be
computed in O(n(n− k) + n log n) and O(n2(n− k)) time,
in three and four dimensions, respectively.

The experimental results obtained indicate that the better
complexity bounds achieved by the proposed algorithms do
translate into considerable speed-ups in practice.
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