
Multiobjective Genetic Algorithms

with Application to Control

Engineering Problems

Thesis submitted for candidature for the degree of PhD

Carlos Manuel Mira da Fonseca

September 1995

Department of Automatic Control and Systems Engineering

The University of Sheffield



Summary
Genetic algorithms (GAs) are stochastic search techniques inspired by the prin-

ciples of natural selection and natural genetics which have revealed a number

of characteristics particularly useful for applications in optimization, engineer-

ing, and computer science, among other fields. In control engineering, they have

found application mainly in problems involving functions difficult to characterize

mathematically or known to present difficulties to more conventional numerical

optimizers, as well as problems involving non-numeric and mixed-type variables.

In addition, they exhibit a large degree of parallelism, making it possible to effec-

tively exploit the computing power made available through parallel processing.

Despite their early recognized potential for multiobjective optimization (al-

most all engineering problems involve multiple, often conflicting objectives), ge-

netic algorithms have, for the most part, been applied to aggregations of the

objectives in a single-objective fashion, like conventional optimizers. Although

alternative approaches based on the notion of Pareto-dominance have been sug-

gested, multiobjective optimization with genetic algorithms has received compar-

atively little attention in the literature.

In this work, multiobjective optimization with genetic algorithms is reinter-

preted as a sequence of decision making problems interleaved with search steps,

in order to accommodate previous work in the field. A unified approach to mul-

tiple objective and constraint handling with genetic algorithms is then developed

from a decision making perspective and characterized, with application to con-

trol system design in mind. Related genetic algorithm issues, such as the ability

to maintain diverse solutions along the trade-off surface and responsiveness to

on-line changes in decision policy, are also considered.

The application of the multiobjective GA to three realistic problems in opti-

mal controller design and non-linear system identification demonstrates the abil-

ity of the approach to concurrently produce many good compromise solutions in a

single run, while making use of any preference information interactively supplied

by a human decision maker. The generality of the approach is made clear by the

very different nature of the two classes of problems considered.
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Chapter 1

Introduction

1.1 Motivation

Nature, with all its beauty, diversity, and complexity, has fascinated humankind

throughout the ages. It is indeed difficult to always remain insensitive to the

sight of a sandy beach, a rocky mountain, or the immense ocean, and do not

stop to admire the multitude of life forms which populate them. And yet, all

that beauty hides a fierce, interminable battle for survival, where the stronger

invariably wins over the weaker, or else it would not be stronger.

Nature’s way of simply discarding individuals unable to compete in favour of

competitive ones, coupled with environmental effects and the individuals’ own

ability to reproduce, has proven extremely effective in evolving highly complex

organisms. Of these, humans themselves are just surviving examples, whereas

others have become permanently extinct due to their inability to adapt to the

changing environment.

As the process of natural evolution became better understood and modern

computing power became increasingly available, the ability to simulate evolu-

tionary systems on the computer soon began to attract growing interest from the

scientific community. In addition to generating further insight into the process of
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CHAPTER 1. INTRODUCTION 2

natural evolution, artificial evolutionary techniques also revealed characteristics

which would be particularly useful for applications in optimization, engineering

and computer science, among other fields.

1.2 Summary of the thesis

This work seeks to explore some of the potential of artificial evolutionary tech-

niques, in particular genetic algorithms (GAs) (Holland, 1975; Goldberg, 1989),

for optimization and search in control systems engineering. Numerical opti-

mization is already well established in Computer-Aided Control System Design

(CACSD), for example, which is an area where objective functions can be expen-

sive to evaluate and often cannot be guaranteed to satisfy all of the requirements

of conventional numerical optimizers. Furthermore, CACSD often involves multi-

ple, conflicting objectives which must be accommodated by the optimizer. These

and other issues commonly arising in control engineering problems, and ways in

which they can be addressed through the genetic algorithm approach, are dis-

cussed in Chapter 2. This Chapter, which begins with a brief introduction to

evolutionary computation followed by a more detailed description of genetic al-

gorithms, also gives selected examples of previous applications of GAs in control.

In the conclusion, multiobjective optimization is identified as one of the most

promising and least explored application areas of GAs.

Chapter 3 pauses to provide the necessary background for the work on multi-

objective genetic algorithms presented in the remaining Chapters. It covers some

of the basic concepts in multiobjective optimization, explaining the need for deci-

sion making and describing some common approaches to preference articulation.

Constrained optimization is also introduced in the context of multiple objectives.

The visualization of results obtained through multiobjective optimization is

the final topic of Chapter 3. In particular, the assessment of the statistical

performance of an arbitrary multiobjective optimizer is considered, and a novel
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visualization technique developed.

In Chapter 4, a survey and discussion of current evolutionary approaches

to constrained and multiobjective optimization leads to the understanding of

evolutionary algorithms as sequences of decision-making problems involving a

finite number of individuals. This makes it possible to approach multiobjective

genetic algorithm development in two stages.

In a first stage, a very general preference articulation approach based on goal

and priority information is developed which encompasses several multiobjective

and constrained formulations, including Pareto and lexicographic optimization.

The approach is duly characterized, and the effects of preference changes in the

cost surface it induces are illustrated graphically. In a second stage, aspects of

the genetic algorithm proper are considered, such as fitness assignment, the need

for niche induction techniques, and the implications of allowing preferences to be

refined as the algorithm runs. The resulting genetic algorithm is then applied to

a simple problem, to illustrate the rôle of its various components.

The application of this multiobjective genetic algorithm to two controller

design problems involving various numbers of design variables and objectives,

and to a non-linear identification problem involving real data, is reported on in

Chapters 5 and 6, respectively. The generality of the approach becomes evident

once the very different nature of the two types of problems is considered, the

first involving real-valued parameters, and the second consisting essentially of a

(combinatorial) subset selection problem. The practical need for some degree of

decision making in optimization, as opposed to pure Pareto optimization, is made

especially clear by the second application example in Chapter 5, which is based

around the full non-linear model of a Pegasus gas turbine engine.

Conclusions and directions for future work are drawn in Chapter 6.
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1.3 Contributions

The main contributions of this thesis are:

• A survey and discussion of genetic algorithms in control engineering (Flem-

ing and Fonseca, 1993). A bibliography survey conducted locally and over

the Internet in 1992/93 identified around 40 papers on control engineering

applications of GAs, including those discussed in Chapter 2. The full bibli-

ography appeared in volume 7, number 18 (July 1, 1993) of the electronic-

mail digest GA-List@aic.nrl.navy.mil.

• A survey and discussion of evolutionary algorithms in multiobjective op-

timization (Fonseca and Fleming, 1995d). Here, current evolutionary ap-

proaches to multiobjective optimization are critically reviewed, and some

of the issues raised by multiobjective optimization in the context of evolu-

tionary search are identified.

• A unified, scale-independent preference articulation framework for multiob-

jective and constrained optimization (Fonseca and Fleming, 1995b). Com-

bining goal and priority information with the notion of Pareto-dominance

results in a transitive relational operator (preferability) of which Pareto-

dominance is a particular case. This operator allows sets of candidate

solutions to be ranked according to (absolute) goal information and any

priority information available, without the need for additional, and usually

less reliable, relative scale information. When used in the selection stage of

a genetic algorithm, the preferability operator makes preference refinement

particularly easy, even as the optimization progresses.

• The formulation of fitness sharing and mating restriction techniques in the

objective domain, and the development of guidelines for the setting of the

associated niche sizes based on the properties of the non-dominated set
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(Fonseca and Fleming, 1993). The importance of such niching techniques

in multimodal problems has long been recognized, but the setting of niche

sizes is usually difficult in practice.

• The application of multiobjective GAs to mixed H2/H∞ reduced-order con-

troller design (Fonseca and Fleming, 1994). This is a relatively simple, but

realistic problem with no known analytical solution. Since the objective

functions involved can be computed fairly efficiently, it becomes possible

to show how consistently the multiobjective genetic algorithm performs

across multiple runs. It also provides a good illustration of competing vs.

non-competing objectives.

• The application of multiobjective GAs to gas turbine controller optimiza-

tion (Fonseca and Fleming, 1995c), with emphasis on the characterization

of the cost surfaces involved, and on the ability for a human decision maker

to interact with the genetic algorithm as it runs.

• The application of multiobjective GAs to term selection in non-linear sys-

tem identification involving real data (Fonseca et al., 1993). Here, the

genetic algorithm reveals a trade-off between two different identification

criteria, offering the engineer a selection of potentially good models for

further evaluation.

Additional contributions are:

• The foundations for a Genetic Algorithm Toolbox for MATLAB (Chipper-

field et al., 1994). All genetic algorithm components, as well as all objective

functions, were implemented in MATLAB (The MathWorks, 1992a). These

routines are now part of a Toolbox currently used in over 100 sites world-

wide.

• A non-parametric technique for the interpretation and visualization of the

results of multiple multiobjective optimization runs (Chapter 3). This pro-



CHAPTER 1. INTRODUCTION 6

vides a description of the statistical performance of a general multiobjective

optimizer, including multiobjective GAs, across the whole Pareto-set of a

given problem.

• A technique for the visualization of the cost surfaces induced by non-

aggregating multiobjective cost assignment strategies such as Pareto-ranking

(Fonseca and Fleming, 1995b; Fonseca and Fleming, 1995d). The under-

lying interpretation of population ranking as providing (biased) estimates

for the probability of improvement of solutions via random search, which is

equally valid in the single-objective case, also offers a basis for the concerted

theoretical analysis of single objective and multiobjective GAs.



Chapter 2

Review of Genetic Algorithms

and their Applications in

Control

2.1 Introduction

Throughout history, Nature has been a major source of inspiration and metaphors

for scientific and technical development, which, in turn, has contributed to the

better understanding of Nature itself. It is not difficult to identify the links

between the ear and the microphone, the eye and the camera, the bat and the

sonar system, the brain and artificial neural networks, and so forth. Similarly,

the process of natural evolution has inspired a growing amount of research in

artificial systems, which has been made possible by the increasing availability of

modern computing power.

This Chapter seeks to draw attention to the potential of artificial evolution

techniques in control engineering. It begins with a brief description of evolu-

tionary computation as a whole in Section 2.2, after which a particular family of

methods, known as genetic algorithms, is introduced and discussed in more detail.

7
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Section 2.4 places genetic algorithms in the context of optimization, and examples

of their previous application in control engineering are reviewed in Section 2.5.

The Chapter concludes with a discussion of the classes of problems to which

genetic algorithms appear to be best suited. The motivations for the work on

multiobjective optimization which will follow are also identified.

2.2 Evolutionary computation

The term Evolutionary Computation (EC) is used to describe a broad class of

computational methods inspired in the process of natural evolution. The interest

such methods have attracted from research fields as diverse as biology, chem-

istry, economics, engineering, cognitive science and mathematics, among others,

is twofold. Firstly, EC provides a means of modelling and simulating natural and

economic processes, through which the original processes can be studied and/or

analyzed. In addition to that, EC has also proved useful in addressing complex

search and optimization problems effectively, extending the scope of optimization

to areas it could not reach before.

Evolutionary computation methods, or Evolutionary Algorithms (EAs),

emerged in the late 1960s. In Germany, Evolutionstrategien (Evolution Strate-

gies, ESs) were developed by Rechenberg (1973; 1994) and Schwefel (1981), whilst

in the United States two further approaches arose: Fogel’s Evolutionary Pro-

gramming (EP) (Fogel, 1991), and Holland’s Genetic Algorithms (GAs) (Hol-

land, 1975). Similar methods were presumably developed also in Poland (Karcz-

Dulȩba, 1994), where the term “soft selection” was used to differentiate the evo-

lutionary approach from traditional hill-climbing.

Each of the methods above places emphasis on different aspects of what can be

seen as Evolutionary Computation as a whole. Evolution Strategies have mainly

been seen as robust, and yet efficient, optimizers for engineering design problems

involving many real decision variables. Usual assumptions/pre-requisites of other
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optimizers, such as continuity and smoothness of the cost surface, gave way to

the much broader assumption of strong causality, valid for most problems in en-

gineering. Evolutionary Programming was originally developed in the context of

Artificial Intelligence to evolve the state transition tables of finite state machines

(Bäck and Schwefel, 1993), but was then extended to work with real decision

variables.

Genetic algorithms have placed a much stronger emphasis than their counter-

parts on global, as opposed to local, search and optimization. GAs were initially

formulated as combinatoric search algorithms, which required discretization of

the search space in order to be applied to problems involving real decision vari-

ables. Rather than being seen as a weakness, the need for discretization made

GAs appear particularly suitable for implementation on digital computers, while

maintaining an attractive analogy to natural genetics. In Nature, sequences of

genes taking one of four possible values each find expression in both continuous

and discrete somatic features, examples of which are, respectively, body weight

and number of body segments. Theoretical arguments based on the building-

block hypothesis and the Schema Theorem (Holland, 1975; Goldberg, 1989) also

appeared to support discretization.

Their claims of globality, the ease with which they can be modified and ap-

plied to very different classes of problems, and many encouraging results, have

conferred great popularity to GAs. Unfortunately, theory has been slow to ac-

company their practical development, leading to a situation where theory and

practice often conflict, or even contradict each other. There is to date no strong

predictive theory of GAs applicable to problems of realistic size, despite some

contributions in that direction (Manderick et al., 1991).

More recently, as the different EA communities merge and interact, the need

for a better understanding of the principles of evolution clearly begins to assume

greater importance than simply concentrating on the details of every procedu-

ral variation of each particular “standard” algorithm. It is in line with these
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considerations that genetic algorithms will be introduced in the next section.

2.3 Genetic algorithms

Genetic algorithms are stochastic search algorithms inspired by the principles of

natural selection and natural genetics. A population of candidate solutions, or

individuals, is maintained, and individuals made to compete with each other for

survival. Once evaluated, stronger individuals are given a greater chance of con-

tributing to the production of new individuals (the offspring) than weaker ones,

which may not even contribute at all. Offspring are produced through recom-

bination, whereby they inherit features from each of the parents, and through

mutation, which can confer some truly innovative features as well. In the next

selection step, offspring are made to compete with each other, and possibly also

with their parents. Improvement in the population arises as a consequence of the

repeated selection of the best parents, which are in turn more likely to produce

good offspring, and the consequent elimination of low-performers.

2.3.1 The population

In GAs, individuals are considered at two levels: the phenotypic level and the

genotypic level. An individual’s phenotype is its value in the domain over which

the objective function is defined, constituting a candidate setting for the decision

variables of the problem. This is analogous to features such as stature, weight,

number of limbs, and limb length. On the other hand, an individual’s genotype is a

representation of its phenotype at a lower level, analogous to the genetic sequences

contained in biological chromosomes, which the computer stores and the GA

manipulates. The phenotype is therefore encoded in the genotype, traditionally

as a bit string, but more generally as any convenient data structure. Strings have

been preferred for simplicity and for the analogy with natural chromosomes, but
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other structures such as matrices, trees, and even lists of rules (Grefenstette,

1989), are also used.

The distinction between the phenotype and its genotypic representation is

important and will be adhered to here, because it facilitates the extension of

the approach to novel classes of problems. However, it is not necessarily a rigid

one: a genotype and the corresponding phenotype can also be the same, in which

case the mapping between the two is trivial. The genotypic representation and

the associated genotype-to-phenotype mapping, which may be a one-to-one or a

many-to-one mapping, are very important design parameters of the GA. One-to-

many and many-to-many mappings may also occur in practice, for example, as a

consequence of uncertainty in the evaluation of the objective function.

2.3.2 Evaluation and fitness assignment

Individuals are evaluated via the objective function which defines the problem.

As a result of the evaluation, they are assigned a certain cost (assuming a mini-

mization problem), which discriminates between them. Each individual’s fitness

is then derived from its cost while taking into account the other individuals in

the population.

The distinction between cost and fitness is made here for a reason more impor-

tant than just interfacing between a minimization problem and the maximization

nature of the GA. In fact, cost is something intrinsic to the problem and, there-

fore, may not be changed at will. Moreover, cost can generally assume values

in any ordered set. On the other hand, the cost-to-fitness mapping relates to

the selection process, being a customizable part of the optimization strategy. It

should be a (broadly) monotonic mapping onto the subset of non-negative reals.

For generality, the normalized fitness of a given parent is defined here as the

fraction of the population’s total number of offspring a given parent is assigned

to produce in the next selection step. Since it assumes values in the interval
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[0, 1], normalized fitness is sometimes seen as a probability. However, such an

interpretation is valid only in the context of particular implementations of the

selection procedure, such as sampling with replacement, as discussed later.

Another useful concept is that of relative fitness, i.e., the fitness of an individ-

ual normalized by the average fitness of the population. Relative fitness provides

a direct indication of how much better or worse than the current average indi-

viduals are.

While the ordering of the individuals in the population, as determined by their

cost, should be preserved, the cost-to-fitness mapping may or may not preserve

scale. There are essentially two types of fitness assignment strategies:

Scaling Fitness is computed as a, possibly non-linear, function of the cost val-

ues. Care must be taken to ensure (or force!) non-negative fitness for all

individuals, while giving the best individual in the population a controlled

advantage over the others.

Ranking The mapping is performed by sorting the population by cost, and

consequently assigning set fitness values to individuals according to their

position in the population, or rank. Scale information is thus deliberately

discarded.

Scaling is the more traditional approach. Raw fitness is calculated as a mono-

tonic function of the cost, offset by a certain amount, and then linearly scaled.

The first difficulty arises at this stage: whilst scaling aims to preserve the rel-

ative performance between different individuals, both the initial transformation

and the subsequent offsetting can significantly affect the relative fitness ultimately

assigned to each individual.

With scaling, an individual much stronger than all the others may be as-

signed a very large relative fitness and, through selection, rapidly dominate the

population. Conversely, the advantage of the best individual over the rest of the
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population will be minimal if most individuals perform more or less equally well,

and the search will degenerate into an aimless walk.

As none of the two situations above is desirable, the relative fitness assigned

by scaling to the best individual in the population must be controlled in some

way. Sigma-scaling, for example, calculates the desired amount of offset from

the average and standard deviation of the raw fitness values in the population

at each generation, so that the relative fitness of the best individual is set more

sensibly (Hancock, 1994).

Ranking addresses these same difficulties by eliminating any sensitivity to the

scale in which the problem is formulated. Since the best individual in the popu-

lation is always assigned the same relative fitness, would-be “super” individuals

can never reproduce excessively. Similarly, when all individuals perform almost

equally well, the best individual is still unequivocally preferred to the rest (but

this may be inappropriate if the objective function is contaminated with noise).

Rank-based fitness assignment is characterized by the choice of rank-to-fitness

mapping, which is usually chosen to be linear or exponential. For a population of

size N , ranking the best individual zero1 and the worst N − 1, and representing

rank by r and relative fitness by f = f(r), these mappings can be written as

follows:

Linear

f(r) = s− (s− 1) · 2r

N − 1
,

where s, 1 < s ≤ 2, is the relative fitness desired for the best individual.

The upper bound on s arises because fitness must be non-negative for all

individuals, while maintaining
∑N−1
i=0 f(i) = N .

1This convention is adopted here for consistency with the interpretation of ranking given in
Chapter 4.
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Exponential

f(r) = ρr · s ,

where s > 1 is the relative fitness desired for the best individual, and ρ

is such that
∑N−1
i=0 ρi = N/s. Since there is no upper-bound on s, the

exponential mapping is somewhat more flexible than the linear.

For 1 < s ≤ 2, the main difference between linear and exponential rank-

based fitness assignment is that the exponential mapping does not penalize the

worst individuals as much, at the expense of assigning middle individuals fitness

slightly less than average. As a consequence, exponential assignment generally

contributes to a more diverse search.

2.3.3 Selection

Selection, or replication, is the process of choosing individuals to participate in

the production of offspring, proportionally to their fitness. However, since the

number of replicates must be an integer, the realized number of offspring will

usually need to be higher or lower than the desired value, introducing what is

called selection error.

In order to avoid systematic selection errors, selection in GAs is usually per-

formed stochastically. The expected number of offspring of an individual should

then correspond exactly to its fitness, while stochastic selection errors should re-

main as small as possible. Baker (1987) achieved these two goals with a sampling

algorithm he called Stochastic Universal Sampling (SUS). SUS was proposed as

an alternative to Goldberg’s Roulette Wheel Selection (Goldberg, 1989) (RWS, or

sampling with replacement), which allows fairly large selection errors to occur.

RWS consists of a sequence of independent selection trials where the probability

of each individual being selected in each trial (as determined by the relative size
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Figure 2.1: Roulette Wheel Selection
(or sampling with replacement).
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Figure 2.2: Stochastic Universal Sam-
pling.

of the slots on a roulette wheel, see Figure 2.1) remains constant and equal to its

normalized fitness.

Selection with SUS may also be visualized as the result of spinning a roulette

wheel with slots proportional in width to the fitness of the individuals in the

population, but with multiple, equally spaced pointers (Figure 2.2). Once it stops,

the number of pointers over each sector must be either the floor or the ceiling

of the corresponding desired number of offspring, thus guaranteeing minimum

deviations from the desired value, or spread. The replicates obtained should be

shuffled before the algorithm proceeds with recombination and mutation.

In the extreme case where a single individual is to be selected, SUS is clearly

equivalent to RWS. When selecting multiple individuals, the advantage of SUS

over RWS in terms of spread increases with the number of offspring to be gener-

ated. There is usually no reason to use RWS in these circumstances.

A fairly different approach to selection is known as tournament selection (Han-

cock, 1994). In its simplest form, pairs of individuals are drawn from the popu-

lation at random, and individuals in each pair compared to each other. The best

individual in each pair is declared the winner of that tournament and selected.

Tournament selection is particularly convenient when it is easier to compare

individuals than to compute their absolute performance, as is often the case in ge-
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netic programming. However, like RWS, selection with random tournaments can

lead to large selection errors. When selecting multiple individuals, it should be

possible to rank the population given any number of pairwise comparisons (Up-

puluri, 1989), or tournaments, and to use SUS to select the offspring given that

ranking. The more individuals that are compared, the more accurate the selection

process will be.

Tournament selection is similar to ranking in that it does not rely on scale

information. Varying the size and number of the tournaments allows the effective

relative fitness of the best individual to be controlled, although less flexibly than

with ranking. Making the probability of the best individual in a tournament

winning that tournament less than one allows the expected relative fitness of the

best individual in the population to be controlled (decreased) more smoothly.

Deciding tournaments with a probability depending on the relative fitness of

the two contestants results in a decrease in fitness differential as the population

converges.

2.3.4 Mutation and recombination

Repeated selection from the same population would produce nothing better than

multiple copies of the best individual originally in it. For improvement to be able

to occur, some novelty must be introduced into the population between selection

steps. The genetic operators modify the selected parents by manipulating their

genotype, and can be divided into two main categories:

Mutation causes individual genotypes to be changed according to some prob-

abilistic rule. Usually, only a small part of the chromosome is changed by

mutation, causing offspring to inherit most of the features of the parent.

Deterministic “mutation” can also be implemented. It is more commonly

known as repair.
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Recombination causes individuals to exchange genetic information with one

another, in pairs or larger groups. Features from two or more parents can

thus be inherited by the same offspring.

Mutation operators are generally the simpler of the two categories, but cer-

tainly not the least important. Evolution through mutation and selection without

recombination is not only possible but can also be very effective. Evolution Strate-

gies, for example, were originally conceived as mutation-selection algorithms. Re-

combination, on the other hand, makes a different contribution to the search. By

bringing into a single individual the genetic features of two or more parents, it

can significantly accelerate the search process, especially in the case where de-

cision variables are loosely coupled. For this reason, recombination of selected

individuals is usually performed with high probability, typically between 0.6 and

0.9.

The implementation of recombination and mutation necessarily depends on

the underlying genotypic representation. Further, the performance of the same

operators generally depends on the problem class under consideration. A great

deal of research has been put into identifying the best genetic operators for various

classes of problems. The development of the Edge Recombination operator for

the Travelling Salesman Problem (Whitley et al., 1991) is a good example of this.

A typical recombination operator for binary and other string chromosomes

is single-point crossover, whereby two individuals exchange a portion (right or

left) of their chromosomes to produce offspring, as illustrated in Figure 2.3. The

crossover point is selected at random. Other recombination operators commonly

used with binary strings are:

Double-point crossover Two crossover points are selected instead of one

(Booker, 1987).

Uniform crossover Each bit is exchanged independently, with a given proba-

bility (Syswerda, 1989).
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1 1 1 1 1
−→

0 0 0 0 0
↑

crossover point

1 1 1 0 0
↗↘

0 0 0 1 1

1 1 1 0 0
−→

0 0 0 1 1

Figure 2.3: Single point crossover.

1 1 1 0 0 −→ 1 0 1 0 0

Figure 2.4: Bit mutation.

Shuffle crossover The chromosomes are shuffled before single-point crossover

is applied, and consequently deshuffled (Caruana et al., 1989).

Reduced-surrogate crossover The non-identical bits in the chromosomes are

first identified, and one of the above crossover types applied to the smaller

string thus defined (Booker, 1987). This has the effect of guaranteeing the

production of offspring different from their parents.

As for bit mutation (see Figure 2.4), it is most commonly implemented by in-

dependently flipping each bit in the chromosome with a given probability. The

setting of mutation probabilities will be discussed later in subsection 2.3.8.

2.3.5 Reinsertion

The insertion of offspring back into the population can be made in a variety

of ways. In the simplest GAs, for example, the entire population of parents

is unconditionally replaced by their offspring. Apart from the assumption of a

constant population size, this replacement strategy finds parallel in many natural

species, where reproduction takes place seasonally, and parents die before their

offspring are born. This is known as generational replacement.
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Naturally, there is also interest in GAs where offspring have the chance to

compete with at least some of their parents. In the case known as the steady-

state, or incremental, GA, a minimal number of offspring (typically one or two)

is produced through recombination and mutation. These offspring are then eval-

uated, and possibly reinserted into the population, replacing

• random members of the parental population.

• the oldest members of the parental population.

• their own parents.

• the least fit members of the parental population.

Actual reinsertion may occur

• unconditionally.

• only if the offspring are fitter than the individuals they are to replace.

• probabilistically, depending on whether or not the offspring are stronger

than the individuals they are to replace.

By denying some individuals the possibility of reproducing further, reinser-

tion has ultimately the same effect as selection. The overall selective pressure, or

bias towards the best individual, imposed on the population is not only deter-

mined by the fitness assignment strategy, but is also affected by when and how

reinsertion is performed. In particular, always replacing the least fit individuals

in the population strongly increases the effective, as opposed to assigned, fitness

differential between stronger and weaker individuals in the population. This is

because, in addition to being less likely to be selected, weaker individuals tend to

die earlier, thus participating in less selection trials than stronger ones. Reinser-

tion strategies which guarantee the preservation of the best individual are known

as elitist.
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The use of different combinations of selection and reinsertion strategies is

widely reported in the GA literature. Steady-state GAs, for example, were argued

to provide better results than generational ones, allegedly because they exploited

newly generated fit individuals earlier than would otherwise be the case. As

pointed out by Harvey (1992), this translates into an increase in selective pressure,

even if random replacement is used. Replacement based on fitness would provide

even greater selective pressure.

The additional selective pressure provided by steady-state reproduction with

respect to its generational counterpart may be the simple reason why steady-state

GAs seem to perform better in certain cases. Sufficient selective pressure is espe-

cially important if large selection errors can occur. The work of Syswerda (1991)

reveals no fundamental difference between generational and steady-state GAs

with random unconditional replacement. Increasing the selective pressure in a

generational GA explicitly through fitness assignment may yield similar results

to doing so implicitly through the replacement strategy.

2.3.6 Genetic drift and fitness sharing

There is a clear trade-off between sampling quality, which increases with the

number of offspring to be selected simultaneously (with SUS), and the latency

inherent in the generational approach, where a single generation step involves

many function evaluations. If individuals can be evaluated in parallel, selecting

many individuals simultaneously is clearly appropriate, but a steady-state GA

might be more desirable when the objective function is computationally intensive

and has to be evaluated sequentially.

In the long run, a finite population undergoing stochastic selection will tend to

evolve towards a small region of the search space, even if other regions of similarly

high fitness exist (for example, there may be more than one local optimum).

This normally undesirable phenomenon, known as genetic drift, is due to the
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composition of selection errors over the generations, and can be observed in both

natural and artificial evolution.

A concern with sampling accuracy is, therefore, justified. The smaller the

population, the more vulnerable it is to selection errors and genetic drift, and

the more important it is to ensure an accurate sampling mechanism. This is

why a heuristic preference for generational GAs with SUS was expressed earlier.

Unfortunately, and although optimally accurate, SUS cannot by itself eliminate

genetic drift. As long as populations must remain finite, selection errors are

unavoidable.

In these circumstances, it is the accumulation of selection errors that must be

controlled in order to prevent genetic drift. Higher mutation rates can achieve

this to a certain extent by systematically introducing diversity into the popula-

tion, but, as discussed below, mutation rates cannot be made arbitrarily high.

Similarly, introducing a small percentage of random immigrants into the popula-

tion at each generation (Grefenstette, 1992) makes the GA more likely to recover

information lost through selection and, thus, from genetic drift. A further alter-

native consists of penalizing the production of individuals similar to each other,

for example, by forcing offspring to replace the most similar of their parents, a

technique known as crowding (Goldberg, 1989).

A more elaborate technique, known as fitness sharing (Goldberg and Richard-

son, 1987), models individual competition for finite resources in a closed environ-

ment. Similar individuals are weakened by having to share the same resources

with each other, while different ones retain their original fitness. As a consequence

of fitness sharing, the selection process receives negative feedback discouraging

the replication of already abundant individuals, and causing the population to

cluster around different local optima in the search space. Such clusters represent

favourable regions of the search space, which are known as niches.

The main difficulty with fitness sharing lies in the decision of how similar

individuals should be in order to begin to decrease each other’s fitness. Suitable
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distance measures can be defined in both genotypic and phenotypic space, but

the appropriate threshold σshare has only been estimated based on assumptions

regarding the location and probable number of local optima in the search space,

both of which are generally unknown (Deb and Goldberg, 1989).

2.3.7 The viability of mating and mating restriction

As the population splits into groups to populate different niches, the ability of

recombination to produce fit offspring from individuals in such different groups

may decrease. Indeed, it often leads to the creation of offspring outside both

favourable regions (Deb and Goldberg, 1989). Such unfit individuals are usually

referred to as lethals.

Following the clue from Nature, where mating tends to occur only between

reasonably similar individuals (those of the same species), a mating restriction

scheme can be added to the GA in order to reduce the formation of lethals, as

proposed by Deb and Goldberg (1989). Again, a measure of distance between

individuals must be defined.

Although constituting an improvement on random mating, mating restriction

based on a distance measure does not address the whole issue of mate selection.

In particular, the choice of how similar individuals should be in order to mate

(σmate) is just as difficult to make as it is to set σshare (in practice, σshare and σmate

are usually assigned the same value). Sexual mate choice, for example, also seems

relevant in this context, but only very exploratory studies have been carried out

so far (Miller, 1994).

The success of recombination depends not only on how different the mating

parents are, but also, and possibly more so, on the interaction between chromo-

some coding, the recombination operator, and the structure of the cost landscape.

Manderick et al. (1991) has shown that, for certain types of cost landscapes, the

performance of different recombination operators can be related to statistical



CHAPTER 2. REVIEW OF GENETIC ALGORITHMS 23

properties of the cost surface itself. The question of how recombination and/or

chromosome coding can be evolved concurrently with the search is a natural one,

for which there are to date no definite answers.

2.3.8 Mutation rates and selective pressure

The “optimal” setting of mutation and recombination rates was probably one of

the first concerns raised by the use of GAs in optimization. Initial studies, of an

experimental nature, tried to find settings which “worked well” for a number of

test functions. Most of those studies concentrated on binary chromosomes, where

mutation rate is clearly defined as the probability of each bit being independently

inverted by mutation. Nevertheless, some results apply also to more general

chromosomes.

The “large” mutation rates proposed by some authors raised controversy over

the effective rôle of mutation in genetic search, which was considered secondary

by others. Nowadays, mutation is better understood, and recognized to be an

important, active search operator. The setting of mutation rates has been shown

to depend on a number of other aspects of the GA, namely:

Selective pressure In the absence of recombination, the probability of individ-

uals not undergoing mutation should be such that at least one exact copy

of the best individual in each generation can expect to survive beyond its

parent’s death. This setting, suggested by the work of Schuster (see Har-

vey (1992)), maximizes exploration of the search space by the population

while guaranteeing the exploitation of the best individual. In fact, higher

mutation rates would quickly make the search degenerate into a random

walk, because selection would no longer be able to recover from the ge-

netic errors introduced by mutation. This abrupt change in the qualitative

behaviour of the GA as the mutation rate increases is known as error catas-

trophe. Lower mutation rates than the corresponding error threshold more
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surely preserve the best individual, but also make the search less diverse.

Chromosome length The above considerations raise an important question in

the case of elitist GAs, for example. Since the best individual is never lost in

such cases, it would appear that offspring could be made arbitrarily different

from their parents. This is clearly not the case, as it would be equivalent

to pure random search. So, how much of the chromosome should mutation

actually change?

Mutation rates for string chromosomes are usually set to about the inverse

of the chromosome length, which has been shown theoretically to be optimal

(under restrictions) (Bäck, 1993), and observed experimentally to perform

well on a wide range of problems.

Distance to the optimum As noted by Bäck (1993), the farther away from

the optimum an individual is, the higher the mutation rate must be in

order to minimize the average distance of the corresponding offspring to

that optimum. This has the strong implication that mutation rates should,

in principle, not remain constant throughout a GA run. Although it has

been observed that a variation of mutation rates over time may accelerate

optimization, such practice does not appear to be well established. As Bäck

points out, the standard mutation rate 1/`, where ` is the chromosome

length, is close enough to what could be achieved with optimally time-

varying mutation rates.

In practice, mutation rates set according to the above guidelines are usually ac-

ceptable. In Chapter 5, the setting of the mutation rate of a binary, generational

GA is described in detail.
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Figure 2.5: Farmer-worker implementation of the GA.

2.3.9 Parallel implementation and structured populations

Although they tend to be computationally demanding, genetic algorithms are

also very amenable to parallel implementation. As already suggested in sub-

section 2.3.6, the evaluation stage of a generational GA may be performed in

parallel. Assuming the GA itself is run on a single processor, offspring produced

at each generation can simply be farmed out for evaluation on other processors,

as illustrated in Figure 2.5. This approach is especially appropriate when the

amount of computation required for each evaluation is high compared with that

of the GA itself and with the amount of data which needs to be communicated

between processors per evaluation. Incremental GAs may also be parallelized in

this way, but the number of offspring produced at a time should equal the number

of processors available.

So far, it has been implicitly assumed that all individuals take the same

amount of computation time to evaluate. When this is not the case, a synchronous

(generational or incremental) implementation may not utilize the processors avail-

able to the full. However, GAs may also be implemented asynchronously: fol-

lowing the evaluation of the whole population, a new individual is selected for

evaluation every time a processor completes the evaluation of a previous one,

which is then reinserted into the population. As a side effect, this approach is
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Figure 2.6: The island model.

actually biased towards individuals less expensive to evaluate, as these tend to

participate in selection more often. This may, or may not, be desirable.

The above approaches are centred around the “GA farmer”, and do not appear

as very accurate models of natural evolution. In such panmictic GAs, individuals

are allowed to mate, but also forced to compete, with every other individual in the

population. In Nature, however, geographical isolation implies that individuals

in one continent, for example, never get a chance to interact with individuals

in another continent, possibly with a few exceptions. Populations are therefore

structured, and evolution is conditioned by that structure.

In the island-model, several GAs are run independently, e.g., on different

processors. In addition, these GAs periodically exchange small fractions of their

populations, implementing migration (see Figure 2.6). In the diffusion model, the

population is distributed over a grid, and each individual interacts only with its

direct neighbours (see Figure 2.7).

The paradigm of geographical isolation makes parallelization even more at-

tractive, as it cuts down inter-processor communication, but it does not require

implementation on a parallel architecture. More interestingly, genetic algorithms

based on structured populations seem to exhibit even better global search proper-

ties than their panmictic counterparts, which, by itself, justifies their sequential

implementation as well. For simplicity, however, only panmictic GAs will be

considered in the present work.
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Figure 2.7: The diffusion model.

2.4 Genetic optimizers for control engineering

An ideal, Utopian, optimizer would find the global optimum of an arbitrary

cost surface with a minimum of function evaluations. Not too surprisingly, such

an optimizer does not exist. Instead, there is always a trade-off between how

general and how efficient different methods are. The field of numeric optimization

provides many examples of this trade-off, a few of which are:

Linear programming Aimed at, and only at, problems involving only linear

functions.

Gradient-based non-linear optimization methods For problems involving

non-linear functions. The cost function should be unimodal, and also be

continuous and differentiable, at least in the neighbourhood of the opti-

mum. Gradient-based methods also work for linear problems, but linear

programming would be much more efficient in that case.

Simplex-based non-linear optimization methods Do not require the cost

function to be continuous or differentiable. However, there should still

be a single local optimum and no regions of flat cost. These methods

generally perform worse than those based on gradients if applied to smooth
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continuous functions.

Random search Is the most general, and also the weakest of all optimization

methods. It can be applied as long as the search domain can be defined and

the cost function evaluated. It will, in the limit, find the global optimum

of a multimodal cost function, but very inefficiently.

Genetic algorithms could be placed somewhere in between the two last items.

Like simplex-based methods, GAs only require that cost be defined at each point

in the search space. Also, GAs work best when a single local optimum exists

in genotypic space, where the concept of neighbourhood depends on the genetic

operators (Reeves, 1994). Curiously enough, simplex methods also maintain a

“population” of points, the simplex, from which new points are generated ac-

cording to given rules. Despite having been developed independently, genetic

algorithms can thus be seen as an extension of the simplex approach. Genetic

algorithms maintain an arbitrarily large population and are based on probabilis-

tic transition rules, rather than deterministic transition rules as in the simplex

method (Walsh, 1975).

The power of the many conventional optimization methods in areas where they

find application must be recognized. Similarly, any available knowledge about a

function’s behaviour should affect the formulation of a particular GA (Davis,

1991), while bearing in mind that generality is lost as more and more domain

specific knowledge is incorporated (Michalewicz, 1993). Such knowledge is often

available for control engineering problems.

A number of issues arising commonly in control systems engineering prob-

lems, and the way in which these can be addressed through the GA approach, is

discussed below (Fleming and Fonseca, 1993).

Discrete decision variables Discrete decision variables can be handled directly

through standard binary, or even n-ary, encoding. When functions can be

expected to be locally monotonic with respect to such variables, the use of
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Figure 2.8: A convenient floating point binary format grows in the same fashion
as standard binary.

Gray coding is known to exploit that monotonicity better than standard

binary, assuming the traditional genetic operators described earlier.

Continuous decision variables Real values can be approximated to the nec-

essary degree by using a fixed point binary representation. However, in

most control problems, the relative precision of the parameters is more

important than their absolute precision. In this case, the logarithm of the

parameter should be encoded instead. Alternatively, a floating point binary

representation can also be used directly.

The previous consideration about Gray coding applies to both fixed and

floating point formats. In fact, a convenient floating point format can be

shown to grow in the same fashion as standard binary (Figure 2.8), and can

therefore be Gray encoded.

The direct manipulation of real-valued chromosomes, as in Evolution Strate-

gies, has also been proposed (Davis, 1991). While this approach is preferred
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by many practitioners, mainly for its better local convergence properties,

it has been severely criticized in theory (Goldberg, 1991). More recently,

real-coded GAs have received theoretical support mainly from the German

school (Mühlenbein and Schlierkamp-Voosen, 1993).

In Chapters 4 and 5, continuous decision variables are binary (Gray) en-

coded for simplicity. Although this encoding is shown to possess a number

of limitations in the context of those chapters, it is unclear whether a real-

encoding would overcome those limitations. While it is clearly related to

the present work, the study of the “representation problem” lies largely

outside its scope.

Non-numeric decision variables There are also problems in control engineer-

ing where some decision variables are simply non-numeric. In controller de-

sign, for example, the structure of the controller is a decision variable itself.

Such problems can be accommodated by devising suitable representation

schemes and appropriate genetic operators. Chapter 6 provides an example

of how GAs can be used to select model structures in non-linear system

identification, by choosing an appropriate representation and operators.

Multimodality Multimodal functions may be particularly difficult for conven-

tional optimizers. GAs are more robust, but they are still not guaranteed

to find the global optimum. Multimodality is usually addressed with niche

induction techniques such as sharing, mating restriction, and crowding, as

discussed in subsections 2.3.6 and 2.3.7. These encourage the GA to search

many optima simultaneously, thereby increasing the probability of finding

the global one. Genetic algorithms based on structured populations have

been shown to be more robust to multimodality than conventional, pan-

mictic GAs (Collins and Jefferson, 1991).
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Constraints Most engineering optimization problems are constrained in some

way. For example, control loops are required to be stable and actuators

have finite ranges of operation. Constraints have been handled mainly in

two ways, the most efficient of which usually consists of embedding them in

the coding of the chromosomes. When this is not possible or easy, the fitness

assignment process should reflect the fact that invalid individuals represent

worse alternatives than valid individuals. Additive penalty functions, often

used with GAs, are known to be very problem dependent and, thus, difficult

to set (Richardson et al., 1989). More recently, a more general approach

based on ranking has been proposed (Powell and Skolnick, 1993).

Multiple objectives Finally, control engineering problems very seldom require

the optimization of a single objective function. Instead, there are often

competing objectives which should be optimized simultaneously. The po-

tential of GAs to become a powerful method for multiobjective optimization

has long been recognized (Schaffer, 1985), namely concerning the concur-

rent finding of multiple solutions illustrative of the trade-offs present in the

problem, made possible by a population-based search.

Despite initial interest, contributions in the area have remained scarce.

Multiobjective optimization with GAs was recognized as non-trivial by

Richardson et al. (1989), who reported success on the set covering problem,

but experienced “difficulties in extending the approach to other classes of

problems”.

The next section briefly reviews examples of the application of GAs to a

number of problems in the control field.
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2.5 Control applications of GAs

Broadly, the application of GAs to control engineering problems may be clas-

sified into two main areas: off-line design and on-line adaptation, learning and

optimization. In CACSD, the GA is run off-line as an optimizer, where optimal

individuals evolve from a random population. In on-line applications, however,

the direct evaluation (through experimentation) of weak individuals may have

catastrophic consequences. Therefore, it is a common practice for a GA to oper-

ate on a model of the system on-line and only to indirectly influence the control

operation.

Some examples of off-line and on-line control applications are described next.

2.5.1 Optimal controller tuning

The tuning of controllers is a classic optimization problem for control engineers

and can be easily addressed using a GA. Hunt (1992a; 1992b; 1992c) applied it

to four classes of problems, namely LQG, H∞ minimum and mixed sensitivity

problems, and frequency domain optimization.

In each case, a simple, binary-coded, genetic algorithm was used to evolve sets

of controller parameters for a given controller structure. Individuals were assessed

by directly evaluating the cost function corresponding to the problem. Non-

stabilizing controllers, for which no cost was defined, were assigned an extremely

low fitness. The stability constraint was thus incorporated in the GA.

2.5.2 Robust stability analysis

One approach to the stability analysis of systems in the presence of uncertain pa-

rameters involves searching a neighbourhood of the nominal system in parameter

space, the so-called Q-box, for points which yield unstable systems. Murdock et

al. (1991) proposed the genetic search of the Q-box, formulating it as the maxi-
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mization of the maximum root of the system within given parametric uncertain-

ties. This objective function presents significant difficulties to conventional opti-

mization approaches, for its possible multimodality and/or non-differentiability.

The GA was applied to a number of benchmark examples in order to verify

its performance. It reportedly was able to handle large numbers of parameters

while producing the correct results, and being computationally more efficient than

the other existing methods. Its application to problems which lack a necessary

and sufficient condition test, or the complexity of which makes other methods

impractical, was suggested.

2.5.3 System identification

Kristinsson and Dumont (1992) applied genetic algorithms to the on-line, as well

as off-line, identification of both discrete and continuous systems. In their imple-

mentation, windowed input and output data was used to construct an objective

(cost) function of the parameters to be identified, which could either be the sys-

tem parameters in their natural form, poles and zeros, or any convenient set of

transformed variables.

Since the real system parameters would be expected to minimize such an

objective function for any set of input-output data, the GA saw an environment

which, although varying in time due to the diversity of the data sets, maintained

its optimum in the same region of the search space. In this way, only the best

estimate found for a particular set of data was needed to adaptively control the

system. The evaluation of individuals other than the best in the GA population

was of no consequence to the control loop.

Note that, as the predictive quality of the best identified model was known

before it came to affect the control loop, it would always be possible to default

to a “safe” controller in the case of unacceptable GA performance.
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2.5.4 Classifier systems

Classifier systems (CSs, see Goldberg (1989)) are machine learning systems that

encode production rules in string form (classifiers) and learn such rules on-line,

during their interaction with an arbitrary environment. Each rule has the struc-

ture

< condition >:< action > ,

which means that the action may be taken when the condition is satisfied

(matched).

They are parallel, message passing, rule-based systems which use GAs. The

rule system is one of the three main components of a CS. It communicates with

the outside world through a message list. Messages may cause an action to be

taken, or another message to be produced by matching one or more classifiers in

the classifier store.

The second component of a CS is the apportionment of credit system, which

associates a strength with each classifier. The right a classifier has to respond to a

particular message depends on its strength. The strength is reduced by a certain

amount every time the classifier is activated, that amount being paid to whatever

(classifier or environment) was responsible for its activation. Classifiers may also

receive reward from the environment. In this way, rules which contribute toward

good actions being taken tend to see their strengths increased.

The third component of a CS is the GA which is in charge of discovering

new, possibly better, rules. While selection of good rules is provided through

apportionment of credit, bad rules may be replaced by combinations of good

ones, and their performance evaluated on-line.

While it is unsafe to evolve rules for complex systems on-line using a sim-

ple GA, its successful incorporation in a rule-based learning system has been

reported in connection with the optimization of combustion in multiple burner

installations (Fogarty, 1990). Other hybridized techniques involve fuzzy control.
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2.5.5 Fuzzy control

Linkens and Nyongesa (1992) identify four main aspects of fuzzy controller design:

• selection of scaling factors,

• derivation of optimal membership functions,

• elicitation of a rule-base, and

• the on-line modification of the rule-base.

The optimization of membership functions is seen as an off-line task, while a

fuzzy classifier system is used to acquire and modify good sets of rules on-line.

Adaptive control is provided by the constant adaptation of the rule set to the

varying dynamics of the problem, without the explicit identification of a plant

model.

On the other hand, Karr (1991; 1992) concentrates all of the adaptation effort

on the on-line optimization of the membership functions. It is argued that the

rules-of-thumb humans use tend to remain the same, even across a wide range

of conditions. It is the definition of the linguistic terms, here the membership

functions, which is adapted to the present situation.

This concept has been implemented together with another GA-based system,

an analysis (identification) element, to control a laboratory pH system of varying

dynamics. While the analysis GA provided the parameters of a model of the pro-

cess being controlled, membership functions were optimized using such a model

as a basis for their evolution. The current best set of membership functions was

then used to actually control the plant.

2.5.6 Robot trajectory planning

The automatic generation of robot trajectories (Solano, 1992) is an order-

dependent, generally multimodal, problem, where candidate solutions are typ-
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ically of variable length. A GA approach to this problem (Davidor, 1991a) re-

quired the introduction of specialized genetic operators (Davidor, 1989) and was

then improved through the use of Lamarckian learning, whereby also acquired

characteristics are passed on to offspring, to bias the action of the genetic op-

erators. Although Lamarckism is generally accepted not to take part in natural

evolution, there is no reason why it should not be used in artificial evolution,

when able to improve it.

Comparison with hill-climbing shows the ability of the GA to find good tra-

jectories, balancing an eventually slower rate of convergence with a much better

global behaviour.

2.6 Concluding remarks

Genetic algorithms, with their broad domain of application, have considerably

extended the scope of optimization in engineering. This expansion has been

mirrored by the diversity of control applications which have arisen in the past

few years. The current availability of parallel computing power, which GAs

can effectively exploit, reinforces the viability of the evolutionary approach to

optimization.

Genetic algorithms are particularly well suited to design problems difficult to

address by other methods, namely problems involving variables of mixed types

and/or ill-defined objectives. On-line applications, however, may present sig-

nificant challenges. When a system model is available, or can be identified, a

conventional GA can be applied on-line with little alteration. If this is not the

case, the nature of the GA search demands that the system possess a rare degree

of robustness to sustain the level of exploration demanded by a typical GA. Al-

ternatively, classifier systems provide an approach to the control of plants which

cannot be modelled.

Among the many application areas of GAs, multiobjective optimization stands
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out as one of the most promising and, simultaneously, one of the least explored

in the literature. While the relevance of multiobjective optimization in engineer-

ing design cannot be denied, most current multiobjective approaches resort to

the optimization of an analytical combination of the objectives by conventional

(single-objective) means. While combining the objectives in a meaningful way

prior to optimization can be generally difficult, this difficulty is further aggra-

vated whenever there is a need for the resulting cost function to comply with

requirements common of conventional non-linear optimizers, such as continuity

and differentiability.

By alleviating the demands on the formulation of the cost function, genetic

algorithms should make it possible for decision models other than analytical ag-

gregating functions to be used for fitness assignment. Also, GA populations

should offer a means of concurrently exploring alternative solutions which cannot

be adequately discriminated in the absence of additional preference information.

The next Chapter introduces the multiobjective optimization concepts neces-

sary to the consequent development of genetic algorithm approaches to multiob-

jective optimization.



Chapter 3

Multiobjective and Constrained

Optimization

3.1 Introduction

In Chapter 2, multiobjective optimization was identified as an area of GA de-

velopment deserving closer attention. The purpose of the present Chapter is to

provide the necessary background for the work on multiobjective genetic algo-

rithms to be described later.

Some of the basic concepts in multiobjective optimization are presented in

Section 3.2, which also explains the need for decision making and describes some

common approaches to preference articulation. Constrained optimization is intro-

duced in Section 3.3, without unnecessarily abandoning the multiobjective case.

The relationships between constrained and multiobjective optimization will be

explored further in Chapter 4.

Section 3.4 is concerned with the visualization of approximate non-dominated

solutions, as produced by a general multiobjective optimizer. In particular, a

novel technique for the visualization of results from multiple runs is developed

in subsections 3.4.2 and 3.4.3, so that insight into the statistical behaviour of an

38
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optimizer can be gained. This will be useful later, in Chapters 5 and 6.

3.2 Multiobjective optimization

Practical problems are often characterized by several non-commensurable and

often competing measures of performance, or objectives. The multiobjective

optimization problem is, without loss of generality, the problem of simultaneously

minimizing the n components fk, k = 1, . . . , n, of a possibly non-linear vector

function f of a general decision variable x in a universe U , where

f(x) = (f1(x), . . . , fn(x)).

The problem usually has no unique, perfect (or Utopian) solution, but a set of

non-dominated, alternative solutions, known as the Pareto-optimal set (Ben-Tal,

1980). Assuming a minimization problem, dominance is defined as follows:

Definition 3.1 (Pareto dominance) A vector u = (u1, . . . , un) is said to dom-

inate v = (v1, . . . , vn) if and only if u is partially less than v (u p< v), i.e.,

∀ i ∈ {1, . . . , n} , ui ≤ vi ∧ ∃ i ∈ {1, . . . , n} : ui < vi .

Definition 3.2 (Pareto optimality) A solution xu ∈ U is said to be Pareto-

optimal if and only if there is no xv ∈ U for which v = f(xv) = (v1, . . . , vn)

dominates u = f(xu) = (u1, . . . , un).

Pareto-optimal solutions are also called efficient, non-dominated, and non-inferior

solutions. The corresponding objective vectors are simply called non-dominated.

The set of all non-dominated vectors is known as the non-dominated set, or the

trade-off surface, of the problem.

Pareto-optimality can be illustrated graphically by considering the set of all

feasible objective values, i.e., the set of all points in objective space corresponding
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Figure 3.1: Graphical interpretation of
the non-dominated set.

Convex

Con
ca

veC
on

ve
xf2

f1

Figure 3.2: Convex and concave re-
gions of a trade-off surface.

to at least one setting of the decision variable. The shaded area in Figure 3.1

represents such a set, for a possible bi-objective problem. The non-dominated set

of that problem is composed of the points lying along the “south-west” boundary

of the shaded area (the solid line).

Figure 3.1 also serves to illustrate the notion of convexity of a non-dominated

set, which can be formally defined as follows (again, minimization of the objec-

tives is assumed):

Definition 3.3 (Convexity) A non-dominated set P is said to be convex if and

only if

∀u,v ∈ P , ∀ γ ∈ (0, 1) , ∃w ∈ P : w ≤ γu + (1− γ)v ,

where the inequality applies componentwise. Otherwise, P is said to be non-

convex.

Similarly, for concavity:

Definition 3.4 (Concavity) A non-dominated set P is said to be concave if

and only if

∀u,v ∈ P , ∀ γ ∈ (0, 1) , ∃w ∈ P : γu + (1− γ)v p< w .
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Figure 3.3: The concavity of the trade-off set is related to how the objectives are
scaled.

In general, trade-off surfaces may be neither convex nor concave. However, regions

of local convexity and local concavity can usually be identified in such trade-off

surfaces. The convex and concave regions of the trade-off surface in Figure 3.1

are indicated in Figure 3.2.

The convexity of a trade-off surface depends on how the objectives are scaled.

Non-linearly rescaling the objective values may convert a non-convex surface into

a convex one, and vice-versa, as illustrated in Figure 3.3. The darker surface is

the original, non-convex trade-off surface, corresponding to plotting f1(x) against

f2(x). The lighter surfaces correspond to plotting [f1(x)]α against [f2(x)]α, for α =

5 and α = 9, the latter being clearly convex. Nevertheless, all are formulations of

essentially the same Pareto-minimization problem which admit exactly the same

solution set in decision variable space.

3.2.1 Multiobjective optimization and decision making

The notion of Pareto-optimality is only a first step towards solving a multiobjec-

tive optimization problem. The choice of a suitable compromise solution from all
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non-inferior alternatives is not only problem-dependent, it generally depends also

on the subjective preferences of a decision agent, the Decision Maker (DM). Thus,

the final solution to the problem is the result of both an optimization process and

a decision process.

According to how the optimization and the decision processes are combined

in the search for compromise solutions, three broad classes of multiobjective op-

timization methods can be identified (Hwang and Masud, 1979):

A priori articulation of preferences The Decision Maker expresses prefer-

ences by combining the different objectives into a scalar cost function, ul-

timately making the problem single-objective prior to optimization.

A posteriori articulation of preferences The Decision Maker is presented

by the optimizer with a set of candidate non-inferior solutions, before ex-

pressing any preferences. The compromise solution is chosen from that

set.

Progressive articulation of preferences Decision making and optimization

occur at interleaved steps. At each step, partial preference information is

supplied to the optimizer by the Decision Maker, which, in turn, generates

better alternatives according to the information received.

Methods for a priori articulation of preferences have the advantage of requiring

no further interaction with the DM. For that reason, computation effort can be

concentrated on the production of the final solution. However, if the solution

found cannot be accepted as a good compromise, new runs of the optimizer on

modified cost functions may be needed, until a suitable solution is found. These

methods also have the disadvantage of requiring new runs of the optimizer every

time the preferences of the DM change.

Methods for a posteriori articulation of preferences address these difficulties

at the possible expense of computation time. Since no a priori knowledge is
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assumed, the whole trade-off surface must be carefully sampled. These methods

are especially well-suited to problems involving static objectives, but where the

preferences of the DM change relatively often. In such cases, preference changes

imply no further computation.

Progressive articulation of preferences establishes a compromise between these

two classes of methods, but now at the expense of increased interaction between

the DM and the optimizer. Especially in the case of a human DM, the need for

constant human intervention may be actually a disadvantage, depending on the

relative cost associated with computation and labour.

3.2.2 Preference articulation

Regardless of the stage at which it takes place, preference articulation defines a

cost function which discriminates between candidate solutions.1 Although such

a cost function can be difficult to formalize in every detail, approaches based on

the following are widely used.

3.2.2.1 Weighting coefficients

Weighting coefficients are real values which express the relative importance of

the objectives and control their involvement in the overall cost measure. The

weighted-sum approach is the classical example of a method based on objective

weighting (Hwang and Masud, 1979). As the name suggests, the cost function is

formulated as a weighted sum of the objectives:

Fws(x) =
n∑
i=1

wi fi(x)

where n is the number of objectives, and the weights wi are positive constants. It

can be easily shown (Goicoechea et al., 1982, p. 46) that, for any set of positive

1When maximization is assumed, the cost function is referred to as utility function.
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Figure 3.4: Lines of equal cost induced by the weighted-sum approach.

weights, the (global) optimum of Fws(x) is always a non-dominated solution of the

original multiobjective problem. However, the opposite is not true. For example,

non-dominated solutions located in concave regions of the trade-off surface cannot

be obtained by this method, because their cost is sub-optimal (Fleming and

Pashkevich, 1985) (see Figure 3.4).

Another disadvantage of the weighted-sum approach is that it can be partic-

ularly sensitive to the setting of the weights, depending on the problem.

3.2.2.2 Priorities

Priorities are integer values which determine in which order objectives are to

be optimized, according to their importance. The lexicographic method (Ben-

Tal, 1980), for example, starts by assigning a different priority to each objective.

Given n objectives f1, . . . , fn, and without loss of generality, each objective fi,

i = 1, . . . , n, is assigned priority i, where greater values of i correspond to higher

priorities. The underlying cost function Flex is such that

Flex(x) < Flex(y) ⇔

∃ i ∈ {1, . . . , n} : ∀ j ∈ {i, . . . , n} , fj(x) ≤ fj(y) ∧ fi(x) < fi(y) .
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In practice, the objective with the highest priority, fn, is minimized first, and

the solution recorded (say xn). Then, fn−1 is minimized subject to fn(x) ≤ fn(xn),

and a new solution found (xn−1). The third step consists of minimizing fn−2

subject to fk(x) ≤ fk(xk), for k = n− 1, n, and so forth. The final solution, x1, is

taken as the solution of the problem. It is also a Pareto-optimal solution.

The lexicographic method will generally produce different non-dominated so-

lutions depending on what priorities are assigned to the objectives. Although it

models well those practical situations in which decisions are made sequentially, it

does assume that the priority of the various objectives can be clearly identified,

which is not always the case.

3.2.2.3 Goals

Goal values indicate desired levels of performance in each objective dimension.

The way in which goals are interpreted may vary. In particular, they may repre-

sent levels of performance to be approximated and, if possible, improved upon, or

ideal performance levels to be matched as closely as possible (Dinkelbach, 1980).

The minimax approach is an example of the first interpretation. It consists

of minimizing the cost function

FmM(x) = max
i∈{1,...,n}

{
fi(x)− gi

wi

}

where the constants gi are the goals to be attained, and wi are positive weights

which indicate the desired direction of search in objective space.

Although this approach is able to produce solutions in concave regions of the

trade-off surface (see Figure 3.5), it is not guaranteed to always produce strictly

non-dominated solutions. In addition, FmM tends not to be differentiable at

the optimum, which makes direct gradient-based optimization difficult. For this

reason, alternative formulations are usually preferred.

The goal attainment method (Gembicki, 1974) avoids the latter difficulty by
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Figure 3.5: Lines of equal cost induced by the minimax approach.

introducing an auxiliary scalar parameter λ and solving:

min
λ,x

λ

subject to

fi(x)− wiλ ≤ gi ,

where gi and wi have the same meaning as in the minimax approach. The quantity

wiλ indicates the amount by which the solution under- or over-attains each goal.

3.3 Constrained optimization

The solution of a practical problem may be constrained by a number of restric-

tions imposed on the decision variable. Constraints usually fall into one of two

different categories:

Domain constraints express the domain of definition of the objective function.

In control systems, closed-loop system stability can be given as an example

of a domain constraint, because most performance measures are not defined

for unstable systems.
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Preference constraints impose further restrictions on the solution of the prob-

lem according to knowledge at a higher level. A given stability margin, for

example, expresses a (subjective) preference of the designer.

Constraints can usually be expressed in terms of function inequalities of the type

f(x) ≤ g ,

where f is a real-valued function of a variable x, and g is again a constant value.

The inequality may also be strict (< instead of ≤). Equality constraints of the

type

f(x) = g

can be formulated as particular cases of inequality constraints, e.g.,

g − δ1 ≤ f(x) ≤ g + δ2

for arbitrarily small, non-negative, δ1 and δ2.

Without loss of generality, the constrained optimization problem is that of

minimizing a multiobjective function (f1, . . . , fk) of some generic decision variable

x in a universe U , subject to a positive number n − k of conditions involving x

and eventually expressed as a functional vector inequality of the type

(fk+1(x), . . . , fn(x)) ≤ (gk+1, . . . , gn) ,

where the inequality applies componentwise. It is implicitly assumed that there

is at least one point in U which satisfies all constraints, although in practice that

cannot always be guaranteed. When constraints cannot be all simultaneously sat-

isfied, the problem is often deemed to admit no solution as it stands. The number

of constraints violated, and the extent to which each constraint is violated, are

then taken into account in order to possibly relax the preference constraints.
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Constraints can be seen as high-priority (or hard) objectives, which must be

jointly satisfied before the optimization of the remaining, soft objectives takes

place. Satisfying a number of violated inequality constraints is clearly the mul-

tiobjective problem of minimizing the associated functions until given values

(goals) are reached. The concept of non-inferiority is, therefore, readily appli-

cable, and even particularly appropriate when constraints are themselves non-

commensurable. When not all goals can be simultaneously met, a family of

violating, non-inferior points is the closest to a solution for the problem.

On the other hand, problems characterized by soft-objectives only are often

reformulated as (single objective) constrained optimization problems in order to

be solved. The goal-attainment method, described earlier, and the ε-constraint

method (Goicoechea et al., 1982, p. 55ff) are good examples of this.

3.4 Visualization and performance assessment

issues

The remainder of this chapter will be concerned with the graphical visualization

of trade-off data, i.e., of one or more sets of relatively non-dominated solutions

produced by as many runs of a general multiobjective optimizer.

When the aim is to convey to the human decision maker information concern-

ing the best trade-off known as a consequence of the data, the problem reduces to

the visualization of a single set of overall non-dominated solutions. Two graphi-

cal representation methods commonly used for this purpose will be described in

subsection 3.4.1, one for two objectives, and another for three or more objectives.

On the other hand, in order to gain insight into how well an optimizer can

be expected to perform on a given problem, data from multiple optimization runs

must be considered in its entirety, i.e., it is not sufficient to consider only the

overall non-dominated solutions. For this reason, a method for the visualization
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Figure 3.6: Visualization of trade-off data in two dimensions.

of the “distribution” of the outcome of various multiobjective optimization runs

is developed in subsection 3.4.2, and the corresponding statistical interpretation

given in subsection 3.4.3. The approach is further clarified by means of examples.

3.4.1 Visualization of trade-off data from a single run

Methods for progressive and a posteriori articulation of preferences require that

trade-off information be communicated to the decision maker in a form which

can be easily comprehended. When there are only two objectives, non-dominated

solutions (the data) can be represented in objective space by plotting the first

objective component against the second, as shown in Figure 3.6.

Interpolating between the data to obtain a smooth representation of the

Pareto-set is not generally correct, first because there is generally no guarantee

that it will actually be smooth, and second because actual solutions correspond-

ing to those intermediate objective vectors, even if they exist, are not known.

At most, one may wish to draw a boundary separating those points in objective

space which are dominated by or equal to at least one of the data points, from

those which no data point dominates or equals. Such a boundary (see Figure 3.7)

can also be seen as the locus of the family of tightest goal vectors which, given
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Figure 3.7: The family of tightest goals known to be attainable as a result.

the data, are known to be attainable.

For three and more objectives, a different representation is required. A com-

mon approach, known as the method of parallel coordinates, consists of associ-

ating an integer index i to each objective and representing each non-dominated

point by the line connecting the points (i, f∗i (x)), where f ∗i represents a normal-

ization of fi to a given interval, e.g., [0, 1]. With such a representation, competing

objectives with consecutive indices result in the crossing of lines, whereas non-

concurrent lines indicate non-competing objectives (Figure 3.8). Although the

ordering of the objectives may be automatically decided upon on the basis of

some measure of competition (in order to maximize the competition between ad-

jacent objectives, for example), being able to change this ordering interactively

is also useful, and not difficult to implement.

3.4.2 Visualizing results from multiple runs

When assessing an optimizer, one is usually concerned with the quality of the

solutions it is able to produce, and with the amount of computation effort it

requires. In addition, it is important to assess how likely a single run is to produce

good results. For instance, an optimizer may be able to find an optimum very
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Figure 3.8: Visualization of trade-off data in three and more dimensions.

quickly and accurately, but be highly susceptible to be trapped in local optima.

If applied to a highly multimodal objective function, such an optimizer may

produce good (and then very good) results relatively seldom (assuming arbitrary

initial conditions). On the other hand, a method slower to approach an optimum,

but more likely to find the global one, may produce acceptable solutions more

consistently.

In the single objective case, the quality of the result of an optimization run

is measured directly by the objective value associated with the best solution

found. Since this is a single, scalar value, the distribution of the quality of results

produced by several runs can be easily visualized through histograms, empirical

distribution functions, scatter plots, etc.

When there are multiple objectives, however, runs will generally produce not

one, but a variable number of approximate non-dominated solutions. The quality

of the trade-off description produced by each run depends both on how close to

the real trade-off surface the non-dominated points found are, and on how well

they cover it. Simply superimposing non-dominated points obtained from various

runs does give an idea of how good individual points found in each run tend to be,

but information on how they tend to be distributed along the trade-off surface is

lost (see Figure 3.9).
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Figure 3.9: The superposition of 3 sets of non-dominated points.

A better alternative consists of seeing the outcome of a run, not as a set of

approximate non-dominated solutions, but as the boundary which such solutions

define in objective space, as discussed above. Information on the quality of the

individual non-dominated solutions is still preserved: given the boundary, it is

trivial to identify the location of the original data, and the better the approxi-

mate solutions, the closer to the real trade-off surface the boundary will be. On

the other hand, any “holes” in the distribution of these solutions will have the

opposite effect, i.e., will result in the corresponding region of the boundary being

drawn away from the real trade-off surface, as Figure 3.7 also illustrates. Thus,

both types of information are expressed in terms of the location of the points

which constitute the boundary, relative to the real trade-off surface. However,

note that the way in which information is combined is independent of the scale

in which objectives are expressed, as it relies solely on the concept of Pareto-

dominance.

In Figure 3.10, the superposition of the three boundaries corresponding to

the data represented in Figure 3.9 is shown. The uneven distribution along the

trade-off of some of the sets of non-dominated solutions is now more apparent.
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Figure 3.10: The superposition of the 3 corresponding boundaries.

3.4.3 Statistical interpretation of results from multiple

runs

The plots introduced above clearly divide the objective space into three main

areas. The first area, located down and to the left of the boundaries, is composed

of all those objective (or goal) vectors which were never attained in any of the

runs. As the number of runs increases, this area should approximate the real set

of infeasible objective vectors better and better. The second area, located up and

to the right of the boundaries, is composed of those objective vectors which were

attained in all of the runs. This may give some idea of worst-case performance for

the algorithm, but this area must be expected to depend strongly on the number

of runs considered. Finally, the third area, located within the boundaries, is

composed of objective vectors which were attained in some of the runs, but not

in others. This area can be divided further into sub-areas, according to the

percentage of runs in which the corresponding objective vectors were attained.

Suppose one wishes to estimate the family of goal vectors likely to be at-

tained (each on its own) in exactly 50% of the runs. For that purpose, consider
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Figure 3.11: The points of intersection with a line diagonal to the axes.

the points of intersection of a set of boundaries obtained experimentally with

an arbitrary straight line, diagonal to the axes and running in the direction of

improvement in all objectives, as illustrated in Figure 3.11. These points can

be seen to define a sample distribution which is essentially uni-dimensional and,

thus, can be treated as though it was univariate. Successive estimation of the

median of all possible samples defined in this way produces the desired result. In

the same way, estimates for the families of goal vectors likely to be attained (each

on its own) in exactly 25% anf 75% of the runs can be produced by estimating

quartiles instead of the median. The plot given in Figure 3.12 represents the 50%

attainment line (thick) and the upper- and lower-bounds corresponding to 5 sets

of non-dominated points.

Note that, although all examples given here involve two objectives only, the

concept is valid for any number of objectives. For three and more objectives,

however, more elaborate visualization techniques would be needed.
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Figure 3.12: The 50% attainment line (thick) corresponding to 5 sets of non-
dominated points.

3.5 Concluding remarks

Constraint satisfaction and multiobjective optimization are very much two as-

pects of the same problem. Both involve the simultaneous optimization of a

number of functions. Constrained optimization may be seen as a particular case

of multiobjective optimization with a priori articulation of preferences, where ob-

jectives are divided into “soft” and “hard”, and goals are specified for the hard

objectives. In the next Chapter, a unified decision making framework for multi-

objective and constrained optimization is formulated and characterized, with its

application to evolutionary optimization in mind.

The visualization of approximate non-dominated solutions obtained exper-

imentally through optimization is usually aimed at communicating the (best)

trade-off information gained to the Decision Maker, so that a compromise solu-

tion may be chosen from the alternatives available. Visualization techniques for

this purpose are well established.

Visually assessing the statistical performance of a multiobjective optimizer,
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on the other hand, calls for data to be obtained from several runs of the algo-

rithm. The simple superposition of different trade-off graphs has been shown to

be confusing and even potentially misleading. For this reason, the outcome of a

multiobjective optimization run was re-interpreted here so as to allow a probabil-

ity of attainment to be associated with each point in objective space, and, more

importantly, to be estimated from experimental data. The visualization of some

of the experimental results obtained in Chapters 5 and 6 will be based on this

interpretation.



Chapter 4

Multiobjective Genetic

Algorithms

4.1 Introduction

As noted in Chapter 2, genetic algorithms were recognized to be possibly well-

suited to multiobjective optimization early in their development. Multiple indi-

viduals should be able to search for multiple solutions in parallel, while taking

advantage of any similarities available in the family of possible solutions to the

problem. The ability to handle complex problems, involving features such as

discontinuities, multimodality, disjoint feasible spaces and noisy function eval-

uations reinforces the potential effectiveness of GAs, and of other evolutionary

algorithms, in multiobjective search and optimization. However, contributions in

the area have remained scarce.

The related field of constrained optimization has often been treated separately.

It has received more attention in EA literature than multiobjective optimization,

but many of the approaches which have been developed require constraints to

satisfy certain pre-requisites, such as linearity or convexity, or are too problem

dependent.

57
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This Chapter makes three important contributions to multiobjective evolu-

tionary optimization:

• Section 4.2 surveys and discusses current evolutionary approaches to con-

strained and multiobjective optimization.

• Section 4.3 introduces and characterizes a unified decision making frame-

work for constrained multiobjective optimization. Proofs for some of the

Lemmas developed in this section can be found in Appendix A.

• Section 4.4 develops a multiobjective genetic algorithm based on that deci-

sion making framework.

Simple examples illustrating different aspects of the proposed genetic approach

are presented in Section 4.5.

4.2 Current evolutionary approaches to con-

strained and multiobjective optimization

Fitness, as a measure of the expected reproductive success (or number of off-

spring) of an individual, is inherently a non-negative scalar. When a problem is

characterized by a scalar measure of quality or cost, i.e., a single objective, the

mapping from such a measure to fitness simply involves a monotonic transforma-

tion, such as scaling or ranking.

On the other hand, when the problem is characterized by a vectorial measure,

a good mapping between quality and fitness is less straightforward to derive. This

is the case when there are constraints and/or multiple objectives. Remarkably,

constrained optimization has been considered separately from multiobjective op-

timization in EA literature, and, for that reason, the two are separately reviewed

here.
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4.2.1 Constraint handling

The simplest approach to constraint handling in EAs has been to assign infeasible

individuals an arbitrarily low fitness (Goldberg, 1989, p. 85). This is possible

given the ability of EAs to cope with the abrupt fitness changes which arise on

the constraint boundaries. In this approach, provided feasible solutions can be

easily found, any infeasible individuals are selected out and the search is not

affected much.

Certain types of constraints, however, such as bounds on the decision variables

and other linear constraints, can be handled more efficiently by mapping the

search space so as to minimize the number of infeasible solutions it contains

and/or designing the mutation and recombination operators carefully in order to

minimize the production of infeasible offspring from feasible parents (Michalewicz

and Janikow, 1991). This and the previous approach are complementary, and are

often used in combination with each other.

In the case where no feasible individuals are known, and cannot easily be

found, simply assigning low-fitness to infeasible individuals makes the initial

stages of evolution degenerate into a random walk. To avoid this, the penalty

imposed on infeasible individuals can be made to depend on the extent to which

they violate the constraints. Such penalty values are typically added to the

(unconstrained) performance values before fitness is computed (Goldberg, 1989,

p. 85f).

Although penalty functions do provide a way of guiding the search towards

feasible solutions when these are not known, they are very much problem depen-

dent. Some infeasible solutions can, despite the penalty, be seen as better than

some feasible ones, which can make the population evolve towards a false opti-

mum. In response to these difficulties, guidelines on the use of penalty functions

have been described by Richardson et al. (1989).

One of the most recent approaches to constraint handling has been proposed
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by Powell and Skolnick (1993) and consists of rescaling the original objective

function to assume values less than unity in the feasible region, whilst assigning

infeasible individuals penalty values greater than one. Subsequently ranking the

population correctly assigns higher fitness to all feasible points than to those

infeasible. This perspective is supported and extended in the present work.

4.2.2 Multiple objectives

Despite their foreseeable ability to search for multiple non-inferior solutions in a

single run, EAs have mainly been used to optimize aggregating functions of the

different objectives. In fact, many aggregating approaches can be used directly

with EAs, despite having been developed with other optimizers in mind.

Several applications of evolutionary algorithms in the optimization of aggre-

gating functions have been reported in the literature, from the popular weighted-

sum approach (Syswerda and Palmucci, 1991; Jakob et al., 1992; Jones et al.,

1993) to goal-based approaches. Using target vector optimization, which con-

sists of minimizing the distance in objective space to a given goal vector, Winke

et al. (1992) reported work on a problem in atomic emission spectroscopy. A

formulation of goal attainment was used amongst other methods by Wilson and

Macleod (1993). In this latter work, the aggregating function was aimed at di-

recting the population towards a particular region of the trade-off surface, while

the population was monitored for non-dominated solutions. However, any extra

non-dominated individuals found in this way cannot be expected to be optimal

in any sense, because they are suboptimal in terms of fitness.

4.2.2.1 Population-based non-Pareto approaches

Schaffer (1985) was probably the first to recognize the possibility of exploiting

EA populations to treat non-commensurable objectives separately and search

for multiple non-dominated solutions concurrently in a single optimization run.
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In his approach, known as the Vector Evaluated Genetic Algorithm (VEGA),

appropriate fractions of the next generation, or sub-populations, were selected

from the whole of the old generation according to each of the objectives, sep-

arately. Crossover and mutation were applied as usual after shuffling all the

sub-populations together. Non-dominated individuals were identified by moni-

toring the population as it evolved, but this information was not used by the

VEGA itself.

Shuffling and merging all sub-populations corresponds, however, to averag-

ing the normalized fitness components associated with each of the objectives. In

fact, the expected total number of offspring produced by each parent becomes

the sum of the expected numbers of offspring produced by that parent according

to each objective. Since Schaffer used proportional fitness assignment, these were

in turn, proportional to the objectives themselves. The resulting overall fitness

corresponded, therefore, to a linear function of the objectives where the weights

depended on the distribution of the population at each generation. This has pre-

viously been noted by Richardson et al. (1989) and confirmed by Schaffer (1993).

As a consequence, different non-dominated individuals were generally assigned

different fitness values, in contrast with what the definition of non-dominance

would suggest.

The linear combination of the objectives implicitly performed by VEGA ex-

plains why the population tended to split into species particularly strong in each

of the objectives in the case of concave trade-off surfaces, a phenomenon which

Schaffer called speciation. As noted earlier in Section 3.2, points in concave re-

gions of a trade-off surface cannot be found by optimizing a linear combination

of the objectives, for any set of weights.

Although VEGA, like the plain weighted-sum approach, is not well suited

to address problems with non-convex trade-off surfaces, the weighting scheme

it implicitly implements deserves closer attention. In VEGA, each objective is

effectively weighted proportionally to the size of each sub-population and, more
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importantly, proportionally to the inverse of the average fitness (in terms of that

objective) of the whole population at each generation.

By doing so, and assuming that sub-population sizes remain constant for

each objective, VEGA selection adaptively attempts to balance improvement in

the several objective dimensions, because more good-performers in one objective

cause the corresponding average performance to increase and that objective’s

weight to decrease accordingly. This is not unlike the way sharing techniques

(subsection 2.3.6) promote the balanced exploitation of multiple optima in the

search space. For the same reason, VEGA can, at least in some cases, main-

tain different species for many more generations than a GA optimizing a pure

weighted sum of the same objectives with fixed weights would, due to genetic

drift. Unfortunately, the balance reached necessarily depends on the scaling of

the objectives.

Fourman (1985) also addressed multiple objectives in a non-aggregating man-

ner. Selection was performed by comparing pairs of individuals, each pair ac-

cording to one of the objectives. In a first version of the algorithm, objectives

were assigned different priorities by the user and individuals compared according

to the objective with the highest priority. If this resulted in a tie, the objec-

tive with the second highest priority was used, and so on. This is known as the

lexicographic ordering (Ben-Tal, 1980).

A second version, reported to work surprisingly well, consisted of randomly

selecting the objective to be used in each comparison. Similarly to VEGA, this

corresponds to averaging fitness across fitness components, each component being

weighted by the probability of each objective being chosen to decide each tour-

nament. However, the use of pairwise comparisons makes it essentially different

from a linear combination of the objectives, because scale information is ignored.

Thus, the population may still see as convex a trade-off surface actually concave,

depending on its current distribution and, of course, on the problem (Fonseca

and Fleming, 1995d).



CHAPTER 4. MULTIOBJECTIVE GENETIC ALGORITHMS 63

Kursawe (1991) formulated a multiobjective version of evolution strategies

(ESs). Once again, selection consisted of as many steps as there were objectives.

At each step, one objective was selected randomly (with replacement) according

to a probability vector, and used to dictate the deletion of an appropriate fraction

of the current population. After selection, a certain number µ of survivors became

the parents of the next generation.

While Kursawe’s implementation of multiobjective selection possesses a num-

ber of similarities to both VEGA and Fourman’s second method, individuals in

the extremes of the trade-off surface would appear to be likely to be eliminated

as soon as any objective at which they performed poorly was selected to dictate

deletion, whereas middling individuals seem to be more likely to survive. How-

ever, since objectives stood a certain chance of not taking part in selection at each

generation, it was possible for some specialists to survive the deletion process and

generate offspring, although they might die immediately the generation after.

Kursawe (1991) notes that this deletion of individuals according to randomly

chosen objectives creates a non-stationary environment in which the population,

instead of converging, must try to adapt to constant change. As hinted above,

different choices of objectives could result in significant changes in the cost land-

scape seen by the ES at each generation. Diploid individuals (Goldberg and

Smith, 1987) were used for their improved ability to adapt to sudden environ-

mental changes and, since the population was not expected to converge, a picture

of the trade-off surface was produced from the points evaluated during the run.

Finally, and still based on the weighted sum approach, Hajela and Lin (1992)

exploited the explicit parallelism provided by a population-based search by explic-

itly including the weights in the chromosome and promoting their diversity in the

population through fitness sharing. As a consequence, one family of individuals

evolved for each weight combination, concurrently.
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4.2.2.2 Pareto-based approaches

The methods of Schaffer, Fourman, Kursawe, and Hajela and Lin, all attempt

to promote the generation of multiple non-dominated solutions, a goal at which

they reportedly achieved a reasonable degree of success. However, none makes

direct use of the actual definition of Pareto-optimality. At most, the population is

monitored for non-dominated solutions, as in Schaffer (1985) and Kursawe (1991).

Pareto-based fitness assignment was first proposed by Goldberg (1989), the

idea being to assign equal probability of reproduction to all non-dominated in-

dividuals in the population. The method consisted of assigning rank 1 to the

non-dominated individuals and removing them from contention, then finding a

new set of non-dominated individuals, ranked 2, and so forth.

Fonseca and Fleming (1993) proposed a slightly different scheme whereby

an individual’s rank corresponds to the number of individuals in the current

population by which it is dominated. Non-dominated individuals are, therefore,

all assigned the same rank, while dominated ones are penalized according to how

concentrated the population is in the corresponding region of the trade-off surface.

This approach is also easier to formulate, and to analyze, mathematically. It will

be presented and discussed further in subsection 4.3.2.

Tournament selection based on Pareto dominance has meanwhile been pro-

posed by Horn et al. (1994). In addition to the two individuals competing in

each tournament, a number of other individuals in the population was used to

help determine whether the competitors were dominated or not. In the case

where both competitors were either dominated or non-dominated, the result of

the tournament was decided through a sort of fitness sharing.

Cieniawski (1993) and Ritzel et al. (1994) have implemented tournament se-

lection based on Goldberg’s Pareto-ranking scheme. In their approach, individual

ranks were used to decide the winner of binary tournaments.

As discussed in Chapter 3, the convexity of the trade-off surface depends
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on how the objectives are scaled. Rescaling the objective values by means of a

monotonic non-linear transformation may convert a concave surface into a convex

one, and vice-versa. Nevertheless, the solution set of the problem remains the

same in phenotypic space.

Since order is preserved by monotonic transformations, Pareto-ranking is ef-

fectively blind to the convexity or the non-convexity of the trade-off surface. This

is not to say that Pareto-ranking always precludes speciation. Speciation can still

occur if certain regions of the trade-off are simply easier to find than others, but

Pareto-ranking does eliminate sensitivity to the possible non-convexity of the

trade-off.

A second possible advantage of Pareto-ranking, is that, because it rewards

good performance in any objective dimension regardless of the others, solutions

which exhibit good performance in many, if not all, objective dimensions are

more likely to be produced by recombination. This argument also applies to an

extent to the population-based methods described in the previous subsection,

although they do not necessarily treat all non-dominated individuals equally.

The argument assumes some degree of independence between objectives, and

was already hinted at by Schaffer in his VEGA work, and has been noted in

more detail by Louis and Rawlins (1993). While Pareto-based selection may

help find Utopian solutions if they exist, that is rarely the case in multiobjective

optimization. Also, the assumption of loosely coupled objectives is less likely to

hold near the admissible region, but the argument may still be valid in the initial

stages of the search.

4.2.3 Generalization

The multiobjective evolutionary optimization process can be generalized (Fonseca

and Fleming, 1993) and seen as the result of the interaction between an artificial

selector, here referred to as the Decision Maker (DM), and an evolutionary search
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Figure 4.1: A general multiobjective evolutionary optimizer.

algorithm (the EA, see Figure 4.1). The search algorithm generates a new set of

candidate solutions according to the cost (alternatively, utility) assigned to the

current set of candidates by the DM.

Whilst the action of the DM influences the production of new individuals,

these, as they are evaluated, provide new trade-off information which the DM

can use to refine the current preferences. The EA sees the effect of any changes

in the decision process, which may or may not result from taking recently acquired

information into account, as an environmental change. The DM block represents

any cost assignment strategy, which may range from that of an intelligent Decision

Maker to a simple weighted sum approach.

The EA block is concerned with a different, but complementary, aspect of the

optimization, the effective search for strong candidate solutions. Evolutionary

algorithms, in the first instance, make very few assumptions about the fitness

landscape they work on, which justifies and permits a primary concern with fit-

ness assignment. However, EAs are certainly not capable of optimizing arbitrary

functions (Hart and Belew, 1991). Some form of characterization of the multi-

objective fitness landscapes associated with the decision making strategy used is,

therefore, important, and the design of the EA should take that information into

account. The need for improved EAs in multiobjective optimization will become

clearer later in this Chapter.

The next Section elaborates on Pareto-based ranking by combining domi-
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nance with preference information to produce a suitable unified cost assignment

strategy, capable of handling both constraints and multiple objectives.

4.3 Multiobjective decision making based on

given goals and priorities

The specification of goals and priorities (subsection 3.2.2) can accommodate a

whole variety of constrained and/or multiobjective problem formulations. Goal

and priority information can often be extracted directly from the problem de-

scription, even if only in a broad sense. For example, it may be difficult to

strictly prioritize all of the objectives, or to set goals for all of them. Therefore,

the articulation of this information should take its partial character into account.

It should be possible for different objectives to be given the same priority, and

for goals to be omitted (or set to ±∞) where necessary. On the other hand,

measures of distance to the goals should probably be avoided, as they inevitably

depend on the goals being finite and on the scale in which the objective values

are presented.

An extension of the decision making strategy proposed in (Fonseca and Flem-

ing, 1993) is formulated here in terms of a relational operator, which incorporates

any goal and priority information given, and characterized. The ranking of a

whole population based on such a relation is then described.

4.3.1 The comparison operator

Consider an n-dimensional vector function f of some decision variable x and two

n-dimensional objective vectors u = f(xu) and v = f(xv), where xu and xv are
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particular values of x. Consider also the n-dimensional preference vector

g = [g1, . . . ,gp]

= [(g1,1, . . . , g1,n1), . . . , (gp,1, . . . , gp,np)] ,

where p is a positive integer (see below), ni ∈ {0, . . . , n} for i = 1, . . . , p, and

p∑
i=1

ni = n .

Similarly, u may be written as

u = [u1, . . . ,up]

= [(u1,1, . . . , u1,n1), . . . , (up,1, . . . , up,np)] ,

and the same for v and f .

The sub-vectors gi of the preference vector g, where i = 1, . . . , p, associate

priorities i and goals gi,ji, where ji = 1, . . . , ni, to the corresponding objective

functions fi,ji, components of fi. This assumes a convenient permutation of the

components of f , without loss of generality. Greater values of i, up to and in-

cluding p, indicate higher priorities.

Generally, each sub-vector ui will be such that a number ki ∈ {0, . . . , ni} of

its components meet their goals while the remaining do not. Also without loss of

generality, u is such that, for i = 1, . . . , p, one can write

∃ ki ∈ {0, . . . , ni} | ∀ ` ∈ {1, . . . , ki} , ∀m ∈ {ki + 1, . . . , ni} ,

(ui,` ≤ gi,`) ∧ (ui,m > gi,m) . (4.1)

For simplicity, the first ki components of vectors ui, vi and gi will be represented

as u
u
^
i , v

u
^
i and g

u
^
i , respectively. The last ni−ki components of the same vectors
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will be denoted u
u
_
i , v

u
_
i and g

u
_
i , also respectively. The smile (

u
^) and the frown

(
u
_), respectively, indicate the components in which u either does or does not

meet the goals.

Definition 4.1 (Preferability) Vector u = [u1, . . . ,up] is preferable to v =

[v1, . . . ,vp] given a preference vector g = [g1, . . . ,gp] (u ≺
g

v) iff

p = 1 ⇒ (u
u
_
p p< v

u
_
p ) ∨

{
(u

u
_
p = v

u
_
p ) ∧

[
(v

u
^
p 6≤ g

u
^
p ) ∨ (u

u
^
p p< v

u
^
p )
]}

and

p > 1 ⇒ (u
u
_
p p< v

u
_
p ) ∨

{
(u

u
_
p = v

u
_
p ) ∧

[
(v

u
^
p 6≤ g

u
^
p ) ∨ (u1,...,p−1 ≺

g1,...,p−1
v1,...,p−1)

]}
,

where u1,...,p−1 = [u1, . . . ,up−1] and similarly for v and g.

In simple terms, vectors u and v are compared first in terms of their com-

ponents with the highest priority, that is, those where i = p, disregarding those

in which up meets the corresponding goals, u
u
^
p . In case both vectors meet all

goals with this priority, or if they violate some or all of them, but in exactly the

same way, the next priority level (p − 1) is considered. The process continues

until priority 1 is reached and satisfied, in which case the result is decided by

comparing the priority 1 components of the two vectors in a Pareto fashion.

Since satisfied high-priority objectives are left out from comparison, vectors

which are equal to each other in all but these components express virtually no

trade-off information given the corresponding preferences. The following sym-

metric relation is defined:

Definition 4.2 (Equivalence) Vector u = [u1, . . . ,up] is equivalent to v =

[v1, . . . ,vp] given a preference vector g = [g1, . . . ,gp] (u ≡
g

v) iff

(u
u
_ = v

u
_) ∧ (u

u
^
1 = v

u
^
1 ) ∧ (v

u
^
2,...,p ≤ g

u
^
2,...,p) .

The concept of preferability can be related to that of inferiority as follows:
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Lemma 4.1 For any two objective vectors u and v, if u p< v, then u is either

preferable or equivalent to v, given any preference vector g = [g1, . . . ,gp].

The proofs of this lemma and of the following one are given in Appendix A.

Lemma 4.2 (Transitivity) The preferability relation is transitive, i.e., given

any three objective vectors u, v and w, and a preference vector g = [g1, . . . ,gp],

u ≺
g

v ≺
g

w =⇒
g

u ≺
g

w .

4.3.1.1 Particular cases

The decision strategy described above encompasses a number of simpler multi-

objective decision strategies, which correspond to particular settings of the pref-

erence vector.

Pareto (Definition 3.1) All objectives have equal priority and no goal levels are

given. g = [g1] = [(−∞, . . . ,−∞)].

Lexicographic (Subsection 3.2.2.2) Objectives are all assigned different priori-

ties and no goal levels are given. g = [g1, . . . ,gn] = [(−∞), . . . , (−∞)].

Constrained optimization (Section 3.3) The functional parts of a number nc

of inequality constraints are handled as high priority objectives to be min-

imized until the corresponding constant parts, the goals, are reached. Ob-

jective functions are assigned the lowest priority.

g = [g1,g2] = [(−∞, . . . ,−∞), (g2,1, . . . , g2,nc)].

Constraint satisfaction (or Method of Inequalities (Zakian and Al-Naib, 1970))

All constraints are treated as in constrained optimization (above), but there

is no low priority objective to be optimized. g = [g2] = [(g2,1, . . . , g2,n)].

Goal programming Several interpretations of goal programming can be im-

plemented. A simple formulation, described in (Hwang and Masud, 1979),
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consists of attempting to meet the goals sequentially, in a similar way to

lexicographic optimization. g = [g1, . . . ,gn] = [(g1,1), . . . , (gn,1)].

A second formulation attempts to meet all the goals simultaneously, as with

constraint satisfaction, but requires solutions to be satisfactory and Pareto

optimal. g = [g1] = [(g1,1, . . . , g1,n)].

Aggregating functions, such as weighted sums and the maximum of a number

of objectives, can, of course, be used as individual objectives. Although this

may be appropriate in the case where they express some global criterion, e.g.,

financial cost, they inevitably hide information from the Decision Maker, which

may constitute a disadvantage. From a practical standpoint, it is especially

worth pointing out that, as the number of objectives increases, it becomes more

likely that some objectives are, in fact, non-competing, at least in portions of

the trade-off surface. The understanding that some objectives are non-competing

constitutes a valuable insight into the problem, because the number of dimensions

involved in the trade-off surface is reduced.

4.3.2 Population ranking

As opposed to the single objective case, the ranking of a population in the mul-

tiobjective case is not unique. In the present case, it is desired that all preferred

individuals be assigned the same rank, and that individuals be placed higher in

the rank than those they are preferable to.

Consider an individual xu at generation t with corresponding objective vector

u, and let r(t)
u be the number of individuals in the current population which are

preferable to it. The current position of xu in the individuals’ rank can be given

simply by

rank(xu, t) = r(t)
u ,

which ensures that all preferred individuals in the current population are assigned
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rank zero.

In the case of a large and uniformly distributed population with N individuals,

the normalized rank r(t)/N constitutes an estimate of the fraction of the search

space preferable to each individual considered. Such a fraction indicates how

easily the current solution can be improved by pure random search and, as a

measure of individual cost, does not depend on how the objectives are scaled. This

interpretation of ranking, also valid when there is only one objective, provides a

way of characterizing the cost landscape associated with the preferences of the

DM. It is not applicable to the ranking approach proposed by Goldberg (1989,

p. 201).

In the general case of a non-uniformly distributed population, a biased es-

timate is obtained which, nevertheless, preserves the strict order relationships

between individuals, as desired:

Lemma 4.3 If an objective vector u = f(xu) associated with an individual xu

is preferable to another vector v = f(xv) associated with an individual xv in

the same arbitrary population, then rank(xu, t) < rank(xv, t). Equivalently, if

rank(xu, t) ≥ rank(xv, t), then u is not preferable to v.

The proof follows from the transitivity of the preferability relation (Lemma 4.2).

Figure 4.2 illustrates the ranking of the same population for two different pref-

erence vectors. In the first case, both objectives are given the same priority. Note

that all satisficing individuals (the ones which meet their goals) are preferable

to, and therefore have lower rank than, all of the remaining ones. In the second

case, objective 2 is given a higher priority, reflecting, for example, a feasibility

constraint. In this case, individuals which do not meet goal g2 are the worst (they

are infeasible), independently of their “theoretical” performance according to f1.

Once g2 is met, f1 is used for ranking. Individuals which meet both goals are

satisficing solutions, whereas those which meet only g2 are feasible, but unsatis-
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Figure 4.2: Multiobjective ranking with goal values (minimization).
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factory. Note how particular ranks need not be represented in the population at

each particular generation.

4.3.3 Characterization of multiobjective cost landscapes

The cost landscape associated with a problem involving multiple objectives de-

pends not only on the objectives themselves, but also on the preferences expressed

by the DM. Their effect can be more easily understood by means of an example.

Consider the simple bi-objective problem of simultaneously minimizing

f1(x1, x2) = 1− exp
(
−(x1 − 1)2 − (x2 + 1)2

)
f2(x1, x2) = 1− exp

(
−(x1 + 1)2 − (x2 − 1)2

)
.

As suggested in the previous subsection, the cost landscape associated with a

given set of preferences can be inferred from the ranking of a large, uniformly

distributed population, and since the problem involves only two decision variables,

visualized.

Pareto-ranking assigns the same cost to all non-dominated individuals, pro-

ducing a long flat inverted ridge, as is shown in Figure 4.3. If achievable goals are

specified, a discontinuity arises where solutions go from satisficing to unsatisfac-

tory (Figure 4.4). A ridge, though shorter than in the previous case, is produced

by those satisfactory solutions which are also non-dominated.

Giving one objective priority over the other considerably alters the landscape.

In this case, the discontinuity corresponds to the transition from feasible to infea-

sible, and it happens to occur in the neighbourhood of the optimum (Figure 4.5).

Finally, if both objectives are made into hard constraints, the feasible region

becomes totally flat (Figure 4.6). This is because, in the absence of any other

objectives, all solutions which satisfy both constraints must be considered equiv-

alent.
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Figure 4.3: The cost landscape defined
by Pareto-ranking (the contour plots
are those of the individual objective
functions f1 and f2).
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Despite the underlying objectives being continuous, smooth and unimodal, the

landscapes can be seen to exhibit features such as discontinuities, non-smoothness

and flat regions. EA-based optimizers have proved to be able to cope with such

features in single objective optimization, and should, therefore, be applicable here

as well.

4.4 Multiobjective genetic algorithms

The ranking of a population was seen in Chapter 2 to provide sufficient relative

quality information to guide evolution. Given a ranked population, different EAs

proceed with different fitness assignment strategies, selection and reproduction

schemes to produce a new set of individuals to be assessed.

This section will be concerned with the formulation of a Multiobjective Ge-

netic Algorithm (MOGA), based on the ranking approach described earlier.

4.4.1 Fitness assignment

Fitness is understood here as the number of offspring an individual is expected

to produce through selection. It is fundamentally different from cost or utility,

which reflect the result of the decision making process, and are independent

from the search process. The selection process determines which individuals

actually influence the production of the next generation and, consequently, must

be considered part of the search strategy.

The traditional rank-based fitness assignment is only slightly modified, as

follows:

1. Sort population according to rank.

2. Assign fitness by interpolating from the best individual (rank = 0) to the

worst (rank = max r(t) < N) according to some function, usually linear or

exponential, but possibly of other types.
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Figure 4.7: Rank-based fitness assignment.

3. Average the fitness assigned to individuals with the same rank, so that all

of them are sampled at the same rate while keeping the global population

fitness constant.

Exponential rank-based fitness assignment is illustrated in Figure 4.7 for the

population shown earlier in Figure 4.2 (a). Individuals are sorted by their multi-

objective rank and first assigned fitness values according to an exponential rule

(narrower bars). Then, a single value of fitness is derived for each group of indi-

viduals with the same rank, through averaging (wider bars).

Rank-based fitness assignment, as described, transforms the cost landscape

defined by the ranks into a fitness landscape which is also independent from

objective scaling.

4.4.2 Niche induction methods

The flat regions defined in the fitness landscape by Pareto and preferability rank-

ing raise two problems already encountered with the more conventional multi-

peak type of multimodality. Firstly, genetic drift may cause the population to

converge only to a small region of the trade-off surface, unless measures such as

fitness sharing are taken against it (Goldberg, 1989; Fonseca and Fleming, 1993).
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Secondly, mating of very different well-performing individuals often proves not

to be viable, requiring mating to be restricted to individuals similar to one an-

other for the population to be able to maintain itself around the trade-off surface.

This encourages the formation of offspring similar to their parents, resulting in a

search which is less exploratory.

4.4.2.1 Fitness sharing

As explained in Chapter 2, fitness sharing (Goldberg and Richardson, 1987) mod-

els individual competition for finite resources in a closed environment. Individ-

uals similar to one another (according to some measure of similarity) mutually

decrease each other’s fitness by competing for the same resources. Even if orig-

inally considered less fit, isolated individuals are thus given a greater chance of

reproducing, favouring diversification.

Finding a good trade-off description means achieving a diverse, if not uniform,

sampling of the trade-off surface in objective function space. In the sharing scheme

proposed here, share counts are computed based on individual distance in the

objective domain, but only between individuals with the same rank. Sharing

works by providing an additional selective pressure to that imposed by ranking, in

order to counter the effects of genetic drift. Genetic drift becomes more important

as more individuals in the population are assigned the same rank.

4.4.2.2 Setting the niche size

The sharing parameter σshare establishes how far apart two individuals must be

in order for them to decrease each other’s fitness. The exact value which would

allow a number of points to sample a trade-off surface whilst only tangentially

interfering with one another depends on the area of such a surface. The following

results assume that all objectives have the same, low priority, but can also be

applied to a certain extent when there are multiple priority levels.
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Figure 4.8: An example of a trade-off surface in 3-dimensional space.

When expressed in the objective value domain, and due to the definition of

non-inferiority, an upper limit for the size of the trade-off surface can be calculated

from the minimum and maximum values each objective assumes within that

surface. Let S be the trade-off set in the decision variable domain, f(S) the

trade-off set in the objective domain and u = (u1, . . . , un) any objective vector

in f(S). Also, let

m = (min
u

y1, . . . , min
u

yn) = (m1, . . . , mn)

M = (max
u

y1, . . . , max
u

yn) = (M1, . . . , Mn) ,

as illustrated in Figure 4.8.

The definition of non-dominance implies that any line parallel to any of the

axes will have not more than one of its points in f(S), i.e., each objective is

a single-valued function of the remaining objectives. Therefore, the true area of

f(S), if it exists, will be less than the sum of the areas of its projections according

to each of the axes. Since the maximum area of each projection will be at most

the area of the corresponding face of the hyperparallelogram defined by m and
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Figure 4.9: Upper bound for the area of a trade-off surface limited by the paral-
lelogram defined by (m1, m2, m3) and (M1, M2, M3).

M, the hyperarea of f(S) will be less than

A =
n∑
i=1

n∏
j=1
j 6=i

∆j ,

which is the sum of the areas of each different face of a hyperparallelogram of

edges ∆j = (Mj −mj) (Figure 4.9).

The setting of σshare also depends on how the distance between individuals

is measured, and namely on how the objectives are scaled. In fact, the idea of

sampling the trade-off surface uniformly implicitly refers to the scale in which

objectives are expressed. The appropriate scaling of the objectives can often be

determined as the aspect ratio which provides an acceptable visualization of the

trade-off, or by normalizing objectives by the magnitude of the corresponding goal

values. In particular, normalizing objectives by the best estimate of ∆j available

at each particular generation seems to yield good results (see the application

examples in the next Chapters). This view is also expressed in a recent paper by

Horn et al. (1994).

Assuming objectives are appropriately scaled, and using the ∞-norm as a
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Figure 4.10: Sampling area A. Each point is σshare apart from each of its neigh-
bours (∞-norm).

measure of distance, the maximum number of points that can sample area A

without interfering with each other can be computed as the number of hypercubes

of volume σnshare that can be placed over the hyperparallelogram defined by A

(Figure 4.10). This can be estimated from the difference in volume between two

hyperparallelograms, one with edges ∆i + σshare and the other with edges ∆i, by

dividing it by the volume of a hypercube of edge σshare, i.e.,

N =

n∏
i=1

(∆i + σshare)−
n∏
i=1

∆i

σnshare

.

Conversely, given a number of individuals (points), N , it is possible to estimate

σshare by solving the (n− 1)-order polynomial equation

Nσn−1
share −

n∏
i=1

(∆i + σshare)−
n∏
i=1

∆i

σshare

= 0

for σshare > 0.

When there are objectives with different priorities and there are known so-
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lutions which meet all goals with priority higher than 1, trade-offs will involve

only priority 1 (low-priority) objectives. The sharing parameter can, therefore,

be computed for these only, using the expression above. This should be the case

towards the end of the GA run in a problem where high-priority objectives can

be satisfied.

Similarly, if the highest level of priority, i, which the preferred solutions known

at any given time violate is greater than 1, the trade-offs explored by the prefer-

ability relation will not involve objectives with priority higher than i. Again,

sharing may be performed while taking into account priority i objectives only.

It is a fact that objectives with priority lower than i may also become involved

in the decision process, but this will only happen when comparing vectors with

equal violating priority i components. If this is the case, and the DM decides to

move on to consider objectives with priority i−1, then the relevant priority-i ob-

jectives should either see their associated goals changed, or be associated priority

i− 1 by the DM for sharing to occur as desired.

4.4.2.3 Mating restriction

Mating restriction can be implemented much in the same way as sharing, by

specifying how close individuals should be in order to mate. The corresponding

parameter, σmate, can also be defined in the objective domain. After selection,

one individual in the population is chosen, and the population searched for a

mate within a distance σmate. If such an individual can be found, then mating is

performed. Otherwise, a random individual is chosen (Deb and Goldberg, 1989).

Mating restriction assumes that neighbouring fit individuals are genotypically

similar, so that they can form stable niches. Extra attention must therefore be

paid to the coding of the chromosomes. Gray codes, as opposed to standard

binary, are known to be useful for their property of adjacency. However, encoding

and manipulating decision variables independently of each other, as is usually the
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case, cannot be expected to consistently express any relationship between them.

On the other hand, the Pareto/preferred sets, when represented in the decision

variable domain, are very likely to exhibit such dependencies, as is the case for the

example shown earlier in Figure 4.3. As the size of the solution set in phenotypic

space and/or the number of decision variables increase, an increasing number of

individuals may be necessary in order to assure niche sizes small enough for the

individuals in each niche to be sufficiently similar to each other. Only then can

the formation of lethals be effectively reduced.

The difficulties that ridge-shaped fitness landscapes present to simple genetic

search have also been noted by Wagner (1988). He has shown theoretically

that, under biologically reasonable assumptions, the rate of progression of un-

constrained phenotypes on certain types of ridge-shaped landscapes is bounded,

in which case it decreases rapidly as the number of decision variables increases.

This implies that genetic operators must be biased towards producing offspring

which stay on the ridge. Mating restriction attempts to do this by keeping the

level of exploration small, which may result in the predicted slow progression of

the population across the trade-off surface. Achieving fast progression on such

landscapes requires the concurrent search for a suitable genetic representation or,

alternatively, some sort of self-adaptation mechanism of the type found in evolu-

tion strategies for mutation variances and correlated mutations. This is currently

an open field for research.

In order to work around these difficulties, the DM can interactively reduce the

size of the trade-off set by appropriately refining the current preferences. This

requires the GA to be able to cope in some way with the corresponding change

in the fitness landscape.
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4.4.3 Progressive articulation of preferences

Setting definite aspiration levels in terms of goals and associated priorities is often

difficult if done in the absence of any trade-off information. On the other hand,

an accurate global description of the trade-off surface tends to be expensive, or

even impossible, to produce, since the Pareto set may not be bounded. Interac-

tively refining preferences has the potential advantage of reducing computational

effort by concentrating optimization effort on the region from which compromise

solutions are more likely to emerge, while simultaneously providing the DM with

trade-off information on which preference refinement can be based.

From the optimizer’s point of view, the main difficulty associated with pro-

gressive articulation of preferences is the changing environment on which it must

work. Consequently, the action of the DM may have to be restricted to the tight-

ening of initially loose requirements, as with the moving-boundaries process (Za-

kian and Al-Naib, 1970). In this case, though the overall optimization problem

may change, the final solution must remain in the set of possible solutions which

satisfy the current preferences at any given time.

When EA-based optimizers are used, the DM may gain more freedom and

actually decide to explore regions of the trade-off surface not considered in the

initial set of preferences. The continuous introduction of a small number of

random immigrants in the current population (Grefenstette, 1992), for example,

has been shown to improve the response of GAs to sudden changes in the objective

function, while also potentially improving their performance as global optimizers.

Although there is no hard limit on how much the DM may wander away from

preferences set originally, it must be noted that EAs will work on the utility

function implicitly defined by the preference vectors the DM specifies. Any EA

can only converge to a compromise solution if the DM comes to consistently prefer

that solution to any others.

Giving the DM freedom to specify any preferences at any time also raises the
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question of what information should be stored during a run, so that no trade-

off information acquired is lost. From Lemma 4.1, the non-dominated set of a

particular problem contains at least one vector equivalent to any vector in the

preferred set of the problem, defined by a given preference vector. Therefore, it

may be acceptable to store only the non-inferior individuals evaluated during a

run of the algorithm. A database of individuals currently non-dominated is also

useful in setting the appropriate niche sizes for sharing and mating restriction,

since it includes the relevant individuals from previous generations in the niche-

size estimation process.

4.5 Simple examples

The examples given in this section are aimed at illustrating some of the points

discussed earlier. They are based on the minimization of the two competing

objectives

f1(x1, . . . , xk) = 1− exp

(
−

k∑
i=1

(xi − 1/
√

k)2

)

f2(x1, . . . , xk) = 1− exp

(
−

k∑
i=1

(xi + 1/
√

k)2

)
,

which are not very different from the objective functions considered in subsec-

tion 4.3.3, but are defined for any number of decision variables k. The minimum

of f1 is located at (x1, . . . , xk) = (1/
√

k, . . . , 1/
√

k) for all k, and that of f2 is

located at (x1, . . . , xk) = (−1/
√

k, . . . ,−1/
√

k). Due to symmetry in the two

functions, the Pareto-optimal set clearly corresponds to all points on the line

defined by

x1 = x2 = · · · = xk ∧ −1/
√

k ≤ x1 ≤ 1/
√

k .

Since the Euclidean distance between the two optima remains constant for any

number of decision variables k considered, the problem admits the same non-
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dominated set for all k.

A simple genetic algorithm with a population size of 100 individuals, binary

chromosomes, reduced-surrogate shuffle crossover and binary mutation will be

the basis for the GA runs that follow. Multiobjective ranking is performed as

described earlier in this Chapter. Decision variables are Gray-encoded as 16-bit

strings in the interval [−2, 2) and concatenated to form the chromosomes.

4.5.1 Simple GA with Pareto-ranking

The evolution of the population of the simple GA with Pareto-ranking on the

problem for k = 2 is illustrated in Figure 4.11. Non-dominated individuals are

marked with filled circles (•) and other individuals with hollow circles (◦). Follow-

ing the initial generation, repeated selection of non-dominated individuals and

production of offspring soon produces a reasonable description of the trade-off

surface of the problem (generation 10). However, letting the GA run longer, it

can be seen that the population continues to converge towards an arbitrary region

of that surface, due to genetic drift. Thereafter, it becomes very unlikely that

the sampling of other regions of the trade-off will be improved at all.

This effect becomes more important as the number of variables increases while

maintaining the population size fixed. Figure 4.12 shows the evolution of the

trade-off surface for k = 8. Not surprisingly, the quality of the trade-off improves

more slowly. In addition to the search space being much larger, points along the

trade-off surface now differ from each other in many more bit positions, making

the search more difficult and providing even more scope for genetic drift to occur.

At generation 100, the population can be seen to cover a region of the trade-off

surface smaller than in the previous example, while the best non-dominated points

ever found are also farther from optimal.
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Figure 4.11: Evolution of a trade-off surface (f1 vs. f2, 2 decision variables).
Simple GA with Pareto-ranking.
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Figure 4.12: Evolution of a trade-off surface (f1 vs. f2, 8 decision variables).
Simple GA with Pareto-ranking.
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4.5.2 Simple GA with Pareto-ranking and sharing

Sharing (Figure 4.13) can be seen to promote diversity among the population, and

to maintain it to some extent as the search proceeds. However, the trade-off sur-

face produced is still not as desired. In particular, a larger number of dominated

individuals can be seen to exist at generations 50 and 100, and the population still

does not cover the whole trade-off surface well. As predicted earlier, promoting

diversity through sharing has caused more low-fitness individuals to be produced

through recombination, making improvement of current non-dominated solutions

slow.

4.5.3 Simple GA with Pareto-ranking, sharing and mat-

ing restriction

Introducing mating restriction can be seen to clearly improve the algorithm’s

long-term performance (Figure 4.14). The population is now able to cover vir-

tually the whole trade-off surface, while remaining more or less uniformly dis-

tributed across its length. The best non-dominated points ever found now ap-

proach the theoretical trade-off better, and, as long as the population remains

distributed across the whole trade-off surface, can be expected to improve as the

algorithm runs.

4.5.4 Progressive articulation of preferences

If, during a GA run, the DM decides that some regions of the trade-off surface

are of not of practical interest, it may choose to set the preference vector in order

to reflect that. Considering a new run of the previous example, the population

at generation 20 already indicates the trade-off between f1 and f2, though in a

rough and sub-optimal manner (first plot in Figure 4.15). At this stage, new

goals g1 and g2 may be set for the two objectives. Running the GA for another
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Figure 4.13: Evolution of a trade-off surface (f1 vs. f2, 8 decision variables).
Simple GA with Pareto-ranking and sharing.
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Figure 4.14: Evolution of a trade-off surface (f1 vs. f2, 8 decision variables).
Simple GA with Pareto-ranking, sharing and mating restriction.
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Figure 4.15: Progressive articulation of preferences. Computational effort is con-
centrated on regions of the trade-off surface attractive to the DM.
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30 generations (second plot), it can be seen that not only is the population now

concentrated on the relevant portion of the trade-off curve, but also the set of

all non-dominated individuals ever evaluated during the run is of better qual-

ity in this region. Increasing the priority of f1 without changing the goals, and

continuing to run the GA, the population is driven towards the point correspond-

ing to y1 = g1 (third plot), further increasing the quality of the final trade-off

approximation around this point.

The quality of the global trade-off approximation produced at the end of a

run can be seen in the fourth plot in Figure 4.15 to vary locally according to how

the DM articulated preferences during that run, and to reflect the concentration

of search effort in the preferred regions. Reciprocally, the DM’s settings for the

preference vector will generally be influenced by the progress of the search.

4.6 Conclusions

This Chapter began with a critical overview of evolutionary approaches to con-

strained and multiobjective optimization to date. A generalized view of evolution-

ary multiobjective optimization was then conceived as the interaction between

two complementary entities: a Decision Maker, responsible for the evaluation of

the relative cost of candidate individuals, and a search algorithm, responsible for

the production of new candidates.

In line with this generalization, the concept of preferability given a prefer-

ence vector comprising goal and priority information was then proposed. It was

formalized in terms of a transitive relational operator, leading to a strategy for

the scale-independent, multiobjective ranking of a whole population. The con-

cept encompasses several multiobjective and constrained formulations commonly

used, including Pareto, lexicographic and goal programming approaches. The

cost landscapes resulting from the ranking approach proposed can be interpreted

in terms of the probability of improvement via random search, a notion on which
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recent theoretical results in the study of single-objective artificial evolution are

based (Altenberg, 1994).

A multiobjective genetic algorithm has also been formulated, making use of

the preferability relation, fitness sharing, and mating restriction techniques. The

implementation of such techniques in the objective domain has been proposed,

and expressions to estimate the corresponding niche sizes have been derived.

Sample genetic algorithm runs on a simple biobjective problem illustrated

some of the difficulties posed by Pareto and preferability-based assessment of

solutions, and how the techniques proposed address them.

The MOGA, as formulated in this Chapter, makes no assumption about the

nature of the decision variables involved in the search process. Therefore, the

considerations made and the techniques proposed are largely domain indepen-

dent, being applicable to virtually every domain of application of GAs and other

evolutionary approaches. In the next two Chapters, two parameter optimiza-

tion problems and a combinatorial (subset selection) problem, all drawn from

the control engineering field, are approached in a multiobjective way by means

of genetic algorithms. The very different nature of the two sets of problems is

almost irrelevant to the multiobjective nature of the GAs used.



Chapter 5

Multiobjective Controller

Parameter Optimization

5.1 Introduction

Optimal controller design has been approached from many perspectives, ranging

from the finding of analytical expressions for the optimal controller (e.g., LQG

design and H∞ design (Kwakernaak, 1986)), to the formulation of the design

problem as a non-linear programming problem and the consequent application

of numerical optimizers to produce optimal or near-optimal solutions (Hancock,

1992). Somewhere in between these two extremes lie intermediate approaches

where, in certain cases, controller design can be cast as a linear, or at least convex,

optimization problem, and thus more efficiently solved (Boyd et al., 1988).

In this Chapter, the application of a multiobjective genetic algorithm to two

controller design problems extends the non-linear optimization approach by di-

rect handling of meaningful objectives. In fact, rather than trying to guarantee

favourable properties of the design objectives prior to optimization, such as con-

tinuity or smoothness, objectives are stated in a form which simply reflects the

natural way in which the designer perceives the problem. The exploration of the

95



CHAPTER 5. MULTIOBJECTIVE PARAMETER OPTIMIZATION 96

trade-offs between the various design objectives is left to the GA, at times con-

firming, and quantifying, the designer’s unformalized knowledge (or intuition),

but also possibly revealing unexpected aspects of the problem under study. The

“wild” nature of genetic search imposes a strong demand on the proper formaliza-

tion of the design objectives, a lot more so than on the mathematical properties

that they may or may not possess.

In the first case-study, a controller is to be found for a non-minimum phase,

linear time-invariant plant. The controller should be optimal or near optimal

with respect to both noise sensitivity and robustness criteria, while remaining

open-loop stable and maintaining a given complexity. Low complexity is one

of those objectives which, although present in almost all practical applications,

can make mathematical analysis difficult. For this reason, it is often addressed, a

posteriori, by means of model reduction techniques (Hutton and Friedland, 1975).

The second case-study is concerned with the low-pressure spool speed governor

in a non-linear model of a Pegasus gas turbine engine. The parameters of the

controller are to be set so as to minimize several performance measures in both

the time and the frequency domains, some of which require the actual simulation

of the model.

Since the two application examples reduce to parameter optimization prob-

lems, both make use of exactly the same genetic algorithm. The implementation

of the GA will, therefore be described first, in the next Section. Each application

example is then addressed in detail, separately. The Chapter concludes with a

discussion of the results.

5.2 Implementation of the genetic algorithm

All of the functions needed to set up a simple genetic algorithm, such as single-

objective ranking, sampling, and various types of crossover and mutation, were

implemented as MATLAB (The MathWorks, 1992a) M-files. This core of GA
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functions formed a prototype Genetic Algorithm Toolbox for use with MATLAB

which has meanwhile been considerably extended (Chipperfield et al., 1994), and

is currently used in over 100 sites worldwide.

Multiobjective ranking, sharing and mating restriction, as described in Chap-

ter 4, were implemented in C and compiled into MEX (Matlab EXecutable)

files. Interpreted MATLAB was either too slow for these tasks (for-loop imple-

mentation) or too memory-hungry (vectorized implementation), especially as the

number of GA individuals involved increased.

A graphical user interface (GUI) was written as an M-file, making use of the

graphical capabilities introduced in Version 4 of the MATLAB package. The

resulting genetic optimization environment was thus fully integrated with the

many toolboxes available for MATLAB, most importantly the Control Systems

Toolbox and SIMULINK (The MathWorks, 1992b), which were extensively used

in the implementation of the various objective functions.

The MOGA consisted of a fairly standard generational GA, only modified to

incorporate multiobjective ranking, sharing and mating restriction as described

in Chapter 4. Also, in order to make the GA more responsive to on-line preference

changes (subsection 4.4.3), a small proportion (δ = 0.1) of random immigrants

was inserted in the population at each generation.

5.2.1 Chromosome coding

In both case-studies, decision variables were encoded as binary strings, using Gray

coding, and then concatenated to form the chromosomes. This allowed most of

the GA to be set up in a fairly standard way, and effort to be concentrated on its

multiobjective aspects. Details such as the precision to which decision variables

were encoded will be given in the sections corresponding to each case-study.
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5.2.2 Individual evaluation

Chromosomes were decoded and the various objective functions evaluated at

the points obtained. After the first generation, only those offspring which were

actually changed by the genetic operators were decoded and re-evaluated, as

suggested by Oliveira et al. (1991). This simple “caching” mechanism reduced

the number of objective function evaluations by between 20% and 25%.

The necessary scalarization of the objective vectors was performed by rank-

ing the population according to the concept of preferability, as described in Sec-

tion 4.3.

5.2.3 Fitness assignment

Once the multiobjective ranks were calculated, individuals were sorted by rank

value, for fitness assignment. In a purely generational GA with a constant popu-

lation size N , the average number of offspring per individual is 1 and, therefore,

the number of offspring expected by each individual equals its relative fitness.

However, in an implementation where δN individuals consist of random immi-

grants and only (1 − δ)N individuals in each new generation are the result of

selection, the relative fitness of the best individual must increase with δ for its

expected number of offspring to remain constant. For example, in order for the

best individual to produce on average µ offspring (µ = 2 is a typical setting), its

relative fitness should be s = µ/(1 − δ). Having decided on the value of s, the

rest of the population was assigned fitness exponentially, as has been explained in

subsection 2.3.2. When multiple individuals had the same multiobjective rank,

their fitness was averaged so that all of them were assigned the same raw fitness

prior to sharing, as shown previously in Figure 4.7.

Sharing was performed as follows. The niche count of each individual was

initially set to zero and then incremented by a certain amount for every individ-

ual in the population with the same multiobjective rank, including itself. The
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contribution of an individual to another’s niche count was dictated by a sharing

function, which, in this case, was a triangular function of their mutual distance in

objective space (Goldberg and Richardson, 1987). The original fitness values were

then weighted by the inverse of the niche counts and subsequently normalized by

the average of the weights within each rank, before selection.

The sharing parameter σshare was estimated at each generation given the num-

ber of preferable individuals in the population and, for each objective, the range

those individuals defined in normalized objective space. Two possibilities were

investigated for the normalization of the objectives.

The first possibility consisted of normalizing each objective by the correspond-

ing range defined in objective space by the current set of preferable individuals.

This is equivalent to computing σshare assuming ∆j = 1 for all j and then de-

normalizing the σshare obtained. This seemed to encourage the population to

expand and cover more of the trade-off surface, by penalizing middling individu-

als slightly more than those at the extremes. However, in certain circumstances

(non-attainable goals, for example), this sometimes led to the insufficient pro-

duction of middling individuals.

The second possibility was to normalize the objectives by the ranges defined by

the set of preferred non-dominated individuals accumulated up to and including

the current generation. These values are less affected by variations in the current

population, and the GA seemed to behave better in the circumstances mentioned

above. A combination of both methods, where each objective was normalized

by the smaller of the two (current and cumulative) ranges, appeared to perform

best.

After sharing, SUS (Baker, 1987) was used to select (1−δ)N individuals from

the old population, which were then recombined and mutated to produce (1−δ)N

offspring. The remaining δN individuals were simply generated at random and

added to the population of offspring to form a new generation. Immigrants did

not take part in recombination or mutation at this stage.
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5.2.4 Recombination

Once the (1 − δ)N parents of the next generation were selected from the old

population, they were paired up and recombined with high probability (0.7, also

a typical value). Mating restriction was implemented by forming pairs of indi-

viduals within a distance σmate = σshare of each other in objective space, where

possible (Deb and Goldberg, 1989). Reduced-surrogate shuffle crossover was used

for recombination (see subsection 2.3.4).

5.2.5 Mutation

After recombination, each bit in the chromosomes was mutated independently

with a given probability, which was set according to the considerations made in

Chapter 2 concerning the survival of a single best individual in the population.

The probability of a length ` chromosome not being modified by independent

bit mutation is

Ps = (1− pm)` ,

where pm represents the bit mutation probability. In the absence of crossover,

the probability of survival Ps should be no less than the inverse of the expected

number of offspring of the best individual. It follows that

pm ≤ 1− µ−1/` .

In the presence of crossover, the actual pm should be somewhere below the limit.

For µ = 2, setting

pm = 1− (αµ)−1/` ,

where α = 0.9, was found to perform well. Note that in the presence of mating

restriction, crossover tends not to be too destructive. No fine tuning of these

parameters was attempted.
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5.3 Mixed H2/H∞ reduced-order controller de-

sign

Theoretical results (Boyd et al., 1988) show that, in the linear time-invariant

(LTI) case, objectives such as rise time, settling time, overshoot, asymptotic

tracking, decoupling and regulation, gain and phase margins, small disturbance

response and bounds on frequency response magnitudes are convex with respect

to the closed-loop transfer function. Essentially, this means that if two closed-

loop systems satisfy certain goals for these objectives, the system which is the

average of those two closed-loop systems will also satisfy those goals.

The same results also show that, once a stabilizing controller is found for

a given plant, the design problem can be formulated as a multiobjective opti-

mization problem convex in Q, a transfer function design parameter which is a

mapping of all stabilizing controllers for that plant. However, when addressed in

the controller parameter domain, the same design problem is no longer necessarily

convex and, in general, it may be difficult to solve.

Other objectives, such as open-loop controller stability and low controller

complexity, may not result in convex optimization problems and, therefore, are

not included in the results mentioned above. Non-linear systems pose similar

difficulties, as their mathematical treatment is generally more complex.

Barratt and Boyd (1989) have proposed a simple LTI controller design prob-

lem for which they computed exact trade-offs involving noise sensitivity and ro-

bustness measures. These were global trade-offs, defined over the space of all

stabilizing controllers, and potentially achievable only with controllers of arbi-

trary complexity. Such trade-offs can serve as maximum performance bounds

against which controllers of any complexity, obtained by any design method, can

be compared. Although generally complex, the corresponding controllers might,

in certain cases, be directly implementable. Alternatively, sufficiently simple con-
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Figure 5.1: Closed-loop system.

trollers could be derived from them through model reduction techniques.

In this section, an instance of the same problem, but where controller com-

plexity is fixed, is considered. The trade-offs found depend directly on the pre-

defined complexity of the controllers sought. The outcome are families of final,

reduced-order controllers whose performance is well known as a consequence of

the optimization process.

5.3.1 The design problem

The problem (Barratt and Boyd, 1989) consists of designing a discrete-time reg-

ulator for the single-input single-output plant

P (s) =
1

s2
· 4− s

4 + s
. (5.1)

Such a double integrator plant with excess phase provides a simple but realistic

basis for illustrating design trade-offs. The discretization of the plant using a

zero-order hold at 10 Hz gives the transfer function

P (z) =
−0.00379 (z − 1.492) (z + 0.7679)

(z − 1)2 (z − 0.6703)
. (5.2)

The complete regulator system is presented in Figure 5.1. The discrete-time

outputs u and y are, respectively, the actuator and the plant outputs. The

discrete-time inputs w and v represent actuator and sensor noise, and are consid-

ered to be driven by zero-mean, independent, white noise with root-mean-square

(rms) values of 10 and 1, respectively.
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5.3.2 Design objectives

A number of objectives including noise sensitivity and robustness measures is

considered here. A controller of given complexity is sought which represents a

compromise between some or all of these objectives.

Closed-loop stability This is probably the most basic objective to be satisfied.

If no stabilizing controller is known for a particular plant, non-stabilizing

controllers can still be ranked according to how far from being stabilizing

they are, as indicated by, for example, the maximum of the magnitudes

of the poles of the corresponding closed-loop system. This value can be

computed easily in the MATLAB environment.

Stabilizing controllers can be found by minimizing the degree of instabil-

ity of the closed-loop system.1 Once stability is achieved, the remaining

objectives become active. Since closed-loop stability is an absolute design

requirement, the maximum pole magnitude of the closed-loop system is set

up as a high priority objective, or constraint, with an associated goal of 1.

Output and actuator variance The trade-off between steady-state output and

actuator variances due to the presence of process (actuator) and measure-

ment (sensor) noise, if considered in isolation from other objectives, can be

computed analytically from LQG theory. The conventional approach is to

find the minimum of the linear combination of the two variances

J = lim
k→+∞

E{y2
k + ρu2

k} (5.3)

for various settings of the parameter ρ until suitable values of output and

actuator variance are found.

1Barratt and Boyd (1989) designed a simple lead-lag regulator for this particular plant, in
order to provide the initial stabilizing controller required by their approach.
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In MATLAB, the variances limk→+∞Ey2
k and limk→+∞Eu2

k for a given

discrete-time controller-plant setup can be computed as two separate ob-

jectives by using the function dcovar, available in the Control Systems

Toolbox.

The order of the regulators found analytically is generally dictated by the

order of the plant. The need for simpler controllers has prompted much

interest and work in the area of model reduction. In fact, no analytical

solution is known for controllers with arbitrarily fixed complexity. Their

design requires the use of optimization techniques.

Sensitivity to additive loop perturbations The M-circle radius, defined as

the minimum distance from the Nyquist plot of the loop gain PC(exp jωT )

to the critical point−1, is a measure of robustness which combines both gain

and phase margins. It relates to the maximum sensitivity of the system,

defined as

‖S‖∞ =
∥∥∥∥ 1

1 + PC

∥∥∥∥
∞

(5.4)

in the following way:

M = 1/‖S‖∞ . (5.5)

Therefore, minimizing the maximum sensitivity ‖S‖∞ corresponds to max-

imizing the M-circle radius, and thus the stability margin of the system.

Variations in the loop gain may appear, for example, as a consequence of

variations in the parameters of the system.

A function to compute the H∞ norm of discrete-time LTI systems was

written in MATLAB. The algorithm implemented was the discrete-time

equivalent of the fast, iterative algorithm proposed by Bruinsma and Stein-

buch (1990) for continuous-time systems.

Sensitivity to additive plant perturbations This second measure of robust-

ness expresses the ability of the regulator to maintain closed-loop stabil-
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ity in the presence of stable additive plant perturbations. Characterizing

plant perturbations ∆P in terms of the maximum magnitude of their fre-

quency response, the smallest stable perturbation D which will destabilize

the closed-loop system is known to be the inverse of the maximum magni-

tude of the closed-loop transfer function from r to u, i.e.,

1/D =
∥∥∥∥ C

1 + PC

∥∥∥∥
∞

. (5.6)

Additive plant perturbations may arise from inaccurate modelling of the

plant, either due to tolerances in the parameters or ignored plant dynamics.

Open-loop controller stability It is often required that controllers be open-

loop stable. This constraint can be implemented simply by requiring that

the maximum pole magnitude of the controller be less than unity.

5.3.3 Parameter encoding

Controllers were parameterized in terms of their roots (poles and zeros) and their

gain. The fact that a large number of different systems, represented by possibly

very different pole-zero patterns, can exhibit the same input-output behaviour

within arbitrary finite accuracy (Hippe and Stahl, 1987) makes the pole-zero

domain very rich in approximate solutions for the GA to explore.

Zeros and poles were defined through pairs of Gray encoded real parameters,

respectively the average, α, and the deviation from the average, β, of each pair

of roots, as suggested by Kristinsson and Dumont (1992). A positive deviation

indicates real roots and negative deviation indicates complex conjugate roots.

A pair of zeros and a pair of poles were encoded as two α and β pairs in the

interval between −1 and 1. Most controllers defined in this way are open-loop

stable and minimum phase. The gain was also Gray encoded, in the interval

between 0 and 100. 16 bits were used for each parameter, which lead to 80-bit
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Figure 5.2: Evolution of the noise sensitivity trade-off (single run).

long chromosomes.

5.3.4 Noise sensitivity trade-off

Figure 5.2 shows how the GA evolved a family of second order controllers for a

first instance of this problem. In addition to the closed-loop stability constraint,

only the two objectives relating to noise sensitivity, i.e., the actuator and output

variances, were included. Since the theoretical LQG trade-off surface, known

from Barratt and Boyd’s work and easily reproducible with MATLAB, was best

visualized on logarithmic axes, the logarithm of the two objectives was actually

used for the purposes of sharing and mating restriction. The region of the trade-

off curve to be evolved was delimited by setting the goal vector to urms = 100

and yrms = 10.

In a sample run, the set of preferred individuals accumulated over the first

25 generations already provided a rough description of the trade-off surface (the

dash-dotted line), which was improved as the search progressed. The Figure
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also shows the non-dominated individuals present in the hundredth generation

(marked ◦). Note how the population is more or less uniformly distributed along

the trade-off surface, as desired. It is also worth noting that, in this example,

second order controllers come very close to the best (dotted line) that can be

achieved with any stabilizing controller (LQG regulators for this plant are third

order).

Results obtained from 13 independent runs of the algorithm on this instance

of the problem provide a clear estimate of how likely to be attained in a run of

the GA the various regions of the objective space were. The plots, which were

produced from the sets of non-dominated individuals found up to and includ-

ing generations 25, 50, 75 and 100 as discussed earlier in subsection 3.4.3, are

presented in Figure 5.3.

In all plots, the lower grey line indicates the best trade-off approximation

known as a consequence of all the runs, while the upper grey line delimits the

set of goal vectors attained in all the runs. The thick black line provides an

estimate of the family of possible goal vectors (or requirements) which, each on

its own, would have a 50% chance of being attained. The thin black lines provide

analogous estimates, but for the 25% and 75% chance levels.

As the number of generations increased, the area delimited by the two grey

lines can be seen to have become progressively narrower. This shows both that

the quality of the non-dominated solutions produced by the GA did not vary

much between runs, and that a good coverage of the trade-off surface was more

or less consistently achieved. In addition to that, the 50%-line can be seen to be

generally closer to the lower grey and black lines than to the corresponding upper

lines, especially in the lower-right region of the trade-off surface. This skewness

is an indication that most runs approximated most of the trade-off surface well.
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Figure 5.3: Evolution of the noise sensitivity trade-off (13 runs).
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Figure 5.4: Two largely non-competing objectives.

5.3.5 Trade-offs involving noise sensitivity and robust-

ness measures

Noise sensitivity can also be traded off against the sensitivity to additive loop and

plant perturbations simply by including these robustness measures in the ranking

of the population. In Figure 5.4, actuator variance is plotted against sensitivity

to additive plant perturbations for the set of preferable individuals found up to

and including the 60th generation. The strong direct relationship shown between

these two objectives confirms the general intuition that increasing the control

action to achieve better control may make the closed-loop system less tolerant to

variations in the dynamics of the plant. Understanding that these two objectives

are largely non-competing is important for the designer, as it conceptually reduces

the complexity of the problem.

Suppose the designer could decide upon a maximum sensitivity to plant per-

turbations of 1/D = 10. Also, suppose that a corresponding actuator rms value

of 10, which can be expected from the graph in Figure 5.4, is acceptable but
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Figure 5.5: Maximum sensitivity versus output variance (urms ≤ 10 and 1/D ≤
10).

should not be exceeded. Setting these goals and increasing the priority of the

corresponding objectives converts the problem into one involving two objectives

(output variance and maximum sensitivity) and three constraints (closed-loop

stability, maximum actuator variance and sensitivity to additive plant perturba-

tions).

Some information about the trade-off between maximum sensitivity and out-

put variance under the constraints is already available in, and can be extracted

from, the set of all non-dominated individuals evaluated, leading to the dash-

dotted line in the plot in Figure 5.5.

Continuing to run the GA causes the population to abandon the regions of

the search space which violate the new constraints and concentrate on the trade-

off between the two soft objectives. The dashed and solid lines in the plot in

Figure 5.5 show the improvement achieved in the next 10 and 60 generations,

respectively.

The point marked with a filled circle (•) indicates a possible compromise
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solution. The corresponding controller is characterized by the following zeros

(z), poles (p) and gain (k):

z1 = 0.9659 p1 = 0.5685 + 0.4127i k = 6.770

z2 = 0.5879 p2 = 0.5685− 0.4127i

and can be seen to satisfy the constraints imposed earlier:

|pc.l.|max = 0.9481 ≤ 1

yrms = 5.5495

urms = 8.6030 ≤ 10

1/M = 1.5865

1/D = 9.4689 ≤ 10

(|po.l.|max = 0.7025 ≤ 1)

All preferable controllers found were open-loop stable.

5.4 Pegasus GTE controller optimization

The second case-study was based on a non-linear model of a Rolls-Royce Pegasus

gas turbine engine (Hancock, 1992; Swansea, 1991). The engine layout and the

physical meaning of some of the associated variables are shown in Figure 5.6.

The engine model reproduces dynamic characteristic variations for the fuel thrust

range over the complete flight envelope.

The model of the full system also includes a fuel system model, stepper motor

input and digital fan speed controller, and is shown in Figure 5.7. The demand

in low-pressure spool speed (NLDEM) is the only control input of the controller.

The other inputs allow external perturbations to be applied to the system, but

are not used in this work. NLDEM is compared with the actual speed of the low-

pressure spool (NL) in order to produce a demand in high-pressure spool speed
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F Fuel flow
NH High-pressure spool speed
NL Low-pressure spool speed
P3 High-pressure delivery pressure
P2 Low-pressure delivery pressure
T3 High-pressure delivery temperature
TJ Jet pipe temperature

XGF Front nozzle thrust
XGR Rear nozzle thrust

Figure 5.6: The Pegasus turbofan engine layout.
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Figure 5.7: The SIMULINK model of the system.
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(NHDEM). The desired position of the stepper motor THSTD is then computed

from NHDEM and the actual high-pressure spool speed (NH).

The structure of the existing controller was originally determined by Rolls-

Royce (Shutler, 1991) on the basis of requirements imposed by its integration

with other systems on the aircraft. Both NH and NL are states of the engine

model. The remaining outputs are simply non-linear functions of the two states.

5.4.1 The design problem

Each block of the controller, NLLOOP and NHLOOP, is characterized by four

parameters, one of which is a real gain value. The other three parameters are time

constants. The appropriate setting of such parameters, or design variables, is cast

as the problem of optimizing a number of closed-loop performance measures.

In the existing controller, the non-linearity of the plant (i.e., the stepper mo-

tor, the fuel system and the engine) is handled by scheduling different controller

parameters on-line against the values of NLDEM and NH. Here, a single oper-

ating point of the plant is considered, and the design procedure described gives

but a single step towards the design of a controller for the full range of operation

of the plant. Nevertheless, it provides another good example of how a genetic

algorithm can explore the concept of preferability.

5.4.2 Design objectives

The design objectives were extracted from the original stability and response

requirements provided by the manufacturers, consisting of a selection of both time

and frequency-domain objectives. Frequency-domain measures were computed

from the model linearized around the operating point defined by NL = 70%. The

time-domain characteristics were derived from the response of the full non-linear

model to a small step input (∆NL = 3%), obtained through simulation.
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Closed-loop stability This objective was computed exactly as for the first case-

study. For efficiency, the plant model was first linearized around its oper-

ating point (NL=70%), prior to any GA run. Controllers to be evaluated

were applied to this linear model and the maximum pole magnitude of

the resulting system computed. However, this objective was not assigned

higher priority than the others. Since a fast time response was also required,

the maximum pole magnitude of the closed-loop system should continue to

be minimized below unity, which is equivalent to minimizing the largest

time-constant of the system.

Gain and phase margins The gain and phase margins are measures of robust-

ness to multiplicative loop perturbations, and are generally independent

from the maximum pole magnitude of the closed-loop system. The gain

margin for the Pegasus engine is required to be at least 1.5 (3.53 dB), and

the phase margin is required to be at least 50 degrees. Both margins are

measured by opening the loop after the controller output.2 The maximiza-

tion of both margins is implemented as the minimization of their additive

inverses.

Rise time The time taken by the closed-loop system to reach, and stay above,

70% of the final output change demanded by a step-input. It is required to

be no longer than 0.7 of the time taken by the open-loop engine to reach

70% of a similar output change, following a step in fuel flow. This and the

following objectives were computed through simulation of the full model of

the system.

Settling time The time taken by the closed-loop system to stay within ±10%

of the final output change demanded by a step-input. It is required to be

2This is consistent with modelling the uncertainty associated with the fuel system in terms
of maximum gain and phase deviations, although it does not directly address the behaviour of
the system in the presence of that uncertainty.
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no longer than the time taken by the open-loop engine to reach 90% of a

similar output change, following a step in fuel flow.

Overshoot The maximum value reached by the output as a consequence of a

step input should not exceed the final output change by more than 10%.

Output error Given the presence of a pure digital integrator in the control loop,

the steady-state output error of the system is guaranteed to be zero. Conse-

quently, and provided the system is fast enough, the output error measured

at the end of the simulation should be close to zero. The associated goal is

set to 0.1% of the desired output value.3

5.4.3 Parameter encoding

The controller parameters were encoded as 15-digit binary strings each, using

Gray coding, and then concatenated to form the chromosomes. Gain parame-

ters in the interval [10−4, 103), and time constants in the interval [10−6, 10) (s),

were logarithmically mapped onto the set of possible chromosome values,

{0, . . . , 215 − 1}, providing a resolution of about 4 significant digits in each case.

5.4.4 A two-variable example

Consider the problem of minimizing the seven objectives by varying only the

controller gains, KNL and KNH. Since there are only two variables, the cost

surfaces associated with each of the objectives can be produced through gridding

and visualized, although this is a computationally intensive task.

Figures 5.8 to 5.11 depict four of the seven single-objective cost surfaces in-

volved in this problem. Due to the bad scaling of some of these objectives, the

points on the grid were ranked after evaluation, as discussed in subsection 4.3.3.

3This goal was taken from the steady state stability requirement, which states that speed
fluctuations should not exceed ±0.1%NL.
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Figure 5.8: The cost surface associated
with the maximum pole magnitude of
the closed-loop system.

.0001

.01

1

100
.0001

.01
1

100

 0

.1

.3

.6

 1

KNL KNH

N
or

m
al

iz
ed

 r
an

k

Figure 5.9: The cost surface associated
with the phase margin of the closed-
loop system.
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Figure 5.10: The cost surface asso-
ciated with the settling time of the
closed-loop step response.
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Figure 5.11: The cost surface associ-
ated with the overshoot of the closed-
loop step response.

Whilst being closer to how a GA with ranking would see them, the resulting

surfaces are much easier to visualize than the original ones. In each case, the

axes have been rotated so as to highlight the features of each surface.

It is possible to see how some objectives, notably those defined in the time

domain, tend to display large flat regions corresponding either to lowest perfor-

mance, as with settling time (Figure 5.10) and rise-time (not shown), or even to

optimal performance in that objective’s sense, as with overshoot (Figure 5.11).

However, zero (optimal) overshoot means very little on its own: for example, it
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Figure 5.12: A representation of
the cost surface associated with the
Pareto-based formulation in the ab-
sence of preference information.
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Figure 5.13: An alternative view of the
non-dominated set estimated through
gridding.

may imply too long a rise-time.

In these regions of the search space, the optimizer must rely on other objec-

tives, such as the maximum closed-loop pole magnitude (Figure 5.8). The closed

forms used to compute the gain and phase margins, though resulting in fairly

fast numerical algorithms, proved not to be sufficiently numerically robust across

the whole search space. This is apparent in Figure 5.9 for the phase margin.

Nevertheless, the algorithms did produce accurate results with “sensible” gain

settings, and were used instead of more stable, but brute-force, approaches.4

One can also estimate and plot a representation of the cost surface associated

with the Pareto formulation of the problem when no goals are specified (Fig-

ure 5.12). Here, the most striking features are, perhaps, the large area of the

search space corresponding to non-dominated solutions and the irregular shape

of that region, also shown in Figure 5.13.

Specifying goals for the objectives defines a much smaller area of preferable

4A discussion of genetic search with approximate function evaluations can be found
in (Grefenstette and Fitzpatrick, 1985)
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Figure 5.14: A representation of the
cost surface associated with the formu-
lation including goal information.
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preferable set estimated through grid-
ding.

solutions (Figures 5.14 and 5.15), whose dimensions approach the resolution of

the grid. As it turns out, none of these points is, in fact, satisficing. Actual

preferred solutions, whether satisficing or not, will probably be confined to an

even smaller region of the search space.

5.4.4.1 Genetic algorithm results

A genetic algorithm with a population size of 100 individuals was run on this

problem five times, each time for 50 generations. Out of a total of about 4000

points evaluated in each run, around a half were non-dominated. Of these, from

10 to 200 points were satisficing. Runs in which the population could locate itself

earlier in the satisficing region rapidly produced variations of the first satisficing

individuals found, which explains why some runs were apparently much more

successful than others.

In this example, some degree of preference information proves to be absolutely

necessary to guide the GA through a very large non-dominated set towards solu-

tions of practical interest. Figure 5.16 illustrates the solutions so-far-preferable at

three different stages of an algorithm run. The preferable solutions found at the
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end of the run reveal trade-offs between the several objectives within the bounds

imposed by the goals associated with them.

In these plots, objectives are represented by their integer index i on the x-

axis, and performance in each objective dimension is plotted on the y-axis. As

explained in Chapter 3, each candidate solution x is represented by a line con-

necting the points (i, f ∗i (x)). A trade-off between adjacent objectives results in

the crossing of lines between them, whereas non-concurrent lines indicate that

those objectives are non-competing. For example, rise-time (objective 4) and

settling-time (objective 5) do not seem to compete heavily. In turn, there is a

clear trade-off between these two objectives and objective 6 (overshoot). The

gain and phase margins (objectives 2 and 3) seem to be competing objectives in

part of the trade-off only.

5.4.5 Full controller parameter optimization

The optimization of the full controller assumes no a priori knowledge of the con-

troller parameter values apart from that implicitly used in setting the parameter

ranges. Individuals are now 120-bit long, and the population is increased to 150

individuals.

Running the GA reveals a much larger set of satisficing solutions. The prefer-

able individuals found up to and including the 40th generation are shown in

Figure 5.17(a). When compared with the previous example, the solutions found

have all greater maximum pole-magnitudes, that is, longer time-constants. On

the other hand, they generally exhibit better stability margins and settling time.

Thus, not only do the solutions found in this second example not dominate those

found previously, but also they represent a significantly different region of the

preferable set.

The fact that the 8-variable GA could not find solutions similar to, or better

than, those found for the 2-variable example shows how sampling the whole
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Figure 5.16: Sample trade-off graphs from a run on the 2-variable example, show-
ing the preferable solutions found after 10, 30 and 50 generations. The vertical
axis ranges are the same as those associated with the control-panel sliders. The
goal values are given in the middle column of the panel and are plotted as “×”.
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(a) Cumulative trade-off graph after 40 generations.
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(b) Preferable individuals in the population at generation 40.

Figure 5.17: Sample trade-off graphs from a run on the 8-variable example, show-
ing preferable solutions found after 40 generations. The vertical axis ranges are
the same as those associated with the control-panel sliders. The goal values are
given in the middle column of the panel and are plotted as a “×”.
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preferred region with a population of a given size may not be always feasible, even

though niche induction mechanisms are used. The diversity among the preferable

individuals in the population at generation 40, shown by the corresponding trade-

off graph in Figure 5.17(b), is an indication that these techniques are indeed

at work, at least to some extent. Nevertheless, their effectiveness in causing

the population to spread across the whole, actual preferred set also depends

on the genetic algorithm’s own ability to capture the regularities in the fitness

landscape, and generate offspring accordingly. Unfortunately, as discussed in

subsection 4.4.2, binary coded GAs cannot be expected to be able to deal well

with strong variable dependencies.

Appropriate interaction with the decision maker can help address this dif-

ficulty. The algorithm has found solutions which do, in principle, meet their

goals, and which it sees all as equally fit. Other solutions non-preferable to these

may exist, but they are probably more difficult to find given the encoding struc-

ture used for the chromosomes and the associated genetic operators. If the DM

finds the candidate solutions produced by the GA unacceptable, then preferences

should be refined so as to stimulate the GA to move on to a different region of

the non-dominated set.

As an example, consider again the trade-off graph in Figure 5.17(a). The step-

response error at the end of the simulations is not particularly low, reflecting the

long time constants associated with maximum pole magnitudes close to unity. If

faster responses are desired, the DM can tighten the goals associated with either,

or both, of these two objectives while continuing to run the algorithm.

Suppose the DM chooses to lower the goal associated with the maximum pole

magnitude to 0.98. Solutions capable of meeting this new requirement turn out

not to have yet been found, and a set of relatively non-dominated solutions close

to being satisficing is presented to the DM (Figure 5.18(a)). If the DM believes

this new set of goals can in fact be met (for example, because some goals in

the previous set have clearly been over-attained), there is no algorithmic reason
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Figure 5.18: Sample trade-off graphs showing the effect of tightening one goal’s
value. The population is driven towards achieving that goal at the expense of
degradation with respect to others.
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not to specify it. If the GA cannot find satisficing solutions, it will at least

produce a set of relatively non-dominated approximations to the new goals on

which further preference changes can be based. As the population continues to

evolve, reductions in maximum pole magnitude are accompanied by reductions

in the step-response error measured at the end of the simulation, and satisficing

solutions are eventually found at the expense of some degradation in gain margin

and other objectives (Figure 5.18(b)).

Further refinements could involve specifying hard, instead of soft, bounds for

some of the objectives. Suppose the DM decided that a gain margin of 6dB

seemed possible (in the presence of the trade-off graph), and that better gain and

phase margins would not be required. Raising the priority of these objectives,

and changing the gain margin goal, converts them into hard constraints as de-

sired. Doing so reduces the preferred set further (Figure 5.19(a)), and the process

continues. The family of step responses corresponding to the trade-off graph in

Figure 5.19(b) is shown in Figure 5.20.

5.5 Discussion

In the search for a reduced, yet illustrative, set of realistic design objectives

for the Pegasus engine, the ability of the GA to exploit omissions in the design

requirements soon became apparent. The set up of the closed-loop maximum pole

magnitude as a soft objective instead of a hard one was a direct consequence of

the solutions produced by early runs of the algorithm being clearly unacceptable:

the GA was sometimes able to exploit the non-linearity of the plant in such a way

that the step-response characteristics achieved were only valid for the particular

amplitude of the step used during simulation. Applying slightly larger or smaller

steps to the controlled plant immediately revealed the slow dynamics in the closed

loop, deeming the controller unacceptable.

The objective functions and respective goals used in the examples given reflect
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Figure 5.19: Sample trade-off graphs showing the effect of converting two objec-
tives into hard constraints, while also changing the goal associated with of one
of them.
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Figure 5.20: Family of preferable step-responses found after 80 generations.

design concerns in a direct form. The problems were formulated from the point

of view of the designer, not that of the optimizer. The associated cost landscapes

do not all meet common requirements such as continuity, smoothness, and ab-

sence of flat regions, and neither necessarily do the resulting multiobjective cost

landscapes. The practical usefulness of the multiobjective formulation used is,

therefore, tied to the ability to search and optimize cost surfaces in a class much

broader than usual, as provided by the GA.

In the original work of Hancock (1992) on the Pegasus model, the same

designer-oriented approach to controller optimization was adopted via the goal-

attainment method, as implemented in the Optimization Toolbox for MAT-

LAB (Grace, 1990). A sequential approach to optimization was proposed which

he called design by evolution. Given a starting point, optimization was per-

formed only on, say, two of the decision variables, while the others remained

fixed. This provided the starting point for the next stage, which now included

another variable. The process continued until all decision variables took part in

the optimization.
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The need for such a sequential approach clearly illustrates the shortcomings of

gradient-based optimizers when applied directly to problems involving less than

well-behaved objective functions. On the other hand, and since the notion of a

“well-behaved” function is dependent on the optimizer, a better understanding

of what classes of functions are suited to which genetic optimizers is still needed.

The Pegasus case-study is also a good example of a problem where pure

Pareto-optimization would be impractical due to the size of the Pareto-optimal

set. Specifying realistic goals for the objectives dramatically reduced the size

of the region of the search space to be sampled accurately by the GA. This

is certainly true for the two-variable example, and it should apply to an even

greater extent for the full, eight-variable problem. In this last problem, even the

original preferred set appeared to be too large for the GA. Tightening some of

the goals during the GA run rapidly caused the population to move on towards

more promising solutions.

On the other hand, when objective functions are expensive to evaluate, the

interactive use of the MOGA does become less attractive, due to the long time

spent at the function evaluation stage of the GA. Again, this was especially true

for the Pegasus example. For even more time-consuming problems, it should be

possible to address this difficulty by implementing the GA on a parallel architec-

ture.

5.6 Conclusion

The application of a multiobjective GA based on the concept of preferability

to the optimization of controller parameters for two different plants has been

described. The problems involved a mixture of soft and hard objectives, some

defined in the frequency domain, and some defined in the time domain. In both

case-studies, a priori preference information was supplied to the GA by assign-

ing goals and priorities to the objectives. These preferences were later refined
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according to the trade-off information produced as the GA ran.

The quality of the approximate trade-off surfaces produced by the MOGA

will generally depend on the combined effect of objective functions, genetic rep-

resentation, and operators used, and thus cannot be guaranteed. However, and

despite its stochastic nature, the MOGA tended to perform more or less consis-

tently when run several times on the same problem, especially in the long run.

This has been explicitly shown for the first example presented which, involving

only two objectives, was simpler to visualize. For more computationally intensive

problems, such as the Pegasus example, this kind of study would require large

amounts of computing effort. Again, parallel processing would be an attractive

option, especially if combined with a more efficient implementation of the model

than what can be achieved with SIMULINK.

The next Chapter reports on the application of the MOGA to a combinatoric

problem derived from non-linear system identification.



Chapter 6

Nonlinear System Identification

6.1 Introduction

The identification of single-input single-output (SISO) systems from a set of,

possibly noisy, input-output data (the training data set) is a classical problem

in control engineering. If the system to be identified is known to be linear or

approximately linear, then the problem reduces to determining the order and

estimating the parameters of a transfer function which, in some sense and to

the necessary extent, approximately describes the input-output relation of the

system. The general, non-linear case is potentially much more complex.

System identification is traditionally performed in two stages. In a first stage,

a model family (e.g., linear up to a given order, polynomial, etc.) is chosen a

priori, and a candidate model is produced which minimizes some error criterion,

here referred to as the identification criterion, over that family. Least-squares

estimation of the coefficients of a linear model, for example, corresponds to min-

imizing the mean square one-step-ahead prediction error of that model on the

training set, over the space of possible model parameters. In a second stage, the

identified model is validated by verifying that it satisfies any assumptions made

prior to identification, such as noise independence, for example, and that it can

129
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explain new data as well.

The choice of the identification criterion usually depends on a combination

of the purpose which the identified model should serve and of how easily such a

criterion can be optimized over the space of models on which it is defined. The

traditional preference for least-squares methods, for example, is certainly due

in part to their computational efficiency. Less tractable objectives are typically

accommodated at the validation stage, in the hope that the identified model

satisfies them. When this is not the case, alternative models must be produced

by optimizing the identification criterion over a different model family (linear

with a different order, involving different polynomial terms, etc.).

Evolutionary approaches to system identification have made the choice of

the identification criterion more flexible. Measures of long-term prediction error,

for example, have been used in combination with GAs by Kristinsson and Du-

mont (1992) for on-line parameter identification, as an alternative to recursive

least-squares methods. Additionally, genetic programming techniques make it

possible to search very broad classes of non-linear models (Oakley, 1994).

Multiobjective genetic algorithms enhance the appeal of evolutionary ap-

proaches to system identification further, by allowing validation criteria to in-

fluence the model production stage, and bias it towards models more likely to be

valid. In this Chapter, the evolution of non-linear, polynomial models for a pilot

scale liquid-level system will be considered. After formulating the identification

problem as a subset selection problem in Section 6.2, a genetic approach to the

evolution of subsets is reviewed in Section 6.3, including representation and oper-

ators. Experimental results for both a single-objective GA and a multiobjective

GA are presented and discussed in Section 6.4.

(Part of this work was carried out in collaboration with a fellow PhD student,

Eduardo Mendes, and was published as Fonseca et al. (1993).)
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6.2 The identification problem

The NARMAX (Non-linear Auto-Regressive Moving Average model with eXoge-

nous inputs) model (Leontaritis and Billings, 1987) can represent, and has been

used to identify, a wide class of non-linear systems. For single-input single-output

systems, the NARMAX model is:

y(t) = F(y(t− 1), . . . , y(t− ny), u(t− 1), . . . , u(t− nu),

e(t− 1), . . . , e(t− ne)) + e(t) , (6.1)

where y(t), u(t) and e(t) represent output, input and noise at time t, respectively.

The positive integers ny, nu and ne are the corresponding maximum lags, and

{e(t)} is a zero mean independent sequence. F is some non-linear function, the

form of which is usually unknown.

Because F can assume a variety of forms, the identification of NARMAX

models is a much more difficult task than its linear counter-part, where the major

difficulty is usually to determine the system order. In practice, the non-linear

function F can be approximated, for example, by a polynomial expansion (Chen

and Billings, 1989) of a given degree `. Doing so, one obtains the representation

y(t) = θ0 +
n∑

i1=1

θi1 xi1(t) +
n∑

i1=1

n∑
i2=i1

θi1i2 xi1(t)xi2(t) + · · ·

· · ·+
n∑

i1=1

· · ·
n∑

i`=i`−1

θi1...i` xi1(t) · · ·xi`(t) + e(t) , (6.2)

where n = ny + nu + ne, all θ represent scalar coefficients, and all x(t) represent

lagged terms in y, u or e.

Equation (6.2) clearly belongs to the linear regression model

y(t) =
M∑
i=1

θi pi(t) + ξ(t), t = 1, . . . , N , (6.3)
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where N is the data length, pi(t) are monomials of x1(t) to xn(t) up to degree

` and M is the number of distinct such monomials. p1(t) ≡ 1 corresponds to

a constant term, ξ(t) is some modelling (residual) error and θi are unknown

parameters to be estimated. Equation (6.3) can also be written in the matrix

form

y = [p1 . . . pM ]θ + ξ

= P θ + ξ . (6.4)

The parameter vector θ is usually found by minimizing the Euclidean norm

‖y −Pθ‖2, that is, by solving a Least Squares Problem. In Golub and Loan

(1989) several methods for solving such a problem are given.

6.2.1 Term selection

The explosive growth of the number of possible monomial terms with the degree

of non-linearity and the order (or maximum lag) assumed for the model implies

that even relatively small values of degree (say ` ≤ 3) and lag (say nu, ny ≤ 5 and

ne = 0) would result in a model too complex to be useful in practice (
(

5+5+3
3

)
=

286 terms). More importantly, least-squares estimation of so many parameters

would require impractically large amounts of data. Therefore, simpler models are

usually considered which include only a reduced number of non-linear terms with

up to a given order and degree. Although this reduces the number of coefficients

to be estimated, it introduces a new problem: selecting the appropriate non-linear

terms.

A current, heuristic approach to term selection (Chen et al., 1989) is based on

orthogonal least squares regression. The first term to be selected is that which

leads to a single-term model with the lowest residual variance. The remaining

terms are then successively incorporated according to their contribution to im-
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provement in the model, until the residual variance ceases to decrease significantly

as more terms are added. This approach has the important advantage of being

computationally efficient, while giving some indication of the contribution of the

various terms to the identified model. However, models obtained in this (sequen-

tial) way do not necessarily exhibit the lowest residual variance which could be

achieved with models of similar complexity. A true optimization approach to

term selection has the potential to produce simpler models.

6.3 Genetic algorithms and term selection

The search for a suitable model structure, as described above, can be seen as

a subset selection problem. Given a parent set of distinct non-linear terms, a

model composed of fewer terms is sought which, following parameter estimation,

minimizes a given criterion.

In the following, the choice of a suitable genetic representation and associated

operators is discussed.

6.3.1 Representation

Terms such as u(t− 1)y(t− 4) and u(t− 2)y(t− 4) may, at first glance, appear

to be similar. However, their contribution to the final model can be drastically

different, e.g., in the (common) case where the input signal u is uncorrelated. This

suggests that different non-linear terms should be encoded in a form which implies

no similarity between them. Seeing models as subsets of terms is consistent with

this, and with the fact that the order of the terms in the model is irrelevant.

In an application of GAs to the knapsack problem (also a subset selection

problem), Goldberg and Smith (1987) encoded subsets as binary strings of length

equal to the number of elements in the parent set. In each string, a ‘1’ indicated

the presence of the corresponding element in the subset, and a ‘0’ its absence.



CHAPTER 6. NONLINEAR SYSTEM IDENTIFICATION 134

index term
1 1
2 y(t− 1)
3 y(t− 2) i1 i2 . . . ik
...

... ↓
i pi(t) pi1(t) pi2(t) . . . pik(t)
...

...
N u(t− nu)

`

Figure 6.1: Chromosome coding: Models are represented as subsets with k ele-
ments.

When the parent set is very large, as may be the case in term selection problems,

this leads to very large strings, even if only “small” subsets are known to be of

interest.

An alternative representation for subsets, proposed by Lucasius and Kate-

man (1992), is better suited to searching for subsets of small size. The parent

set is laid out in a look-up table format, so that elements (in this case, model

terms) can be referred to by their (arbitrary) position in such a table (see Fig-

ure 6.1). Subset individuals, or candidate models, can thus be represented as

strings composed of a number of all-distinct integers.

Although this is not a requirement of this representation, a fixed subset size

will be used in the examples that follow, for simplicity.

6.3.2 Genetic operators

Genetic operators for the term selection problem should guarantee the generation

of valid models at all times, preferably without the introduction of unnecessary

redundancy. Redundancy exists when there are several different representations

for the same individual. The operators used in this work satisfy these two requi-

sites and are described next.



CHAPTER 6. NONLINEAR SYSTEM IDENTIFICATION 135

3 5 2 7 9
−→

1 4 9 8 5

(a)

5 9 2 7 3
−→

9 5 8 4 1

(b)

5 9 2 4 1
↗↘

9 5 8 7 3

(c)

Figure 6.2: Subset crossover: (a) Parents. (b) Keep the common elements and
shuffle the remaining. (c) Cross.
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Figure 6.3: Trade mutation.

6.3.2.1 Full identity-preserving subset crossover

This crossover operator is a variant of the recombination operators proposed by

Lucasius and Kateman (1992). Offspring subsets are produced from two parent

subsets so that their intersection is preserved. The remaining elements in each

parent are shuffled and exchanged to produce two offspring, so that the identity

of all elements is preserved, i.e., no genetic information is lost in the process, and

the order in which terms appear in each parent is ignored. In this way, order

redundancy is consistently eliminated from the representation (see Figure 6.2).

6.3.2.2 Trade mutation

The trade mutation operator tests each element of the subset in turn, and replaces

it with a randomly selected element of the current complement of that subset,

with given probability, in an import-export fashion (see Figure 6.3). Since the

complementary subset reflects the contents of the individual at all times, the
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operator is still defined in the case of subsets with more than half of the elements

of the parent set.

6.4 Experimental results

A genetic algorithm was used to study data generated by a large pilot scale

liquid-level system excited by a zero mean Gaussian input signal (Voon, 1984).

From a total of 1000 input-output pairs, the first 500 points were used in the

identification, while the remaining 500 points were divided into two sets and

used for validation.

6.4.1 First runs

A first series of runs was aimed at verifying the ability of a GA based on the

above representation and operators to minimize residual variance over a space

of subset models. Models were assumed to have 7 terms of degree up to 3 and

maximum lags ny = nu = 2. Note that, although the number of elements in

the full model set is only 35, the number of possible 7-term models amounts to(
35
7

)
= 6, 724, 520.

A genetic algorithm with population size 50 was run for 100 generations, using

residual variance as the single objective. This GA was essentially a particular

(single-objective) case of that used in the previous Chapter, except for the rep-

resentation and genetic operators, which were as described above. Also, sharing

and mating restriction were disabled.

Figure 6.4 shows how the residual variance (VAR) of the best model of each

run tended to evolve as the number of generations increased. The median (thick

solid line), the first and third quartiles (thin solid lines), and the maximum and

minimum (grey lines) of 13 runs are shown. Despite different initial conditions, all

runs were able to produce near minimum-residual variance models after around
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Figure 6.4: Evolution of low-residual variance models.

60 generations.

The model with the lowest residual variance was found in all but one of the

13 runs. It can be written as

y(t) = a1y(t− 1) + a2u(t− 1) + a3y(t− 2) + a4u(t− 2) +

+ a5y(t− 1)u(t− 1) + a6y(t− 2)2u(t− 2) + a7u(t− 1)u(t− 2)2 .

In order to (simplistically) validate this model, its mean-square long-term

prediction error (LTPE) was measured on the same set of data used to estimate

the coefficients. Also, the mean-square one-step-ahead prediction error (OSAPE)

and the LTPE were computed for the two validation sets. The results are given

in Table 6.1. The corresponding long-term prediction graphs are presented in

Figure 6.5. It can be seen that the model does approximate the measured output

of the system to a reasonable extent, although not so well in some particular data
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Table 6.1: Minimum-residual variance model.

Estimation data New data 1 New data 2
(500 points) (250 points) (251 points)

VAR LTPE OSAPE LTPE OSAPE LTPE

2.119 53.78 2.012 13.71 2.815 39.67
×10−3

segments.

Since many other models were actually generated and evaluated by the GA,

it would be possible to study those as well. However, if the ability of the model

to predict in the long term is in fact relevant, long-term prediction should really

become another identification objective.

6.4.2 Multiobjective identification

In a second series of runs, a multiobjective genetic algorithm included both resid-

ual variance and mean-square long-term prediction error as objectives, both rel-

ative to the training set. Goals of zero were set for both objectives, actually

implementing a pure Pareto GA. Sharing and mating restriction were performed

in the objective domain. Once more, 13 runs of the GA were performed, this

time for up to 200 generations.

Results are presented in Figure 6.6. The plots, produced from the sets of

non-dominated individuals found up to and including generations 50, 100, 150

and 200, show how the GA evolved models in the various regions of the objective

space. As before, thick solid lines indicate performance levels which, individually,

were attained in 50% of the runs, while the upper and lower thin lines correspond

to performance levels attained in 75% and 25% of the cases, respectively. The

grey lines correspond to performance levels attained only in a single run (lower),

or in all runs (upper).

These results also illustrate, and quantify, the fact that long-term prediction
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ŷ(t) = a1ŷ(t− 1) + a2u(t− 1) + a3ŷ(t− 2) + a4u(t− 2) +

+ a5ŷ(t− 1)u(t− 1) + a6ŷ(t− 2)2u(t− 2) + a7u(t− 1)u(t− 2)2

Figure 6.5: Minimum-residual variance model predicted output. (a) Estimation
set. (b) New data 1. (c) New data 2.
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Figure 6.6: Evolution of low-residual variance and low long-term prediction error
models (13 runs).
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Table 6.2: Performance of some candidate models

Estimation data New data 1 New data 2
(500 points) (250 points) (251 points)

Model no. VAR LTPE OSAPE LTPE OSAPE LTPE

1 2.119 53.78 2.012 13.71 2.815 39.67
2 2.252 31.82 1.988 8.27 2.763 32.38
3 3.242 24.33 2.264 9.26 4.469 21.83
4 4.514 22.07 3.254 22.57 6.749 40.01

×10−3

error can usually be significantly reduced by allowing some (minimal) degrada-

tion in residual variance. Perhaps more interesting is the distinctive knee of the

trade-off curve, which indicates a clear conflict between the ability of models

in the class considered to predict the next step (as indicated by the residual

variance), and their long-term prediction performance. Most surprising of all,

however, is to see that long-term prediction can apparently be improved even

further at the expense of a considerably poorer one-step-ahead prediction perfor-

mance. Another interesting detail is that the best long-term predictors seemed to

consistently exclude the term y(t− 1), which could justify worse one-step-ahead

prediction.

Table 6.2 presents validation results for four models selected from those eval-

uated in the various runs of the MOGA. Model 1 is the same as the minimum

residual variance model presented earlier, while model 4 is the model with the

lowest LTPE (on the training set) found by the GA. The two intermediate mod-

els can be seen to generally perform better on new data than the extreme ones:

model 3 tends to predict better than model 2 in the long-term, but model 2 ex-

hibits better one-step-ahead prediction. Long-term prediction graphs for model 3

are given in Figure 6.7. Note how the predicted output, although generally closer

to the measured output than in the case of model 1, is locally oscillatory. This

behaviour explains the model’s higher one-step-ahead prediction error.



CHAPTER 6. NONLINEAR SYSTEM IDENTIFICATION 142

0 50 100 150 200 250 300 350 400 450 500
−2.5

−2

−1.5

−1

−0.5

0

0.5

(a)

A
m

pl
itu

de

Measured output
Predicted output

500 550 600 650 700 750
−2.5

−2

−1.5

−1

−0.5

0

0.5

(b)

A
m

pl
itu

de

750 800 850 900 950 1000
−2.5

−2

−1.5

−1

−0.5

0

0.5

(c)

A
m

pl
itu

de

ŷ(t) = a1 + a2u(t− 1) + a3ŷ(t− 2) + a4 + ŷ(t− 1)u(t− 1)

+ a5ŷ(t− 2)2 + a6ŷ(t− 1)3 + a7u(t− 2)ŷ(t− 2)2

Figure 6.7: Model predicted output for model 3. (a) Estimation set. (b) New
data 1. (c) New data 2.
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Given the clear trade-off between the two identification objectives, it may

be the case that the model class considered cannot simultaneously capture all

aspects of the dynamics of the system. Therefore, the choice of a final model will

be essentially subjective, and dependent on the purpose which the model should

serve.

6.5 Conclusion

A genetic algorithm for term selection was described, and applied in the identifica-

tion of a pilot-scale, but real system. Due to being a generate-and-test approach,

the genetic algorithm produces not only one, but a family of low-variance models,

which can be assessed according to different criteria before the final model is cho-

sen. The search, being carried out in model space rather than term space, has the

potential for being more effective than other methods available. In addition, it

can easily accommodate multiple identification objectives via multiobjective se-

lection, as proposed in Chapter 4. It is therefore a much more general approach

than orthogonal least-squares methods, although also more computationally in-

tensive.

The subset GA, as proposed here, will only generate models with a fixed

number of terms. It should not be too difficult to modify the operators to ac-

commodate all models with a number of terms up to a given limit. The number

of terms of each model could then be made into an additional objective to be

minimized. Any other quantities which either measure model complexity such

as the maximum lag, or improve the likelihood of obtaining a valid model, e.g.,

correlation measures on the residuals, could also be incorporated as objectives,

and optimized. However, validation would still require data unknown to the GA.

A multiobjective approach to system identification such as the one presented

here, in addition to generating not one, but a family of models from which the

final model can be chosen, may also produce valuable insight into the quality of
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the data, the appropriateness of the model space chosen, and possibly also the

complexity required for the model.



Chapter 7

Conclusions

7.1 Genetic algorithms

Genetic algorithms, and other evolutionary techniques, have considerably broad-

ened the scope of optimization in engineering. The interest and effort devoted

to GAs by the control engineering community has been representative of that of

the engineering community at large, which has culminated recently in the realiza-

tion of a well-attended International Conference dedicated to Genetic Algorithms

in Engineering Systems: Innovations and Applications (GALESIA, 1995). Con-

sisting essentially of structured, albeit stochastic, generate-and-test approaches,

GAs find application in many areas which other optimizers do not reach. In par-

ticular, problems involving any combination of numeric (real, integer, etc.) and

non-numeric decision variables (permutations, subsets, graphs, and others) can

be handled, as long as the search space can be represented and suitable genetic

operators can be defined over that space.

Since it remains unclear how to design suitable genetic operators for given

problems, or classes of problems, what has become known as the “representation

problem” can be seen as a major limitation of GAs. In engineering, however, there

is usually a great deal of domain knowledge which can be successfully embedded

145
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in the GA at this level, although it may require some experimentation.

Applications in control engineering range from standard parameter tuning,

usually to side-step difficulties imposed by discontinuities, non-smoothness and

other unfavourable properties of the cost surface of the problem, to the opti-

mization of controller structures, neural-network topologies, sensor and actuator

placement, and path-planning, among others. Both on-line and off-line applica-

tions typically rely on the ability to model the system under study sufficiently

accurately, or, at least, on some means of ensuring that a particular individual

evaluation (on-line) will not have catastrophic consequences.

Another important class of problems which can be addressed with GAs is

that where the quality of a solution cannot be reduced to a single numerical

value, but rather, can only be obtained by comparison with another solution in

terms of “better”, “comparable”, or “worse”. This is because GAs only require

that a (broad) ranking of the population be performed at each generation. The

evolution of game-playing programs, for example, falls in this category, and so

does Pareto optimization.

7.2 Multiobjective evolutionary optimization

Research on multiobjective optimization with evolutionary algorithms has been

prompted mainly by the clear potential of a population-based search to con-

currently evolve and maintain multiple non-dominated solutions, so that design

decisions may be delayed until sufficient trade-off information is available. Since

the quality of a solution must be represented by a scalar fitness value, selection

has been the main aspect of EAs to receive attention. Although several multi-

objective selection strategies have been proposed, more emphasis has been put

on detailing the selection procedure itself than on analyzing its impact on the

cost surface actually searched by the EA. As discussed in Chapter 4, some of

these approaches are actually, although implicitly, aggregating approaches. Only
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some of the more recent approaches are directly based on the concept of Pareto-

optimality.

In order to unify the various approaches discussed, multiobjective selection

was described more generally as a decision-making exercise involving the individ-

uals in the EA population. This made it clear that the problem of multiobjective

“selection” (in fact, utility or cost assignment) is neither unique to EAs nor new.

The handling of multiple objectives with EAs given goal and priority information

could thus be addressed from a decision-making perspective, independently from

the genetic algorithm used later. This conferred on the approach a reasonable

degree of generality, facilitating both the development of the actual strategy (by

addressing pairwise comparison first and only then population ranking) and its

characterization and interpretation. The result was a cost-assignment strategy

encompassing many common multiobjective and constrained formulations, where

the cost assigned to candidate solutions can be interpreted as an estimate of the

proportion of the search space which improves on those solutions, and thus, re-

lated to the original problem.

The subsequent development of a multiobjective genetic algorithm (MOGA)

focused on three main aspects. Firstly, a simple extension of traditional rank-

based fitness assignment was introduced in order to guarantee that equal fitness

was assigned to all individuals with the same cost. Then, sharing and mating

restriction were formulated in the objective domain in order to promote and

maintain diversity in the population, while allowing the appropriate niche sizes

to be estimated from the data accumulated during the GA run. Finally, the

introduction of a small percentage of random immigrants into the population to

improve responsiveness to on-line preference changes completed the modifications

made to an otherwise typical generational genetic algorithm.
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7.3 Applications in control

Multiple objectives and constraints arise continuously in control and systems

engineering. In some cases, objectives are sufficiently well-behaved for approaches

based on deterministic hill-climbing, or even gradients, to be applicable, making

it possible to obtain trade-off information fairly efficiently by simple iteration.

In the more general case, however, discontinuities, plateaus, and noise can make

those approaches fail even for a single objective.

Control is, and has been for some time now, an important area of appli-

cation for GAs and related techniques, but multiple objective and constraint

handling has, with a few exceptions, invariably resorted to the aggregation of

non-commensurable quantities. The tuning of various coefficients, which may

vary even between problems in the same class, has been typically performed off-

line and by trial and error.

In Chapters 5 and 6, the MOGA proposed in Chapter 4 was applied to three

different sets of problems. The first, a simple but not trivial example in lin-

ear time-invariant optimal controller design, provides a good illustration of how

preferable solutions are discovered as the GA runs. The second set of problems,

based on the full non-linear model of a Pegasus gas turbine engine, provided an

even more realistic example of the class of cost surfaces which may need to be

handled in practice, illustrating well how some degree of preference articulation

may be needed in practice to arrive at useful solutions. Examples of interaction

with the GA also given at this stage showed how the decision maker can influence

the progression of the search as it proceeds.

Finally, in Chapter 6, the identification of a non-linear plant from real data

was considered. This example was aimed at demonstrating how multiobjective

GAs are not constrained to parameter tuning problems, but rather may find

application and bring innovation to other problem domains, especially if GAs

have already been applied there.
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7.4 Performance considerations

The question of how well a particular GA performs in comparison to other meth-

ods is generally a difficult one. For example, genetic algorithms are stochastic

and normally start from a random population, whereas many other methods are

deterministic and require that a starting point be supplied, which can make the

comparison unfair. Also, measures of performance such as time to find a satis-

factory solution (average, maximum, etc.) and quality of the best solution found

in a given time (average, lowest, etc.) strictly apply only to the problem studied,

and care must be taken when generalizing. Whereas other optimizers are usually

aimed at well-defined classes of functions (linear, differentiable, etc.), the fact

that the properties of functions amenable to genetic optimization is not yet well

understood makes any generalization even more difficult.

In the general multiobjective case, the notion of performance becomes more

complex, to the point where even purely describing themultiobjective performance

of a single approach can be difficult in itself. For this reason, no direct comparison

with other methods was attempted in this work.

The visualization technique proposed in Chapter 3 is a first step towards de-

scribing multiobjective algorithm performance in a way which relies solely on or-

dinal information (if an algorithm is insensitive to objective scaling so should any

performance measure) and which recognizes that multiobjective performance is

localized in objective space. For example, one algorithm may approximate better

the middle-region of a trade-off surface than the extremes. Such a description of

multiobjective performance should also enable the actual comparison of different

multiobjective approaches in a statistically sound way in the future.
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7.5 Future perspectives

While the original and main topic of this work was to devise and study novel

applications of genetic algorithms in control engineering, it was always a primary

concern to retain as much of their general applicability as possible in the new

techniques developed. For this reason, an effort was made to separate the domain-

independent aspects of multiobjective genetic algorithms (e.g., the ranking of a

population given goal and priority information) from those aspects which are

inherently problem dependent (the setting of goals and priorities, representation

and genetic operators, etc.).

As a result, the contributions made during the course of this research have

been recognized not only by the control engineering community (Fleming and

Fonseca, 1993; Fonseca and Fleming, 1994; Fonseca et al., 1993), but also by the

genetic algorithm community (Fonseca and Fleming, 1993; Fonseca and Fleming,

1995d) and the systems engineering community at large (Fonseca and Fleming,

1995b; Fonseca and Fleming, 1995c). In addition, two research proposals, the first

on “Multiobjective Genetic Algorithms” and the second on “Genetic Algorithms

for Subset Selection in Identification and Control”, have emerged from the work

reported here and successfully been funded by EPSRC, totalling 5 man-years of

funded research at post-doctoral level.

7.5.1 Evolutionary algorithms

The preferability relation, as defined, can only handle goal and priority informa-

tion. This is appropriate for many applications in control system design, because

goals and priorities are usually easier to set than numerical weights. However,

the proposed separation between decision making and search in multiobjective

evolutionary optimization opens the way for alternative decision strategies to be

either developed or simply imported from decision theory. For example, a rank-

ing strategy based on stochastic paired comparisons and possibly applicable in
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the evolution of game-playing programs is described by Uppuluri (1989).

The tendency that Pareto and Pareto-like ranking schemes seem to have to es-

tablish strong dependence relations between decision variables should be a matter

of concern when implementing the genetic operators for a given representation.

Tightly coupled decision variables are already known to pose difficulties to GAs

and other evolutionary approaches, but this seems to gain particular importance

in the multiobjective case. Mating restriction and on-line preference articula-

tion somehow side-step this problem, the former by constraining the action of

crossover, and the latter by allowing the Decision Maker to effectively reduce the

length of the ridge which the population must cover.

The implementation of fitness sharing may also be improved. Performing

fitness sharing in decision variable space (Srinivas and Deb, 1994) instead of ob-

jective space would provide a fitness assignment mechanism truly independent

from objective scaling. This would imply abandoning the notion of a uniform

sampling of the trade-off surface, which may or may not be desirable, but the

resulting GA would then be guaranteed to perform equally well on any monotonic

transformation of a given function. Unfortunately, the setting of niche sizes in

the phenotypic domain is still a difficult issue. Results from statistics (Silver-

man, 1986) seem to find application in this area, but currently their application

is restricted to Euclidean search spaces (Fonseca and Fleming, 1995a). The emer-

gence of niches in structured populations (Davidor, 1991b) may also prove to be

relevant in the multiobjective case.

Progressive articulation of preferences with GAs, while very appealing, will

only be so as long as the usually large number of function evaluations that must

be performed per GA generation can be computed sufficiently quickly. Here, the

use of parallel processing would be particularly appropriate.

Finally, and despite growing interest, multiple objective handling has not yet

found its way into the standard genetic algorithm software packages, being left

mostly to the user to implement. Work is currently in progress to address this
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issue and integrate the multiobjective GA routines developed as part of this work

with the Genetic Algorithm Toolbox for MATLAB (Chipperfield et al., 1994).

7.5.2 Control systems engineering

Fully exploiting the potential of genetic algorithms in control engineering will

require, at least in some cases, that problems themselves be formulated in an

innovative way, since GAs are considerably different from other optimizers. For

example, the formulation of cost functions for multiobjective optimization prob-

lems has been traditionally constrained by the very notion of cost function, where

each individual is assigned a well-defined cost value. In the case of genetic algo-

rithms, where only a relative performance measure is needed, this is unnecessary.

Naturally, it will always constitute good practice to approach scientific de-

velopment in small steps which can be explained and understood easily. This is

why a positive effort was made in the development of the MOGA to confine any

modifications to well-defined aspects of the “simple GA”. Similarly, the evolu-

tionary approach to non-linear system identification adopted in Chapter 6 can

be considered rather conservative when compared with current work in genetic

programming.

While evolutionary techniques often stand accused of purely generating solu-

tions and not contributing to the actual understanding of problems, this work has

shown that genetic algorithms can indeed be used as exploration and decision-

support tools. In fact, the sets of non-dominated individuals found by a GA

convey information concerning both what may characterize good solutions (typ-

ically relations between decision variables) and what the performance trade-offs

inherent to a particular type of solution may be. In a design situation, where

the initial specifications are often stated in linguistic terms, such information can

help designers form an understanding of a satisfactory solution, and possibly also

stimulate any subsequent analysis of the problem.
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Specific areas which, in the future, may benefit from multiobjective evolution-

ary techniques are, among others:

Controller design, especially in what concerns controller structure. The trade-

offs between performance and controller complexity are still generally diffi-

cult to establish. Encoding both the controller structure and the parameters

at the chromosome level in a genetic programming fashion should make it

possible to evolve such trade-offs.

System identification, by allowing different objectives to influence the produc-

tion of candidate models. Currently, models are typically produced by min-

imizing a single, tractable, error criterion in the hope that they will subse-

quently pass the validation stage. Again, genetic programming should make

it possible to evolve performance-complexity trade-offs for broad classes of

identified models.

Scheduling. In production systems, it is often desirable to maximize throughput

and resource utilization while minimizing latency, coping with a dynamic

order list and with machine failures, and complying with statutory require-

ments relative to the work force. A multiobjective genetic scheduler could,

in the case where not all orders can be completed on time, provide various

alternatives for orders to be delayed or even sacrificed in favour of others,

involving a human in the decision process.

Reliability testing. The search for environmental conditions which may cause a

particular design to fail is an application of evolutionary algorithms which,

although not being able to provide grounds for certification, can reveal

unsuspected modes of failure in that design. Again, since systems may fail

in many different ways, multiobjective EAs may be able to extract further

information concerning how different modes of failure may be related, and

what environmental conditions can trigger them.
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Proofs

A.1 Proof of Lemma 4.1

It suffices to show that

u p< v =⇒
g

(u1,...,i ≺
g1,...,i

v1,...,i) ∨ (u1,...,i ≡g1,...,i
v1,...,i)

for all i = 1, . . . , p and all p ∈ IN , which can be done by induction over i. The

proof of the lemma is obtained by setting i = p.

Base clause (i = 1)

u p< v =⇒
g

(u1 ≺
g1

v1) ∨ (u1 ≡g1
v1)

Proof

From Definition 3.1 (Pareto dominance), if an n-dimensional vector v is domi-

nated by another vector u, then any component uk of u will be less than or equal

to the corresponding component vk of v, with k = 1, . . . , n. This also implies

that any subvector of u will either dominate or be equal to the corresponding
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subvector of v. In particular, for u
u
_
1 and v

u
_
1 ,

u p< v =⇒
g

(u
u
_
1

p< v
u
_
1 ) ∨ (u

u
_
1 = v

u
_
1 )

If u
u
_
1 p< v

u
_
1 , then, by Definition 4.1, u1 is preferable to v1. Otherwise, u

u
_
1 = v

u
_
1 ,

and, similarly, one can write:

u p< v =⇒
g

(u
u
^
1

p< v
u
^
1 ) ∨ (u

u
^
1 = v

u
^
1 )

Again by Definition 4.1, if u
u
^
1 p< v

u
^
1 , then u1 ≺

g1,...,p
v1. Otherwise, u

u
^
1 is equal

to v
u
^
1 and, by Definition 4.2, u1 is equivalent to v1.

Recursion clause (1 < i ≤ p)

If

u p< v =⇒
g

(u1,...,i−1 ≺
g1,...,i−1

v1,...,i−1) ∨ (u1,...,i−1 ≡
g1,...,i−1

v1,...,i−1)

then

u p< v =⇒
g

(u1,...,i ≺
g1,...,i

v1,...,i) ∨ (u1,...,i ≡g1,...,i
v1,...,i)

Proof

As before, one can write:

u p< v =⇒
g

(u
u
_
i

p< v
u
_
i ) ∨ (u

u
_
i = v

u
_
i )

If u
u
_
i p< v

u
_
i , then, by Definition 4.1, u1,...,i is preferable to v1,...,i. If, on the

other hand, u
u
_
i = v

u
_
i , then either v

u
^
i 6≤ g

u
^
i , in which case u1,...,i ≺

g1,...,i

v1,...,i, or

v
u
^
i ≤ g

u
^
i .
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In the latter case, and if the first alternative of the hypothesis is true, then

u1,...,i is preferable to v1,...,i. Otherwise, the second alternative of the hypothesis

is that u1,...,i−1 is equivalent to v1,...,i−1. Since u
u
_
i = v

u
_
i and v

u
^
i ≤ g

u
^
i , the

equivalence between u1,...,i and v1,...,i follows from Definition 4.2. 2

A.2 Proof of Lemma 4.2

The transitivity of the preferability relation will be proved by induction over p.

The proof will be divided into three parts, the first two of which apply to both

the base clause (p = 1) and the recursion clause (p > 1). In the third part, the

appropriate distinction between the two clauses is made.

Base clause (p = 1)

u1,...,p ≺
g1,...,p

v1,...,p ≺
g1,...,p

w1,...,p =⇒
g1,...,p

u1,...,p ≺
g1,...,p

w1,...,p

Recursion clause (p > 1)

If

u1,...,p−1 ≺
g1,...,p−1

v1,...,p−1 ≺
g1,...,p−1

w1,...,p−1 =⇒
g1,...,p−1

u1,...,p−1 ≺
g1,...,p−1

w1,...,p−1

then

u1,...,p ≺
g1,...,p

v1,...,p ≺
g1,...,p

w1,...,p =⇒
g1,...,p

u1,...,p ≺
g1,...,p

w1,...,p

Proof

From Definition 4.1 (preferability),

u1,...,p ≺
g1,...,p

v1,...,p ⇒ u
u
_
p ≤ v

u
_
p
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v1,...,p ≺
g1,...,p

w1,...,p ⇒ v
v
_
p ≤ w

v
_
p

for all p ≥ 1. On the other hand, since u
u
_
p > g

u
_
p ,

u
u
_
p ≤ v

u
_
p ⇒ v

u
_
p > g

u
_
p

which means that the components indicated by
u
_ are a subset of those indicated

by
v
_. Therefore,

v
v
_
p ≤ w

v
_
p ⇒ v

u
_
p ≤ w

u
_
p .

Case I: u
u
_
p p< v

u
_
p

(u
u
_
p

p< v
u
_
p ) ∧ (v

u
_
p ≤ w

u
_
p ) ⇒ u

u
_
p

p< w
u
_
p

which implies u1,...,p ≺
g1,...,p

w1,...,p, for all p ≥ 1.

Case II: (u
u
_
p = v

u
_
p ) ∧ (v

u
^
p 6≤ g

u
^
p )

(u
u
_
p = v

u
_
p ) ∧ (v

u
_
p ≤ w

u
_
p ) ⇒ u

u
_
p ≤ w

u
_
p

If u
u
_
p

p< w
u
_
p , then u ≺

g
w.

If u
u
_
p = w

u
_
p , one must also note that v

u
^
p 6≤ g

u
^
p implies that there are at least

some components
v
_ in the set of components indicated by

u
^. Consequently,

(v
u
^
p 6≤ g

u
^
p ) ∧ (v

v
_
p ≤ w

v
_
p ) ⇒ w

u
^
p 6≤ g

u
^
p
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The preferability of u1,...,p over w1,...,p follows from

(u
u
_
p = w

u
_
p ) ∧ (w

u
^
p 6≤ g

u
^
p ) (A.1)

for all p ≥ 1.

Case III: (u
u
_
p = v

u
_
p ) ∧ (v

u
^
p ≤ g

u
^
p )

In this case,
u
_ and

u
^ designate exactly the same sets of components as

v
_ and

v
^, respectively. In the case where v

v
_
p

p< w
v
_
p , one can write:

(u
u
_
p = v

u
_
p ) ∧ (v

u
_
p

p< w
u
_
p ) ⇒ u

u
_
p

p< w
u
_
p

which implies u1,...,p ≺
g1,...,p

w1,...,p, for all p ≥ 1.

If v
v
_
p = w

v
_
p , then also u

u
_
p = w

u
_
p . If, in addition to that, w

v
^
p 6≤ g

v
^
p , one can

write

(u
u
_
p = w

u
_
p ) ∧ (w

u
^
p 6≤ g

u
^
p )

which implies that u1,...,p is preferable to w1,...,p given g1,...,p, for all p ≥ 1.

If w
v
^
p ≤ g

v
^
p , the base clause and the recursion clause must be considered

separately.

Case III(a): (p = 1)

(u1 ≺
g1

v1) ∧ (u
u
_
1 = v

u
_
1 ) ∧ (v

u
^
1 ≤ g

u
^
1 ) ⇒ (u

u
^
1

p< v
u
^
1 )

(v1 ≺
g1

w1) ∧ (v
v
_
1 = w

v
_
1 ) ∧ (v

v
^
1 ≤ g

v
^
1 ) ⇒ (v

v
^
1

p< w
v
^
1 )

⇒ (v
u
^
1 p< w

u
^
1 )

From the above, and given the transitivity of the inferiority relation, it follows

that u
u
^
1

p< w
u
^
1 , which implies that u1 is preferable to w1 given g1, and proves
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the base clause.

Case III(b): (p > 1)

(u1,...,p ≺
g1,...,p

v1,...,p) ∧ (u
u
_
p = v

u
_
p ) ∧ (v

u
^
p ≤ g

u
^
p ) ⇒ (u1,...,p−1 ≺

g1,...,p−1

v1,...,p−1)

(v1,...,p ≺
g1,...,p

w1,...,p) ∧ (v
v
_
p = w

v
_
p ) ∧ (v

v
^
p ≤ g

v
^
p ) ⇒ (v1,...,p−1 ≺

g1,...,p−1

w1,...,p−1)

From the above, and if the hypothesis is true, then u1,...,p−1 ≺
g1,...,p−1

w1,...,p−1, which

implies that u1,...,p is preferable to w1,...,p given g1,...,p, and proves the recursion

clause. 2
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