Bibliography

[1]   Computational Intelligence Society. http://ieee-cis.org/about_cis/.

[2]   IEEE Transactions on Neural Networks. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=72.

[3]   International Neural Network Society. http://www.inns.org/.

[4]   Machine Learning Journal. http://www.springer.com/computer/artificial/journal/10994.

[5]   Neural Networks. http://www.inns.org/nnjournal.asp.

[6]   F. Araújo, B. Ribeiro, and L. Rodrigues. A neural network for shortest path computation. IEEE Transactions on Neural Networks, 12(5):1067–1073, 2001.

[7]   C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[8]   C. Bishop and M. Tipping. Bayesian Regression and Classification, Advances in Learning Theory: Methods, Models and Applications, volume 190 of NATO Science Series III: Computer and Systems Sciences, pages 267–285. IOS Press, 2003.

[9]   B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In ACM Annual Workshop on Computational Learning Theory - COLT 1992, pages 144–152, 1992.

[10]   J. Ferreira, M. Crisóstomo, P. Coimbra, and B. Ribeiro. Control of a biped robot with support vector regression in sagittal plane. IEEE Transactions on Instrumentation and Measurement, 58(9):3167–3176, 2009.

[11]   R. Ferreira, B. Ribeiro, C. Silva, Q. Liu, and A. Sung. Building resilient classifiers for LSB matching steganography. In IEEE World Congress on Computational Intelligence, Int Joint Conf on Neural Networks (IJCNN’08), pages 1562–1567, Hong Kong, China, 2008.

[12]   J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. National Academy of Science USA, 79(8):2554 –2558, 1982.

[13]   B. Juang and S. Katagiri. Discriminative learning for minimum error classification. IEEE Trans Signal Processing, 40(12):3043–3054, 1992.

[14]   A. Kovačec and B. Ribeiro. Kolmogorov’s theorem: From algebraic equations and nomography to neural networks. In et al. R. F. Albrecht, editor, Int Conf on Neural Networks and Genetic Algorithms (ICANNGA’93), pages 40–47, Innsbruck, Austria, 1993. Springer-Verlag.

[15]   Ludmila I. Kuncheva. Combining Pattern Classifiers - Methods and Algorithms. Wiley, 2004.

[16]   E. Levin, N. Tishby, and S.A. Solla. A statistical approach to learning and generalization in layered neural networks. IEEE, 78(10):1568–1574, 1990.

[17]   Y. Li, K. Wang, and D. Zhang. Step acceleration based training algorithm for feedfoward neural networks. In Int Conf Pattern Recognition (ICPR), pages 84–87, 2002.

[18]   Q. Liu, A. Sung, M. Qiao, Z. Chen, and B. Ribeiro. An improved approach for steganalysis of jpeg images. Information Sciences, 180(9):1643–1655, 2010.

[19]   Q. Liu, A. Sung, and B. Ribeiro. Comparison of gene selection and machine learning for tumor classification. In 3rd Int Conf on Informatics in Control, Automation and Robotics, Workshop on Signal Processing and Classification, pages 13–22, Setubal, Portugal, 2006.

[20]   Q. Liu, A. Sung, and B Ribeiro. Image complexity and feature mining for steganalysis of least significant bit matching steganography. Information Sciences, 178(1):21–36, 2008.

[21]   N. Lopes and B. Ribeiro. A data pre-processing tool for neural networks (DPTNN) use in a moulding injection machine. In Proc of the Second World Manufacturing Congress, WMC’99, Durham, England, pages 357–361, 1999.

[22]   N. Lopes and B. Ribeiro. Hybrid learning in a multi-neural network architecture. In IEEE-INNS Int Joint Conf on Neural Networks (IJCNN’01), volume 4, pages 2788 – 2793, 2001.

[23]   N. Lopes and B. Ribeiro. An efficient gradient-based learning algorithm applied to neural networks with selective actuation neurons. Neural, Parallel & Scientific Computations, 11(3):253–272, 2003.

[24]   John von Neumann. The computer and the brain. Yale University Press, New Haven, CT, USA, 1958.

[25]   B. Ribeiro Q Liu, A H. Sung and M Qiao. Classification of mass spectrometry data using manifold and supervised distance metric learning. In Int Conf on Bio-Inspired Systems and Signal Processing, pages 396–401, Porto, Portugal, 2009.

[26]   B. Ribeiro. Fault detection in a thermoplastic molding injection process using neural networks. In INNS-IEEE Int Joint Conf on Neural Networks (IJCNN’99), volume 5, pages 3352–3355, Washington, US, 1999.

[27]   B. Ribeiro. Support vector machines and RBF neural networks for fault detection and diagnosis. In IEEE 8th Int Conf on Neural Information Processing (ICONIP’01), volume 2, pages 873–878, Shangai, China, 2001.

[28]   B. Ribeiro. Support vector machines in fault tolerance control. In D. Dubois, editor, Computing Anticipatory Systems, American Institute of Physics (AIP) Conf Proceedings, pages 458–467, 2002.

[29]   B. Ribeiro. Computational intelligence in manufacturing quality control. Prezeglad Elektrotechiniczny (Electrotecnical Review Journal), 80(4):286–290, 2004.

[30]   B. Ribeiro. On the evaluation of Minkovsky kernel for SVMs. Neural Parallel & Scientific Computations, 13:77–90, 2005.

[31]   B. Ribeiro. Support vector machines for quality monitoring in a plastic injection molding process. IEEE Transactions on Systems, Man and Cybernetics SMC - Part C: Applications and Reviews, 35(3):401–410, 2005.

[32]   B. Ribeiro and A. J. Cardoso. Evaluation system for e-learning with pattern mining tools. In IEEE Int Conf on Systems, Man and Cybernetics(SMC’08), pages 3051–3056, Singapore, 2008.

[33]   B. Ribeiro and A. Dourado. Lime Kiln Simulation and Control by Neural Networks, pages 163–191. Elsevier Science Publishers, North-Holland, 1995.

[34]   B. Ribeiro, A. Dourado, and E. Costa. A neural network based control of a simulated industrial lime kiln. In INNS-IEEE Int Joint Conf on Neural Networks (IJCNN’93), volume II, pages 2037–2040, Nagoya, Japan, 1993.

[35]   B. Ribeiro, A. Dourado, and E. Costa. Lime kiln fault detection and diagnosis by neural networks. In D. W. Pearson et al., editor, Int Conf on Neural Networks and Genetic Algorithms (ICANNGA’95), pages 112–116, Alès, França, 1995. Springer-Verlag.

[36]   B. Ribeiro, A. Kovačec, and A. Dourado. Example of finding the architecture of a BPNN for a pulp and paper engineering application looking at the geometry of a given classification task. In Int Conf on Engineering Applications of Neural Networks (EANN’95), pages 343–351, Helsinki, Finland, 1995.

[37]   B. Ribeiro, A. C. Marques, J. O. Henriques, and M. Antunes. Choosing real-time predictors for ventricular arrhythmias detection. Int Journal of Pattern Recognition and Artificial Intelligence, 21(8):1–15, 2007.

[38]   B. Ribeiro, C Silva, A Vieira, and J Carvalho das Neves. Extracting discriminative features using non-negative matrix factorization in financial distress data. In M. Kolehmainen et al., editor, Int Conf on Adaptive and Natural Computing Algorithms, pages 537–547. Lecture Notes in Computer Science, LNCS 4432, Part II, Springer-Verlag, Berlin-Heidelberg, 2009.

[39]   B. Ribeiro, A. Vieira, J. Duarte, C. Silva, J. C. das Neves, Q. Liu, , and A. H. Sung. Learning manifolds for bankruptcy analysis. In M. Köppen et al., editor, Int Conf on Neural Information Processing, pages 722–729. Lecture Notes in Computer Science, LNCS 5506, Part I, Springer-Verlag, Berlin-Heidelberg, 2009.

[40]   B. Ribeiro, A. Vieira, and J. Neves. Sparse bayesian classifiers: Bankruptcy-predictors of choice? In World Congress On Computational Intelligence, IEEE Int Joint Conf on Neural Networks (IJCNN’06), pages 3377–3381, Vancouver, Canada, 2006.

[41]   B. Ribeiro, A. Vieira, and J. Neves. Supervised isomap with dissimilarity measures in embedding learning. In Ibero-American Conf on Pattern Recognition, Progress in Pattern Recognition, Image Analysis and Applications, pages 389–396. Lecture Notes in Computer Science, LNCS 5197, Springer-Verlag, Berlin-Heidelberg, 2008.

[42]   B. Schölkopf, C. Burges, and A. Smola. Advances in Kernel methods, pages 1–15. MIT Press, 1999.

[43]   B. Schölkopf, A. Smola, and K. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

[44]   John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge University Press, 2004.

[45]   C. Silva, M. Crisóstomo, and B. Ribeiro. Monoda: A neural modular architecture for obstacle avoidance without knowledge of the environment. In IEEE-INNS-ENNS Int Joint Conf on Neural Networks (IJCNN’00), volume 6, pages 334 –339, Italy, 2000.

[46]   C. Silva, M. Crisóstomo, and B. Ribeiro. Angular memory and supervisory modules in a neural architecture for navigating NOMAD. In R. Neruda V. Kúrkova, N. Steele and M. Kárný, editors, Int Conf on Neural Networks and Genetic Algorithms (ICANNGA01), pages 173–176, Prague, Czech Republic, 2001. Springer-Verlag.

[47]   C. Silva, Uros Lotrič, B. Ribeiro, and Andrej Dobnikar. Distributed text classification with an ensemble kernel-based learning approach. IEEE Transactions on Systems, Man and Cybernetics, SMC - Part C: Applications and Reviews, 99:1–11, 2010.

[48]   C. Silva and B. Ribeiro. Navigating mobile robots with a modular neural network. Neural Computing & Applications Journal, 1(3–4):200–211, 2003.

[49]   C. Silva and B. Ribeiro. On text-based mining with active learning and background knowledge using SVM. Journal of Soft Computing - A Fusion of Foundations, Methodologies and Applications, 11(6):519–530, 2007.

[50]   C Silva and B. Ribeiro. Improving text classification performance with incremental background knowledge. In Marios Polycarpou et al., editor, Int Conf on Artificial Neural Networks (ICANN), pages 923–931. Lecture Notes in Computer Science, 5768, Springer-Verlag, Berlin-Heidelberg, 2009.

[51]   C. Silva and B. Ribeiro. Inductive Inference for Large Scale Text Categorization: Kernel Approaches and Techniques, volume 255. Springer, Heidelberg-Berlin, Germany, 2010.

[52]   E. K. Tang, P. N. Suganthan, and X. Yao. An analysis of diversity measures. Machine Learning, 65:247–271, 2006.

[53]   M. Tipping. Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211–214, 2001.

[54]   V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, 1995.

[55]   X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87:1423 – 1447, 1999.