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SummaryStatistial inferene is based on two soures of information: empirialdata and assumptions whih are presented in the form of a statistialmodel. Inferene proedures ommonly proess the data and (together withthe model assumptions) produe the desired desription of the unknownaspet of interest. Ideally, statistial inferene is arried out with orretinformation and inferene proedures whih o�er orresponding `optimal'performane. However, this is rather seldom the ase and onern in thestatistial literature is more and more devoted to inferential performaneunder distortion. The most relevant subjet areas are �robustness� and�diagnostis�.The present work develops a basi lassi�ation sheme for distortion in theframework of lassial statistial inferene. In partiular, it emphasizes thestill outstanding and onsequent distintion between data ontamination andmodel deviation. The laim that statistial inferene is ultimately aimedat real-world desription, and not data desription, is in this respet ofkey importane. Conern in this work is further given to the performaneof statistial inferene proedures under distortion. It is explored whendi�erenes in performane under data ontamination and model deviationare possible and how these an be deteted. Methodology is developedfor the study of inferential performane under inreasing distortion. Aritial review of some important referenes in the robustness and diagnostisliterature moreover indiates whih approah towards inferential performaneassessment is aimed at data ontamination and whih at model deviation.The onepts and onlusions of the thesis are �nally illustrated by twodetailed simulation examples. The �rst studies the performane of the Ab-dushukurov-Chen-Lin (ACL) estimator under inreasing distortion from theKoziol-Green proportional hazards model, and the seond in like manneronsiders estimation problems related to a parametri linear regression modelwith orrelated errors for longitudinal data.I
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Chapter 1
Introdution
1.1 MotivationThe onern of robust statistis seems to be de�ned with some ambiguity.Following a key-referene by Hampel et al. (1986) we learn the following:�Robust statistis, in a loose, nontehnial sense, is onerned withthe fat that many assumptions ommonly made in statistis (suhas normality, linearity, independene) are at most approximations toreality� (p. 1).Hene, we onlude that robust statistis deals with inorret assumptions.However, the next sentene in (Hampel et al., 1986) already auses doubts:�One reason is the ourrene of gross errors, suh as opying orkeypunh errors�.This rather refers to defets in the data, whih are the seond soure ofinformation for statistial inferene. Also the key-referene by Huber (1981)does not lear our inomprehension. He de�nes robustness as �insensitivityto small deviations from the assumptions� (p. 1) and remarks later that �a1



CHAPTER 1. INTRODUCTION 2primary goal of robust proedures is to safeguard against gross errors� (p. 5).We still annot understand why wrong (prior) assumptions and gross errorsin the data should relate to the same thing.Hampel et al. (1986) laim that �robustness theories as suh annot be appliedin a nonparametri situation� (p. 9) beause �all of the present theories ofrobustness onsider deviations from the various assumptions of parametrimodels� (p. 7). However, they also admit that the onepts an �still providevaluable insight into the behaviour of nonparametri methods� (p. 9) whenused in parametri situations. The arithmeti mean, for example, is shownto be non-robust against outliers relative to the normal model (p. 88f). Butwould we relax using the arithmeti mean in a non-parametri situationjust beause we have not made any distributional assumptions? If not, thearithmeti mean must (also) be sensitive to something other than the wrongnormal assumption. In fat, an outlier may re�et �an inadequate basimodel� assumption or may be due to a �measurement or exeution error�in the data (Barnett and Lewis, 1995, p. 34), and it is indeed the seondfault whih onerns us when using the arithmeti mean in a non-parametrisituation.Hene robust statistis seems to refer to both, wrong assumptions andwrong data, though not `o�ially'. This quite naturally leads us to thefollowing questions: Is there really a di�erene between the two situations ofdistortion? And maybe even more important: Can it make a di�erene interms of the performane of statistial inferene proedures? In other words:Does `robustness against wrong model assumptions' and `robustness againstwrong data' always mean the same thing? If not, when not?The work in this thesis tries to give answers to the questions above fromthe point of view of lassial inferene. It will de�ne the distintion betweenthe two situations of distortion, from now on alled model deviation anddata ontamination, and explore when and how suh a distintion beomesrelevant for inferential performane.



CHAPTER 1. INTRODUCTION 31.2 Summary of the thesisWith the laim that the real-world (and not the data) is the ultimate aim andreferene point for statistial inferene, three types of distortion are lassi�ed.Two of them an be seen as `antonyms' and are emphasized, representingeither model deviation or data ontamination for the same potential data-generating proess. We present methodology for the study of inferentialperformane under inreasing distortion, and explore when di�erenes inperformane are possible (under the two types of distortion) and how theyan be deteted. Important approahes for robustness and diagnostis areritially reviewed, and two simulation studies illustrate the overall oneptsand onlusions.Chapter 2 presents the notions of distortion and performane in statistialinferene as urrently seen in the literature. It is meant to motivate andprepare for the identi�ation of ideas developed in later hapters. Thetwo most relevant subjet areas dealing with distortion are �robustness�and �diagnostis�. After their brief introdution, several itations illustratethe existing views of distortion in the literature. It is onluded that adistintion between data ontamination and model deviation seems to havemostly been ignored. The hapter ontinues with the presentation of generalonepts formalizing distortion and possibilities for distortion with someommon statistial models. A few typial or espeially reent referenes areprovided. The seond part of the hapter is devoted to the performane ofstatistial inferene proedures. The various ideas are disriminated by theformal representation of suh proedures and the preferred attribute of `good'performane. Performane desriptions based on (so alled) performanestatistis are given partiular attention. Some aspets of performane underdistortion (as dealt with in the literature) are �nally outlined, while the maindisussion is postponed to the end of hapter 4.Chapter 3 desribes our view of distortion. It begins with a prelude laimingthat statistial inferene is aimed at real-world desription (and not data



CHAPTER 1. INTRODUCTION 4desription). In further preparation the model and inferene framework areintrodued. The former realls the way from a real-world situation to thedata-generating proess via the aspet of interest and the (set of) data units.Several examples aompany the desription. It further employs a threefoldinterpretation of the data-generating proess referring to real-world, data,and model assumptions, whih orrespondingly leads to three individualrepresentations through statistial models (the model triplet). The infereneframework relates the logial elements of a statistial inferene proess,emphasizing the roles of inferene proedure(s) and model assumptions. Theremainder of the hapter is devoted to the new lassi�ation of distortion.With attribution to the inferene framework, disagreement within the modeltriplet is identi�ed as three di�erent types of distortion. Two a�et aspetsof the model `within data units' and represent omparable situations of dataontamination and model deviation. The third type relates to aspets ofthe model `between data units' as another separate form of model deviation.Examples from an earlier stage are re-onsidered to illustrate and disuss the�ndings.Chapter 4 develops methodology for the assessment of inferential perfor-mane under inreasing distortion. In a preparatory setion potential im-pliations of data ontamination and model deviation are onsidered. Whenare di�erenes possible and how an they be deteted? The onept of modelexpansion is suggested to quantify distortion of the three types. Moreover,a new notation for performane statistis is introdued to underline the ref-erene to real-world, data, and model assumptions. A subsequent setionpresents the idea of in�uene and preferene graphs. They study the hangeof performane under inreasing distortion and likewise ompare performaneamong ombinations of inferene proedure(s) and/or assumptions. The �nalpart of the hapter is devoted to a ritial review of important approahesfor robustness and diagnostis in the literature. Independently from whathas been laimed, what do they atually onsider � data ontamination ormodel deviation?



CHAPTER 1. INTRODUCTION 5Chapter 5 presents the �rst simulation example. It studies performane ofthe Abdushukurov-Chen-Lin (ACL) estimator (Abdushukurov, 1984; Chengand Lin, 1984) under distortion from the semi-parametri Koziol-Green(KG) proportional hazards model (Koziol and Green, 1976). The ACL-estimator is the maximum-likelihood estimator for the true survival funtion(aspet of interest) under the KG-model. The latter is used in the ensoredsurvivals and ompeting risks framework. Distortion a�ets the independenerequirement between the observed survival times and the ensoring 0-1-indiator (and thus relates to aspets of the model within data units). Theorresponding situations of data ontamination and model deviation aredistinguished. Distortion as suh is modelled in a novel way using the oneptof model expansion. The relationship to other formalization approahes forthe same kind of distortion is onsidered and the simulation set-up desribed.The study itself is based on in�uene and preferene graphs where the latterompare the ACL-performane with that of the ompeting Kaplan-Meierestimator (Kaplan and Meier, 1958). Overall, a trade-o� in performanebetween orresponding situations of data ontamination and model deviationis exhibited.Chapter 6 is devoted to the seond simulation example. It onsidersestimation problems related to a parametri linear regression model withorrelated errors for longitudinal data (Diggle et al., 1995). Distortion a�etsthe (sub)model desribing the ovariane/orrelation struture betweenobservations of the same data unit (and thus relates to aspets of themodel within data units). Measurement errors are omprised in thedistorted model and are ignored in the orresponding ideal referene model.Corresponding situations of data ontamination and model deviation areagain disriminated. The variogram and mean response pro�le (Diggle et al.,1995) are onsidered to be the two (main) aspets of interest. Performane oftheir estimators is the prime objetive of the simulation study. In addition,the individual parameter estimators for the variogram are examined. Afterthe desription of the simulation set-up the results are disussed. In�uene



CHAPTER 1. INTRODUCTION 6graphs show in whih ase performane under data ontamination and modeldeviation an be distinguished. Preferene graphs ompare the respetiveperformanes under the two model assumptions whih do or do not inludethe measurement error omponent.Chapter 7 presents the overall onlusions and gives some diretions for futurework.1.3 Contributions
• The identi�ation of inonsistenies in the meaning of distortion inthe statistial literature and the subsequent formal distintion betweendata ontamination and model deviation through a novel lassi�ationsheme of distortion (hapters 2 and 3): We laim that statistialinferene is aimed at real-world desription. The real-world, data,and model assumptions are made omparable by assoiating them withrespetive data-generating proesses whih in turn are represented bystatistial models forming the model triplet. Di�erent onditions ofdisagreement within the model triplet de�ne distortion types ➀ to ➂.The �rst two a�et aspets of the model `within data units' and areidenti�ed as omparable situations of data ontamination and modeldeviation. Type ➂ represents a separate form of model deviationa�eting aspets of the model `between data units'.
• The disussion of seven onise examples to illustrate (�nally) the newlassi�ation of distortion (hapter 3).
• The identi�ation of onditions for whih the performane of statistialinferene proedures is di�erent under data ontamination and type ➁model deviation (hapter 4): A new notation for performane statistisunderlines the referene to real-world, data, and model assumptions. Adi�erene in inferential performane is generally possible if distortionrefers to the aspet of interest as represented in the statistial model.



CHAPTER 1. INTRODUCTION 7It an be deteted if the performane desription refers to the aspet ofinterest as part of the real-world (as e.g. the bias of a point estimator).
• The formulation of in�uene and preferene graphs whih study theperformane of statistial inferene proedures under inreasing dis-tortion of types ➀ to ➂ (hapter 4): The disrepany magnitude of amodel de�nes the distane to some ideal referene model. The modeltriplet assoiated with three suh magnitudes serves as the underlying`moving' referene frame for a performane statisti. This determinesthe type and urrent amount of distortion for eah graph.
• The ritial review and subsequent relation of urrent robustnessand diagnostis approahes to either data ontamination or modeldeviation, independently from what has been laimed in the respetivereferenes (hapter 4).
• A new formulation of the distorted Koziol-Green proportional hazardsmodel (hapter 5): Invalidation of the harateristi independenerequirement between observed survivals and ensoring indiator isexpressed in a novel way via model expansion. The new idea is broughtinto relation with other existing approahes.
• The ompletion of two detailed simulation studies addressing the e�etsof data ontamination and model deviation on two spei� estimationproblems of representative harater (hapters 5 and 6): The new ideasand methodology are broadly illustrated and implemented using theprogram environment S-PLUS.
• The spei�ation of a `duality-problem' for the model assumptions(hapter 7): Assumptions need to be direted to the real-world fornominal inferene and in addition to the data for stohasti inferene.



Chapter 2
Distortion and performane inthe statistial literature
2.1 IntrodutionUnder pressure of time there is frequently the wish to analyse data as quiklyas possible by using well-implemented standard methods suh as lassialregression. Many studies, however, do not meet the basi requirementsassoiated with these proedures. For example, there are outliers in thedata and the assumption of a normal distribution does not hold. In otherwords, one is often faed with a situation of distortion.This defet in the statistial setup an a�et many nie properties of theinferene proedures involved. In the ase of a linear regression model, forinstane, failure of the normal assumption an ruin the well-known UMVU-property (uniformly minimum-variane unbiased) of the maximum-likelihoodestimator (Graybill, 1961, p. 113f). Overall, it is therefore the performaneof statistial inferene proedures whih potentially su�ers under distortion.This hapter will onsider the aspets distortion and performane as theyappear in the statistial literature. Having brie�y introdued the two mostrelevant subjet areas alled diagnostis and robustness in setion 2.2, the8



CHAPTER 2. DISTORTION & PERFORMANCE IN LITERATURE 9onept of distortion will be disussed in setion 2.3. Several itations thereinwill point out the di�erent existing views. In addition, general oneptsof formalizing distortion will be presented as well as possibilities to relatedistortion to some ommon statistial models. The hapter will ontinue witha disussion of the performane of statistial inferene proedures (setion2.4). After some general bakground information in order to disriminatebetween the various ideas, performane desriptions based on (so alled)performane statistis will be presented. The hapter will lose with a shortdisussion about related aspets under distortion.2.2 Diagnostis and robustnessStatistial publiations referring to the idea of distortion an most oftenbe assoiated with at least one of the two subjet areas diagnostis androbustness. While both areas are aimed at sensible inferenes in the preseneof distortion, their methods are being developed from a di�erent point ofview (Stahel and Weisberg, 1991, p. xi). See also Huber (1991).In diagnosti studies, distortion is (�rst) tried to be identi�ed. This shouldenable the deision of subsequent ations suh as hanging the assumptionsor the data, or hoosing an alternative inferene proedure. Typial examplesare disordany tests for outliers whih allow the detetion, and afterwards ifdesired, the rejetion of outliers (Barnett and Lewis, 1995). Further there arethe so alled perturbation or in�uene diagnostis whih have been mainlyapplied in regression analysis. A motivating referene in this partiular areais Cook (1986).Contrastingly, robust statistis diretly seeks new inferential methods whihare insensitive to, or robust against, potential distortion. In line with this ideaare inferene proedures whih aommodate outliers (Barnett and Lewis,1995). Overall, the main approahes to robustness are the following:
• The notion of (asymptoti) qualitative robustness going bak to Ham-



CHAPTER 2. DISTORTION & PERFORMANCE IN LITERATURE 10pel (1971) is motivated by the idea that small hanges in the underly-ing sample only produe small hanges in the orresponding infereneresults. This requirement is also known as resistane. The formal de�-nition for qualitative robustness itself an be related to the ontinuitynotion of funtionals (Huber, 1981, p. 9f).
• Huber's (1981) asymptoti minimax-approah onsiders quantitativeaspets (quantitative robustness). Here, a robust estimator needs toshow maximum performane (in omparison to alternative estimators)for the �least-favourable distribution minimizing the Fisher-informationin a hosen distortion neighbourhood� (Huber, 1981, p. 73).
• The approah based on in�uene funtions onentrates on in�nitesimaldistortion (therefore also in�nitesimal approah). Robustness riteriaare derived from the in�uene funtion whih, roughly speaking,orresponds to the �rst derivative of a funtional (inferene proedure)at some ideal model distribution. The latter is embedded in the spae ofall probability distributions ontemplating an unrestrited full, thoughin�nitesimal, distortion neighbourhood. In addition to the in�uenefuntion itself, the onepts of qualitative robustness (see above) andthat of the breakdown point are important (Hampel et al., 1986).
• Con�gural polysampling is a small sample theory of robustness whihis aimed at invariant models suh as the ones of loation/sale orregression type. In a �rst step a few �over-diverse� alternatives areseleted whih re�et the type of deviation onsidered suh as theGaussian or some heavy-tailed distribution. Then, inferene proedureswith good performane at these situations are onstruted in thehope that their behaviour is also similar at intermediate ases. SeeMorgenthaler and Tukey (1991) and Morgenthaler (1991).
• Huber's apaities approah to robust testing and on�dene intervalsprodues �exat �nite sample results�. It robusti�es the Neyman-Pearson lemma and yields interval estimates of loation. While being



CHAPTER 2. DISTORTION & PERFORMANCE IN LITERATURE 11mathematially deep and elegant, the approah is less suessful interms of general appliability (Huber, 1981; Hampel et al., 1986).
• Rieder's (1994) approah to robust asymptoti statistis deals with�optimally robust funtionals and their unbiased estimators and tests�by �linking up nonparametri statistial optimality with in�nitesimalrobustness riteria�. It addresses the following two questions: �Whihfuntional to hose?� and �Whih statistial proedure to use for theseleted funtional?� (p. vii).Apart from statistial inferene proedures the term �robust� is also employedfor objets suh as parameters (Godambe and Thompson, 1984) and samples(Cook, 1986; Barnard, 1980). In addition, expressions suh as �modelrobusti�ation� and �model robustness� are known in the area of Bayesianstatistis (Box, 1980; Draper and Parmigiani, 1995).Instead of now getting involved with the atual methods of diagnostis androbustness, attention will be direted to the following, more fundamentalaspets:
• What is the kind and nature of potential distortion, and
• what are the means of assessing the performane of statistial infereneproedures (under distortion)?Thus, the remainder of the hapter is devoted to orresponding views in thestatistial literature. Di�erent approahes towards explaining distortion willbe presented (� 2.3), and the way in whih the performane of statistialinferene proedures has been desribed up to now will be disussed (� 2.4).



CHAPTER 2. DISTORTION & PERFORMANCE IN LITERATURE 122.3 Distortion2.3.1 Meaning and originSeveral types of error an our in statistial inferene. First of all, there isthe inherent, random error (statistial error) assoiated with every samplebased inferene proedure. Approximately standard normal distributed, it isthe repeated sum of elementary random measurement errors (entral limittheorem), or it an be assoiated with the fat that the hosen randomsample is not absolutely representative. Other random, not neessarilynormal distributed errors are also possible, for example due to (unbalaned)rounding or grouping. Errors might also systematially ontaminate the datasuh as regular reording errors. Finally there ould be spei�ation errors(mistakes) in the model assumptions, sine the latter are nothing else than`human made' simpli�ations of nature.In the present work, any situation whih inherits an error in either the data orthe assumptions will be denoted by the term distortion. This inludes all theerrors mentioned above, exept the statistial error due to unrepresentative,but still orret samples. The orresponding errors may be of any size.Alternatively referring to Huber (1981, p. 1):Distortion shall mean any kind of deviations from the assumptions,where the latter an be parametri, semi- or non-parametri. In this waydistortion ould imply data ontamination, i.e. wrong data whih deviatefrom the orret assumptions (due to reording errors, for example). Or,it ould be model deviation (model misspei�ation), i.e. wrong modelassumptions where the truth deviates from the assumptions (or better: theassumptions deviate from the truth). Both onepts of distortion will beintrodued in detail in hapter 3.Distortion as a onept has a long pedigree in a variety of desriptions andinterpretations in the statistial literature. This is in partiular re�eted



CHAPTER 2. DISTORTION & PERFORMANCE IN LITERATURE 13in the `target' of distortion whih at times even seems to be unlear: Doesdistortion operate on the data, the assumptions, or in turn possibly on both?Some examples from the literature illustrate the diversity:1. The following referenes laim to onsider errors in the data:
• Donoho and Liu (1988, p. 557f) refer to a measure of distortiondenoted as δ = δ(P, P0), where P0 is the `ideal' distributionwhih �holds for physial or other reasons� and where �the realdata . . . have a distribution P distorted through gross-errors,nonlinearities of measurement, rounding errors and other fatorsoutside our ontrol�.
• Millar (1981) explains that �due to ontaminations . . . , the dataatually olleted . . . follow a distribution that is . . . possibly dis-tint from the Pθ's� belonging to �a �xed parametri family� (p. 73).And, this family �is to be regarded as a theoretially orret prob-abilisti model of the phenomenon at hand; . . . perhaps fored onus by aepted priniples of theoretial physis� (p. 74).2. The following referenes laim to onsider errors in the model assump-tions:
• Stahel and Weisberg (1991, p. xi) introdue the theme of robuststatistis and diagnostis by referring to the situation when�. . . the parametri model is not ompletely orret� or � . . . is notorretly spei�ed�.
• Morgenthaler (1991, p. 49) is �onerned with the stability ofinferene proedures with regard to distributional and otherstrutural assumptions�.
• Aording to Cook (1986, p. 133) �models, . . . are nearly alwayswrong�, and as a onsequene one is often faed with �modelperturbation�.



CHAPTER 2. DISTORTION & PERFORMANCE IN LITERATURE 143. The following referenes refer to errors in both, data and assumptions.Even though the latter are mentioned separately, their distintion doesnot lead to di�erent methodologial onsiderations.
• In the introdution of Copas (1988) topis suh as robustness,outliers, leverage, diagnostis, and resistant �tting are mentionedin relation to �bad data and misspei�ed models�. The remainingdisussions therein, however, deal with outliers in the sense ofontaminated data � as the title of the paper already spei�es.
• Barnett and Lewis (1995, p. 21) explain that outliers �. . .mayre�et deterministi fators (errors of measurement, misreording,et.) or be probabilisti in nature (ausing us to question dis-tributional assumptions)�. In other words, they an be due to�measurement errors�, �exeution errors� or unreognized �inherentvariability� (p. 33f). While the two former error types obviouslya�et the data, the latter as a �natural feature of the population�(p. 33) may re�et an �inadequate basi model� (p. 34), i.e. wrongmodel assumptions. The authors aknowledge the fat that theomission of data ontaminating outliers might be sensible, butthat it �is hardly a robust poliy� when �outliers arise beause ourinitial model does not re�et the appropriate degree of inherentvariation� (p. 36). Still, they do not intend to distinguish �interminology� between those �soures of variation� (p. 34). �Ofourse, we have no way of knowing whether or not any observationis a ontaminant. All we an do is onentrate attention on outliersas the possible manifestation of ontamination . . . � (p. 9).4. In the referenes below the target of the errors seems to be unlear. Inthe �rst two publiations both types of errors are mentioned and thisindependently from the immediate ontext and just as if the errors indata and assumptions were the same. The last referene uses a neutralformulation of distortion.
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• Hampel (1971, p. 1887) deals with situations where �the paramet-ri model is not quite true�, i.e. when the assumptions are in er-ror. Nevertheless, the �reasons for deviations from the parametrimodel� are aording to him: �(i) rounding of the observations; (ii)ourrene of gross errors� � referring to errors in the data � and�(iii) the model itself may only be an approximation of the under-lying hane mehanism� � whih seems to mean wrong (model)assumptions.
• Huber (1981, p. 1) talks about the situation when �assumptions arenot supposed to be exatly true� and when there are �deviationsfrom the assumptions�. However, he later explains that �theourrene of gross errors in a . . . fration of the observations is tobe regarded as a . . . deviation� (p. 5).
• He and Simpson (1993, p. 314) use the vague expression �ontam-ination of Fθ�.The referenes above support an important onlusion: The potentialdi�erene between data ontamination and model deviation is often notonsequently emphasized in the statistial literature. Rather the oppositeseems to be true, i.e. a distintion as suh has mostly been ignored. Only afew publiations ould be traed whih indeed seem to stress the latter:

• In Cabrera et al. (1997) two aspets of robustness are mentioned: �(I)model robustness� . . . �where the reality does not exatly agree with theassumed model� and �(II) data robustness� where there are outliers inthe data. The overall paper, however, deals only with the seond kindof `robustness'.
• �Closer study of the idea of perturbations suggests that it is importantto distinguish between those of the data and those of the model � (Billorand Loynes, 1993, p. 1595). In line with this thought the authorsdevelop a new method for regression diagnostis.
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• In the ontext of diagnostis Lawrane (1991) disusses �perturbations�,where �three sorts� are �distinguished: Perturbations to assumptions,perturbations to data values and perturbations to ase weights�. Withsuh a threefold distintion the author's intention still seems to bedi�erent.
• Hettmansperger and Sheather (1992) refer to robustness when �. . . thetrue underlying model is in a neighbourhood of the assumed model�(p. 145) and to resistane when there is �a small amount of dataontamination� (p. 146). Then, however, they quantify resistane withthe in�uene funtion and the breakdown point, both onepts fromthe in�nitesimal robustness approah. Hene, the distintion beomesless lear again (though the authors point into the right diretion, seethe disussion in � 4.4).The distintion between data ontamination and model deviation will also�nd only little notie in the remaining disussions of this hapter whihpresents ideas mainly as they appear in the literature. Yet, as one of themain points of the present work, this problem will be treated at length inhapter 3.2.3.2 Formalization oneptsMost formalization onepts of distortion are based on the idea of a proba-bility model. This is obvious for inorret model assumptions and randomlyontaminated data, but also sensible in deterministi situations. Aordingto Barnett and Lewis (1995, p. 32f) for example, many deterministi outliersannot be traed bak to their origin, and are therefore regarded as random.The ideal model distribution representing a situation of no distortion (whihin ases ould be a univariate distribution or a more omplex model) anbe `extrapolated' in various ways. While some approahes are mainlyof mathematial harater, others appear to be more heuristi and are



CHAPTER 2. DISTORTION & PERFORMANCE IN LITERATURE 17therefore easier to apply. Whether suh a onept is realisti or not,nevertheless, depends on the �exibility and size of the orresponding modelor neighbourhood. In this respet a range of possibilities an be found in theliterature.The known approahes towards formalizing distortion will be brie�y dis-ussed now. Note, that a review similar to the following is also presented inHampel et al. (1986, p. 8�) and Ronhetti (1997, p. 60f).2.3.2.1 Finite number of alternativesThe simplest way of desribing distortion is by taking a �nite numberof alternative models whih are more or less di�erent from the ideal onerepresenting a situation of no distortion. Many studies whih ompare theperformane (robustness) of ertain estimators, tests, et. are based on thisapproah. The most famous appliation is ertainly the Prineton studyby Andrews et al. (1972), where properties of a large number of loationestimators were ompared under �about 40 di�erent sampling situations�whih �were at least as long-tailed as the normal distribution� (p. 67). Inaddition the methodology known as on�gural polysampling (see � 2.2) usesseleted alternatives in order to develop robust inferene proedures. Finally,a single, so alled, inherent alternative an be used to explain outliers. Thelatter may be a di�erent fully spei�ed distribution or it may represent adistint parametri family (Barnett and Lewis, 1995, p. 46).2.3.2.2 Model expansionAlso intuitive seems to be the method of model expansion where, in order toexplain distortion, further (distortion-) parameters are added to the idealmodel. Hampel et al. (1986, p. 9) all the resulting enlarged model a�supermodel�. A normal regression model, for instane, ould be extendedby onsidering the t-distribution with k degrees of freedom for the errors.The N(0, 1)-error distribution is then `inluded' as the limiting distribution



CHAPTER 2. DISTORTION & PERFORMANCE IN LITERATURE 18for k → ∞ (see e.g. in Lange et al. (1989) for a multivariate version and thereferenes therein). Other examples are self-similar proesses whih modellong-term orrelations by adding a so alled self-similarity parameter to theoriginal i.i.d. model (independent identially distributed). See for exampleHampel et al. (1986), p. 8 and p. 389�. Finally note, that also our approahwill be based on this idea (hapter 4). Corresponding detailed examples willbe disussed in hapters 5 and 6 where the ideal model is even `properly'embedded in the supermodel.2.3.2.3 Model mixingThe idea of model mixing leads to distortion models known as
• the gross-error model (also ǫ-ontamination neighbourhood) whih isused in the minimax approah to robustness initiated by Huber (see� 2.2). It ontains all distributions `around' some ideal distribution
F0 whih are omposed of a mixture of F0 and some other arbitrarydistribution H aording to a ratio of (1− ǫ) to ǫ (Huber, 1981, p. 11).

• mixture models where �outliers re�et the (small) hane λ thatobservations arise from distribution G, quite di�erent from the initialmodel F � (Barnett and Lewis, 1995, p. 46�).Note, that unlike the mixing distribution H in the gross-error model, thedistribution G in an (outlier) mixture-model is onsidered to be �xed.2.3.2.4 Neighbourhoods based on a distaneDistortion neighbourhoods around some ideal model distribution an bede�ned based on an underlying distane suh as the Lévy, Prohorov, totalvariation, or the Kolmogorov distane. Also goodness-of-�t measures an beused as for example one of Cramér-von Mises type (Huber, 1981; Donohoand Liu, 1988).



CHAPTER 2. DISTORTION & PERFORMANCE IN LITERATURE 192.3.2.5 In�nitesimal neighbourhoodsIn the in�nitesimal approah towards robustness, an inferene proedureis replaed at the ideal model by a linear approximation based on theorresponding in�uene funtion. While the approximation itself `reahes'into the full neighbourhood of all probability distributions, robustnessbehaviour is only studied at the ideal model. This (indiretly) de�nes a�full but in�nitesimal neighbourhood� (Hampel et al., 1986, p. 41f, 273).2.3.2.6 Distortion as hanges in the sampleThe onept of qualitative robustness is motivated by distortion whih issimply seen as small hanges in the underlying sample, i.e. �. . . small hangesin all of the observations xi (rounding, grouping) or large hanges in a few ofthem . . . � (Huber, 1981, p. 9). A model distribution as suh is not involvedfor this kind of distortion.2.3.2.7 Slippage modelsSlippage models aim at desribing the ourrene of outliers. They suggestthat �all observations apart from some presribed small number k . . . ariseindependently from the initial model F . . . , whilst the remaining k areindependent observations from a modi�ed version of F �. The so alledexhangeable models are also related to this idea (Barnett and Lewis, 1995,p. 49�).2.3.3 Distortion with some partiular statistial modelsDistortion is usually onsidered in relation to a statistial probability model(see above). The more omplex this model, the larger is the number of(model) aspets whih distortion ould address. The following paragraphswill present theoretial possibilities for some ommon statistial models and



CHAPTER 2. DISTORTION & PERFORMANCE IN LITERATURE 20point to a few typial or espeially reent referenes. Several of the formerand many more an be found in a survey paper by Stahel (1991). Note thatit will remain to be seen whether distortion haraterized in the followingways is also likely in pratial situations.2.3.3.1 Simple stohasti modelsA simple stohasti model is haraterized by random variables X1, . . . , Xnwhih are i.i.d. like X with X ∼ Fθ (`distributed like') or X ∼ F . Thisinludes all parametri, semi- or non-parametri models with a single (uni-variate or multivariate) distribution and no ovariate information. Potentialdistortion of the model ould a�et
• the independene between the X1, . . . , Xn and their distribution equal-ity (homogeneity),
• the distribution of X itself with respet to distribution type or shape,ontinuity, symmetry, parameter value, and dependene struture of itsomponents (if X is multivariate).Deviations from independene have been desribed in terms of moving-average shemes in Portnoy (1977; 1979). Hampel (1986) disusses theuse of self-similar proesses (see � 2.3.2.2) whih are espeially suitable forlong-range dependenies, and Künsh (1991) mentions various stationaryproesses in his disussion on �robustness against dependene�. Reent workwith �dependent Gaussian random variables� has been published in Genton(1998).Deviations from distribution equality an be addressed by slippage andexhangeable models as de�ned in Barnett and Lewis (1995, p. 49�).Most of the early robustness studies were onerned with deviations fromthe assumed distribution of X (distributional robustness). In partiular,loation and/or sale models have been widely onsidered. The book by



CHAPTER 2. DISTORTION & PERFORMANCE IN LITERATURE 21Huber (1981) is ertainly one of the most important referenes in this area.It uses the gross-error model (� 2.3.2.3) and distortion neighbourhoods basedon a distane (� 2.3.2.4). See also Morgenthaler and Tukey (1991) andMorgenthaler (1991) who take into aount seleted model alternatives for thedistribution of X . In�nitesimal (full) neighbourhoods are further the esseneof the well-known book by Hampel et al. (1986). Moreover, it is worthmentioning the outlier models of inherent and mixture type (Barnett andLewis, 1995, p. 46�), and the theory of robust minimum distane estimationusing distortion neighbourhoods based on distane measures (Donoho andLiu, 1988). On the whole the literature in the area is immense, sine alsomany empirial omparisons between individual model alternatives have tobe inluded. For three reent ontributions see Collins and Wu (1998), Wienset al. (1998), and Wu and Zhou (1998). While the �rst paper ompares M-estimators in asymmetri ǫ-ontamination neighbourhoods of a symmetriunimodal distribution, the last two study L- and M-estimators in Kolmogorovneighbourhoods of the normal distribution, respetively. Finally, note Copasand Stride (1997) who study a loal maximum likelihood estimator whihadapts �to loal departures from the assumed model� (in their paper thenormal distribution) and the related paper by Eguhi and Copas (1998).Violations of ontinuity are addressed by the loal-shift sensitivity (Hampelet al., 1986).2.3.3.2 Linear regression modelsIn a linear regression model the random vetor Y = (Y1, . . . , Yn)
′ of responsevariables is modelled aording to

Y = Xβ + ǫ, (2.1)where X is a (n× p)�matrix of non-random explanatory variables (arriers),
β = (β1, . . . , βp)

′ is a vetor of parameters, and ǫ = (ǫ1, . . . , ǫn)
′ represents therandom errors. While the term Xβ desribes the strutural (deterministi)



CHAPTER 2. DISTORTION & PERFORMANCE IN LITERATURE 22part of the model, ǫ onstitutes the distributional part � usually with
ǫ1, . . . , ǫn i.i.d. like ǫ ∼ N(0, σ2).Related models are for example random-arrier models, analysis-of-variane(ANOVA) models, where the design matrix X ontains only the values 0 and1, errors-in-variables models, where X is observed with superimposed errors,random e�et models, where β is (partially) random, and the Cox-regressionmodel for survival times. Potential distortion of the model in (2.1) oulda�et the

• strutural part of the model, i.e. deviations from linearity and wrongentries in β or X .
• distributional part of the model, i.e.� the independene between the ǫ1, . . . , ǫn and their distributionequality, e.g. hetero- instead of homo-skedastiity,� the distribution of ǫ itself with respet to distribution type andshape, ontinuity, and parameter values.The related models above ould su�er further (other) possibilities of distor-tion whih will not be disussed here.For distortion with respet to the strutural part of the regression modelthe following referenes an be noted: Diagnostis for perturbations of theexplanatory variables are disussed in Cook (1986) and later e.g. in Lawrane(1991). Departures from linearity have been onsidered in the ontext ofrobust designs by Huber (1981, minimax approah) and reently by Wiensand Zhou (1997, in�nitesimal approah). Interestingly, Stahel (1991, p. 245)remarks in his review paper, that he is not aware of any reent researh on�deviations from linearity in regression�.Deviations from independene of the error terms is studied in Künsh (1991)using an AR(1)-autoregressive proess, while Lawrane (1991) addresses thisaspet within the framework of perturbation diagnostis. A omprehensive



CHAPTER 2. DISTORTION & PERFORMANCE IN LITERATURE 23paper is also presented by Künsh et al. (1993) giving several examplesfor long-range orrelation strutures. The robust designs in Wiens andZhou (1997) are developed under �small departures from the assumption ofunorrelated errors�.Invalidation of the distribution equality is often onneted with the idea ofnon-onstant varianes (hetero-skedastiity). Several referenes are given inStahel (1991, p. 245). The majority of them formulate the error-variane independene on the explanatory variable xi. Nanayakkara and Cressie (1991)give an overview on researh related to departures from homo-skedastiity.Further, the diagnostis approah introdued by Cook (1986) an be used tostudy unequal varianes in the standard linear model. See also e.g. Lawrane(1991). Distribution inequality in more general terms an be desribed byoutlier models (of slippage type). Note Barnett and Lewis (1995) and thereferenes therein.As in the simple model ase, most of the literature deals with distortiona�eting the error-distribution itself. Several publiations are based onoutlier models (Barnett and Lewis, 1995). Further important referenesare Huber (1981, minimax-approah), Hampel et al. (1986, in�nitesimalapproah), Rousseeuw and Leroy on �Robust regression and outlier detetion�(1987), Morgenthaler and Tukey (1991, on�gural polysampling), and Rieder(1994). Nanayakkara and Cressie (1991) refer to �departures from normality�in their overview paper. Moreover, it is worth mentioning Lawrane (1991)who is onerned with �perturbations to response values�. Note papers usingthe idea of model expansion/alternatives for diret inferene purposes suh asLange et al. (1989), Taylor (1992), and Morgenthaler (1994). Finally, manyempirial studies an be found whih ompare inferene proedures under a�nite number of model alternatives. A reent one is for example Meintanisand Donatos (1997).Continuity aspets are again addressed by the in�nitesimal approah, seee.g. Hampel et al. (1986).



CHAPTER 2. DISTORTION & PERFORMANCE IN LITERATURE 242.3.3.3 Time series modelsA time series model is represented by a stohasti proess (Xt)t∈T whihis a series of (dependent) random variables, where usually T = N or
T = Z. A popular assumption is (weak) stationarity, i.e. E(Xt) = µ andCov(Xt+h, Xt) = γ(h). Potential distortion ould address the

• marginal distribution of single Xt,
• the underlying orrelation struture of the series, or
• the observation times t.Distortion of time series models is often addressed by outlier models (Stahel,1991, p. 256f). In general, the presene of an outlier at time t is assoiatedwith hanges in the orresponding distribution of Xt. Additive outliers oursuperimposed and unrelated to the underlying time series model. Innovationoutliers are re�eted in subsequent observations following the orrelationstruture of the series. See Barnett and Lewis (1995), and Rousseeuw andLeroy (1987) for a general referene. The potential e�ets of additive outliersare disussed for example in Ledolter (1991, in terms of foreast errors)and Luas (1997, in terms of in�uene funtions). Outliers in onnetionwith a state spae representation of a time series are studied in Taplin(1993). The author formalizes the problem by hanging the distribution ofthe orresponding error term in the observation equation. Finally, Hampelet al. (1986) disuss the in�uene funtion developed for time series. See alsothe referenes therein.Taplin (1993) models level shifts of non-stationary proesses by modifyingthe dependene between Xt and Xt−1. In the ase of stationarity, however,the phenomenon an again be explained by use of the marginal distribution(remark by Taplin). Hampel (1986, p. 397, 422) and Stahel (1991, p. 257)mention the problem of deviations from an assumed orrelation struture butdo not give any further referenes (neither are we aware of any reent workon this topi).



CHAPTER 2. DISTORTION & PERFORMANCE IN LITERATURE 25Many more omplex models exist in the literature whih exhibit additionalpossibilities for distortion. It is beyond the sope of this thesis to disuss allof them but hapters 5 and 6 will give details of two spei� models relatedto � 2.3.3.1 and � 2.3.3.2. Having reviewed the onept of distortion, wewill now ontinue to onsider the notion of performane as it appears in theliterature.2.4 Performane of statistial inferene proe-duresIn the present work a statistial inferene proedure will be seen as adesriptive proess, and thus in distintion to any deision-making proedure(ompare with Barnett (1982), p. 13). Further, the overall onsiderationswill be limited to lassial inferene and there to (point) estimation. Hene,other approahes to statistial inferene suh as Bayesian inferene as wellas the problem area of hypothesis testing will be negleted in the followingdisussions. Being aware of these restritions, the reader may already keepin mind the potential perspetives this might o�er for future researh (see �7.5).There are several ways of desribing the performane of statistial infereneproedures. All of them somehow try to assess the reliability of the resultinginformation. Nevertheless, performane desription of inferene proedures(partiularly estimators), an be lassi�ed by e.g. taking into aount thefollowing two riteria: the formal representation of the inferene proedureunder study (� 2.4.1) � leading to the distintion of �nite sample andasymptoti performane desriptions, and the preferred meaning of its `good'performane � here in terms of performane attributes (� 2.4.2).Quantitative performane measures will further be onsidered in � 2.4.3 andsome related aspets under distortion will be pointed out in � 2.4.4.



CHAPTER 2. DISTORTION & PERFORMANCE IN LITERATURE 262.4.1 Representation of statistial inferene proeduresIn the theory of lassial inferene, estimating as well as testing proeduresan be onsidered as statistis, as sequenes of statistis, or in many asesas funtionals. The di�erent representations whih motivate either �nitesample or asymptoti performane desriptions, are explained now in moredetail by putting most emphasis on funtionals (general de�nition and theiruse in robust statistis). For the disussion below letX1, . . . , Xn be a randomsample of size n from a population with distribution funtion F .2.4.1.1 StatistisIn the simplest ase, a statistial inferene proedure Tn is represented as a(real-valued) statisti, whih is both a random variable Tn(X1, . . . , Xn) anda funtion Tn(·, . . . , ·) with domain R
n and dependent on some �xed samplesize n. Finite sample onsiderations are based on this representation.2.4.1.2 Sequenes of statistisA statistial inferene proedure an also be seen as a sequene of statistis

{Tn;n ≥ 1} where n is a running-index and as suh not �xed. Even though
Tn is still dependent on n, the inferene proedure itself an be onsidered �from an asymptoti point of view � independently of any sample size n.2.4.1.3 FuntionalsFinally, a statistial inferene proedure an be viewed as a statistialfuntional T (also: statistial funtion) if eah Tn of the orrespondingsequene {Tn;n ≥ 1} an be written as a omposition of T , whih isindependent of n, and the empirial distribution funtion Fn, i.e.

Tn(X1, . . . , Xn) = T [Fn(X1, . . . , Xn; z)] = T (Fn)



CHAPTER 2. DISTORTION & PERFORMANCE IN LITERATURE 27for all n. The domain of T is the set of distribution funtions whih ontains
Fn for all n ≥ 1 and F (Fernholz, 1983, p. 5). Note, that the empirialdistribution funtion, in detail denoted as Fn(X1, . . . , Xn; z), is interpretedas a random variable with realizations in the set of distributions funtions,where z is arbitrary and not �xed. In other words, Fn(X1, . . . , Xn; z) is arandom distribution funtion. This has to be distinguished from Fn as a real-valued random variable where z is �xed, and also from Fn as a deterministidistribution funtion where x1, . . . , xn is a �xed sample. Compare with theknown stohasti-deterministi features of Fn as e.g. explained in Ser�ing(1980, p. 56).Statistis whih, expliitly or impliitly, an be expressed in terms of Fn (andare therefore funtionals) are easy to �nd. Keeping in mind that

Fn(X1, . . . , Xn; z) =
1

n

n∑

i=1

ı{Xi≤z},where ı is the indiator funtion, a simple example is the linear funtional
Tn(X1, . . . , Xn) =

∫
h(z) dFn(X1, . . . , Xn; z) =

1

n

n∑

i=1

h(Xi),where h(·) is some real-valued funtion. Other examples are given inSer�ing (1980, p. 211f) � among them M-estimators, i.e. espeially maximum-likelihood estimators, and the generalized Cramér-von Mises statisti.Funtional representations are generally useful for the theoretial investiga-tion of many statistis (Ser�ing, 1980, p. 58), and they play an importantrole in the theory of robust statistis (Fernholz, 1983, p. 6).2.4.1.4 Funtionals in robust statistisFor representations in robust statistis, inferene proedures need to satisfyadditional requirements: The funtionals are generally onsidered to be(weakly) onsistent, i.e.
T (Fn)

n→∞−−−−−−−→ T (F )



CHAPTER 2. DISTORTION & PERFORMANCE IN LITERATURE 28in probability, and asymptotially normal, i.e.
√
n [T (Fn)− T (F )]

n→∞−−−−−−−→ N [0, V (T, F )]in distribution, where V (T, F ) is the asymptoti variane of the orrespond-ing inferene proedure at F . See Hampel et al. (1986, p. 82f) and Huber(1981, p. 11). Note that the former also onsider inferene proedures whih�an asymptotially be replaed by funtionals�. The asymptoti theory ofvon Mises (1947) ensures that plenty of inferene proedures satisfy these on-ditions, e.g. linear funtionals and M-estimators (see Ser�ing (1980), p. 212and Huber (1981), p. 49f).With these assumptions statistial inferene proedures are then referred toas T (F ) � meaning, that they operate on data whih are produed by F .The asymptoti representation is again independent from any sample size n.The theoretial representation of a statistial inferene proedure is overallonly one aspet whih deides on how to desribe orresponding inferentialperformane in a potential study. Another more obvious motivation for theperformane desription is the (preferred) meaning of `good' performane. Inthe following, possible attributes of `good' performane will be disussed.2.4.2 Attributes of `good' performaneJust a few attributes an summarize the di�erent interpretations of `good'performane of estimators, whih form the basis for the various existing �nitesample and asymptoti performane desriptions in the literature. Some ofthe latter will be onsidered in � 2.4.3. The attributes, in short referred to asloseness, nie type of distribution, and stability are explained now in moredetail.Closeness requires, that estimation results are in some way onentratednear the unknown instane to be estimated (estimand), see for exampleMood et al. (1974, p. 289). This an address the loation and/or thespread of
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• the distribution assoiated with the estimator as a statisti, or
• the limiting distribution assoiated with the estimator as asequene of statistis.Several performane measures are known whih are aimed at quantify-ing the goodness of loation and spread. If these are used to omparedi�erent estimators, one also refers to e�ieny properties (measures).Finally, loseness ould imply that estimators � as sequenes of statis-tis � onverge to the orret estimand. This interpretation leads tothe qualitative property known as onsisteny.A nie type of distribution refers to the distribution/limiting distribu-tion of inferene proedures viewed as statistis or sequenes of statis-tis, respetively. In general, it is desirable that the type of distribu-tion is well known and easy to deal with. For instane, the qualitativeproperty of (asymptoti) normality results from this attribute of `good'performane.Stability requires that the quality of inferene behaviour is somehow persis-tent under (growing) distortion. However, unless a stable proedure isalso `good' in some other way, it is usually only of little use. Therefore,the onept of stability generally motivates the transferring and relat-ing of eah of the two attributes loseness and nie type of distributionfrom ideal situations of no distortion to situations of distortion.The distintion of the three attributes of `good' performane and thetheoretial representation of statistial inferene proedures (� 2.4.1) shouldhelp to lassify the ways in whih inferential performane is desribed in theliterature. The present thesis, with its speial interest laid upon the situationof distortion, will onentrate on performane in relation to the attributesloseness and stability. Besides and independently from this hoie, it shouldbe remarked that there seems to exist only little work on stability pertainingto a nie type of distribution.



CHAPTER 2. DISTORTION & PERFORMANCE IN LITERATURE 30A short aount of some ommon performane desriptions aimed at theattribute loseness will now follow.2.4.3 Common measures of performaneApart from the lassi�ations made to this point, the performane ofestimators as statistial inferene proedures an be desribed in twoprinipal ways:1. by using measures whih quantify performane and from whih quali-tative properties an be derived, or2. by diretly de�ning (qualitative) properties suh as normality oronsisteny.The following disussion will onentrate on quantitative performane des-riptions referring to the attribute loseness. Espeially designed statistis,whih will be alled performane statistis, serve as the main methodologialtool. While in the �nite-sample ase their expeted values are onsideredas a performane measure (in dependene on the underlying sample size n),asymptoti studies onentrate on the orresponding limiting values.Point estimation Denote the estimator and orresponding estimand as
T = θ̂ and θ, respetively. While the former may be represented as either astatisti or a sequene of statistis, the latter should be seen as a parameterin the widest sense. Measures of performane based on the idea of losenessare then aimed at assessing the (limiting) distribution of θ̂ in terms of itsloation relative to θ, and/or in terms of spread.For univariate point estimators some of the performane statistis (assoiatedwith their expeted values) are
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• the expeted di�erene between the estimator and the unknown esti-mand, known as the bias of T (addresses loation)E [

θ̂ − θ
]
,

• the expeted squared di�erene between the estimator and its expetedvalue, known as the variane of T (addresses spread)E{[
θ̂ − E(θ̂)]2} ,

• the expeted squared di�erene between the estimator and the un-known estimand, known as the mean squared error of T (addressesloation and spread) E{[
θ̂ − θ

]2}
, and

• the expeted absolute di�erene between the estimator and the un-known estimand, known as the mean absolute deviation of T (addressesloation) E{∣∣∣θ̂ − θ
∣∣∣
}
.The list ould be ontinued at length � taking into aount that performanestatistis and their expeted values are sometimes also referred to as lossand risk funtions, regardless of their `lassial' intentions. See for exampleMood et al. (1974, p. 297). Asymptoti versions of the above performanedesriptions are also ommon.For multivariate point estimators generalizations of the above measuresare available whih are either also single-valued, or are vetor-valued andaordingly aompanied with a suitable order priniple. See e.g. Mood(1974, p. 351�) for generalizations of the variane.Curve estimation Finally, onsider performane desriptions of urveestimators T = ĝ(·), where g is some unknown funtion suh as a density,



CHAPTER 2. DISTORTION & PERFORMANCE IN LITERATURE 32distribution, regression, or survival funtion. Here, the notion of loseness iseither viewed point-wise, or an be interpreted by addressing the estimatedurve as a whole. While the former approah leads to performanedesriptions as the ones listed above, the latter might be assoiated withmeasures suh as
• the expeted average sum of squaresE{

1

k

k∑

i=1

[ ĝ(Xi)− g(Xi)]
2

}
.The performane statisti with g = F is known as the Cramér-vonMises statisti.

• the expeted supremum-normE{ sup
i=1,...,k

∣∣ ĝ(Xi)− g(Xi)
∣∣
}
.The performane statisti with g = F is known as the Kolmogorov-Smirnov statisti.Further performane measures might be derived from goodness-of-�t testsand other general distane measures.So far, performane desriptions have been disussed whih verify the degreeof loseness. On their own, these are usually used in ideal situations of nodistortion. The next subsetion will now brie�y outline some partiularitiesunder distortion.2.4.4 Aspets under distortionWhen distortion has to be allowed for, the notion of `good' performanebeomes more a matter of general stability, rather than just loseness underthe ideal situation. The two requirements together usually turn out to bea trade-o� problem sine they annot be optimized simultaneously. As a



CHAPTER 2. DISTORTION & PERFORMANCE IN LITERATURE 33onsequene, various ompromise solutions have been developed in the areaof robust statistis whih ombine both objetives and arrive at a singleriteria for `good' performane in the fae of potential distortion. Here, thisline of thought is of minor importane and the interested reader may e.g. referto the books of Huber (1981) and Hampel et al. (1986).Instead, attention will be devoted to the simple fat that performanedesriptions in terms of loseness need to be transferred to situations ofdistortion. This is beause stability an generally be addressed by onsideringand omparing performane under ideal and non-ideal situations (� 2.4.2).Aordingly, alternative performane desriptions (in terms of loseness)have been formulated for the ase of distortion.Rather than presenting spei� measures of performane at this point, notethe following: Most of the main approahes towards robustness rely on theuse of funtionals in order to formulate measures of performane. Thereason behind this development is found in the work of von Mises (1947)who developed notions of di�erentiability in the spae F of all distributionfuntions.As desribed in � 2.3.2, distortion is generally seen in relation to an idealmodel distribution F , so that it is sensible to also express the infereneproedure itself in terms of F by using the representation T (F ). Thisfailitates to link the ideas of stability with the notion of ontinuity on F ,beause the inferene proedure is interpreted as a funtion on F ratherthan on some n-dimensional spae of sample-outomes. The latter prinipleis related to the idea of qualitative robustness (see Huber (1981) and � 2.2).The theory of di�erentiability on F , moreover, o�ers mathematial tools forthe in�uene funtion and the breakdown point, both well-known oneptswithin the in�nitesimal approah (see Hampel et al. (1986) and � 2.2). Whilethe former is de�ned as a kind of �rst derivative, the latter is based on theidea of �the distane to its nearest pole� of a funtion (Hampel et al., 1986,p. 40).



CHAPTER 2. DISTORTION & PERFORMANCE IN LITERATURE 34Finally, the fat that F an be onsidered as a `point' in F allows toonstrut neighbourhoods (around that point) whih are used in Huber'sminimax approah to quantitative robustness (see Huber (1981) and � 2.2).Performane of T (F ) under distortion an then be studied by observing thefuntional behaviour of T (·) in these neighbourhoods.Final remark Up to this point the onepts of distortion and performanehave been presented as they appear in the literature. In the end of hapter4 they will be re-onsidered and disussed (in relation to eah other) fromour point of view. Prior to this, the notion of distortion will be revisitedby emphasizing the fundamental distintion between data ontaminationand model deviation in hapter 3, and a suitable way of desribing (andomparing) performane will be introdued in hapter 4.



Chapter 3
Distortion from a revised point ofview
3.1 IntrodutionThe previous hapter pointed out di�erent interpretations of distortion in theliterature. In most ases distortion has been seen either in relation to justthe data or to just the model assumptions. In some referenes, moreover,both views are loosely ombined. Overall however, a distintion betweendistortion due to ontaminated data and distortion due to a misspei�edmodel has mostly been ignored. This is surprising, espeially when takinginto aount the long-established position of robust statistis and diagnostisin statistial researh.This hapter will introdue distortion from a revised point of view. Adistintion will be made in de�nitions for data ontamination and modeldeviation by emphasizing that statistial inferene is aimed at explainingsome unknown aspet of the real-world representing the truth rather thanjust desribing the underlying data (setion 3.2). Following the presentationof model and inferene framework in setion 3.3, the two types of distortionwill be disussed in detail in setion 3.4.35



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 363.2 Prelude: Statistial inferene about what?Statistial methodology an be distinguished into desriptive and inferentialstatistis (Hartung, 1995). The former is devoted to the desription ofdata �entirely or largely independent of a probability model� (Cox, 1978).We will onentrate on the latter aspet, also alled statistial inferene.Aording to Barnett (1982, p. 13) this is the study of proedures whihutilize �information to obtain a desription of the pratial situation�. Unlikedesriptive statistis, it uses the notion of a probability model. However,what is the aim of statistial inferene? Is it also the data, or might theinterest be laid upon some other higher order `instane'? In other words:Statistial inferene is made about what? A look into the literature does notgive a lear answer:
• Barnett (1982, p. 6f) refers to �real data whih has arisen from thepratial situation�, but also to �data arising from the real situation�.Hene, do �real situation� and �pratial situation� mean the samething? In addition the author mentions the �real-world problem� fromwhih the model is motivated (Figure 1.1). It is not apparent (tous) whether the �pratial situation� oinides with the underlyingsituation of the real-world or whether it orresponds to the proessatually generating the data.
• �Statistial inferene is the theory and methods onerned with theway that bakground information and urrent data make impliationsonerning unknowns in a system under investigation� (Fraser, 1983).
• Cox and Hinkley (1974) explain in their book about the logial aspetsof statistial inferene: �Statistial methods of analysis are intended toaid the interpretation of data� (p. 1).
• Any book on data analysis most ertainly involves methodology fromstatistial inferene.



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 37Most referenes seem to address the data or the proess generating the dataas the ultimate aim of statistial inferene. Still, we will adopt the viewthat statistial inferene is aimed at real-world desription � and not datadesription. First of all this means that data and the real-world are not thesame, although ideas ould get mixed up when thinking of `real data' et.(see above in the itation of Barnett). To be rather philosophial, one ouldsay that the real-world is always true (in the sense of orret), whereas thedata do not neessarily need to be.Seondly, this implies that the basi ingredients of statistial inferene, thedata and model assumptions, should be oriented towards the real-world insome way. Conerning the data this seems to be generally aepted, i.e. datashould be orret and representative. However, there appear to be di�erentopinions with respet to the model assumptions. Many statistiians laimthat model assumptions should address the underlying data, i.e. ultimatelythe model should �t the data. This beomes apparent in a paper byChat�eld (1995) disussing problems arising with the ommon pratie ofdata-dependent (model) spei�ation searhes (not only in the ontext ofBayesian statistis). Others, suh as Tukey (1997, p. 21), understand thatthe assumptions should try to explain the real-world (ignoring the possibilitythat for them real-world and data might be idential).This work will adopt an intermediate position: Model assumptions shouldaddress the real-world (independently from any information in the data) andthey should take into aount the (dependene) mehanism whih atuallygenerates the data (e.g. assuming independene for the sampling proedure).Explaining the real-world with the help of statistial model assumptions anbe justi�ed if one believes in the existene of a so alled true model. Thelatter shall exist in some `objetive reality' re�eting a natural (physial)phenomenon, independently from any data-generating mehanism. In mostases suh a true model is in�nitely omplex and only arbitrarily largedata sets (produed under onstant irumstanes) ould even theoretiallyontain all its information. Thus as a rule, (�nite) data annot be absolutely



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 38representative, and model assumptions an only mean simpli�ations of thetrue model. Hampel et al. (1986, p. 409�) give a ritial disussion aboutseveral alternative views of suh a true model (inluding the one introduedhere).We will onentrate on the fat that statistial inferene aims at desribingthe real-world. It provides the starting point for a distintion of distortioninto data ontamination and model deviation. In preparation for the detailsthe next setion will introdue the model framework whih inludes the tripletdata, model assumptions and real-world.3.3 The model and inferene frameworkA basis for the disussion of data ontamination and model deviation willbe developed by introduing the so alled model framework and infereneframework. The two onepts together form the logial struture of asienti� experiment involving statistial inferene. Already existing ideaswill be reinterpreted and related in order to aommodate later the revisedpoint of view of distortion.3.3.1 The model frameworkThe model framework desribes the route from a real-world situation to theorresponding data-generating proess (Figure 3.1) and implements di�erentinstanes assoiated with the statistial model (see later). The basi ideaswill be desribed �rst by a simple example (Barnett, 1982, p. 5):Example 1 Interest is given to the unknown emission rate of α-partiles ofsome radio-ative substane. In an experiment the number of these partilesis ounted over several �xed and non-overlapping time intervals of the samelength t. Experiene suggests that the ounts are Poisson(λt)-distributed.
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aspect of interest

real-world situation

sampling unit + population

data unit

data-generating processFigure 3.1: From the real-world to the data-generating proess.3.3.1.1 From the real-world to the data-generating proessThe �rst part of the model framework onsists of the direted route throughreal-world situation desribing the sienti� ontext in whih the statis-tial experiment is embedded. In the above example this would be thefat that the radio-ative substane emits α-partiles.aspet of interest whih is spei�ed by the sienti� problem, here theemission rate of α-partiles.sampling unit and population The real-world situation and the aspet ofinterest naturally indiate the kind of sampling unit whih is derivedfrom some underlying population. The latter an be either �nite orin�nite, and onrete or �titious. In the example a sampling unitis represented by the olletion of α-partiles in a �xed time interval.



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 40The potential olletions of all possible time intervals of the same lengthonstitute the in�nite, �titious population.data unit The observable outome of a sampling unit determines theorresponding data unit (datum). In the above example a data unitonsists of a single value and orresponds to the number of α-partilesreorded in the partiular time interval.data-generating proess Knowing the harateristis of data unit andunderlying population, a data-generating proess an be desribed interms of a statistial model, i.e. now using a statistial language. In theabove example the data units are explained by the random variables
X1, . . . , Xn, where Xi represents the number of α-partiles in the i-th�xed time interval. They an be onsidered as independently andidentially like Poisson(λt)-distributed.The harateristis of data units an generally be distinguished by aspetssuh as the number of observations (univariate or multivariate) per unit, andassoiated ovariates. For instane, there is just one univariate observationper data unit for the emission rate of α-partiles, and there are no assoiatedovariates. Data units may also entail the hane of representing missingvalues. Finally, a ensoring indiator may be attahed to their observations,and the data units themselves may refer to unobservable aspets suh asensoring times. Missing values and ensoring mehanisms are, however, notrelevant in the α-partile example.Additional examples shall now explain other partiularities of a modelframework.Example 2 In order to analyse to what extent ertain fertilizers in�uenethe quantity of wheat rop, average rop results from four di�erent fertilizersare ompared.The real-world situation in example 2 may be seen as the general dependeneof fertilizers and rop results, while the spei� omparison of average



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 41rop results from those four fertilizers formulates the partiular aspet ofinterest. A sampling unit onsists of a single �eld treated with a ertainfertilizer produing one univariate observation for the orresponding dataunit (quantity of wheat rop per square meter). The fator `fertilizer' andother variables suh as temperature serve as ovariates. The theoretialpopulation of all fertilized �elds is in�nite and �titious. An ANOVA-model(or ANCOVA-model) ould explain the underlying data-generating proess.Example 3 In a soial survey students in She�eld are asked about theirdaily onsumption of igarettes. Some of them, however, do not �ll in thequestionnaire.In this example the real-world situation is re�eted by the smoking habitsof students. The orresponding average number of igarettes onsumeddaily onstitutes the aspet of interest. As is typial for soial surveys, thesample is taken from a �nite and onrete population, here, omposed ofthe students in She�eld. To be more preise, the idea of a population ouldbe distinguished into target population, about whih information is desired,and sampled population, from whih the sample is taken (see e.g. Mood et al.(1974), p. 222f). That is, the target population ould be the �titious �super-population� of students in Europe at an arbitrary point of time, but it ouldalso be idential with the �nite sampled population of all students in She�eld.Eah student represents one sampling unit. The single observations of eahorresponding data unit are multivariate due to additional information suhas age, sex, et. or represent missing values in some ases. A model forthe data-generating proess ould take into aount the potential missingvalue status, and also the dependenies between data units (sampling units)if the sample is drawn without replaement. In ase, the target populationis onsidered to be a �super-population� a lassial normal regression modelmight be suitable, eventually aounting for dependenies (�super-populationmodel� as termed e.g. by Barnard (1971)).



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 42Example 4 The e�ets of a new treatment for aner patients is tested in alinial trial. Patients may enter the study at di�erent times, they may notbe followed-up until death ours, and they may disontinue the treatmentprematurely (random ensoring, see e.g. Miller (1981), p. 5f).Here, the real-world situation is desribed by the existene of a new anertreatment and the fat that patients may or may not show a positivetreatment e�et. The survival time distribution of an `average' patient underthe new treatment formulates the aspet of interest. For eah aner patient(sampling unit) two items are reorded: the observed survival time and theinformation of whether this time is ensored or not (ensoring indiator).The latter indiates whether the time of the patient leaving the study whilebeing alive (ensoring time) or the atual unknown survival time is smaller.The 2-dimensional vetor of the observed survival time and the ensoringindiator forms the orresponding data unit. The population of all anerpatients is onsidered to be in�nite and �titious (also taking into aountfuture patients).A statistial model for the data-generating proess ould be the Koziol-Greenmodel (see the detailed example of hapter 5): The positive random variables
X1, . . . , Xn, Y1, . . . , Yn, and Z1, . . . , Zn representing the atual, ensored,and observed survival times are i.i.d. like X , Y , and Z with ontinuousdistribution funtions. The random variables ∆1, . . . ,∆n representing theensoring indiator are i.i.d. like ∆, where the latter is Bin(1, p)-distributed.
X and Y , as well as Z and ∆ are independent.Example 5 In a longitudinal study several protein measurements are takenfrom ows milk during a �xed period of time. Eah donating ow is treatedwith one of three di�erent diets and is presumed to be healthy (Diggle et al.,1995).It is known that in the real-world the diet of ows may in some way in�uenethe protein ontent of milk. The aspet of interest is therefore a omparison



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 43of the resulting average protein ontents from the three di�erent diets.Measurements from the same ow (one sampling unit) are summarized toa single data unit. This means that the data units are (usually) omposedof more than one observation � a typial harateristi of longitudinal data.The observations themselves are univariate and assoiated with the fator`diet' and a ovariate indiating the time of measurement. The populationof healthy milk ows is onsidered to be in�nite.A statistial model for the data-generating proess might be the following (seethe detailed example in hapter 6 for a spei� ase): The N observationsare summarized into m independent random vetors Y i = (Yi1, . . . , Yin)
′orresponding to the data units with m · n = N and

Y i = Xiβ + ǫi, (3.1)where Xi is a (n×p)�matrix of ovariates � of the same struture within eahdiet group, β = (β1, . . . , βp)
′ is a vetor of oe�ients, and ǫi = (ǫi1, . . . , ǫin)

′is a vetor of random errors distributed like mN(0, σ2V ) with some matrix Vtaking into aount the natural orrelation struture between measurementsfrom the same ow.Example 6 Interest is given to the development of deaths due to bronhitis,emphysema, and asthma in the U.K. Basis for a study are the orrespondingmonthly registered deaths over a �xed number of years (Diggle, 1990).Sine the above diseases are well-known auses of death in the real-world,the aspet of interest is devoted to the numeri development of those ases.The number of monthly registered deaths over the years onsidered is atime series and as suh orresponds to only a single data unit with several(univariate) observations. The population ould be de�ned in various ways,e.g. be idential with the single sampling unit (olletion of registered deaths)or desribe the orresponding reords in several ountries. One of the knowntime series models might be appropriate to represent the data-generatingproess.



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 44Example 7 In order to get knowledge about some physial onstant ρ,several measurements are taken in an experiment.Here, the real-world situation orresponds to the physial phenomenon,and the aspet of interest is the physial onstant itself. The samplingunits (= data units) with single univariate observations are `drawn' fromthe in�nite, �titious population of all possible measurement values. Asin example 3 a distintion ould be made between target and sampledpopulation. That is, the target population ontains the unknown onstant asits single element, while the set of all possible measurement values onstitutesthe sampled population. The orresponding data-generating proess isintuitively assoiated with a N(ρ, σ2)-distribution model. Nevertheless, theunknown onstant of interest is deterministi and would orrespond to a one-point distribution at ρ. This fat will be given partiular attention in setion3.4 disussing model deviation and data ontamination.The above examples are used to explain the onepts and ideas developedthroughout the present hapter. In addition, the examples 4 and 5 will beonsidered in muh more detail in later hapters.3.3.1.2 Aspets of the model between and within data unitsA data-generating proess an be desribed in terms of a statistial model(see � 3.3.1.1). In order to speify distortion it is important to distinguishaspets of the model between data units (desribing dependenies) from thosewithin data units.The independene assumption of the often ited i.i.d.�statement of a sta-tistial model refers to aspets between data units and is usually a naturalonsequene of random sampling from an in�nite population. For �nite pop-ulations the statistiian might hoose sampling shemes whih imply depen-dene between the data (sampling) units, see example 3. Aspets betweendata units do not exist in ases with only a single unit as in example 6 (timeseries model).



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 45Aspets within data units an be modelled by speifying a distribution(usually the same) for eah data unit as in examples 1 and 7. When ovariatesare present (examples 2 and 5) this is replaed by a more omplex regressionmodel onsisting of a deterministi and a stohasti (distributional) part.Then, a single idential distribution for all data units is obviously no longervalid. In addition, dependene strutures are to be de�ned within data unitswhen the number of observations per unit is greater than one (examples 5and 6), and maybe within observations when the units themselves are ofmultivariate or ensored nature (examples 3 and 4).Note, that an i.i.d.�statement is also used in the ontext of regressionmodels. Here, the idential distribution beomes valid after `subtrating'the deterministi part of the model. It then means that the i.i.d.�statementaddresses aspets between residuals (and not data units).3.3.1.3 REALITY, DATA, and ASSUMPTIONSSo far, a single model has been used to represent the data-generating proess.For reasons of simpliity the three di�erent views of a data-generatingproess represented by the statistial models alled REALITY, DATA, andASSUMPTIONS (see Figure 3.2) have still been negleted. This shall beaomplished now.In � 3.2 it was pointed out that an experiment involving statistial infereneis strongly related to the triplet onsisting of real-world, data, and modelassumptions. While the ultimate aim of suh an experiment is the desriptionof the real-world, the relevant tools used for it (in addition to the infereneproedure itself) are the data and model assumptions. It is important thatsomehow the last two elements are oriented towards the real-world. In otherwords, real-world, data, and model assumptions are supposed to onformwith eah other in some way, but with the real-world regarded as entral.A di�ulty arises when trying to speify this orrespondene. The threeomponents are of ompletely di�erent natures, so that a diret omparison
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Figure 3.2: Instanes of the data-generating proess and the model triplet.between them is not possible. However, the problem an be avoided whenviewing eah omponent as a data-generating proess, or vie versa, viewingthe data-generating proess of an experiment in three di�erent forms (seeFigure 3.2). In detail, the
• ideal data-generating proess omplies with the real-world form. Itinvolves the theoretially true, but not neessarily atually observeddata units and the sampling sheme whih is either planned or ideallyresults from the underlying population.In example 1 the ideal data-generating proess refers to the trueemission of α-partiles from the radio-ative substane. Sine thenumber of partiles is naturally independent and equally distributed inarbitrary �xed and non-overlapping time intervals, the ideal `samplingsheme' is i.i.d.
• e�etive data-generating proess omplies with the form atually pro-duing the data. It involves the data units really observed and the



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 47sampling sheme whih �nally is brought to e�et, also when not ne-essarily being planned in the �rst plae.In example 1 the e�etive data-generating proess orresponds to theatual reording by the ounter of partiles ativating the sensor. Thisis also assoiated with the possibilities that partiles arrive undeteted,or spurious partiles are reorded.
• assumed data-generating proess is modelled by the statistiian givingthe model assumptions. He attempts to identify the theoretially truedata units resulting from the real-world (re�eting the true model, see� 3.2) and the �nally e�etive sampling sheme atually produing thedata.In example 1 this orresponds to assuming that the partiles arrive ina Poisson proess where the Poisson distribution itself serves to explainthe true model.A basis for the omparison of real-world, data, and model assumptionsan now be reated by representing eah orresponding form of the data-generating proess by a statistial model. These will be alled REALITY,DATA, and ASSUMPTIONS, respetively. The models desribe aspetswithin data units, e.g. Xi ∼ Fi as well as aspets between data units, e.g. theindependene of the Xi. Overall, the above approah an be justi�ed by
• interpreting REALITY as the unknown true model whih is extendedthrough the superimposed ideal sampling sheme e.g. assoiated withthe harateristi of independene. In other words, the true modelrefers to a single theoretially true data unit, and the model REALITYdesribes the overall random sample of orresponding true data units.While the true model orresponds to aspets within data units, theindependene of the ideal sampling sheme forms the aspets betweendata units.
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• onsidering the data as a repetitive event whih is produed alwaysaording to the same probability mehanism as re�eted in the modelalled DATA.Like the true model and due to it, the model alled REALITY is most oftenin�nitely omplex. For instane, the true rop results of wheat are usuallynot only dependent on the underlying type of fertilizer and the temperature.In fat, there may be many more additional (unknown) in�uene fators.Thus, REALITY in example 2 ould be some kind of ANOVA-model within�nitely many ovariates. The same usually applies to the model denotedas DATA. Taking again example 2, the really observed rop results may bein�uened by in�nitely many side-e�ets. In addition to the atually reordedovariate information the orresponding model DATA may therefore alsoinlude in�nitely many other (unobserved) ovariates.In general, in�nite omplexity of a model may mean that the model itself�nally turns out to be essentially deterministi. One ould imagine thatnature an always provide some additional in�uene fator for a phenomenonwhih in priniple seems to be random. The outome of a die throw, forexample, does obviously also depend on the angle of throw, diretion andstrength of wind, et. Thus, after all, the die throw might be absolutelydeterministi, if one ould enounter for all potentially possible in�uenefators (ompare with Hartung (1995)). In some ases, however, a true modelmay already be deterministi in �nite terms as e.g. the unknown physialonstant in example 7.Despite the often in�nite omplexity of REALITY and DATA, it is ommonpratie to use simple and thus �nite ASSUMPTIONS, i.e. statistial modelassumptions. The above interpretation of REALITY and DATA is heneonly of philosophial importane in the present work. Here, eah of themodels REALITY, DATA, and ASSUMPTIONS will be onsidered to besome �nite `onventional' statistial model. In the ase of an ANOVA-modelthis means, for instane, that all additional in�uene fators are summarized



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 49in the normal-error distribution.After the desription of the inferene framework in the next subsetion, the`orrespondene issue' of REALITY, DATA, and ASSUMPTIONS will bedisussed in the ontext of data ontamination and model deviation. Note,that model assumptions and ASSUMPTIONS are synonymous expressionsand will be used interhangeably from now on aording to ontext.3.3.2 The inferene frameworkThe inferene framework relates the logial elements involved in a statistialinferene proess (see Figure 3.3). Throwing light on the aspet of interest ofa real-world situation is the aim of statistial inferene. To pursue this aimthe statistiian is provided with the following `tools':
• data as a olletion of data units,
• model assumptions as prior belief about the true model and the �nallye�etive sampling sheme, and
• inferene proedures whih proess the data and give informationabout the relevant unknown parameters of the model assumptions,parameters taken in the widest sense. Note, that in the present workinferene proedures are generally onsidered to be estimators.One of the two following ways may then lead to the desired desription ofthe aspet of interest (see Figure 3.3):1. Use of just the result of a single inferene proedure, e.g. an estimatefor the parameter as the only aspet of interest in a parametri modelor a non-parametri density estimate.2. Use of both, the results of the inferene proedure(s) and the modelassumptions. For example, the dependene between a variable of inter-est and some ovariate is desribed by the ombination of parameterestimates and the assumed strutural part of a linear model.
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procedure(s)
aspect of
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direct contributionFigure 3.3: The inferene framework.Besides any diret ontribution to the real-world desription, the modelassumptions obviously give a formal representation of the aspet of interestand they suggest the kind(s) of inferene proedure to be used e.g. aloation or density estimator. In addition, they are responsible for proposingstatistial properties of the inferene proedures involved. Aspets of themodel assumptions whih are only used to propose statistial propertiesbelong to the so alled dummy-part of the model and parameters assoiatedwith them are usually known as nuisane parameters. For further referenenote that `real-world desription' and `proposal of performane properties'translates to nominal and stohasti inferene, respetively, in Dawid (1983).The idea of an inferene framework will now be illustrated with the previousexamples 7, 4, and 5:
• In example 7 the measurements are assumed to be N(ρ, σ2)-distributed.The unknown parameter of interest ρ is therefore estimated by themaximum-likelihood (ML-) estimator ρ̂ = 1/n ·

∑
Xi. Under the abovenormal model this estimator shows properties suh as unbiasednessand BAN (best asymptotially normal), see for instane in Mood etal. (1974). Sine ρ̂ yields a value for the unknown onstant and thusompletely desribes the (only) aspet of interest, no diret ontribution



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 51from the model assumptions is used for this partiular real-worlddesription.
• In example 4 the unknown survival funtion of X , denoted as SX(·)(aspet of interest), is estimated by the so alled ACL-estimator

SACL
X (z) =

[
1− F̂Z(z)

]pn
,whih is the orresponding ML-estimator under the Koziol-Green model(Csörg®, 1988). At �rst sight, the model assumptions do not diretlyontribute to the interpretation of the aspet of interest. However, ifone onsiders the empirial distribution funtion F̂Z(·) and pn = 1/n ·

∑n

i=1∆i as two individual estimators, the model assumptions do makea diret ontribution sine the equation SX(z) = [1− FZ(z)]
p with

p = P (∆ = 1) is equivalent to the Koziol-Green model assumption.
• In example 5 the relevant unknown parameters β and the nuisaneparameters σ2 and V are estimated via ML-estimation (Diggle et al.,1995, p. 63f). While the deterministi part of the regression model inequation (3.1) diretly ontributes to the interpretation of the averageprotein ontents (aspet of interest), the stohasti part implementinga Gaussian model only supports the use of the ML-method and thusproposes ML-assoiated properties suh as BAN.In experiments with model and inferene framework, the real-world (om-prising the aspet of interest), data, and model assumptions are supposed toorrespond to eah other. In other words, the statistial models REALITY,DATA, and ASSUMPTIONS should be in harmony as a triplet by agreeingwith eah other in some way. Any situation not satisfying this onditionshall be alled distortion. The latter will be disussed in detail in the nextsetion.



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 523.4 Data ontamination and model deviationDistortion as the inter ferene fator of an experiment with statistialinferene has found several de�nitions in the literature (see hapter 2). Afundamental inonsisteny an be noti�ed therein in the `target' of distortion:Is it the data, the model assumptions, or perhaps both, whih ould su�erdistortion? In hapter 2, the question has only been roughly answered byonsidering distortion as any kind of deviations from the assumptions (p. 12).Thus, it has been agreed that distortion might refer to
• `bad' data � the data deviate from the (orret) assumptions (dataontamination), or to
• `bad' model assumptions � the assumptions deviate from the truth(model deviation).With the present hapter this distintion ould moreover be supported bythe laim that statistial inferene is aimed at real-world desription (� 3.2).It is the real-world whih in most instanes an provide a referene point forthe orresponding data and model assumptions (see the following disussionsabout exeptions). Hene, in these ases the latter two do not neessarilyneed to be ompared diretly with eah other. This allows a distintionbetween distortion `targeting' the data and distortion `targeting' the modelassumptions.Distortion in general an be desribed as a kind of non-orrespondenebetween real-world, data, and model assumptions. More formally thisimplies that there is some disagreement among the statistial models alledREALITY, DATA, and ASSUMPTIONS (� 3.3.1.3). As a �rst step, thepresent setion will speify this disagreement in more detail by taking intoaount model strutures and origins, and by devoting attention to aspetsof the model within and between data units. Afterwards the two situationsknown as data ontamination and model deviation will be distinguished anddisussed with several examples.



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 533.4.1 Model disagreementRelative to the model struture A disagreement between REALITY,DATA, and ASSUMPTIONS an be explained intuitively by onsidering thestruture of the statistial model itself. Thus, prinipally di�erent modelstrutures, suh as a linear instead of a non-linear term, or a Weibull in theplae of an exponential distribution ould result in model disagreement. Asa onsequene, the number of parameters may di�er, or they even inheritdi�erent meanings as in the ase of a uniform and a normal distribution.However, the model triplet ould also be inompatible due to di�erenes injust loal model aspets. Possibilities with some ommon statistial modelsare presented in � 2.3.3. Moreover, known formalization onepts of distortion(see � 2.3.2) whih onsider some kind of distorted model beside the idealmodel refer to the model struture (�nite number of alternatives, modelexpansion, and model mixing, see � 2.3.2.1 � � 2.3.2.3).Relative to the model origin Further aspets beome lear whenthe di�erent origins of the model triplet are taken into aount. TheASSUMPTIONS already agree with REALITY or DATA when the formermodel equals or embraes the other two models. This means that a moregeneral model for the ASSUMPTIONS, e.g. the model of right randomensorship, does not disagree with a more speialized model suh as theKoziol-Green model for the REALITY or DATA (see example 4). The sameapplies to a non-parametri model for the ASSUMPTIONS whih embraesa parametri model for the REALITY or DATA. Model assumptions whihare too general annot be wrong.Due to their origin the three models give a di�erent status to the parametersinvolved. As a rule, parameters are �xed to a spei� value in REALITY andDATA, and not �xed in ASSUMPTIONS. This has some speial impliationsfor model disagreement relative to a parameter value (important for theformulation of in�uene and preferene graphs in the next hapter). While



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 54DATA and REALITY may simply di�er in this respet, a relation with theASSUMPTIONS has to onsider the following:
• If the ASSUMPTIONS inlude the orresponding parameter, theynaturally omprise and therefore agree with the models DATA andREALITY.
• If the ASSUMPTIONS do not inlude the orresponding parameterand as a result are more spei�, this agreement does not neessarilyfollow any more.An arti�ial example may illustrate this problem: Consider a Weibull(a, b)-distribution desribing the aspets within data units. With the parametervalue b not further spei�ed, the ASSUMPTIONS embrae (and agree with)all model formulations with �xed b � in partiular the orresponding �xedWeibull-distributions in DATA and REALITY. This is not neessarily thease, however, if the ASSUMPTIONS refer to an exponential(a)-distribution,i.e. with b `frozen' to the value 1.Relative to the data unit It is also important to study the meaningof model disagreement within the inferene framework (� 3.3.2). Startingwith the opposite problem: to what extent does statistial inferene, andin partiular nominal inferene, require the agreement of REALITY, DATA,and ASSUMPTIONS?Statistial inferene is aimed at real-world desription (� 3.2). This impliesthat the data, as a olletion of data units and independently from anysampling sheme, should be oriented towards the real-world. It only mattersthat the data units themselves are without mistakes � how they are relateddoes not in�uene the `orretness' of the data.Similarly, the model assumptions should address the real-world in order togive the orret formal representation of the aspet of interest, suggest theright kind(s) of inferene proedure, and give a valid diret ontribution to
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DATA ASSUMPTIONSFigure 3.4: Direted model agreement required for statistial inferene, W -within and B - between data units.the real-world desription. However, model assumptions should also take intoaount the dependene struture between atually generated data units.This is beause, they are used for proposing statistial properties of theinferene proedures involved. It does not matter whih sampling shemehas been planned initially. Only the dependene struture of the e�etivesampling sheme ounts and needs to be assumed orretly. For inferenepurposes model agreement is therefore required in the following diretions(see Figure 3.4):1. from DATA to REALITY relative to aspets within data units,2. from ASSUMPTIONS to REALITY relative to aspets within dataunits, and3. from ASSUMPTIONS to DATA relative to aspets between data units.Model aspets between data units of the model REALITY are not involved.They have only been introdued as an extension to the true model in orderto simplify the foregoing theoretial disussions.
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DATA ASSUMPTIONSFigure 3.5: Model disagreement relevant for distortion, W - within and B -between data units.Overall, we ome to the following onlusion: Model disagreement whih isdisadvantageous for statistial inferene and implies distortion is restritedto the orresponding three ases as indiated in Figure 3.5.3.4.2 Whih type of distortion � when?Up to this point distortion has been disussed, without further lassi�ations,as some disagreement within the model triplet of REALITY, DATA, andASSUMPTIONS. A next step will now larify
• when model disagreement means data ontamination and when modeldeviation,
• what kind of errors an be assoiated with eah situation of distortion,and
• when it is of partiular interest to ompare potential onsequenes ofdistortion.



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 57Model disagreement due to wrong DATA de�nes data ontamination and dueto wrong ASSUMPTIONS de�nes model deviation. The following importantonlusions an then be formulated, referring to the arrow diretions in Figure3.4 and the numbers in Figure 3.5:
• Model disagreement of type ➀ an be identi�ed as data ontamination.It is due to a on�it between DATA and REALITY relative to aspetswithin data units.
• Model disagreement of type ➁ an be identi�ed as model deviation. Itis due to a on�it between ASSUMPTIONS and REALITY relativeto aspets within data units.
• Model disagreement of type ➂ an be identi�ed as model deviation. Itis due to a on�it between ASSUMPTIONS and DATA relative toaspets between data units.A distintion between data ontamination and model deviation an onlybe made when distortion relates to aspets within data units. Dataontamination relative to aspets between data units is not possible. Again,this is beause the dependene struture of data units atually observeddoes not in�uene the `orretness' of the data. As long as the dataunits themselves are orret there are no grounds for the presene of dataontamination.Eah type of distortion further implies the following basi errors (Figure 3.6):
• Data ontamination (distortion of type ➀) an be explained by in-orretly imitating the distribution of (some of) the theoretially truedata units with the e�etive data-generating proess, i.e. in a potentialsample (some of) the atually observed data units are wrong.
• Type ➁ model deviation an be explained by making inorret assump-tions about the distribution of (some of) the theoretially true dataunits.
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Figure 3.6: Distortion � assoiated errors and their lassi�ation.
• Type ➂ model deviation an be explained by inorret assumptionsabout the dependene struture of the atually observed data units,i.e. a wrong spei�ation of the atual e�etive sampling mehanism.The subsequent hapters will fous on distortion of the types ➀ and ➁ whihboth a�et aspets of the model within data units and allow a distintionbetween model deviation and data ontamination. For these ases a greatvariety of potential examples an be found (see the next subsetion). This isbeause the omplexity of a statistial model and therefore its `vulnerability'are determined within the data units. Also, most of the statistial literaturedeals with this kind of distortion, however, usually without distinguishingbetween model deviation and data ontamination (see hapter 2).



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 59Nevertheless, it is this possible distintion, whih motivates the omparisonof distortion of types ➀ and ➁. Both situations have the potential to in�uenethe performane of inferene proedures in a di�erent way (see the subsequenthapters). Still, a statistiian onfronted with one or the other type ofdistortion, will not neessarily be able to identify orretly the preseneof data ontamination or model deviation in order to take appropriatepreautions. He an often only reognize that overall the model denotedas DATA does not onform with the ASSUMPTIONS. Whih of the twomodels is atually wrong, however, is not always easy to deide. The thirdmodel instane alled REALITY is (usually) out of pereption.It is therefore of interest to assess the danger of this ignorane: To whatextent do the results of statistial experiments di�er under orrespondingdata ontamination and model deviation? What onsequenes should thisimply for the experimental set-up? These and other problems will beaddressed in the ontext of two partiular examples in hapters 5 and 6.This hapter onludes with examples and a general disussion overingdistortion of types ➀ to ➂. For reasons of simpliity onsideration will onlybe given to `plain' distortion of one or the other type. It is also realisti,however, to expet distortion to be of mixed type, i.e. simultaneous dataontamination and model deviation or a on�it where aspets of between aswell as within data units are involved.3.4.3 Examples and disussionThe theoretial onsiderations above will now be illustrated and disussedwith the examples already used throughout this hapter. At some pointsadditional examples may serve for further lari�ation.Data ontamination as distortion of type ➀ implies that some of theatually observed data units are wrong (refer to Figure 3.6). It an ouras measurement, reording, rounding, or grouping error in the proess of



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 60observing the outome of a sampling unit. Alternatively, data ontaminationmay be due to some sampling units themselves whih are inappropriate. Ifthe errors only appear oasionally but are �quite powerful�, they are alsoknown as gross errors (see e.g. Hampel et al. (1986), p. 21�).In example 1 data ontamination ould suggest that some α-partiles arriveundeteted or that other spurious observations (bakground radiation) arereorded. As a result some of the ounts (data units) are inorret. Inprobabilisti terms this ould mean that the (idential) Poisson-distributionof theXi in the model alled DATA inherits a wrong parameter value (relativeto the true value in REALITY). It is also possible that the distributions ofonly single Xi are a�eted if the ourrene of errors is restrited to onlyertain time intervals.The example an further explain why data ontamination relative to aspetsof the model between data units is not prevalent. One ould imagine thatradio-ative partiles already ounted are somehow still around and might bereorded again by mistake in one of the following time intervals. This overlapwould �rst of all imply a dependene between subsequent ounts, i.e. dataunits. However, the dependene e�et as suh does not prinipally meaninorret data. These are rather the data units (ounts) themselves whihare wrong and imply data ontamination. Thus, the e�et whih initiallyappears to operate between data units turns out to be data ontaminationwithin data units.Wrong data units leading to inorret distributions in the DATA-model an(do) also our
• in example 2 when the quantity of wheat rop is weighted improperlyor mistakes have been made in the transfer of measurement valuesto a data base. The inorret data entries ould beome obvious asextreme outliers, but they an also be hidden among the `good' values.Similarly, errors ould arise in reording the ovariate information. Asa onsequene the strutural part of DATA (i.e. the regression model)



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 61might re�et a di�erent relationship between the dependent variable(rop results) and the ovariates of interest. Further, the orrespondingerror-distribution ould be a�eted in terms of distribution equality,distribution type and parameter values (see also � 2.3.3.2). Roundingerrors of the weight results ould �nally invalidate the ontinuity of theerror-distribution in DATA.Note, that without the presene of data ontamination the error-distri-bution of the DATA-model is onsidered to aount for the additional,non-ontaminating in�uenes whih are generally out of interest (seethe disussion on page 48). This exludes in partiular the (elementary)random measurement errors.
• in example 3 when students enter wrong answers into the question-naires.
• in example 7 where the atual measurements (generated aording toDATA) are approximately normal-distributed around the true onstant
ρ. Sine REALITY inherits a one-point distribution at ρ, dataontamination is an obvious and but also unavoidable onsequene.

• in example 4 where mistakes may our in reording the observed sur-vival time Z (due to errors in noting the ensored or the atual survivaltime) or the ensoring indiator ∆. As a result the orresponding dis-tributions in DATA may be di�erent from their true `originals'. Dataontamination an also a�et parameter values (see the disussion onpage 54). Here, errors assoiated with the ensoring indiator ∆ mayorrupt the value of the (only) parameter p in DATA away from thetheoretially true value in REALITY.
• in example 5 due to measurement or reording errors. Moreover,external irumstanes ould badly in�uene the dependene strutureof the observations within data units. This might e.g. be a ow inpoor health (independently from the diet) during the ourse of the



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 62experiment, i.e. an inappropriate sampling unit. Again, the possibilitythat some data units are dependent does not ontaminate the data.The latter ould be due to related ows, whih perfetly well belong tothe target population assoiated with REALITY, or might be ausedby the e�etive sampling sheme itself. If, on the other hand, relatedows were to be exluded from the target population, they themselveswould have to be onsidered as inappropriate sampling units (i.e. againdata ontamination within data units).
• in example 6 due to errors in reording and transmitting the data.Model deviation as distortion of type ➁ ours when the theoretiallytrue distribution of at least one data unit is wrongly spei�ed. This mayapply to any aspet of the model within data units (see Figure 3.6). Everystatistial model assumption is �rst of all to be seen as an approximation tothe real-world phenomenon at hand. If nothing else seems to be inorret, thisfat is very often an initial ause of model deviation. Example 1, for instane,does not serve very well as a andidate for `substantial' distortion of type

➁. The Poisson assumption for the α-partile ounts is overall reasonablyrealisti (individual emissions our with very low probability). However,also here the approximative harater of the model an be regarded as modeldeviation.Further situations of type ➁ model deviation an be met with
• example 2: The strutural part of the assumed ANOVA-model ertainlyexludes several known and unknown ovariates. The latter have beensummarized and approximated by the orresponding error-distribution.This kind of model simpli�ation again shows the �rst soure of modeldeviation. The strutural part of the model assumptions ould furtherbe wrong with respet to linearity (e.g.). Also, errors might ourin the distributional part with respet to distribution equality andtype. Deviations from ontinuity, however, seem to be less visible.



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 63Finally, model deviation relative to atual parameter values is notpossible, sine the latter remain pending in the ASSUMPTIONS (seethe disussion on page 54).Note, that the error distribution of the model assumptions, aordingto ommon pratie, takes into aount the (elementary) randommeasurement errors in the data. However, as long as the situationof no measurement error is inluded as a speial ase, this does notimply model deviation (see also the omments below for example 7).
• example 3 when a super-population model is assumed: A lassialnormal regression model ould be a�eted as desribed above. Inaddition, the ontinuity requirement would not be satis�ed sine theexperiment deals with disrete ount data (number of igarettes).
• example 4: The Koziol-Green model is a rather omplex semi -para-metri model and as suh does allow model deviation to just a ertainextent. The distributions of X , Y , and Z are not further spei�edapart from ontinuity and the limitation to positive realisations. TheBernoulli-distribution for ∆ is ertainly realisti. Model deviation,therefore, seems to be only justi�able with respet to the independeneassumption between X and Y , and Z and ∆. Violations of the latterwill be studied in detail in hapter 5.
• example 5 where the possible mistakes are similar to the ones inexample 2. In addition, the dependene/orrelation struture withindata units (measurements from the same ow) ould be assumedwrongly. Consequenes of distortion with a partiular orrelation modelwill be onsidered in hapter 6.
• example 6: The ARMA-model does not provide a orret desriptionfor the underlying, theoretially true stohasti proess.Example 7 should be onsidered separately. While REALITY is a one-pointdistribution at ρ (within data units), the ASSUMPTIONS are formulated



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 64with a N(ρ, σ2)-distribution. However, even though orientation is given tothe data rather than the real-world there is no situation of model deviation.The assumed normal model with pending parameter values inludes thetrue onstant as a speial ase, namely when the variane equals zero.Hene, the model assumptions approximate the real-world phenomenon bygeneralization, a priniple whih does not lead to model deviation.Model deviation as distortion of type ➂ relates to aspets of the modelbetween data units. It prevails when inorret assumptions are beingmade about the dependene struture of the atually observed data units.In example 3, where sampling is arried out from a �nite population,atual (short-term) dependenies among the data (sampling) units mightbe improperly spei�ed. In most ases however, it is the independene of thefamous i.i.d.-assumption whih auses doubts.The problem an be explained again with example 1: Under very strit sien-ti� onsiderations it turns out that the partile ounts are not independentover the subsequent time intervals. There are only a limited number of α-partiles to be released from the radio-ative substane. Thus, the emissionrate must derease with the remaining partiles in the substane (redutionof radioativity). In other words, what seemed to be a Poisson (λ)-proesswith independent and stationary inrements, is in fat some state-dependentgeneralisation with dependent inrements (see e.g. Fahrmeier (1981), p. 93�).Further violations of the independene assumption between data units aredisussed in Hampel et al. (1986, p. 387�). One is the so alled �Hurstphenomenon� where the yearly �ood heights of the river Nile are orrelatedaording to �seven fat years and seven lean years� (p. 390, referring to theBible). The aspet of interest may be the average �ood height of the river.Assuming independene between eah of the n height values (data units)again results in type ➂ model deviation. Obviously the dependene strutureis in�uened by the way the data is olleted. Observing �ood heights onlyevery 14 years might as well eliminate the dependene e�et.



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 653.4.4 Further remarks
• Even though the theory of robustness has been mainly developed forparametri models (Hampel et al., 1986; Huber, 1981), a situation ofdistortion may also exist in the ontext of non-parametri inferene.In fat, data ontamination is generally possible independently fromany kind of (non-parametri) model assumptions. The weight of 10-year old boys, for example, may be normal-distributed in the realworld. A faulty sale, though, ould redue readings of very heavyweights by 10 %. As a onsequene the data are ontaminated, i.e. themodel DATA does no longer inherit the `pure' normal distribution ofREALITY.Model deviation, on the other hand, is indeed less of a problem in thenon-parametri ontext. Only what is atually assumed an be subjetto model deviation. If the ASSUMPTIONS ontain nothing otherthan ontinuity it does not matter how skewed the true distributionin REALITY turns out to be (e.g. a log-normal distribution for artilepries in a stok, see Hartung (1995)). In this ase, just an additionalassumption of symmetry ould imply type ➁ model deviation.
• Data ontamination generally redues the quality of the underlyingdata. However, not all lower-quality data are neessarily ontaminated.Missing values, suh as non-responses in a questionnaire (example 3) ormissing ovariate entries (example 2) are not inherently wrong. Theyannot be related to a on�it between DATA and REALITY. Thesame applies to the fat that an observation is ensored.Also, a `non-representative' sample with many extreme and less typi-al sampling units is low in quality, and this without neessarily beingontaminated. In this ase the orresponding empirial distributionturns out to be too skewed. Still, eah resulting data unit might beorret, and just the urrent sample ould be very unlikely relative toREALITY. The situation may be desribed as pseudo data ontam-



CHAPTER 3. DISTORTION FROM A REVISED POINT OF VIEW 66ination. Along this line, extremely heavy smokers ould tend to benon-respondents in the soial survey of example 3. Even though theatually observed data set beomes less representative due to missingvalues, it is not ontaminated when the answers still available are allorret.
• The philosophy of aspets of the model between data units an beextended: As part of DATA the dependene struture between dataunits is determined by the e�etive sampling sheme. The latter is(diretly or indiretly) ontrolled by the statistiian, for whih reasonthe orresponding `truth' is based on the statistiian's hoie and is notoriginated in the real-world. Model aspets between data units shouldtherefore not be seen in relation to REALITY (page 55). Apart fromthe sampling sheme, the statistiian ould also ontrol other featuresof the e�etive data-generating proess (if they are relevant). He ane.g. hoose the ensoring mehanism. Again, the a�eted aspets ofDATA � even though they might be loalized within data units � shouldnot be ompared to REALITY.Working with the model triplet might beome ompliated when ahange of the DATA-model (within data units) ould be due to eitherof the two possibilities: data ontamination or ontrolled interfereneby the statistiian. Then it is not lear anymore whether the relevantmodel aspets of DATA and ASSUMPTIONS should or should notbe ompared with REALITY. The example in hapter 5 is hosen toillustrate and at the same time avoid this di�ulty.In the present hapter the notion of distortion has been formalized andlassi�ed by putting partiular emphasis on the distintion between dataontamination and model deviation. Means for assessing the performane ofstatistial inferene proedures under suh distortion will now be developedin the following hapter.



Chapter 4
Performane under distortion
4.1 IntrodutionThe previous hapter introdued the onepts of model and infereneframework whih allowed us to reonsider and formalize the notion ofdistortion. With the real-world as the aim and referene point of statistialinferene, distortion ould be lassi�ed and, in partiular, identi�ed asdata ontamination or model deviation. The present hapter onsiders theimpliations of distortion. First of all, it is the performane of the infereneproedure(s) whih distortion might a�et. However, the overall infereneproess ould also be in�uened through the diret ontributions of possiblywrong model assumptions (if they are relevant, see � 3.3.2).Setion 4.2 will ommene with some preparatory disussions and notation.What is the impat of distortion on an experiment with statistial inferene?Speial attention will be devoted to the possibly di�erent impliations of dataontamination and model deviation. One might expet that the impliationsbeome more serious with inreasing distortion. Hene, distortion will beexplained in a quantitative way by implementing the idea of amount ofdistortion. The setion onludes with a basi notation for performanestatistis. 67



CHAPTER 4. PERFORMANCE UNDER DISTORTION 68In setion 4.3, the notion of in�uene and preferene graphs is introdued.Both serve the performane assessment of inferene proedures under inreas-ing distortion from the frequeny point of view, i.e. ontemplating distortionas a repetitive event. While in�uene graphs onsider the hange of inferen-tial performane under varying levels of distortion, preferene graphs likewiseompare (ombined) hoies of inferenes proedure(s) and/or assumptions.Espeially the simultaneous study of either inferene or preferene graphs un-der data ontamination and model deviation an promise interesting results(see the hapters 5 and 6 for appliations of the methodology).The hapter will lose with a brief and ritial re�etion on the various exist-ing approahes towards inferential performane assessment under distortion(setion 4.4). Also the approah of the present work will be summarized atthis point in order to prepare for the `applied' hapters 5 and 6.4.2 Preliminaries4.2.1 The impat of distortionThe suess of an experiment based on statistial inferene is dependent onthe `orrespondene' of real-world, data, and model assumptions (agreementof REALITY, DATA, and ASSUMPTIONS, see hapter 3). Only in thisase an one hope to reah (absolute) optimal inferential performane. Thisrelates to the attributes loseness and nie type of distribution disussed forinferene proedures in � 2.4.2. Optimal performane of the overall infereneproess, when real-world desription is based on both resulting estimates andmodel assumptions (refer to Figure 3.3), may be seen in the same way. Inthis ase, the latter is onsidered as a single ompound inferene proedure.In any ase, distortion means that the optimal inferential performane ispotentially missed. With the distintion drawn in hapter 3, the questionis now: When is suh an in�uene di�erent under data ontamination and(type ➁) model deviation?



CHAPTER 4. PERFORMANCE UNDER DISTORTION 69Even though proposed by the model assumptions, the performane of aninferene proedure is �nally determined by the data (with referene to thereal-world if the loation is of interest). This is beause inferene proeduresoperate on the sample whih represents the underlying data. Distortionmight therefore imply the following:
• Under data ontamination the atual results of the inferene proe-dures, and hene their performane, ould be modi�ed. This also hasonsequenes for the entire inferene proess.
• Under model deviation the inferene proedures ould aim at somethingwhih in the end is not the aspet of interest (due to a wrong formalrepresentation of the latter through the model assumptions). Theoutome of the overall inferene proess might moreover be a�etedthrough the diret ontribution of the wrong model assumptions.This seems to mean the same when onsidering the data (and hene anysituation of data ontamination) as a repetitive event. Still, a di�erenebeomes apparent with performane desriptions based on loseness in termsof loation (loation-loseness). Given the DATA, the two types of distortiondi�er with respet to the REALITY � in the ase of (plain) type ➁model deviation the REALITY agrees with the DATA, whereas under dataontamination it does not.Potential di�erenes in the in�uene of distortion an therefore be deteted,if performane is assessed relative to REALITY and, within reason, inpartiular relative to the unknown aspet of interest. This also means thatespeially the parts of DATA or ASSUMPTIONS, whih represent the aspetof interest, must be subjet to distortion. In other words: The in�uene underdata ontamination and model deviation annot be distinguished when
• the performane assessment does not refer to REALITY.
• the distortion only a�ets the dummy-part of the model.



CHAPTER 4. PERFORMANCE UNDER DISTORTION 70If in example 5 the stohasti part of the regression model is subjetto distortion, the estimator β̂, presumably no longer the ML-estimator,might loose the asymptoti normal property (see hapter 3). However,independently from how the performane of β̂ is assessed, the in�uene willbe the same for both types of distortion, sine the deterministi part of themodel whih inorporates the aspet of interest (average protein ontents)remains una�eted.Data ontamination and model deviation targeting the independene of Zand ∆ in the Koziol-Green model (desribed in example 4) is assoiated withdi�erent realities relative to DATA. Here, the desription of the aspet ofinterest (survival time distribution) is a�eted by distortion sine it is diretlyrelated to the above independene requirement. In fat, a orrespondingdi�erene in performane of the ACL-estimator beomes apparent whenstudying the former in terms of loation (see hapter 5 for a detaileddisussion of this example). It also shows, that this di�erene beomes moreobvious, the further away Z and ∆ are from independene. The impliednotion of inreasing distortion will be introdued in the following.4.2.2 Quanti�ation of distortionA study of inferential performane under inreasing distortion requires aquanti�ation of the notion of model disagreement (� 3.4.1). For this, therespetive models need to be `numerially omparable'. That is, they an bedi�erent from eah other as long as their parameters still inherit the samemeanings. A simple example would be the Weibull and the exponentialmodel, where the latter is a sub-model of the former.Model disrepanyThe term disrepany shall desribe the `distane' from some ideal referenemodel. Then, the disrepany magnitude (a positive value) or the disrepany



CHAPTER 4. PERFORMANCE UNDER DISTORTION 71struture from whih a disrepany magnitude an be derived, is embeddedinto the model in the form of a parameter (taken in the widest sense).A disrepany magnitude of value zero (or one) shall represent the ideal ref-erene model. As the `neutral element' of the orresponding parametrisation,it does not expliitly appear in the (ideal) model. The model is therefore ofsimpler struture. This onforms to the idea of model expansion as disussedin � 2.3.2.2. Note that here the expression `ideal' is not to be seen in thesense of `true' and that the ideal referene model may or may not representREALITY.In example 4, the disrepany from the ideal Koziol-Green model orrespondsto how `far away' the random variables Z and ∆ are from independene. Anappropriate disrepany struture ould therefore be loosely de�ned as thefuntion s(z) = `probability(∆ = 1 given that Z = z)'. The latter is onstantunder independene of Z and ∆. A measure related to the area between s(z)and this onstant line might further desribe a disrepany magnitude. Seehapter 5 for a detailed disussion.Amount of distortionModel disagreement between REALITY, DATA, and ASSUMPTIONS annow be quanti�ed by assigning a disrepany magnitude (dm) to eah of thethree models in omparison to a hosen referene model. Sine parameters aregenerally not �xed in ASSUMPTIONS (� 3.4.1), the disrepany magnitudein this model needs to be `frozen' to a spei� value, say α = 0 as the `neutralelement', or it just remains pending (α = +). Then, the amount of distortionan be de�ned as the absolute di�erene between
• dm(DATA) and dm(REALITY) under data ontamination,
• dm(ASSUMPTIONS) and dm(REALITY) under type ➁ model devia-tion, and
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• dm(ASSUMPTIONS) and dm(DATA) under type ➂ model deviation.In this ase, a referene to REALITY is not made.The di�erene between α ∈ [0,∞) and α = + shall be de�ned as 0, whih isreasonable sine a model with α = + embraes all other models with positivedisrepany magnitudes. Suitable quotients (on a logarithmi sale) ouldbe taken, if α = 1 re�ets the `neutral element' of the parametrisation. Thisase, however, will be negleted for reasons of simpliity.The amount of distortion is one of the requirements for inferential perfor-mane desription under inreasing distortion. Also needed are so alledperformane statistis whih will be re-introdued in the following.4.2.3 Performane statistisPerformane statistis, as they appear in the literature for the non-distorted(ideal) ase, have already been disussed in � 2.4.3. They desribe theperformane (in terms of loseness) of statistial inferene proedures in aquanti�able way, either as expeted values (�nite sample view), or as limitingvalues (asymptoti view).In the present setion the idea of a performane statisti will be re-introdued and in partiular over inferential performane under distortion.The disrepany magnitudes of REALITY, DATA, and/or ASSUMPTIONSrelative to some ideal model will serve as the underlying referene frame.Performane will address the loseness of inferene proedures and attentionwill be restrited to the �nite sample view of performane, i.e. to the expetedvalues of performane statistis.Altogether, performane statistis shall be denoted as

π(R = α1, D = α2 |A = α3, ∆), (4.1)where α1, α2 and α3 are disrepany magnitudes, and where R stands forREALITY, D for DATA, A for ASSUMPTIONS, and ∆ for the inferene



CHAPTER 4. PERFORMANCE UNDER DISTORTION 73proedure used. Here and elsewhere the vertial line should not be readas introduing a onditional event. Instead it separates the omponents Aand ∆ from R and D, where the two former are hosen by the statistiian.Depending on the problem and the interests of the study, the R and/or Aomponent may not be relevant and an be ignored. Note that the expetedvalue of π must refer to the model DATA, sine inferene proedures arefuntions of the underlying data.Performane statistis for loation, assoiated with the expeted value, ofsome seleted examples from hapter 3 are the following (the meaning ofthe disrepany magnitudes shall not be disussed here; instead refer to thedetailed examples in hapters 5 and 6).Example 7 E [π(R,D |A, ρ̂)] = EDATA(ρ̂)− ρ,whih is simply the bias of estimator ρ̂. The referene to REALITYis given by the unknown onstant ρ, and the ASSUMPTIONS are notdiretly involved. The expeted value is based on DATA.Example 4E [
π(R,D |A, SACL

X )
]
= EDATA{ 1

n

n∑

i=1

[SX(Zi)− SACL

X (Zi)]
2

}
,where the unknown survival funtion SX re�ets the REALITY andthe ACL-estimator SACL

X operates on a DATA-generated sample. TheASSUMPTIONS ontribute as desribed in � 3.3.2, example 4. See thefollowing hapter for a study based on this performane statisti.Example 5E [
π(R,D |A, Ŷ )

]
= EDATA{ 1

n

n∑

j=1

[E(Y (j))− Ŷ (j)
]2
}
, (4.2)whih is the expeted average squared distane between the true andestimated average protein ontent of one diet group. The term E(Y (j))



CHAPTER 4. PERFORMANCE UNDER DISTORTION 74is the expeted (under REALITY) protein ontent at measurementtime j in that group, and hene part of the unknown aspet of interest.
Ŷ (j) reeives ontributions from β̂ and the deterministi part of theregression model as de�ned in ASSUMPTIONS and an be seen as aompound estimator (as well as Ŷ ). See also the study in hapter 6.Note that the expeted value of a performane statisti may also not referto REALITY at all, suh as the variane of an estimator.The idea of performane statistis in this setion does not seem to be verydi�erent from what has been already presented in hapter 2. Indeed, it israther the new notation, whih should all attention to the fairly hiddeninvolvement of the models REALITY, DATA, and ASSUMPTIONS. Thein�uene and preferene graphs introdued in the next setion will makeextensive use of the latter.4.3 Performane assessment under distortionIn�uene and preferene graphs provide tools for the study of inferential(�nite sample) performane under inreasing distortion. While in�uenegraphs onsider hanges in performane under varying amounts of distortion,preferene graphs likewise ompare performane with alternative infereneproedures and/or model assumptions. Overall, the performane is assessedin the long-term, meaning that a situation of distortion for a given samplesize is to be onsidered as a repetitive event. For this purpose, both in�ueneand preferene graphs are based on expeted values.Note beforehand, that in�uene graphs as disussed by Cook (1986) andothers do follow a di�erent, though related, intention (see later in � 4.4.7).



CHAPTER 4. PERFORMANCE UNDER DISTORTION 754.3.1 In�uene graphsAn in�uene graph indiates the expeted hange in performane for agiven hoie of inferene proedure and model assumptions under inreasingdistortion. Performane statistis are denoted as in (4.1) and their expetedvalues refer to DATA. Then, an in�uene graph an be de�ned as a funtionof the amount of distortion aording to
gDi (α) = Eα

[
π(R = 0, D = α |A = 0,∆)

]

− E 0

[
π(R = 0, D = 0 |A = 0,∆)

] (4.3)for studies under data ontamination,
gMi (α) = Eα

[
π(R = α,D = α |A = 0,∆)

]

− E 0

[
π(R = 0, D = 0 |A = 0,∆)

] (4.4)for studies under type ➁ model deviation, and
g∗i (α) = Eα

[
π(R,D = α |A = 0,∆)

]
− E 0

[
π(R,D = 0 |A = 0,∆)

]for studies under type ➂ model deviation.The omponent R in g∗i (·) remains unspei�ed, sine type ➂ distortion oursindependently from the real-world. Still, performane assessment ould referto REALITY, e.g. in terms of the bias. In return, the R (or A) omponentmay be ignored for the performane desription in the above in�uene graphs,though being relevant for the spei�ation of distortion.The disrepany magnitude of α = 0 shall orrespond to an ideal referenemodel suh as the Koziol-Green model in example 4. Any other (stritlypositive) value for α belongs to some distorted model whih is `α disrepany-units' away from the ideal referene model (see � 5.3 for a distorted Koziol-Green model). Note that here the expression `distorted' is seen in the senseof `modi�ed' and that a distorted model, like the ideal referene model, mayor may not represent REALITY.



CHAPTER 4. PERFORMANCE UNDER DISTORTION 76The �rst part of eah equation refers to performane under distortion, andthe disrepany magnitudes of R, D, and A therein determine the `urrent'amount of distortion for the in�uene graph (see � 4.2.2). The seond part ofeah equation re�ets the undistorted situation. Hene, based on di�erenesfrom the ideal situation, an in�uene graph onsiders absolute hanges inperformane. The di�erenes might also be replaed by quotients in order toonsider relative hanges in performane.In gDi (·) it turned out to be reasonable to see REALITY as the simpler idealmodel (α = 0) and DATA as the more omplex (distorted) model. Thisis beause data ontamination usually ontributes to the ompliation ofthe given data struture. The ASSUMPTIONS in gMi (·) and g∗i (·), at thesame time, were assoiated with α = 0 beause of the ommon wish to useand verify simple model assumptions. Finally, the ASSUMPTIONS in gDi (·)were represented by α = 0 in order to failitate a diret omparison with thein�uene graph gMi (·).4.3.2 Preferene graphsWhile in�uene graphs study performane as suh, preferene graphs serveto ompare performane under inreasing distortion. They aim at indiatingwhih hoie of inferene proedure and/or model assumptions is expeted toperform better (or worse) under a given amount and type of distortion. Asbefore, this an be done in either absolute or relative terms. Depending onthe �nal objetive of omparison three di�erent types of preferene graphsan be de�ned.4.3.2.1 Comparison of two inferene proeduresFor the omparison of two inferene proedures/methods ∆1 and ∆2 both as-soiated with the same ASSUMPTIONS, preferene graphs an be expressed
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gDp (α) = Eα

[
π(R = 0, D = α |A = 0,∆1)− π(R = 0, D = α |A = 0,∆2)

]for studies under data ontamination,
gMp (α) = Eα

[
π(R = α,D = α |A = 0,∆1)− π(R = α,D = α |A = 0,∆2)

]for studies under type ➁ model deviation, and
g∗p(α) = Eα

[
π(R,D = α |A = 0,∆1)− π(R,D = α |A = 0,∆2)

]for studies under type ➂ model deviation. As before with the orrespondingin�uene graph, the omponent R in g∗p(·) remains unspei�ed.In example 5 preferene graphs of the kind gDp (·) and gMp (·) based on theperformane measure in equation (4.2) ould ompare the ML- and REML-estimation method (Diggle et al., 1995, p. 63�) under inreasing distortion.However, only if the distortion a�ets the deterministi part of the model(addressing the aspet of interest), the omparison will atually lead todi�erent results under orresponding data ontamination and type ➁ modeldeviation (see � 4.2.1). An alternative omparison not referring to REALITYould be based on the (loal) estimator varianes.4.3.2.2 Comparison of two hoies of ASSUMPTIONSPreferene graphs omparing two hoies of ASSUMPTIONS A = 0 and
A = + (the �rst is a sub-model of the seond) and both assoiated with thesame inferene proedure/method are derived as follows:
gDp (α) = Eα

[
π(R = 0, D = α |A = 0,∆)− π(R = 0, D = α |A = +,∆)

](4.5)for studies under data ontamination,
gMp (α) = Eα

[
π(R = α,D = α |A = 0,∆)− π(R = α,D = α |A = +,∆)

](4.6)



CHAPTER 4. PERFORMANCE UNDER DISTORTION 78for studies under type ➁ model deviation, and
g∗p(α) = Eα

[
π(R,D = α |A = 0,∆)− π(R,D = α |A = +,∆)

]for studies under type ➂ model deviation. Note that only the �rst part of
gMp (·) and g∗p(·) atually refers to performane under distortion.Consider, for instane, the model of example 5 with extra parametrizedovariane struture between repeated measurements. In this ase, randomvariation within data units ould be explained in terms of random e�ets,serial orrelation, and measurement error (Diggle et al., 1995, p. 79�).Preferene graphs of the types gDp (·) and gMp (·) an ompare resultingperformanes of the REML-method under ASSUMPTIONS whih eitherinlude or do not inlude N(0, τ 2)-distributed measurement errors. Thedisrepany magnitude ould be represented by the parameter τ , i.e. A = 0orresponds to the model without a measurement error omponent (seehapter 6 for further details).4.3.2.3 Comparison of two inferene proedures based on alter-native ASSUMPTIONSCertain inferene proedures are known on their own and, at the same time,imply the ASSUMPTIONS made. Then, performane omparisons distin-guished so far simplify to a omparison of two single inferene proedures ∆1and ∆2 whih are based on alternative assumptions. Preferene graphs forthis ase are determined aording to
gDp (α) = Eα

[
π(R = 0, D = α |A = 0,∆1)− π(R = 0, D = α |A = +,∆2)

](4.7)for studies under data ontamination, and
gMp (α) = Eα

[
π(R = α,D = α |A = 0,∆1)− π(R = α,D = α|A = +,∆2)

](4.8)



CHAPTER 4. PERFORMANCE UNDER DISTORTION 79for studies under type ➁ model deviation, and
g∗p(α) = Eα

[
π(R,D = α |A = 0,∆1)− π(R,D = α |A = +,∆2)

]for studies under type ➂ model deviation.The ASSUMPTIONS represented by the Koziol-Green model in example 4are diretly related to the ACL-estimator, i.e. the latter implies the modelassumptions. A omparison of the ACL-estimator (∆1) with the Kaplan-Meier estimator (∆2) is therefore naturally assoiated with a omparisonof the Koziol-Green model assumption (A = 0) and the more general rightrandom ensorship model assumption (A = +). See hapter 5 for a detaileddisussion.4.4 Approahes in the literatureThe onepts of distortion and performane, as they appear in the literature,have been desribed � with only little onnetion � in hapter 2. Our viewof distortion and our approah of desribing performane (under distortion)have been introdued in hapter 3 and in the present hapter. Now, weare in a good position to re�et (from our point of view) on the stilloutstanding onnetion of distortion and performane in the statistialliterature. Independently from what has been laimed, whih type ofdistortion is atually onsidered in the various approahes? In partiular,is it data ontamination or model deviation? If not already obvious by theformalization of distortion itself, the question(s) an usually be answered bylooking at the spei� performane desriptions whih refer to the aspet ofinterest in the real-world.An interesting observation will be made: While Cook's (1986) approah to�perturbation diagnostis� and the onept of on�gural polysampling seemto address model deviation, the other more lassial approahes towardsrobustness deal with data ontamination. Nevertheless, only the main



CHAPTER 4. PERFORMANCE UNDER DISTORTION 80approahes and referenes will be disussed. It remains to be seen whetherother publiations might be oriented in a di�erent way. Before the atualdisussion, we will brie�y summarize our approah.4.4.1 Our approah (summary)Distortion is modelled and quanti�ed aording to the idea of modelexpansion by taking into aount a so alled disrepany magnitude. Theamount and type of distortion an be spei�ed by the omparison oforresponding disrepany magnitudes assoiated with the model triplet ofREALITY, DATA, and ASSUMPTIONS. Overall, any type of distortion,i.e. in partiular model deviation as well as data ontamination, an beonsidered.Inferential performane in terms of loseness is desribed by the expetedvalue of suitable performane statistis. The latter an be de�ned for theideal situation and also under distortion, again just by referring to theorresponding model triplet. Performane under inreasing distortion anbe studied with so alled in�uene and/or preferene graphs.4.4.2 Qualitative robustnessWith the ondition that the inferene proedure under study is a onsistentfuntional T , the formal de�nition of qualitative robustness is equivalent toontinuity of T at some ideal model distribution F0. This heuristially orre-sponds to stable behaviour of T (Fn) under small hanges in the underlyingsample (Huber, 1981, p. 9f, 41). Qualitative robustness addresses thereforedistortion in form of data ontamination, while inferential performane itselfis globally expressed by the behaviour of T (Fn), i.e. without involving valuesfrom a performane statisti.



CHAPTER 4. PERFORMANCE UNDER DISTORTION 814.4.3 Quantitative robustnessHuber's minimax approah is based on distortion neighbourhoods aroundsome ideal model distribution F0. The neighbourhoods themselves are eitherde�ned by a distane (� 2.3.2.4) or they are desribed by the so alledgross-error model (� 2.3.2.3). Originally, they address the shape of a modeldistribution (Huber, 1981) and hene ould prinipally refer to distortion oftype ➀ or ➁ (data ontamination or model deviation, see � 3.4). Extensionsfor type ➂ distortion have also been proposed, but they will not be of interestin the subsequent disussion.The inferene proedure under study is represented as a funtional T whihis asymptotially normal and onsistent at some `underlying' distribution F(Huber, 1981, p. 10f). Note, that it is not very lear whether T should beonsistent under F0 as well (also remarked in Hampel et al. (1986), p. 48).Inferential performane (under the ideal and distorted situation) is thendesribed in terms of the asymptoti bias and variane. The former, inpartiular, is formulated as T (F ) − T (F0). While T (F0) is to be estimatedand as suh re�ets the real-world, the term T (F ) as the limit in probabilityof T (Fn) relates to the data. A referene to any model assumptions is notprovided, unless the inferene proedure itself would imply the latter. Thus,it seems that the present approah onsiders data ontamination only, andthis even though Huber (1981) also refers to assumptions whih �are notsupposed to be exatly true� (ompare with the itations in hapter 2).In detail, the possibility of model deviation seems to be exluded beauseof the following argumentation: Under (plain) model deviation the limit of
T (Fn) would oinide with the quantity T (F0) to be estimated, so that theasymptoti bias as formulated by Huber would be zero. This is beause thedata is generated orretly, i.e. both DATA and REALITY are representedby F0, and in ase T is onsistent at F0. The di�erene T (F )−T (F0) shouldnot be interpreted as �asymptoti bias� at all, if after all onsisteny at F0annot be guaranteed. In this ase the term T (F ) almost ertainly does not



CHAPTER 4. PERFORMANCE UNDER DISTORTION 82relate to F0-distributed data.Under model deviation, it would therefore be sensible to use a bias desriptionwhih does not rely on the onsisteny of T suh as the expressionEF0

[
T (Fn)− T (F0)

]in either �nite or asymptoti terms. The mathematial impliations of thelatter shall not be disussed in this work.4.4.4 Robustness approah based on in�uene funtionsThe approah based on in�uene funtions studies inferential performane infull, but in�nitesimal distortion neighbourhoods (� 2.3.2.5). This means thatindependently from the referene model, the neighbourhoods an prinipallyaddress any type of distortion. Larger amounts of distortion are alsoonsidered, espeially by the use of the breakdown point. At this point,however, we will restrit ourselves to the disussion of the in�uene funtionand distortion a�eting the shape of a model distribution. As a �rstderivative, the in�uene funtion ontributes to extrapolate the funtional
T , representing the inferene proedure under study, into the distortionneighbourhood (Hampel et al., 1986, p. 42, Figure 2). Moreover, it providesthe basi performane desription for T , whih in partiular, is onsidered tobe (generally) onsistent.Aording to Hampel et al. (1986, p. 84) the in�uene funtion of T at somereferene model F is de�ned as

IF (x;T, F ) = lim
t→0

T{(1− t)F + t∆x} − T (F )

t
,where ∆x is the �probability measure whih puts mass 1 at the point x�. Thepoint x plays roughly �the role of the oordinate in the in�nite-dimensionalspae of probability distributions� (Hampel et al., 1986, p. 41) and as suhdesribes a partiular loation in the in�nitesimal distortion neighbourhood.



CHAPTER 4. PERFORMANCE UNDER DISTORTION 83In other words, distortion is quanti�ed in terms of loation, and not in termsof distane from some ideal referene model (our approah).Overall, the in�uene funtion is supposed to measure �the asymptoti biasaused by ontamination in the observations� (Hampel et al., 1986, p. 84).While T{(1− t)F + t∆x} is the asymptoti value of the inferene proedureoperating on (1 − t)F + t∆x-distributed data, the term T (F ) representsthe unknown quantity from the real-world. Again, no expliit referene isasribed to the underlying model assumptions, unless the inferene proedureitself would imply the latter. Thus, also Hampel's in�uene funtion seems tobe devoted to data ontamination only (as already indiated in the previousitation). The same line of argument as for Huber's approah an be used:An asymptoti bias formulation in the above way is only sensible as longas DATA and REALITY orrespond to di�erent statistial models. This ishowever only the ase under data ontamination.4.4.5 OutliersAn ative area related to distortion is that of outliers in statistial data. Itis treated in robustness as well as diagnostis and is therefore not assoiatedwith just a single (robustness) approah. Still, one of the main referenesis the book by Barnett and Lewis (1995), whih will be onsidered in thefollowing brief disussion.Outliers are seen as observations whih appear to be inonsistent with theremainder of the data and are a surprise to the data analyst (Barnett andLewis, 1995, p. 7, 460). In priniple they ould imply data ontamination ormodel deviation (as type ➁ distortion) whih has already been indiated byrespetive itations of Barnett and Lewis in hapter 2. The two possibilitiesare also re�eted in the way outliers are being modelled. While some outliermodels explain rather a situation of data ontamination suh as the ones ofslippage type (� 2.3.2.7), others seem to be more realisti for model deviation(e.g. the inherent alternative, � 2.3.2.1). A mixture model (� 2.3.2.3) might



CHAPTER 4. PERFORMANCE UNDER DISTORTION 84�nally address any of the two distortion types.In terms of methodology, outliers are handled in two di�erent ways. Firstly,they may or may not be rejeted after detetion through a (so alled)disordany test. The at of rejetion is obviously only sensible whenoutliers atually ontaminate the data. Alternatively, there might be thewish to aommodate outliers with the use of robust proedures. Hene, thestudy of inferential performane beomes important, whih is this time underdistortion through outliers.Even though outliers ould either ontaminate the data or re�et inorretmodel assumptions, Barnett and Lewis (1995) seem to restrit performanedesriptions exlusively to the situation of data ontamination. This beomesapparent when they disuss the bias of estimators. Aording to the authors,for example, the estimator X̄ = 1/n ·
∑

Xi is biased under �asymmetriontamination� (p. 62f). This is however only possible in the fae of(asymmetri) data ontamination. In fat, X̄ would remain unbiased underorresponding model deviation, sine DATA and REALITY would agreewith eah other. Moreover, Barnett and Lewis refer to the approah basedon in�uene funtions, whih already before has been assoiated with dataontamination only.4.4.6 Con�gural polysamplingCon�gural polysampling is a �nite sample approah towards robustness(Morgenthaler and Tukey, 1991; Morgenthaler, 1991). It is aimed at invariantmodels suh as the ones of loation/sale or regression type. Distortion isexpressed by a �nite number of model alternatives alled �onfrontations�whih usually address the shape of a distribution (� 2.3.2.1). For theestimation a loation-parameter this ould be the pair of distributions
{Gaussian, Slash} where the Slash is a heavy-tailed alternative to the normaldistribution (Morgenthaler, 1991). Note that no quanti�ation of distortionhas been undertaken. At �rst sight the approah might again handle either



CHAPTER 4. PERFORMANCE UNDER DISTORTION 85data ontamination or type ➁ model deviation, sine aspets of the modelwithin data units are onsidered to be distorted.Performane of an estimator is desribed in terms of the mean-squared error(MSE). A `robust' estimator an be found by hoosing a set of alternativedistributions suh as {F,G} and by minimizing the vetor riteria
(MSEF (Tn),MSEG(Tn)

)over all potential estimators Tn. The approah is based on numerialsampling tehniques and presented in Morgenthaler and Tukey (1991). Here,we will stress upon the following fat:MSEF (Tn) = EF

{[
Tn(X1, . . . , Xn)− µ(F )

]2} (4.9)is �the mean-squared error under sampling from distribution F . . . where
µ(F ) denotes the enter of symmetry of F or some other prespei�ed target�(Morgenthaler and Tukey, 1991, p. 38f, in the original F (y) instead of F ).Thus, the aspet of interest µ(F ) belongs to the same model distribution Ffrom whih also the data is generated (the expeted value refers to F ). Inother words, the models DATA and REALITY orrespond to eah other andno data ontamination an be onsidered.Even though the model assumptions are not expliitly spelled out in (4.9) weonlude that on�gural polysampling addresses the issue of model deviation.The approah is used �to selet, to �ne-tune, and to design proedures�(Morgenthaler, 1991, p. 50) and it tries to avoid model deviation. Thisis ahieved by not making spei� model assumptions, but to hoose a setof alternative assumptions whih retain the required interpretation for theaspet of interest (e.g. mean, median, or mode for the loation problem). Theset of assumptions is then used to de�ne the above optimization problem.4.4.7 Perturbation diagnostisThe methodology of perturbation diagnostis as presented by Cook (1986)studies the in�uene of �model perturbation� (his words). As similar to



CHAPTER 4. PERFORMANCE UNDER DISTORTION 86our approah, a distorted model is desribed by some instane ω whih isadditionally assoiated with the model. However, the instane does not seemto be a parameter in the usual sense (see below), and it might not neessarilyre�et a distane from the ideal referene model. Overall, �ω an re�et anywell-de�ned perturbation sheme� (p. 136), i.e. it might at �rst sight applyto any of the distortion types ➀ to ➂.Cook (1986) introdued the so alled likelihood displaement
LD(ω) = 2 ·

[
L(θ̂)− L(θ̂ω)

]and its alternative
LD′(ω) = 2 ·

[
L(θ̂ω| ω)− L(θ̂| ω)

]
,where L(·| ω) and L(·) are the log-likelihood funtions of the distorted andthe ideal model, respetively, and θ̂ω and θ̂ are the orresponding model-assoiated ML-estimators for θ.The value of a log-likelihood of θ̂ quanti�es how well this estimator `reahed'the true value θ given the underlying data. It therefore desribes theperformane of θ̂ in terms of loation-loseness, while the true value θ refersto REALITY (onsidering it as part of aspets of the model within dataunits, see hapter 3). Hene, using the notation of performane statistis (�4.2.3) and indiating the ideal referene model by ω 0 = 0 (for simpliity),the right side of the equations above ould be expressed as (multiplied thefator -2)

π(R = 0, D |A = ω, θ̂ω )− π(R = 0, D |A = 0, θ̂ ) (4.10)and
π(R = ω,D |A = 0, θ̂ )− π(R = ω,D |A = ω, θ̂ω ), (4.11)respetively.



CHAPTER 4. PERFORMANCE UNDER DISTORTION 87Obvious parallels to preferene graphs of our approah, whih study modeldeviation, beome lear: The �rst term of eah expression desribes perfor-mane under some kind of type ➁ model deviation (disagreement betweenASSUMPTIONS and REALITY). Moreover, ML-estimators are generallyde�ned through the underlying model assumptions, and one might also saythat, vie versa, they imply the ASSUMPTIONS made. On the other hand,the estimators are not known on their own, as suh, and it is rather theomparison of di�erent model assumptions whih seems to be of interest.Thus, Cook's likelihood displaements are related to the preferene graphsintrodued in � 4.3.2.2 and � 4.3.2.3. Still there are di�erenes:
• Rather than omparing the same two estimators/model assumptionsfor all ω, the estimators themselves hange with varying values for
ω and as well do the ASSUMPTIONS. This is beause the latterare assoiated with �xed values for ω. Thus, ω annot be seen as aparameter in the usual sense, it rather represents some mathematialquantity introdued into the model (as also suggested by Lawrane(1991), p. 142).

• The omponent D for DATA remains unspei�ed. In ontrast to theinterpretation of a likelihood, the expressions in (4.10) and (4.11) ouldtherefore be seen as funtions of an immediate data sample, and furtheralso as some statisti based on the (unspei�ed) DATA-model. In linewith the idea of a preferene graph one would then have to onsider itsexpeted value with respet to DATA.As remarked before, the likelihood displaement as suh is aimed at type
➁ model deviation. Distortion of type ➂ is generally exluded, sine alikelihood prinipally addresses the distributional part of a model and thusmodel aspets within data units. In order to apply Cook's approah todata ontamination, a model for DATA needs to be spei�ed and this inorresponding disagreement with REALITY and ASSUMPTIONS.



CHAPTER 4. PERFORMANCE UNDER DISTORTION 88A �nal remark shall be made about Billor and Loynes's paper (1993). Theysuggest an alternative to Cook's likelihood displaement aording to
LD∗(ω) = −2 ·

[
L(θ̂)− L(θ̂ω| ω)

]whih in our notation leads to the expression (ignoring the fator -2)
π(R = 0, D |A = 0, θ̂ )− π(R = ω,D |A = ω, θ̂ω ). (4.12)The authors laim to study perturbations in form of data ontaminationor model deviation. Still, neither of the two terms in (4.12) do atuallyre�et a situation of distortion. From our point of view, it rather omparesperformane under two ideal (non-distorted) situations.Final remark Up to this point, theoretial and methodologial aspets ofdistortion and performane have been disussed. The following two hapterswill now, in ontrast to the preeding, present the pratial study of twospei� examples. Both are based on simulation.



Chapter 5
First detailed example: TheKoziol-Green model
5.1 IntrodutionIn the previous hapters, distortion and inferential performane assessment(under distortion) have been disussed on solely theoretial grounds. Thepresent hapter will now illustrate the ideas with a �rst detailed and pratialexample. It will onsider the Koziol-Green (KG) proportional hazards model(Koziol and Green, 1976) whih an be used in the ensored survivals and inthe ompeting risks framework.Being semi-parametri, the KG-model is a speial ase of the right randomensorship model. The latter is haraterized by the independene of theatual unknown survival and ensoring times. The additional requirementof independene between the observed survival times and them being ornot being ensored is the essene of the KG-model. While the Abdushu-kurov-Chen-Lin (ACL) estimator (Abdushukurov, 1984; Cheng and Lin,1984) is the maximum-likelihood estimator for the true survival funtion inthe KG-model, its ounterpart in the right random ensorship model is thewell-known Kaplan-Meier (KM) produt limit estimator (Kaplan and Meier,89



CHAPTER 5. FIRST EXAMPLE: THE KOZIOL-GREEN MODEL 901958). Both estimators have been ompared (point-wise asymptotially)under the KG-model in Cheng and Lin (1987) and Csörg® (1988).Not surprisingly, it is the additional (KG-) requirement whih shall be subjetto distortion. In this way both types of distortion, data ontamination aswell as model deviation, are theoretially possible, sine the KG-requirementrelates to aspets of the model within data units. It beomes sensible tostudy performane of the ACL-estimator under the above types of distortion,in partiular in omparison with the ompeting KM-estimator. Note, thatin pratie the latter is usually preferred. A simulation study based onin�uene and preferene graphs will in fat indiate a trade-o� in �nite-sample performane of the two estimators between data ontamination andmodel deviation.After de�ning the KG-model and the ACL-estimator, and presenting theorresponding model and inferene framework in setion 5.2, distortion of theKG-model is disussed and formalized in setion 5.3. The simulation studyaddressing the ACL-performane supported by in�uene and preferenegraphs (setion 5.4) follows in setion 5.5. The hapter onludes with some�nal remarks (setion 5.6).5.2 The Koziol-Green model and the ACL-esti-mator5.2.1 The model and the model frameworkThe Koziol-Green (KG) model an be used in experiments with ensoredsurvival or ompeting risks data. Respetive real-world situations in the�rst ase are typially irumstanes in whih survival times of a �biologialunit (patient, animal, ell, et.)� or failure times of a �physial omponent(mehanial or eletrial)� are of interest (itations from Miller (1981), p. 1).Parallel to the unknown survival distribution FX (often the aspet of interest)



CHAPTER 5. FIRST EXAMPLE: THE KOZIOL-GREEN MODEL 91one has to take into aount a seond positive distribution, the ensoringdistribution FY , usually re�eting times at whih the follow-up proess of anindividual sampling unit (e.g. patient) is interrupted due to reasons otherthan death or failure. This might for example be the patient's deision to�drop out�, but ould also be the statistiian's deision to terminate the study.See also example 4 in hapter 3 for a typial ensored survival problem.If the KG-model is used in the ompeting risks framework both distributionfuntions, FX and FY , refer to `proper' survival or failure times. As suhthey ould for instane address two exlusive auses of death for a patient,or they might respetively be assigned to the failure time of two individualsub-omponents in a physial system. Aording to the sienti� problemat hand, the aspet of interest may then e.g. be the overall survival, or thesurvival of the individual risks.Despite their oneptual di�erenes, problems as above with ensoredsurvivals as well as with ompeting risks deal with the same type of datastruture: In both ases there is one univariate observation per data unit(a positive survival or failure time) whih is assoiated with a ensoringindiator ∆. While ∆ tells whether the respetive observation is ensored ornot in survival data, it indiates whih omponent of the two under studyfailed at the partiular point of time in ompeting risks data.Model de�nition The KG-model for a orresponding data-generating pro-ess is de�ned as follows (using the more popular notation from the ensoredsurvival ontext):Let X1, . . . , Xn represent the true survival times, Y1, . . . , Yn the ensored, and
Z1, . . . , Zn the observed values, where eah sequene of these ontinuous,positive random variables is i.i.d. like X , Y , and Z, respetively. Theorresponding distribution and survival funtions are given by FX(·) =

1−SX(·), FY (·) = 1−SY (·), and FZ(·) = 1−SZ(·). Further, let the sequeneof ensoring indiators ∆1, . . . ,∆n be i.i.d. like the Bin(1, p)-distributedrandom variable ∆, where
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∆ = ı(Z = X) with ı(·) as the indiator funtion,
Z = min{X, Y }, and
p = P (∆ = 1).The right random ensorship model is (already) haraterized by the inde-pendene between X and Y , whih implies that

SZ(z) = SX(z) · SY (z) for z ∈ [0,∞). (5.1)The additional KG-requirement of independene between Z and ∆ leads tothe Koziol-Green model, whih is equivalent to the existene of a positiveonstant c, so that SY (z) = SX(z)
c for z ∈ [0,∞). Thus, under the KG-model p = (1 + c)−1 and

SX(z) = SZ(z)
p for z ∈ [0,∞). (5.2)Sine the (umulative) hazard funtions ΛX(z) = − log SX(z) and ΛY (z) =

− log SY (z) are proportional under the KG-model, the latter is also knownas the �proportional hazards model of random ensorship� (Csörg®, 1988).In ontrast to the non-parametri right random ensorship model, the KG-model an be seen as semi-parametri with one parameter (the ensoringparameter p). Even though it does not involve ovariates of any kind andaddresses data units with only single observations, the KG-model is ratheromplex due to ensoring. While the independene within the four sequenes
X1, . . . , Xn, Y1, . . . , Yn, Z1, . . . , Zn, and ∆1, . . . ,∆n, respetively, orrespondsto aspets of the model between data units, all remaining onditions refer toaspets within data units.Model interpretation In linial trials, where patients may enter thestudy at di�erent times and losses to follow-up our randomly, the randomensorship model seems to be justi�ed (Miller, 1981, p. 5f). The above in-dependene requirement between the observed survivals Z and the ensoring



CHAPTER 5. FIRST EXAMPLE: THE KOZIOL-GREEN MODEL 93indiator ∆ for the KG-model would additionally mean, that the hane fora loss to appear remains onstant beyond the start of every follow-up period.This seems to be a quite unrealisti assumption in medial pratie, espeiallywhen taking into aount that the statistiian will most likely terminate thestudy at some point with ertain patients still being alive.However, the KG-model might be more plausible in a ompeting risksframework as the following examples indiate.
• Suppose a two-omponent series system whih fails when at least one ofthe omponents fail. Apart from a power-transformation, their failuretime distributions FX and FY are idential.
• Consider the previous situation where eah omponent i, itself, is aseries system of ki independent sub-omponents, i = 1, 2. All sub-omponents are identially distributed (Chen et al., 1982, p. 142).The interpretation of the KG-model in terms of the models REALITY,DATA, and ASSUMPTIONS (see � 3.3.1.3) motivates moreover the followingremarks:
• The parameter p and the respetive survival funtions remain unspe-i�ed in ASSUMPTIONS, but are onsidered to be �xed in DATA andREALITY (ompare with � 3.4.1).
• The traditional naming of X , Y , and Z as true, ensored, and observedsurvivals ould be misleading. As suh they might only be suitable forthe DATA-model with no data ontamination being present (otherwisethe `true' survival time in DATA would not neessarily be true). In thease of REALITY and ASSUMPTIONS one might better refer to true,ensored, and observable survivals, sine Z is not atually observed inREALITY.
• In the ontext of ensored survival data the interpretation of the modeltriplet may imply a problem. Censoring times produed by the e�etive



CHAPTER 5. FIRST EXAMPLE: THE KOZIOL-GREEN MODEL 94data-generating proess (represented by DATA) ould be partly underontrol of the statistiian, for example when the statistiian deidesto terminate the study. Thus, it is not obvious anymore whether theorresponding `truth' of FY should be found in the real-world or in thestatistiian's hoie (see also the remarks in � 3.4.4).The KG-model has reeived theoretial attention in the statistial literaturein order to develop inferential proedures, suh as the ACL-estimator (seebelow), but also to study properties of proedures formulated for the moregeneral model of right random ensorship. Examples for the latter areKoziol and Green (1976) themselves, who derive the asymptoti distributionof a Cramér-von Mises type (goodness-of-�t) statisti, Chen et al. (1982)obtaining small-sample results for the Kaplan-Meier (KM) estimator suhas the exat bias and variane, Ghorai and Pattanaik (1993) who studythe least-squares ross-validation method of bandwidth seletion for a kerneldensity estimator, and more reently Chang (1996) deriving the overall exatdistribution of the KM-estimator and Gather and Pawlitshko (1998) whostudy versions of the Kaplan-Meier integral (estimator of ∫ φdF ).However, despite the theoretial interest, the KG-model seems to have been�tted to atual data rather seldom. The so alled Channing House data(Hyde, 1977) appears to be one of the only ited referenes in this respet(two reent ones are moreover given in Csörg® (1998)). Nevertheless, the KG-model beame known espeially beause of its maximum-likelihood estimatorfor the unknown survival funtion, the ACL-estimator. The latter will beintrodued in the following.5.2.2 The estimator and the inferene frameworkIf the aspet of interest is the unknown survival funtion SX = 1 − FX thena suitable estimator is the so alled ACL-estimator. Aording to Csörg®(1988) the original referenes are Abdushukurov (1984) and Cheng and Lin



CHAPTER 5. FIRST EXAMPLE: THE KOZIOL-GREEN MODEL 95(1984). As the maximum-likelihood estimator for SX under KG-model, theACL-estimator is de�ned as (referring to equation (5.2))
SACL

X (z) =
[
1− F̂Z(z)

]pn for z ∈ [0,∞), (5.3)where F̂Z is the empirial distribution funtion based on the random sampleof Z and pn = 1/n·∑n
i=1∆i > 0. In the unlikely event of pn = 0 the estimatoris de�ned as SACL

X (z) = 1− ı(z ≥ Zn:n), where Zn:n is the orresponding n-thorder statisti and ı(·) the indiator funtion (Csörg®, 1988, p. 440). Theestimator, as a single inferene proedure, provides a full desription of theaspet of interest. Still, it is omposed of the two individual estimators pnand F̂Z through a diret ontribution of the KG-assumptions (see � 3.3.2 andthe disussion of example 4 therein).The ACL-estimator is generally smoother than the KM-estimator, sine ittakes into aount unensored as well as ensored observations. Further,under the Koziol-Green model, it is (asymptotially) more e�ient than theKM-estimator (Csörg®, 1988). Up to a ertain quantile of FX , it outperforms(again asymptotially) the empirial distribution funtion, whih is based onthe respetive unensored sample (Csörg® and Faraway, 1998). Other large-sample properties suh as asymptoti unbiasedness and asymptoti normality(weak onvergene to a Gaussian proess) have been disussed in Csörg®(1988), Cheng and Lin (1987) and Mi (1990).Like the empirial distribution funtion and the KM-estimator, the ACL-estimator has served to derive new inferene proedures aording to the`plug-in' priniple. An example is Csörg® (1988) for the estimation ofquantiles, densities, hazards rates and some spei� reliability funtions.The author also onstruted on�dene bands based on the ACL-estimator.Further examples are Herbst (1992a) for the estimation of moments, Gijbelsand Veraverbeke (1989), Ghorai (1991b), Gronen (1993), and Grunert (1993)for quantile estimation, Stute (1992) and Dikta (1995) for the estimation of
∫
φdF , and �nally Ghorai (1991a) and Ebrahimi and Habibullah (1992) forgoodness-of-�t test statistis based on the ACL-estimator.



CHAPTER 5. FIRST EXAMPLE: THE KOZIOL-GREEN MODEL 96Despite its theoretial importane, the ACL-estimator has not, as yet, foundsubstantial pratial interest. This is to be seen in lear ontrast to thewidely used KM-estimator. Obviously not muh `trust' has been plaed inthe validity of the additional KG-requirement (independene of Z and∆) andthus to the performane of the ACL-estimator under this partiular kind ofmodel deviation. The simulation study in the present hapter will investigatewhether or not this onern is justi�ed. Equally of interest therein will be theorresponding, but fundamentally distint, situation of data ontamination.The next setion will provide the neessary formalization of distortion.5.3 The distorted Koziol-Green modelAttention will be given to distortion of the KG-model a�eting the indepen-dene between the observed survival times Z and the ensoring indiator ∆(previously denoted as KG-requirement). The latter is part of the modelaspets within data units, so that prinipally distortion of type ➀ (data on-tamination) as well as distortion of type ➁ (model deviation) are possible.An example for respetive data ontamination
• in the ompeting risks framework ould our with the two-omponentseries system with, apart from a power-transformation, idential FXand FY as mentioned on page 93. The KG-requirement is not satis�edin DATA (even though true in REALITY), if one of the omponentsis exposed to an external in�uene suh as a higher temperature whihonverts its failure time distribution by a non-power manner during theourse of the experiment.
• in the ensored survival ontext is less obvious. First of all, it isgenerally di�ult to �nd a situation (in linial trials) where the KG-assumptions seem to be justi�ed. Moreover there is the statistiianhimself who, to a ertain extent, is in ontrol of the independene



CHAPTER 5. FIRST EXAMPLE: THE KOZIOL-GREEN MODEL 97between Z and ∆ in the DATA-model. Thus, it is not alwayslear whether a ertain hange in DATA is atually due to dataontamination or is just an e�et of interferene by the statistiian(see also the remarks in � 3.4.4 and � 5.2.1).Corresponding model deviation, on the other hand, is present whenever theadditional KG-requirement annot properly re�et the truth. This may bethe ase in a ompeting risks framework and is most likely in the ontext ofensored survivals. It partiularly ours in situations where the probabilityof a failure, e.g. `eventual oneption' in fertility studies, is less than one. Forfurther examples see also Peña and Rohatgi (1989), p. 372.While data ontamination re�ets model disagreement between DATA andREALITY, type ➁ model deviation is due to a on�it between ASSUMP-TIONS and REALITY (� 3.4.2). Still in ommon, both ases imply a mutualdisagreement between the KG-model and some distorted KG-model. Thelatter will be spei�ed in the following by implementing the idea of modeldisrepany (� 4.2.2).5.3.1 Disrepany struture and magnitudeDisrepany struture Departure from the KG-model will �rst of all beexplained in form of a disrepany struture. This shall be the funtions : [0,∞) −→ [0, 1]with s(z) = ∂
∂z

[P (Z ≤ z,∆ = 1)]

fZ(z)
= ‘P (∆ = 1|Z = z)' (5.4)for all z ∈ [0,∞) with fZ(z) > 0, assuming the derivative exists at all buta �nite number of points. From a probabilisti point of view, s(·) is theonditional mass funtion of ∆ given Z = z at the margin ∆ = 1. Comparee.g. with Woodroofe (1975, p. 269).



CHAPTER 5. FIRST EXAMPLE: THE KOZIOL-GREEN MODEL 98If s(·) is onstant for all z the KG-model is retrieved. A `non-onstantbehaviour' of s(·) for some z ∈ [0,∞) indiates the dependene of Z and ∆,and thus a violation of the KG-requirement. Under an s(·)-distorted KG-model the survival funtion of the true survivals SX an be represented, likein (5.2), by an expression whih involves Z as the only random variable. For
z ∈ [0,∞) with fZ(z) > 0 and SZ(z) > 0

SX(z) = exp
[
−
∫ z

0

s(t) · λZ(t) dt
]
, (5.5)where λZ(t) = fZ(t)/SZ(t) is the hazard rate of the observed survivals Z.With the assumption that all relevant densities exist, (5.5) is orret sine

∂
∂z

[P (Z ≤ z,∆ = 1)] = fX(z) ·SY (z) under independene of X and Y whihin partiular leads tos(z) = fX(z) · SY (z)

fZ(z)
=

fX(z)

SX(z)
· SZ(z)

fZ(z)
=

λX(z)

λZ(z)
, (5.6)and sine in general S(z) = exp [−

∫ z

0
λ(t) dt]. The equation (5.5) reduesto (5.2) in the ase of s(z) ≡ p.Disrepany magnitude The funtion s(·) in (5.4) haraterizes a dis-torted KG-model whih does not ful�ll the KG-requirement. In order todesribe the resulting distane from the ideal KG-model, a disrepany mag-nitude γ = supz∈[0,∞) |γ(z)| is de�ned by

γ(z) =

∫ z

0

[s(t)− p] dFZ(t), z ∈ [0,∞). (5.7)The measure is related to the area between ‘P (∆ = 1|Z = z)' and P (∆ = 1).The partiular form of integration has been hosen to eliminate the e�et ofhigh `�utuations' of s(·) around p (similar to white noise). This is sensiblebeause suh a behaviour of s(·) would again ome lose to independene of
Z and ∆.With the existene of fZ , the expression s(z) · fZ(z) an be de�ned for all
z ∈ [0,∞), whih ensures that the funtion γ(·) onverges to zero for z → ∞.
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∂z

[P (Z ≤ z,∆ = 1)] = fZ|∆(z, 1) ·P (∆ = 1) where fZ|∆(·, 1)is a density (Woodroofe, 1975, p. 269), and hene
∫ ∞

0

s(t) · fZ(t) dt = p. (5.8)Note that a disrepany magnitude as above quanti�es the distane fromthe KG-model but does not usually haraterize a distorted KG-model, sinedi�erent s(·) an be summarized by the same distane γ. This also applies tothe maximum value of γ: Depending on p and taking into aount all possiblefuntions s(·), the disrepany magnitude γ ranges from 0 to p(1 − p). Itan be shown that the maximum disrepany γ∗ = p(1 − p) is reahed bystrutures s(z) = ı[z∗,∞)(z) with FZ(z
∗) = 1− p (5.9)and s(z) = ı[0,z∗)(z) with FZ(z

∗) = p, (5.10)where z∗ is the loation of the supremum of |γ(·)| and ı(·) is the indiatorfuntion.Proof: It is for z ∈ [0,∞)

γ∗ = maxs(·) {
sup

z∈[0,∞)

∣∣∣
∫ z

0

[s(t)− p] dFZ(t)
∣∣∣
}

= max

{
sup

z∈[0,∞)

[
p · FZ(z)

∣∣ s(t) = 0, t ∈ [0, z)
]
,

sup
z∈[0,∞)

[
(1− p) · FZ(z)

∣∣ s(t) = 1, t ∈ [0, z)
]}

(5.8)
= max

{
p · sup

[
FZ(z)

∣∣ z :

∫ ∞

z

s(z) dFZ(z) = p
]
,

(1− p) · sup
[
FZ(z)

∣∣ z : FZ(z) +

∫ ∞

z

s(z) dFZ(z) = p
]}

= max

{
p · (1− p) ∧ s(·) as in (5.9),
(1− p) · p ∧ s(·) as in (5.10)}. �



CHAPTER 5. FIRST EXAMPLE: THE KOZIOL-GREEN MODEL 100Finally, note that the measure γ has not been normalized, sine eliminatingthe dependene on p would prejudge the potential disrepany from the KG-model possible in a pratial situation and would make a omparison betweendi�erent values of p impossible.5.3.2 Spei� parametrisationsSine the lass of possible disrepany strutures s(·) is large, for pratialreasons only two sublasses will be onsidered in the simulation study below.EXP is the sublass taking funtions of the forms(z) = a · exp(−c · z) + d, z ∈ [0,∞)where c > 0, 0 ≤ d ≤ 1 and 0 ≤ a + d ≤ 1. This parametrisationis reasonable beause the onditional hane of observing a ensoredsubjet is likely to follow a trend over time in ases where the latter isnot onstant. The exponential form ensures a onvergene for z → ∞.STEP is the sublass taking funtions of the forms(z) = a · ı[0,z∗)(z) + b · ı[z∗,∞)(z), z ∈ [0,∞)where ı(·) is the indiator funtion and z∗ is suh that
FZ(z

∗) = p and 0 ≤ b ≤ p ≤ a ≤ 1, or
FZ(z

∗) = 1− p and 0 ≤ a ≤ p ≤ b ≤ 1.The hoie is sensible beause the maximum disrepany magnitude γ∗is represented by a = 0 and b = 1 for FZ(z
∗) = 1 − p, and by a = 1and b = 0 for FZ(z

∗) = p, whih respetively orresponds to (5.9) and(5.10).In order to �nally enfore an injetive mapping from s(·) to the disrepanymagnitude γ, the sublasses EXP and STEP have to be further subdivided



CHAPTER 5. FIRST EXAMPLE: THE KOZIOL-GREEN MODEL 101aording to dereasing and inreasing slopes. For strutures of kind EXPalso one of the parameters needs to be kept �xed. These restritions entailsome limitations to the simulation study below, but are neessary to produeresults.5.3.3 Other formalization approahes1. Peña and Rohatgi (1989) represent the survival funtion of the ensoredsurvivals SY onditioned on the realization b of some random variable
β satisfying a ondition for model identi�ation. It is

SY (z|b) = P (Y > z|β = b) = [SX(z)]
b for z ∈ [0,∞).For z ∈ [0,∞) with fZ(z) > 0 the relationship to the s(·)-approah isgiven by s(z) = Eβ{[SX(z)]

β} · fX(z)
fZ(z)

.The above follows immediately from the �rst part of (5.6). For asimulation study the authors use a speial ase with
SX(z) = exp(−z) and SZ(z) =

θ · SX(z)

1− SX(z) · (1− θ)
,where θ ∈ (0, 1]. The latter orresponds to the disrepany strutures(z) = (θ − 1) · exp(−z) + 1 whih is inreasing in z and belongs toEXP taking a = (θ − 1), c = 1, and d = 1.2. Beirlant et al. (1992) generalize the KG-model by de�ning

SY (z) = [SX(z)]
θ · L(SX(z)) for z ∈ [0,∞),where L is some slowly varying funtion at the origin with L(1) = 1and θ some onstant in [0,∞). If limz→∞ s(z) = s∞ > 0 exists, therelationship to the s(·)-approah is given by θ = (1− s∞)/s∞ and theslowly varying funtion L∗ withL∗(u) = exp

[
s∞ − 1

s∞
· lnu−

∫ S−1

X
(u)

0

1− s(z)s(z) · fX(z)
SX(z)

dz

]
, (5.11)
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X is the inverse of SX (the proof is given in Appendix A.1).3. Ebrahimi and Kirmani (1996) have found an alternative harateriza-tion of the ondition (5.2) whih demands the onstany of

I(t) =

∫ ∞

t

fX(x)

SX(t)
· log

[
fX(x) · SY (t)

fY (x) · SX(t)

]
dx.Hene, a non-onstant behaviour of I(·) ould be used to formalize adistorted KG-model.4. Instead of onditioning on the random variable Z, Herbst (1992b)onditions on ∆ and ompares the two resulting onditional funtions

P (Z < z| ∆ = 0) and P (Z < z| ∆ = 1). He then formulates agoodness-of-�t test of Kolmogorov-Smirnov type for the Koziol-Greenmodel. Moreover, graphial heks of the KG-requirement have beenproposed by Ebrahimi (1985) and Ebrahimi and Habibullah (1992)omparing the two sub-survival distributions P (Z > z,∆ = 0) and
P (Z > z,∆ = 1), and Csörg® (1988) and Beirlant et al. (1992) studying
P (∆ = 1| Z ≤ z) and P (∆ = 1| Z > z), respetively.Sine the interpretation and onditions of the s(·)-approah are fairly simpleand the formulation of the disrepany magnitude γ makes it easy to de�nethe amount of distortion from the KG-model (see later), this formulation ispreferred for the simulation study below.The following setion will now speify the performane assessment neededfor the ACL-estimator, both under the ideal situation of the KG-model andin partiular under distortion.5.4 ACL-performane assessmentWith the above formulation of a distorted KG-model and additional lim-itations on the disrepany struture s(·), one an easily haraterize and



CHAPTER 5. FIRST EXAMPLE: THE KOZIOL-GREEN MODEL 103quantify situations of data ontamination and type ➁ model deviation. Therespetive amount of distortion results from orresponding di�erenes be-tween disrepany magnitudes of REALITY, DATA and ASSUMPTIONS(see � 4.2.2). Distortion a�ets parts of the model whih relate to SX (theaspet of interest in REALITY), sine the latter is di�erent for the distortedKG-model aording to (5.5). Hene, ACL-performane is potentially dis-tint under orresponding data ontamination and model deviation.In�uene and preferene graphs (� 4.3) are now de�ned whih try to revealthis di�erene in ACL-performane under inreasing distortion. They arebased on suitable performane statistis (� 4.2.3) whih refer to the true SXof REALITY. The overall methodology will be used for the simulation studyin the subsequent setion.5.4.1 Performane statistisPerformane of the ACL-estimator SACL

X , seen as a �nite sample statisti, shallbe desribed in terms of loation-loseness (� 2.4.2). As a urve estimator,
SACL

X will be assessed globally as well as more loally. Here, the performanestatistis are hosen to be of Cramér-von Mises type, i.e. good performanewill orrespond to small realizations of the statisti.For an entirely global assessment de�ne
πo = πo (R = α1, D = α2 |A = α3, ∆)

=

∫ ∞

0

[SX(t)− SACL

X (t)]2 dF̂Z(t) =
1

n

n∑

i=1

[SX(Zi)− SACL

X (Zi)]
2,where SX is the true survival funtion to be estimated in REALITY, SACL

X (t)is the ACL-estimate at time t determined from a DATA-generated sample,and F̂Z the empirial distribution funtion based on the random sample of
Z in DATA. The values α1, α2, and α3 will be spei�ed with the de�nition ofin�uene and preferene graphs (see below). Note that the statisti πo refersto the aspet of interest in REALITY, whih makes it possible to distinguish



CHAPTER 5. FIRST EXAMPLE: THE KOZIOL-GREEN MODEL 104and ompare in�uene on ACL-performane under data ontamination andtype ➁ model deviation (� 4.2.1).A more loalized assessment an be arried out by assigning twie the weightto observations within ertain quantile-ranges of Z in DATA and no weightsto the remaining ones. It is
πl = 2 ·

∫

Al

[SX(t)− SACL

X (t)]2 dF̂Z(t)

=
2

♯{Zi : Zi ∈ Al}
∑

Zi∈Al

[SX(Zi)− SACL

X (Zi)]
2,where Al = [0, z[0.5]] with z[α] as the α-quantile of the distribution of Z inDATA, and where the sign ♯ means `number of elements'. In the same waythe performane statistis πu and πm are de�ned with Au = [z[0.5],∞) and

Am = [z[0.25], z[0.75]].Although a further redution of the interval lengths would e�et striterloalisations, this will not be done here. For a ompletely loalizedinvestigation under model deviation see instead the simulation study in Peñaand Rohatgi (1989).5.4.2 In�uene and preferene graphsIn�uene graphs whih study the absolute performane of the ACL-esti-mator in terms potential hange under inreasing distortion are of the form
gDi (γ) = E γ

[
π(R = 0, D = γ |A = 0, SACL

X )
]

− E 0

[
π(R = 0, D = 0 |A = 0, SACL

X )
]for data ontamination, and

gMi (γ) = E γ

[
π(R = γ,D = γ |A = 0, SACL

X )
]

− E 0

[
π(R = 0, D = 0 |A = 0, SACL

X )
]



CHAPTER 5. FIRST EXAMPLE: THE KOZIOL-GREEN MODEL 105for type ➁ model deviation (ompare with (4.3) and (4.4)). While π standsfor one of the previously de�ned performane statistis πo, πl, πu, or πm,the value γ represents orresponding disrepany magnitudes of REALITYand/or DATA on the one hand, and the resulting amount of distortion, onthe other. Note that all expeted values refer to a DATA-model.Inreasing in�uene graphs of the above kind indiate that the performaneof the ACL-estimator gets worse under inreasing distortion. By de�nitionthey originate with the value zero at γ = 0.Preferene graphs whih study the absolute performane of the ACL-estimator in omparison with the Kaplan-Meier (KM) estimator SKM

X underinreasing distortion are of the form
gDp (γ) = E γ

[
π(R = 0, D = γ |A = 0, SACL

X )− π(R = 0, D = γ |A = +, SKM

X )
]for data ontamination, and

gMp (γ) = E γ

[
π(R = γ,D = γ |A = 0, SACL

X )− π(R = γ,D = γ|A = +, SKM

X )
]for type ➁ model deviation. This orresponds to preferene graphs for twoinferene proedures based on alternative assumptions (see (4.7) and (4.8)).It is suitable sine both estimators are known on their own and, as maximum-likelihood estimators, imply the model assumptions made. The latter are theKoziol-Green model (A = 0) for the ACL-estimator and the right randomensorship model (A = +) for the KM-estimator. Again, π may be one ofthe statistis πo, πl, πu, or πm, and the expeted values refer to the `urrent'DATA-model.Overall, a preferene graph as above at distortion γ indiates advantages forthe ACL-estimator when the orresponding (preferene) value is below zero.The foregoing in�uene and preferene graphs provide the methodologialtools for the following simulation study whih exlusively will study absoluteperformane of the ACL-estimator. In other words, relative (hanges



CHAPTER 5. FIRST EXAMPLE: THE KOZIOL-GREEN MODEL 106of) performane, assessable via in�uene and preferene graphs based onquotients, will be negleted.5.5 Simulation studyUsing the in�uene and preferene graphs introdued in the previous setion,the �nite-sample behaviour of the ACL-estimator is ompared under partiu-lar situations of model deviation and data ontamination (distortion of types
➀ and ➁). The latter are haraterized as orresponding model disagree-ment (of REALITY, DATA, and ASSUMPTIONS) between the KG-modeland some distorted KG-model (� 5.3). It is of interest whether the in�ueneon the performane of the ACL-estimator is indeed di�erent, as has beenlaimed in � 3.4.2. In pratial terms suh a omparison makes sense whenboth types of distortion are at the same time prinipally justi�able. This isthe ase in a ompeting risks framework (see the beginning of � 5.3), so thatin the �rst plae, the latter should be kept in mind.The method of simulation is hosen, sine diret interest is in the �nitesample ase where theoretial evaluations of in�uene and preferene graphsappear to be di�ult: in ontrast with the goodness-of-�t idea whihompares two distributions both from the KG-model (Ghorai, 1991a), aperformane statisti here ompares `distributions' where at least one of themdoes not belong to the KG-model. A disrepany magnitude γ, moreover,summarizes alternative distributions orresponding to (∆, Z), whih annotbe represented by traditional model parametrisations.The simulation study is arried out on a Sun-ompatible work station usingS-PLUS (version 3.3, release 1).



CHAPTER 5. FIRST EXAMPLE: THE KOZIOL-GREEN MODEL 1075.5.1 Set-upProblems addressed
• Is there a di�erene between the onsequenes of model deviation anddata ontamination � in partiular under inreasing distortion?
• Does the kind of disrepany struture s(·) matter?
• What is the in�uene of the sample size n and the probability p of anobservation being unensored?
• When does the ACL-estimator outperform the KM-estimator and vieversa?
• What is the behaviour of the ACL-estimator in ertain regions suh asthe tails?Program organization1. Spei�ation of a disrepany struture s(·) representing a γ-distortedKG-model.After having hosen p and FZ as the Weibull (shape=2, sale=1)-distri-bution, deide on the sublass STEP or EXP (� 5.3.2) and derive theorresponding parameters for s(·) using the information in (5.7) and(5.8).STEP s(·) is determined by the parameter settings

a =
γ

p
+ p and b =

p(1− a)

1− p
for FZ(z

∗) = pand
a = p− γ

1− p
and b = 1− a(1− p)

p
for FZ(z

∗) = 1− p.



CHAPTER 5. FIRST EXAMPLE: THE KOZIOL-GREEN MODEL 108EXP Given c and the sign of a, the parameters a and d are spei�edby approximating a ommon (single) solution for (5.7) and (5.8)via numerial integration and optimization. For onveniene, thevalue of c is taken whih orresponds to the maximum disrepanyexplained by EXP given p and the sign of a (see Table 5.1). A fewmore details are given in Appendix B.2. Simulation ofB samples (z1, δ1)′, . . . , (zn, δn)′ aording to DATA whihis a distorted KG-model as spei�ed above. For eah sample and for all
i = 1, . . . , n this implies: simulation of zi aording to FZ , evaluationof s(zi), and �nally generation of δi aording to a Bin[1, s(zi)]-distribution.3. Evaluation of individual in�uene and preferene values gi(γ) and gp(γ).

• Choose one of the performane statistis πo, πl, πu, or πm and thetype of distortion (data ontamination or type ➁ model deviation).
• For eah sample evaluate the true and estimated survival proba-bilities at z1:n, . . . , zn−1:n. While the former are based on the KG-model for data ontamination, and on the γ-distorted KG-modelfor model deviation (further details in Appendix B), the respetiveACL- and KM-estimates are derived from the DATA-generatedsamples whih, in any ase, re�et the γ-distorted KG-model.In addition, note that the maximum survival times zn:n are omit-ted to seure onformity between the ACL- and KM-estimator,sine SACL

X (zn:n) = 0, but SKM

X (zn:n) = 0 for unensored zn:n and
SKM

X (zn:n) = SKM

X (zn−1:n), otherwise.
• With R = 0 for data ontamination and R = γ for modeldeviation, determine for eah simulated sample

π(R,D = γ |A = 0, SACL

X ) (5.12)and
π(R,D = γ |A = 0, SACL

X )− π(R,D = γ |A = +, SKM

X ). (5.13)



CHAPTER 5. FIRST EXAMPLE: THE KOZIOL-GREEN MODEL 109Table 5.1: Maximum disrepany γ in STEP and EXP for di�erent valuesof p (d=dereasing and i=inreasing, i.e., a ≥ 0 and a ≤ 0, respetively).
p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9STEP 0.09 0.16 0.21 0.24 0.25 0.24 0.21 0.16 0.09EXP (d) 0.05 0.07 0.08 0.08 0.07 0.07 0.05 0.04 0.02EXP (i) 0.02 0.04 0.05 0.07 0.07 0.08 0.08 0.07 0.05

• Take the average of (5.12) over the B simulated samples andsubtrat from it a orresponding average for γ = 0. The resultserves as ontribution for the in�uene graph.
• Take the average of (5.13) over the B simulated samples asontribution for the preferene graph.4. Evaluation of orresponding one standard-deviation limits for eahof the above ontributions by adding and subtrating the empirialstandard-deviation of (5.12) and (5.13), respetively, over the Bsimulated samples.5. For the overall in�uene and preferene graphs the previous steps arerepeated with di�erent values of γ.DesignWhile restriting FZ to a Weibull (shape=2, sale=1)-distribution, theparameter values for the study are hosen as p ∈ {0.1, . . . , 0.9}, n ∈

{20, 60, 150} and B = 200. The disrepany magnitudes range from 0 totheir possible limits (see Table 5.1) with a step size of 0.01. Dereasingand inreasing `trends', respetively, are onsidered for s(·) in eah of thesublasses STEP and EXP.



CHAPTER 5. FIRST EXAMPLE: THE KOZIOL-GREEN MODEL 1105.5.2 ResultsConsider the Figures 5.1 and 5.2 showing an arbitrary ACL- and KM-estimate (dashed-thik and dotted line, respetively) under high in fat themaximum distortion and ompare them with the orresponding true survivalfuntion (solid line). The di�erent performane of the ACL-estimator underdata ontamination and model deviation (type ➁), explained by dereasings(·) and the funtion γ(·) in Figures 5.3 and 5.4, is very obvious. Whilethe ACL-estimator performs well under data ontamination (Figure 5.1), itseems to be learly overestimating for small times z and underestimating forlarge z under model deviation (Figure 5.2).The behaviour under orresponding distortion with inreasing s(·) againshows good performane under data ontamination (Figure 5.5) and badperformane under model deviation, but this time by underestimating forsmall z and overestimating for large z (Figure 5.6). Pena and Rohatgi (1989)also ame to this result by arrying out a loalized simulation study for adistortion model based on an inreasing disrepany struture from the lassEXP under model deviation (see 5.3.3).The following study of in�uene and preferene graphs will on�rm thisontraditory performane of the ACL-estimator.Figures 5.7 and 5.8 exemplify orresponding in�uene graphs (solid line),here with dereasing disrepany struture s(·) of kind STEP, p = 0.5 and
n = 150, taking the performane statisti πo. While the `average loseness'of the ACL-estimator under data ontamination remains more or less thesame when ompared to the undistorted situation, the performane undermodel deviation learly delines with inreasing amount of distortion. Thetwo dashed lines represent the one standard-deviation bounds.Comparing the ACL-estimator with the KM-estimator using a preferenegraph, the e�ets of data ontamination and model deviation reveal a trade-o� (see Figures 5.9 and 5.10). The more the ACL-estimator outperformsthe KM-estimator under data ontamination, the worse it behaves under
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Figure 5.1: Estimates under data on-tamination: s(·) dereas. and γ = 0.25. Time z
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Figure 5.2: Estimates under modeldeviation: s(·) dereasing and γ = 0.25.
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Figure 5.3: Dereasing disrepanystruture s(·) orresponding to γ = 0.25. Time z
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Figure 5.5: Estimates under data on-tamination: s(·) inreas. and γ = 0.25. Time z
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Figure 5.6: Estimates under modeldeviation: s(·) inreasing and γ = 0.25.
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Figure 5.7: gDi (γ) for data ontami-nation: STEP (d), p = 0.5, n = 150. amount of distortion
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Figure 5.8: gMi (γ) for model devia-tion: STEP (d), p = 0.5, n = 150.
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Figure 5.9: gDp (γ) for data ontami-nation: STEP (d), p = 0.5, n = 150. amount of distortion
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Figure 5.10: gMp (γ) for model devia-tion: STEP (d), p = 0.5, n = 150.
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Figure 5.11: gDp (γ) for data ontami-nation: STEP (d), p = 0.1, n = 150. amount of distortion
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Figure 5.12: gMp (γ) for model devia-tion: STEP (d), p = 0.1, n = 150.
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Figure 5.13: gDp (γ) for data ontam-ination: STEP (d), p = 0.1, n = 20. amount of distortion
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Figure 5.14: gMp (γ) for model devia-tion: STEP (d), p = 0.1, n = 20.orresponding model deviation.Over the range of di�erent probabilities p, the onsequenes of data on-tamination and model deviation appear to be less dramati for larger p. Noobvious hange in any of the in�uene and preferene graphs of the typeonsidered so far is notieable any more for a value of p = 0.9. Still, theonsequenes are slightly stronger for smaller p. However, beause of smallermaximum amounts of distortion (orresponding to the maximum disrepanymagnitudes in Table 5.1), high absolute di�erenes as above for p = 0.5 donot exist for smaller p (ompare Figures 5.11 and 5.12 with the orrespondingpartitions in Figures 5.9 and 5.10).An inreased e�et of distortion aompanied by smaller values of p is alsoapparent for dereasing distortion strutures of kind EXP. Even though theorresponding hanges are slightly larger, the high absolute in�uene andpreferene values for p around 0.5 are again not possible beause of smallermaximum amounts of distortion within the lass EXP (Table 5.1).Until now, only dereasing s(·) have been onsidered. The onsequenesindiated by in�uene and preferene graphs under orresponding inreasingdistortion strutures (STEP and EXP) appear to be nearly equivalent for
n = 150. Again, the ACL-estimator (in omparison with the KM-estimator)



CHAPTER 5. FIRST EXAMPLE: THE KOZIOL-GREEN MODEL 114Table 5.2: The e�et of distortion indiated by the performane statistis
πl, πu and πm in omparison to πo (taking into aount in�uene as well aspreferene graphs).s(·) small p intermediate p large p

πl less less lessdereasing πu more more more
πm less more more
πl less more moreinreasing πu more less less
πm less more lessshows advantages under inreasing data ontamination but performs poorlyunder inreasing model deviation. As before, this e�et beomes moreimportant as p dereases, but now to an even greater extent.Performane statistis restrited to lower, upper or intermediate time-intervals an be used to examine a more loal behaviour of the ACL-estimator.Table 5.2 summarizes a omparison with in�uene and preferene graphsbased on the non-restrited performane statisti πo.Finally, a redution of the sample size (n = 60, 20) leads to an inrease ofthe variability assoiated with the individual in�uene and preferene valuesover the B samples. As a onsequene, any e�et of distortion, if present,beomes more indistint. Negleting the high variability, performane ingeneral also hanges to a smaller extent (in�uene graphs). Moreover, thedisadvantages under model deviation seem to be less serious for small samplesizes (preferene graphs, see Figures 5.13 and 5.14). This is beause the ACL-estimator performs better than the KM-estimator under the undistortedKG-model. The overall phenomenon almost disappears when onsideringpreferene graphs based on πl and is very lear when instead using πu.Despite the numerous details pointed out in the previous paragraphs, the
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Figure 5.15: Minimum distortion γwith s(·) dereasing, above whih SACL

Xshows disadvantages under model devi-ation.
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Figure 5.16: Minimum distortion γwith s(·) inreasing, above whih SACL

Xshows disadvantages under model devi-ation.simulation results allow the following onlusions in omparison with the KM-estimator (onsidering preferene graphs for STEP based on πo and takinginto aount a rounding error of 0.001).Data ontamination: The ACL-estimator shows advantages, i.e. the upperone standard-deviation bound is below zero for all γ > 0.01:
• � for 0.1 ≤ p ≤ 0.8 with n = 150 and s(·) dereasing.� for 0.1 ≤ p ≤ 0.9 with n = 150 and s(·) inreasing.
• � for 0.1 ≤ p ≤ 0.5 with n = 60 and s(·) dereasing.� for 0.1 ≤ p ≤ 0.4 with n = 60 and s(·) inreasing.
• � for 0.1 ≤ p ≤ 0.4 with n = 20 and s(·) dereasing.� for 0.1 ≤ p ≤ 0.3 with n = 20 and s(·) inreasing.In all other ases, 'just` the preferene value itself is below zero.Model deviation: The ACL-estimator shows disadvantages from ertainamounts of distortion γ onwards, as indiated in the Figures 5.15 and5.16. In these ases the orresponding lower one standard-deviation



CHAPTER 5. FIRST EXAMPLE: THE KOZIOL-GREEN MODEL 116bound is above zero. In both Figures, the solid line represents themaximum possible amount of distortion (aording to Table 5.1). Thedi�erenes between dereasing and inreasing s(·) are mainly due tobroader one standard-deviation bounds for the former, given large p.5.5.3 DisussionThe fat that the performanes of the ACL-estimator under data ontamina-tion and model deviation are di�erent is of great interest. Broadly speaking,
SACL

X seems to be resistant against data ontamination of the s(·)-kind, butshows problems under orresponding model deviation. As a onsequene, ittends to outperform the KM-estimator in the �rst ase and be inferior inthe seond. This is beause the ACL-estimator relying on the KG-modelassumptions uses less information from the data, that is, ignoring the infor-mation given in the distribution of the ensored observations over the timeand replaing this missing bit by the extra KG-requirement.Fortunately, the above phenomenon is only half of the truth. The study ofin�uene and preferene graphs ould reveal more details about the e�et ofdistortion and its potential dependene on aspets suh as p and n.The onsequenes of distortion beome less important with inreasing p,i.e. with fewer ensored observations expeted in the data. Given a valueof p greater than about 0.8, an e�et on the overall ACL-performane is inmost ases no longer onvining � also beause distortion is only possible withsmaller amounts. Moreover, the in�uene beomes less distint with smallersample sizes. Thus, a onern about the global non-robustness of the ACL-estimator under model deviation should not be too overemphasized, sinemost pratial studies (hopefully) deal with larger perentages of unensoreddata and (unfortunately) are based on smaller sample sizes.The onsideration based on the restrited performane statistis πl, πuand πm revealed a further interesting aspet. For dereasing disrepanystrutures, in�uene is mainly due to hanges in the upper (right) tail. Hene,



CHAPTER 5. FIRST EXAMPLE: THE KOZIOL-GREEN MODEL 117estimators for the lower quantiles based on the ACL-estimator are expetedto be more robust against misspei�ation of the KG-assumptions thanorresponding estimators for the upper quantiles. However, the situationturns out to be di�erent for inreasing s(·). Here, the main loation ofin�uene is strongly dependent on the value p (see Table 5.2).Apart from the latter aspet, any kind of disrepany struture s(·), i.e. whe-ther from STEP or EXP, or whether dereasing or inreasing, seem to auseroughly equivalent in�uene and preferene graphs when taking into aountthe whole time sale.Finally, the simulation study has been arried out with observed survivals
Z from a Weibull(2, 1)-distribution. Even though this is a limitation of thestudy, there are reasons to believe that other distributions would produesimilar results, sine the disrepany magnitude γ, and hene the amount ofdistortion, is grounded on information from FZ , see (5.7). A `pilot-run' witha Weibull (1, 2)-distribution on�rms this position. Still, an extension of thesimulation study whih inludes other (types of) distributions for Z mightbe of interest.5.6 Final remarksApart from the atual results of the simulation study, the present hapterreeived importane through its exemplifying harater for the theoretialideas and onepts in the preeding hapters.The partiular kind of distortion from the KG-model a�ets aspets withindata units and hene should involve REALITY as a referene point (note,however, that exeptions have been pointed out in the ensored survivalase). As a onsequene it may refer to either data ontamination (type
➀ distortion) or model deviation as type ➁ distortion. In other words,model disagreement an be onsidered between DATA and REALITY, orbetween ASSUMPTIONS and REALITY whih in both ases is desribed as



CHAPTER 5. FIRST EXAMPLE: THE KOZIOL-GREEN MODEL 118a on�it between the KG-model and some distorted KG-model. Note thatthis distintion has as yet not found attention in the statistial literature.The distorted KG-model as suh has been modelled in a novel way by thedisrepany struture s(·) from whih then the disrepany magnitude γould be derived. The latter allowed to formulate the amount of distortionby orresponding omparison of REALITY, DATA, and ASSUMPTIONS.A haraterization of a distorted model solely based on a disrepanymagnitude has not been hosen � due to the omplexity of the overalldistortion neighbourhood (expressing dependene between Z and ∆) andsine it was of interest to what extremes distortion a�eting the KG-requirement an go.The maximum limit of possible disrepany magnitudes and hene amountsof distortion depends on p and an be assoiated with the spei� struturess(·) in (5.9) and (5.10). The overall maximum distortion of amount γ∗ = 0.25is only possible for p = 0.5 (see Table 5.1). Here, s(·) is given the maximum`freedom' to vary around p without violating (5.8). It is further interesting tonote that under high model deviation with dereasing s(·), the true survivalfuntion SX in REALITY an beome fairly improper (see Figure 5.2). Inthis ase the probability of �nally failing, e.g. beoming pregnant, is less thanone.Performane assessment of the ACL-estimator has been arried out withreferene to REALITY, whih allowed to reveal the di�erene in performaneunder data ontamination and model deviation. The Cramér-von Misestype performane statistis have been hosen for onveniene, but also otherstatistis addressing the loseness of the estimator would be appropriatesuh as the ones of Kolmogorov-Smirnov type. The one standard-deviationbounds assoiated with eah in�uene and preferene graph re�et thevariability of their evaluated values, but due to the underlying integraland di�erene strutures, do not generally represent the variability of theestimators involved. Nevertheless, very obvious hanges in width ould bedue to the latter.



CHAPTER 5. FIRST EXAMPLE: THE KOZIOL-GREEN MODEL 119In terms of preferene graphs the simulation study ould ompare perfor-mane of the ACL-estimator with that of the KM-estimator, and hene twoestimators based on alternative assumptions (the KG-model and the rightrandom ensorship model, respetively). The following hapter will nowpresent a simulation example where preferene graphs are being used to om-pare the onsequenes under two di�erent assumptions both assoiated withthe same inferene method.



Chapter 6
Seond detailed example: Amodel for longitudinal data
6.1 IntrodutionThe previous hapter dealt with distortion from the restrited Koziol-Greenmodel, where the distorted model was embedded in the more general model ofright random ensorship. In terms of inferene proedures the problem led toa omparison of the performanes of two model-spei� maximum-likelihoodestimators. The example disussed in this hapter will be of a somewhatdi�erent nature. Here, the idea of distortion addresses issues of a moreomplex model-building proess. Are measurement errors to be inludedinto the model assumptions or not? What di�erent onsequenes might thishave on the real-world desription of interest given a partiular inferenemethod for the unknown model parameters?In more detail, we will onsider a general linear model with orrelated errorsfor longitudinal data, where the (sub)model for the ovariane struturewithin data units is subjet to distortion. That is, normally distributedmeasurement errors are omprised in some distorted ovariane model andare ignored in the orresponding ideal referene model. Data ontamination120



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 121is then present when the above measurement errors are indeed real, andmodeldeviation ours when the assumptions do not aount for the extra randomvariation in the data, even though it is a re�etion of some other (relevant)phenomenon in the real-world.Setion 6.2 introdues the model and the model framework, and devotes at-tention to the theoretial funtion known as the variogram (Diggle, 1990).The latter is often used to desribe the underlying ovariane struture in lon-gitudinal data. In addition, the inferene method/proedures are explained,this time with mention of the (empirial) sample variogram. Setion 6.3 in-terprets and formalizes distortion from the longitudinal data model. This isfollowed by the methodology for suitable inferential performane assessmentin setion 6.4 (in�uene and preferene graphs). As in hapter 5, a simulationstudy illustrates some �nite-sample onsequenes under orresponding dataontamination and model deviation for the real-world desriptions of interest(� 6.5). Some �nal remarks lose the hapter (� 6.6).6.2 The model and inferene proedures6.2.1 The model and model frameworkA real-world situation in the ontext of longitudinal data analysis is mostommonly a phenomenon whih hanges over time. This ould for instanebe the varying protein ontent of ows milk under a ertain diet (see example5 in hapter 3), or it might be the progressing health status of a patient undera partiular medial treatment. The aspet of interest is often primarilythe average development of the phenomenon over time, usually allowing fordependene on some ovariate information. Aording to Diggle et al. (1995)this is alled the mean response pro�le.A seond aspet of interest beomes obvious when onsidering the typialstruture of longitudinal data: The outome of every sampling unit (e.g. a



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 122ow) onsists of a sequene of univariate observations with additionalovariate information (e.g. measurements of the protein ontent under aertain diet). In other words, eah of the m data units is assoiated witha partiular time series of length ni ≥ 1, i = 1, . . . , m. This is to beseen in ontrast to the `one observation per data unit' situation with non-longitudinal, i.e. ross-setional data (Diggle et al., 1995). Chapter 5 gave anexample of the latter. The longitudinal harater of a study implies a furtheraspet of interest whih is the orrelation struture of measurements withindata units.Depending on the sienti� problem and the dimension of the data, eitheraspet of interest may be more important than the other (though theorrelation struture is generally pertinent for inferene purposes, see later).For the study and omparison of treatment e�ets the number of data units
m is usually muh greater than the number of observations per unit n, andthe mean response pro�le is of prime interest. Other examples exist wheremore emphasis is laid upon the estimation and predition of single responsedevelopments suh as individual AIDS-disease progressions, and where n isomparatively large. In these ases the orrelation struture within dataunits aquires priority (Diggle et al., 1995, p. 20).Model de�nition Taking into aount available ovariate information adata-generating proess for the above problem is represented by a generallinear model with orrelated random errors as follows (Diggle et al., 1995):The N potential observations are summarized into m independent randomvetors Y i = (Yi1, . . . , Yini

)′ orresponding to the m data units and ontinu-ously measured at time points ti = (ti1, . . . , tini
)′ with ∑m

i=1 ni = N . Then
Y i = Xiβ + ǫi, (6.1)where Xi is a (ni × p)�matrix of explanatory variables, β = (β1, . . . , βp)

′ is avetor of oe�ients, and ǫi = (ǫi1, . . . , ǫini
)′ is a vetor of random errors.



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 123For our purposes the model is further spei�ed by all Y i's measured at thesame set of equally spaed time points ti = (1, . . . , n)′ with ni = n, and bytaking Xi either as



1 0 0 1... ... ... ...
1 0 0 n


 ,




0 1 0 1... ... ... ...
0 1 0 n


 , or 



0 0 1 1... ... ... ...
0 0 1 n


 . (6.2)Thus, the model inorporates three `treatment' e�ets and a linear timetrend, and is based on a balaned data struture. A simpler formulationfor this mean model is the following:E(response in g-th treatment group at time t) = b0g + b1 · t, (6.3)where g = 1, 2, 3 and t = 1, . . . , n. Referring to Diggle (1988) and Diggle etal. (1995, p. 87) the random errors will moreover separately be expressed as

ǫij = Ui +Wi(j) + Zij, (6.4)with i = 1, . . . , m and j = 1, . . . , n and where
• Ui are i.i.d. like N(0, ν2) representing random e�ets.
• {Wi(t) : t ∈ R} are independent stationary Gaussian proesses repre-senting the serial orrelation within eah data unit. That is, Wi(t) ismultivariate normal distributed with E [Wi(t)] = 0 andCov[Wi(t),Wi(s)

]
= σ2 · ρW (|t− s|).The autoorrelation funtion ρW (·) shall be of the form

ρW (u) = exp(−φu), u ≥ 0. (6.5)
• Zij are i.i.d. like N(0, τ 2) representing measurement errors.The model, as a whole, is of parametri nature and inludes the meanparameters β = (β1, . . . , β4)

′ = (b01, b02, b03, b1)
′ in the strutural part and



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 124the variane parameters ν, σ, φ, and τ in the distributional part. Theseond group of parameters will be transformed in the next setion in orderto formalize distortion. Note that, exept for the independene betweenresponses Y i (or errors ǫi) of eah data unit, all model aspets desribefeatures within data units.Model interpretation The simple mean model in (6.3) suggests parallelpro�les of the mean responses in the three treatment groups and orrespondsto the ase t ≤ 3 of a more omplex model used in Diggle et al. (1995, p. 96).The error model in (6.4) summarizes the random variation whih annot beexplained by the deterministi mean model. It requires that the errors areomposed (in an additive way) of the omponents denoted as random e�ets,serial orrelation, and measurement errors (Diggle et al., 1995, p. 79f).
• The random e�ets represented by Ui desribe variation among levelsof individual response pro�les.
• The serial orrelation represented by {Wi(t)} refers to the orrelationamong pairs of observations of the same sampling unit whih againdepends on the interval length h between orresponding measurementtimes. With ρW (·) as in (6.5) and equally spaed disrete time pointsfor all sampling units, the serial orrelation of the present model followsa �rst-order autoregressive proess (Diggle, 1988, p. 961) and beomesweaker with inreasing h.
• The measurement errors represented by Zij desribe the remainingrandom variation for eah single Yij. Aording to Diggle and o-authors this kind of variation is due to (real) measurement errors, i.e.�repeated measurements arbitrarily lose in time� whih �are sometimesimperfetly orrelated� (Diggle, 1988, p. 960). However, it ould alsoaddress `extra' variation in form of interations between the individualunit and the time of measurement, not aounted for in the mean



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 125model. This inonsisteny motivates to relate the model omponent
Zij to distortion (see later).The above ombination of mean and error model shall stand for REALITY,DATA, and ASSUMPTIONS aordingly. Note one again that parametervalues are onsidered to be �xed for the two former models and remainpending with the latter. In terms of REALITY and DATA the mean modelis most ertainly a simpli�ation of the respetive `real models', sine manymore fators may in�uene the theoretially true as well as really observedresponses. The error model onsequently overs all the unexplained in�uenefators (see also the disussion in � 3.3.1.3). The ASSUMPTIONS, �nally,are meant to be a simpli�ation of the truth `by default'.In the ontext of longitudinal data analysis the error model is usually referredto as model for the ovariane/orrelation struture (Diggle et al., 1995).This is beause it is the non-trivial ovariane struture of the responses(or errors) whih distinguishes the overall model from a lassial linearmodel with independent errors. While equation (6.4) formally de�nes suh aovariane model, a more illustrative desription of it an further be providedby the orresponding variogram (see below).6.2.1.1 The variogramThe variogram of a general stohasti proess {S(t) : t ∈ R} is a funtionwhih desribes the expeted assoiation among subsequent realizations ofthe proess. It is de�ned asVS(u) =

1

2
· E{

[S(t)− S(t− u)]2
}
, u ≥ 0.If {S(t)} is stationary it holds furtherVS(u) = γ(0) · [1− ρS(u)]

= γ(0)− γ(u), u ≥ 0, (6.6)



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 126where γ(u) = γS(u) = Cov [S(t), S(t− u)] is the autoovariane funtionand ρS(u) = γ(u)/γ(0) the autoorrelation funtion of the proess (Diggleet al., 1995, p. 51). Note that the variogram originates in zero and afterwardsinreases with dereasing orrelation (not neessarily ontinuously).For the spei� error model in (6.4) it isVar(ǫij) = ν2 + σ2 + τ 2 and (6.7)Cov(ǫij , ǫik) = Var(Ui) + Cov [Wi(j),Wi(k)]

= ν2 + σ2 · ρW (|j − k|) (6.8)and hene for the autoovariane funtion of the errors ǫij seen as a stationarystohasti proess {ǫij} = {ǫ(tij)} = {ǫ(j)}

γǫ(u) =




ν2 + σ2 + τ 2 for u = 0

ν2 + σ2 · ρW (u) for u > 0.With (6.6) this leads to the following variogram for the error-proessharaterizing the spei� ovariane struture underlying in (6.4)Vǫ(u) =




0 for u = 0

τ 2 + σ2 · [1− ρW (u)] for u > 0.
(6.9)Note that the above formulation of Vǫ(·) di�ers slightly from the one in Diggleet al. (1995, p. 87). The authors ignored the ase u = 0.Overall, the variogram Vǫ(·) is important for inferene purposes: Sine

lim
u→0

Vǫ(u) = τ 2 (6.10)and with limu→∞ ρW (u) = 0 also
lim
u→∞

Vǫ(u) = τ 2 + σ2 (6.11)initial estimates for the (squared) variane parameters an be derived byestimating Vǫ(·) and the orresponding proess variane ν2 + τ 2 + σ2. Thenext subsetion will desribe the respetive inferene problem as a whole.



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 1276.2.2 Estimators and inferene frameworkThe present hapter onsiders an inferene framework whih involves longitu-dinal model assumptions of the type introdued above (with or without Zij),and whih simultaneously is aimed at the following two aspets of interest :
• the treatment spei�mean response pro�les parametrized in (6.3), and
• the variogram representing the (same) orrelation struture within eahdata unit, parametrized in (6.9).Both aspets of interest are desribed by a ombination of relevant parameterestimates with assumed mean model or variogram formulation, respetively.Note that the latter has been preferred to the atual error model expressionfor illustrative purposes. In the simulation study to follow, the so alled re-strited maximum-likelihood (REML) method will be used for the estimationof the unknown model parameters. Diggle et al. (1995, p. 64� and 92f) givea detailed desription of the overall proedure, so here just a brief outlinewill be presented.6.2.2.1 The REML-methodThe REML-method is motivated by the fat that the ordinary maximum-likelihood (ML) estimators for the variane parameters may be biased,espeially when the length p of the parameter vetor β is long. Moreover,the ML-estimators may fail to be onsistent, when a wrong form for X isassumed. Thus, following the general reommendation of Diggle et al. (1995)the simulation study in this hapter will be based on the REML-method,even though the mean model for the orresponding arti�ial reality/data-situations is always onsidered to be orret.Overall, �the REML estimator is de�ned as a maximum likelihood estimatorbased on a linearly transformed set of data Y ∗ = AY suh that thedistribution of Y ∗ does not depend on β� (Diggle et al., 1995, p. 65).



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 128While the matrix A is not expliitly involved in the atual REML-estimationproedure, the following steps need to be implemented (Diggle, 1988; Diggleet al., 1995, p. 64� and 92).1. transform the variane parameters into σ2 and α = (τ 2/σ2, ν2/σ2, φ)′,2. for given α, evaluate the ML-estimator for β and the REML-estimatorfor σ2 based on RSS(α)/(nm−p), where RSS are the resulting residualsum of squares,3. determine the REML-estimator of α through maximization of the or-responding redued log-likelihood based on the previous two estimates,4. repeat step 2. given the REML-estimate of α.A suitable algorithm for the above REML-estimation proedure is imple-mented in the oswald software (Smith et al., 1996). It requires the pro-vision of initial estimates for ν2, τ 2, and φ whih an be derived from thesample variogram, see below. Note that the parametri variogram-estimateV̂ǫ(·), whih will �nally desribe the orresponding aspet of interest, is basedon the variane estimates obtained by the REML-method and the assumedvariogram formulation.6.2.2.2 The sample variogram and initial variane estimatorsThe sample variogram is � the empirial ounterpart of the variogram� (Diggleet al., 1995, p. 51). When measurements are taken at the same set of timepoints t = 1, . . . , n for eah sampling unit as in the present example, thesample variogram is essentially unbiased and an be alulated as follows:Ṽǫ(u) =
1

2 ·m · |Iu|

m∑

i=1

∑

(j,k)∈Iu

(rij − rik)
2, u = 1, . . . , nwhere Iu =

{
(j, k) ∈ {1, . . . , n}2 : | j−k| = u

}, and where rij are the residuals�obtained by subtrating from eah measurement the ordinary least-squares



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 129estimate of the orresponding mean response� assuming a saturated groups-by-times model (Diggle et al., 1995, p. 51 and 91). Note that in ontrast tothe REML-method, the ordinary least-squares method ignores the underlyingorrelation struture.Initial estimates of the squared variane parameters ν2 and τ 2 an now bederived from the (smoothed) sample variogram by taking into aount (6.10)and (6.11) as well as the estimated variane of the residual proess as anestimate for ν2 + τ 2 + σ2. Together with a rough guess for φ (hoose alarger value, if Ṽǫ(·) levels-o� quikly), the initial estimates are employed tostart the orresponding REML-estimation algorithm for the unknown modelparameters (Smith et al., 1996, p. 24f).6.3 A situation of distortionTo fous the problem, distortion will a�et the error model in (6.4), and inpartiular the random variables Zij whih have been denoted as measurementerrors by Diggle et al. (1995). Sine the error model desribes the orrelationstruture between measurements from the same sampling unit and henemodel aspets within data units, again both types of distortion, dataontamination (type ➀) and model deviation (type ➁), are in priniplepossible.By inluding Zij into the model assumptions, Diggle and o-authors seem tofollow the traditional approah of formulating the ASSUMPTIONS aordingto the DATA (ompare with � 3.2). This is beause measurement errors intheir literal meaning are assoiated with the e�etive data-generating proess(� 3.3.1.3). An obvious question is now, whether one really should do so inase the Zij are indeed measurement errors and re�et a situation of dataontamination. In example 5 (see hapter 3) the measurement errors are realfor instane, beause the protein ontent of ows milk is measured by �anassay tehnique whih itself introdues a omponent of random variation�



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 130(Diggle et al., 1995, p. 80). Still, the Zij ould also express extra randomvariation whih in fat exists in the real-world situation under study. Forexample, there might be a patient-spei� reation to the treatment at apartiular time t. Thus, dropping the Zij from the model assumptions wouldresult in a situation of model deviation.In order to address the issue of REML-performane under the abovekind of (inreasing) distortion, orresponding model disagreement betweenREALITY, DATA, and ASSUMPTIONS needs to be formalized. Again, thisan be done by introduing a suitable notion of model disrepany.6.3.1 Model disrepanyThe longitudinal model without measurement error omponent Zij will betaken as the (non-distorted) referene model. Note that this orrelationstruture has already been used for data-analysis purposes in Pantula andPollok (1985). Disrepany from the (overall) model ould intuitively beexpressed by the variane of Zij denoted as τ 2. However, this hoie showsthe disadvantage of τ 2 ranging from zero to in�nity. Instead, it seems to bereasonable to use the transformation α = τ 2/(ν2 + σ2 + τ 2) as disrepanymagnitude. The latter is element of [0, 1] and an easily be interpreted as theproportion of proess variability whih is not explained by serial orrelationand random e�ets. The variane parameters ν, σ, τ , and φ will thereforebe re-parametrized as follows:
α =

τ 2

(ν2 + σ2 + τ 2)
(6.12)and in addition

ξ1 = ν2 + σ2 + τ 2, ξ2 =
ν2

σ2
, and φ = φ,where ξ1 represents the proess variane and ξ2 the random e�et varianeas a proportion of the serial omponent variane. Note that for α = 1, the



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 131original parametrisation with ν = σ = 0 must be used sine ξ2 annot bede�ned.A disrepany magnitude of α = 0 represents the referene model withoutmeasurement errors, for whih the orresponding variogram redues toVǫ(u) =




0 for u = 0

σ2 · [1− ρW (u)] for u > 0.
(6.13)As suh, it is a sub-model of the original model in (6.3) and (6.4). In terms ofthe ASSUMPTIONS, where parameter values are not �xed, the latter againis assoiated with α = + (ompare with � 4.2.2). The maximum disrepanyof α = 1, at last, orresponds to the situation where the Zij fully explain therandom errors ǫij and thus imply a lassial linear model with independenterrors.The following setion will speify the inferential performane assessment forthe present model and inferene framework, in partiular, by allowing for theabove kind of distortion.6.4 Inferential performane assessmentIn ontrast to hapter 5 where a single estimator (ACL-estimator) was usedto entirely desribe the only aspet of interest (survival funtion SX), theinferential irumstanes in the urrent example are more omplex. Here, onean study the two ompound urve estimators for the mean response pro�leand the variogram (the atual aspets of interest), but also the individualestimators for the model parameters, eah on its own. Hene, a variety ofperformane statistis addressing the attribute loseness in terms of loation(see � 2.4.2) will be de�ned in the following. As before, they are generallydenoted as π (R = α1, D = α2 |A = α3, ∆), where the disrepanymagnitudes α1, α2, and α3 are to be spei�ed in onnetion with suitablein�uene and preferene graphs (see later).



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 1326.4.1 Performane statistisVariogram Global as well as loal performane assessment will be arriedout for the variogram estimator V̂ǫ(·) seen as a �nite-sample statisti: As theaverage squared distane between the true and the estimated variogram
πd̄ =

1

n

n∑

j=1

[Vǫ(j)− V̂ǫ(j)
]2

, (6.14)and as the squared distane between the true and estimated variogram at theloal measurement time t = j

πd(j) =
[Vǫ(j)− V̂ǫ(j)

]2
.While the true variogram refers to REALITY, the estimated variogram isbased on the assumed variogram formulation and reeives ontributions fromthe orresponding variane estimates (determined from a DATA-generatedsample).Mean response Similar, a global performane statisti for the treatment-spei� mean response pro�les E(Yg(·)) will be de�ned as

πY (g) =
1

n

n∑

j=1

[E(Yg(j))− Ŷg(j)
]2

,whih is the average squared distane between the true and estimated meanresponse, both for treatment group g. Referene to REALITY, DATA, andASSUMPTIONS is provided as above.Variane parameters Performane statistis for the individual varianeparameters are �nally given by
πσ = (σ − σ̂)2, πν = (ν − ν̂)2 and πφ = (φ− φ̂)2.Note that unlike before, the ASSUMPTIONS are not diretly involved.



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 1336.4.2 In�uene and preferene graphsOne again, the methodology of in�uene and preferene graphs will be usedto study respetive inferential performane under inreasing distortion. Thistime, however, the latter may be based either on di�erenes or on quotients,in order to assess performane in absolute and relative terms (see � 4.3).De�nitions will generally be formulated for both data ontamination andmodel deviation. Still, it will not be possible to distinguish performane ofthe mean response estimator Ŷg(·) for the two ases, sine distortion doesnot relate to the mean model (see � 4.2.1). The �interpretation� of the meanparameters �is essentially independent of the orrelation struture� (Diggleet al., 1995, p. 131). The same also applies to the variane parameter φwhih an be expressed independently from the disrepany magnitude α(see � 6.3.1).In�uene graphs study performane of the various REML-estimators interms of potential hange under inreasing distortion. For data ontamina-tion (type ➀ distortion) they address the question
→ What di�erene does it make, when the data ontain more and moremeasurement errors, while the analysis is still based on the assumptionsof the sub-model (A = 0)?They are denoted as

gDi (α) =





Eα

[
π(R = 0, D = α |A = 0,REML)]

− or :E 0

[
π(R = 0, D = 0 |A = 0,REML)],where π stands for one of the previously de�ned performane statistis, αrepresents a disrepany magnitude or the resulting amount of distortion,respetively, and the symbol − or : stands for one of the two



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 134arithmeti operations indiated. Again, the expeted values are based ona DATA-model.In�uene graphs for type ➁ model deviation address the question
→ What di�erene does it make, when the additional (true) randomvariation inreases while still being ignored in the model assumptions?They are denoted as

gMi (α) =





Eα

[
π(R = α,D = α |A = 0,REML)]

− or :E 0

[
π(R = 0, D = 0 |A = 0,REML)].On the whole, the in�uene graphs inrease when the performane of theorresponding REML-estimator deteriorates under growing distortion. Byde�nition, they originate with the value zero or one.Preferene graphs in the present example will ompare REML-perfor-mane under the two assumptions A = 0 and A = +, whih either ignoreor inlude the measurement errors Zij. They orrespond to the preferenegraphs introdued in (4.5) and (4.6). For data ontamination they addressthe question

→ Should one ignore measurement errors (of a ertain amount) in the dataor should one inlude them into the model assumptions?They are denoted as
gDp (α) =





Eα

[
π(R = 0, D = α |A = 0,REML)

− or :

π(R = 0, D = α |A = +,REML)].Preferene graphs for type ➁ model deviation address the question
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→ Should one take into aount the true extra random variation (of aertain amount) when formulating the assumptions or not?They are denoted as

gMp (α) =





Eα

[
π(R = α,D = α |A = 0,REML)

− or :

π(R = α,D = α |A = +,REML)].Overall, absolute preferene values below 0 (or 1) indiate advantages for
A = 0, and they signify a preferene for A = + when resulting above 0 (or1). In the simulation study below, this rule will obviously be weakened dueto the inauray assoiated with averaging �nite sample values.6.5 Simulation studyThe problem of `measurement errors in the data' will now be onsidered froma �nite sample point of view via simulation. Should model assumptions takeinto aount measurement errors if the latter indeed imply wrong data? Whathappens in the ase when they are ignored while being a orret re�etionof the real-world? These and other questions are addressed by means ofin�uene and preferene graphs whih study inferential performane underinreasing distortion. For the present example they have been spei�ed inthe preeding setion. One again, the distintion of data ontamination andtype ➁ model deviation is of entral importane. As before the two situationsare expressed by orresponding model disagreement between REALITY,DATA, and ASSUMPTIONS using a partiular notion of model disrepany(� 6.3).The simulation study is arried out in S-PLUS (version 3.4, release 1) ona Sun-ompatible work station. In partiular it uses the oswald software(version 2.6) written for the S environment by Smith et al. (1996).



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 1366.5.1 Set-up6.5.1.1 Problems addressedPrimary questions Longitudinal data are explained by the sub-modelwhih involves no measurement error omponent, i.e. A = 0, while (inreas-ing) random variation of the kind Zij is present in the sample: How is thestatistial analysis for the orrelation struture, based on REML-estimation,in�uened when this kind of distortion re�ets
• growing data ontamination, i.e. the random variation is due tomeasurement errors?
• growing model deviation, i.e. the random variation is a true re�etionof the unknown real-world situation?Is there a di�erene between the in�uene under data ontamination andmodel deviation? When is it sensible to inlude Zij into the modelassumptions and when not?Further details of interest
• What e�et do other elements of the model aquire, in partiular� the length n of eah measurement series (data unit),� the total number of data units m,� the values of the (transformed) variane parameters ξ2 and φ,whih are �xed in REALITY and DATA?When do they work against and when do they worsen the (bad) e�etsof distortion?
• Do ertain regions of the variogram-estimator su�er more underdistortion than others?
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• How muh is the estimation of the mean-response and the varianeparameter φ in�uened under inreasing disrepany between DATAand ASSUMPTIONS? Note, a distintion between performane underdata ontamination and model deviation is not possible. When is itimportant that data and model assumptions orrespond to eah otherwith respet to Zij?6.5.1.2 Program organization1. Simulation of B data sets aording to an α-distorted DATA-model:Eah data set is a (m × n)�matrix of observations, where the nmeasurements of a single sampling unit orrespond to one row of thematrix.

• Choose ξ1 and ξ2 and evaluate the original variane parameters ν,
σ, and τ . For α = 1 the values of ν and σ always result to zero,while τ is determined by ξ1. In addition, hoose φ.

• Simulate B single (m× n)�data matries Y aording to
Y =




(X1 · β)′...
(Xm · β)′


+ ǫ,where Xi is one of the (n × 4)�matries of explanatory variablesin (6.2), β is a �xed parameter vetor of length 4, and ǫ is the

(m× n)�matrix of random errors with omponents ǫij as in (6.4).The latter is derived by
ǫ =




Z ′
1...

Z ′
m


 ·W, (6.15)whereZi are independent olumn-vetors of n independentN(0, 1)-distributed random variables, eah, and where W is an upper-triangular (n× n)�matrix of oe�ients (see Appendix A.2).



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 1382. Evaluation of the true variogram aording to (6.9) under modeldeviation (R = α, D = α, and A = 0) and aording to (6.13) underdata ontamination (R = 0, D = α, and A = 0).3. Evaluation of the treatment spei� true mean response pro�les aord-ing to (6.3) using the pre-assigned mean parameters b01, b02, b03 and b1.Note that no distintion is made between the two types of distortion,sine they do not a�et the mean model.4. Determination of initial estimates for ν2 and τ 2 by
• �tting a saturated groups-by-times model to eah data set usingthe ordinary least-squares method (oswald-funtion �olsres�),
• evaluating a sample variogram and estimating the proess variane
ν2+τ 2+σ2 from eah resulting set of residuals (oswald-funtion�variogram�), and �nally

• deriving the estimates aording to (6.10) and (6.11).The `initial estimate' for φ shall always be the true, in a pratialsituation unknown, value whih has been hosen in the beginning.5. Estimation of the mean and variane parameters via the REML-method(oswald-funtion �pmid�): For eah (α-distorted) data set theproedure is applied twie, �rst without the assumption of measurementerrors (A = 0), i.e. the starting value for τ 2 equals zero, and seondwith the assumption of measurement errors (A = +), i.e. the startingvalue for τ 2 is the initial estimate determined in the previous step. Thestarting values for ν2 and φ are the same in both ases.6. Estimation of the variogram and the treatment spei� mean responsepro�les via substitution of the above REML-estimates into the assumedvariogram and mean response formula, respetively. Note that for eahdata set one obtains estimates based on A = 0 as well as A = +.



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 1397. Evaluation of individual in�uene and preferene values gi(α) and
gp(α).

• Choose one of the performane statistis in � 6.4.1 and the typeof distortion (data ontamination or type ➁ model deviation).
• With R = 0 for data ontamination and R = α for modeldeviation, determine for eah simulated sample

π(α) = π(R,D = α |A = 0,REML),and
π∗
d(α) = π(R,D = α |A = 0,REML)

− π(R,D = α |A = +,REML)or
π∗
q (α) = π(R,D = α |A = 0,REML)

/
π(R,D = α |A = +,REML).

• Take the average of π(α) over the B simulated samples andsubtrat from it (or divide by) the orresponding average π(0).The result serves as ontribution for the in�uene graph based ondi�erenes (or based on quotients).
• Take the average of π∗

d(α) over the B simulated samples asontribution for the preferene graph based on di�erenes, andtake the median of π∗
q (α) when the preferene graph is based onquotients.8. Assessment of the sample-based variability for eah of the aboveontributions:

• Evaluate the orresponding `one standard-deviation limit' over the
B simulated samples by adding and subtrating the estimatedvalue of� √Varα [π(α)] for in�uene graphs based on di�erenes,



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 140� √Varα [π(α)]/E0 [π(0)] for in�uene graphs based on quo-tients.� √Varα [π∗
d(α)] for preferene graphs based on di�erenes,

• Evaluate the orresponding (empirial) interquartile range of
π∗
q (α) over the B simulated samples for preferene graphs basedon quotients.9. For the overall in�uene and preferene graphs the previous steps arerepeated with di�erent values of α.6.5.1.3 Design

• The parameters of the mean model in DATA and REALITY are set to
β = (β1, . . . , β4)

′ = (b01, b02, b03, b1)
′ = (1, 3, 5, 0.3)′.

• The transformed parameters of the error model (orrelation struture)in DATA and REALITY are hosen as� ξ1 = 1 standardizing of the variane of the error proess.� ξ2 ∈ {0.1, 1, 10} providing some possibilities for the proportion ofthe random e�et and serial omponent variane.� φ ∈ {0.1, 0.5, 1} overing stronger as well as weaker autoorrela-tion between observations of the same data unit.
• The disrepany magnitude of DATA, and under model deviation alsoof REALITY, varies aording to α = 0, 0.1, . . . , 0.9, 1. This likewiseapplies to the amount of distortion when onsidering the model tripletas a whole.
• The data is generated aording to� B = 100, number of simulated data sets, and



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 141� (m,n) ∈ {(48, 6), (24, 6), (12, 6), (6, 6), (6, 12), (6, 24), (6, 48)} forthe onsideration of growing numbers of subjets with �xed num-bers of measurements and vie versa.or (m,n) ∈ {(6, 3), (12, 3), (24, 3)} for ross-over like situations witha very small number of measurements,or (m,n) ∈ {(6, 6), (12, 12), (24, 24)} for balaned samples of inreas-ing size.Eah data set has m/3 data units per treatment group.6.5.2 ResultsConsiderations will begin with a balaned `starting situation' whih isfollowed by respetive studies under inreasing data dimension (m,n) andunder di�erent values for ξ2 and φ.6.5.2.1 Starting situationA �rst analysis will be based on data with (m,n) = (12, 12), ξ1 = ξ2 = 1,and φ = 0.5. See the Figures C.1 � C.4 in Appendix C for simulated meanresponses and sample variograms.Parametri variogram estimates derived from α-distorted samples and basedon A = 0 and A = + are shown in Figures 6.1, 6.3, and 6.5. They an beompared with the orresponding true variogram urves under R = 0 and
R = α. Note the following representations:

−◦−: estimated variogram with A = 0,
−•−: estimated variogram with A = +,
····· : true variogram under R = 0, and
−−−: true variogram under R = α.
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Figure 6.1: Variogram estimates un-der no distortion α = 0. 2 4 6 8 10 12
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Figure 6.2: Mean response estimates(group 1) under no distortion α = 0.
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Figure 6.3: Variogram estimates un-der distortion α = 0.5. 2 4 6 8 10 12
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Figure 6.4: Mean response estimates(group 1) under distortion α = 0.5.
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Figure 6.5: Variogram estimates un-der distortion α = 1. 2 4 6 8 10 12
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Figure 6.6: Mean response estimates(group 1) under distortion α = 1.



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 143Consideration of estimates based on A = 0 indiates the following: Undergrowing data ontamination (R = 0) the variogram tends to be moreand more overestimated, while the origin remains without bias. Undergrowing model deviation (R = α) it is overestimated, too, but a trend doesnot beome obvious. The origin, in this ase, is learly underestimated.Consideration of estimates based on A = + suggest that under growing dataontamination (R = 0) the variogram is inreasingly overestimated, and thison the whole time sale. Similarly, when R = α (no model deviation!) itseems to be (slightly) overestimated, again on the whole time sale.Respetive estimates of the mean response in treatment group 1 are shownin Figures 6.2, 6.4, and 6.6. Performane is idential under both types ofdistortion (by default), and seems to be very similar also under the di�erentamounts of distortion (see the Figures C.5 � C.10 in Appendix C for group2 and 3).The above onlusions, eah based on a single simulated sample, an onlygive �rst insights to the problem. The study of in�uene and preferenegraphs will now present more reliable answers using repeated simulations.In�uene Figure 6.7 exempli�es an in�uene graph based on di�erenes(D-in�uene graph) for the parametri variogram estimator V̂ǫ(·) under dataontamination. The two −+−lines represent the one standard-deviationbounds. The bad in�uene on the estimator performane beomes quiteobvious. Indeed, a hange for the worse of fator 49 at α = 1 is indiated bythe respetive in�uene graph based on quotients (no Figure). No in�uene,however, beomes apparent under model deviation (Figure 6.8). Note thatthe statisti πd̄ studies (global) performane from time t = 1 onwards.Behaviour down to the origin (t = 0) is being negleted.Pointwise performane onsiderations for V̂ǫ(·) based on πd(j) will providefurther details: Under data ontamination, maximum di�erenes in perfor-mane ommene with 0.6 for time t = 1 and derease with 0.3 for t = 7 downto 0.2 for t = 12 (Figures C.11 � C.13 in Appendix C). This orresponds
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Figure 6.7: D-in�uene graph fordata ontamination based on πd̄. 0.0 0.2 0.4 0.6 0.8 1.0
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Figure 6.8: D-in�uene graph formodel deviation based on πd̄.
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Figure 6.9: D-in�uene graph fordata ontamination based on πσ. 0.0 0.2 0.4 0.6 0.8 1.0
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Figure 6.10: D-in�uene graph formodel deviation based on πσ.
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Figure 6.11: D-in�uene graph basedon πφ. 0.0 0.2 0.4 0.6 0.8 1.0
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Figure 6.12: D-in�uene graph basedon πY (1).
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Figure 6.13: Q-preferene graph fordata ontamination based on πd̄. 0.0 0.2 0.4 0.6 0.8 1.0
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Figure 6.14: Q-preferene graph formodel deviation based on πd̄.
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Figure 6.15: Q-preferene graph fordata ontamination based on πσ. 0.0 0.2 0.4 0.6 0.8 1.0
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Figure 6.16: Q-preferene graph formodel deviation based on πσ.
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Figure 6.17: Q-preferene graphbased on πφ. 0.0 0.2 0.4 0.6 0.8 1.0
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Figure 6.18: Q-preferene graphbased on πY (1).



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 146to maximum fators of degradation of about 980, 30, and 20, as indiatedby respetive in�uene graphs based on quotients (no Figure). Thus, loal(negative) in�uene on the variogram estimator dereases with larger timesof measurement. Model deviation shows the same phenomenon. However,any in�uene very soon beomes negligible (Figure C.14 in Appendix C).Note again that performane at the origin has not been onsidered.Under A = 0 the variogram estimator V̂ǫ(·) is omposed of the varianeestimators σ̂ and φ̂ aording to (6.13). Hene: Is the performane of the twoindividual estimators a�eted in a similar way? Figures 6.9 and 6.10 give thein�uene graphs for σ̂ (based on di�erenes). The estimator performane isbadly in�uened under both types of distortion, though muh more seriouslyunder model deviation. The degradation reahes fators up to 15 underinreasing data ontamination, and even up to 173(!) under model deviation(shown by respetive in�uene graphs based on quotients, no Figure). Thelatter beomes visible through the abrupt `jump' of the variogram estimatebased on A = 0 (see the −◦−line in Figure 6.5). Similarly, the estimator φ̂seems to perform worse (Figure 6.11). The high variability of the in�uenevalues (as indiated by the one-standard deviation bounds), however, makesthe in�uene less lear.The parameter ν does not ontribute to the variogram. Still, it is involvedin the REML-estimation algorithm and it is of interest to notify negativein�uene under data ontamination (performane beomes up to 6 times asbad) and slight positive(!) in�uene under model deviation (no Figure).Final attention will be given to the three mean response estimators Ŷg(·),
g = 1, 2, 3. As with φ̂, performane annot be distinguished under dataontamination and model deviation. While an improvement an be seen forthe �rst treatment group up to a fator of 10 (Figure 6.12), no in�uene isapparent for the two other groups (Figures C.15 and C.16 in Appendix C).Preferene In�uene graphs studied the hange in inferential performanewhen using A = 0. Are the more general model assumptions A = + expeted



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 147to improve the real-world desriptions, espeially in ases where A = 0 isnegatively in�uened? Whih assumptions should be preferred under a givensituation of distortion?Figures 6.13 and 6.14 show preferenes graphs for the variogram estimatorV̂ǫ(·). They are based on quotients and use a logarithmi sale for they-axis (Q-preferene graph). Note that variability among the simulatedpreferene values is desribed by interquartile ranges. None of the two graphsan indiate a lear preferene for A = 0 or A = +. Preferene graphsbased on di�erenes on�rm this result (Figures C.17 and C.18 in AppendixC). Pointwise onsiderations of the variogram estimator ome to the sameonlusions, with only one exeption: Prefer A = 0 at measurement time
t = 1 under moderate data ontamination (no Figure).The variane estimator σ̂ shows more distintive results. See Figures 6.15and 6.16 for preferene graphs based on quotients. While A = 0 appears tobe preferable under data ontamination, A = + is expeted to produe betterresults under more serious model deviation, i.e. α > 0.6 (an extremely largepreferene value for α = 1 has been exluded from the seond �gure). Notethat arithmeti di�erenes between performane levels do lead to smootherurves. The estimation of φ seems to give better results under inreasingdistortion given the assumptions A = 0 (Figure 6.17). This is beause theuse of A = + tends to produe extraordinarily large estimates for φ (see thedisussion in the next setion).Performane omparisons of ν̂ and the three mean response estimators donot indiate any partiular preferene (see Figure 6.18 for the �rst treatmentgroup). The results so far are summarized in Tables 6.1 and 6.2. Note that apreferene for A = + with σ̂ under model deviation is only given for α > 0.6.6.5.2.2 Inreasing data dimensionDo the above results hange with di�erent number of data units m and/orobservations n (per data unit)? It remains to be ξ1 = ξ2 = 1 and φ = 0.5.



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 148Table 6.1: In�uene and preferene under data ontamination and modeldeviation (starting situation).data ontamination model deviationin�uene preferene in�uene prefereneV̂ǫ(·) bad no no no
σ̂ bad A = 0 very bad (A = +)
ν̂ bad no slightly good noTable 6.2: In�uene and preferene under distortion not to be distinguished(starting situation). in�uene preferene

φ̂ bad A = 0

Ŷ1(·) good no
Ŷ2(·) no no
Ŷ3(·) no noInreasing m and n: The onsideration of balaned data situations with

(m,n) = (6, 6), (12, 12), (24, 24) indiates the following: While the absolutebad in�uene (di�erenes) remains almost the same, the relative bad in�uene(quotients) inreases learly, both under data ontamination and modeldeviation (see Table 6.3). This also applies to the estimator φ̂, thoughthe in�uene ontinues to be less distint due to the high variability. Thepositive in�uene of ν̂ under model deviation dies out, while it improves forthe estimator Ŷ1(·). The overall preferene pattern does not hange verymuh. Still, there is a preferene for A = 0 with the variogram estimatorunder data ontamination when (m,n) = (6, 6) and onsiderations are basedon quotients. Other loal irregularities might be eliminated if simulating alarger number of samples B (see the disussion in the next setion).



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 149Table 6.3: Maximum in�uene fators for inreasing m and n.data ontamination model deviation
(m,n) (6, 6) (12, 12) (24, 24) (6, 6) (12, 12) (24, 24)V̂ǫ(·) 26 49 169 no in�uene

σ̂ 4 15 78 38 173 890
ν̂ 2 6 30 in�uene dies outInreasing m: The study of n = 6 and m = 6, 12, 24, 48 omes to verysimilar onlusions: The in�uene on inferential performane remains thesame in absolute terms and inreases in relative terms, though to a smallerextent. The preferene pattern does not hange and is the same as in thestarting situation, with a di�erene for the variogram estimator and ν̂: Forsmallerm, the Q-preferene graphs indiate a tendeny to prefer A = 0 underdata ontamination.Also ross-over like situations as represented by n = 3 and m = 6, 12, 24on�rm the overall trends in relative in�uene. However, in�uene fators aregenerally smaller and the high variability leads to less distint results. A learnegative in�uene an only be veri�ed for V̂ǫ(·) under data ontaminationand for σ̂ under model deviation. The preferene behaviour an be desribedas in the previous paragraph.Inreasing n: Simulation results based on data with m = 6 and n =

6, 12, 24, 48 ome again to very similar onlusions: While the absolutein�uene does not hange, the relative in�uene inreases with growing n.This time the latter applies also to positive in�uene. Compared to thebalaned data situations (Table 6.3) the trends are weaker for negative andstronger for positive in�uene. The preferene pattern is idential to the oneobserved in the starting situation.



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 1506.5.2.3 Di�erent values for the variane parametersTaking the starting situation the variane parameters are varied, one at thetime, aording to ξ2 = 0.1, 1, 10 or φ = 0.1, 0.5, 1.Inreasing ξ2: Absolute as well as relative in�uene inreases with agrowing proportion of ν2/σ2 in the DATA-model. This applies to positive aswell as negative in�uene. The relative in�uene of the variogram estimator(under data ontamination) and of σ̂ even appears to explode. Maximumin�uene fators for V̂ǫ(·) under data ontamination are for example: 4, 49,and 4215(!) with ξ2 = 0.1, 1, and 10, respetively. The preferene patternremains unhanged, exept for σ̂. For the latter, preferene hanges to A = +under data ontamination and still beomes more established for A = +under model deviation (ξ2 = 10: prefer A = + already for α > 0.2).Inreasing φ: Note that the serial orrelation dereases with inreasingparameter value φ. This seems to lead to inreasing (relative) in�uene for
σ̂, ν̂ (data ontamination), and φ̂, and to dereasing in�uene (absolute andrelative) for the variogram estimator, the mean response estimator Ŷ1(·),and ν̂ (model deviation). Espeially the results for V̂ǫ(·) indiate that theunderlying trends should not be onsidered to be linear. The preferenepattern remains unhanged.6.5.3 DisussionThe main onlusion of hapter 5 an also be drawn for the present study:When distortion is related to the estimand, inferential performane (interms of loation-loseness) is di�erent under data ontamination and modeldeviation. The variogram estimator V̂ǫ(·) su�ers bad in�uene under dataontamination and no in�uene under model deviation. Still, no overallpreferene for either of the assumptions A = 0 or A = + beomes obvious



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 151(though there ould be advantages for A = 0 under data ontaminationwhen n is small). This suggests that both approahes perform rather data-dependently and use less information from the model assumptions (theopposite has been onluded for the ACL-estimator in hapter 5).Based on A = 0 the variogram estimate starts in the origin. With growingdisrepany magnitude α in DATA, it then tends to die out at a level whihis inreasingly high (see Figures 6.1, 6.3, and 6.5). This is related to thefollowing fats (keeping in mind (6.10) and (6.11)):
• ν̂ seems to be mainly data-driven, i.e. the estimates are small when
α in DATA is large. This leads to bad performane of ν̂ under dataontamination and good performane under model deviation.

• Sine τ 2 is set to zero in the REML-algorithm, the latter tries to expressthe proess variane ν2+σ2+τ 2 with the remaining parameters ν2 and
σ2. As a onsequene, the estimate for σ tends to (strongly) inreasewith larger α in DATA. Espeially under model deviation (R = α) thisleads to bad performane of σ̂, sine the true σ is small.Consider also the true variogram urves. While the level-o� value τ 2 + σ2 ofthe true variogram is moderate with respet to data ontamination (R = 0,i.e. τ = 0), it onverges to the overall proess variane with inreasing

α when referring to model deviation (R = α). The on�it between apotential variogram estimate based on A = 0 and the true variogram undergrowing data ontamination (and usually not under growing model deviation)beomes understandable.The above on�it under data ontamination beomes more serious whenthe true variogram dies out at a level σ2 whih gets loser to zero. Thisis the ase for inreasing ξ2 = ν2/σ2 (independently from α). A similare�et, but to a muh smaller extent, seems to be produed with dereasingparameter φ. The true variogram levels-o� more slowly and remains belowthe level σ2 for a longer time. However, one an imagine that this trend in



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 152in�uene beomes soon negligible in the opposite diretion. This is due tothe exponential struture of the autoorrelation funtion ρW (·) in (6.5) andthe fat that performane assessment for the variogram estimator starts at
t = 1 only.Performane of the variogram estimator, for the same reasons, is only littlea�eted by the inreasing overestimation of φ. Large estimates of φ (upto a value of about 30 when α = 1 and estimation is based on A = 0)very soon loose their weight over time t. The phenomenon beomes evenmore important with respet to the assumptions A = +. Here, the REML-algorithm more and more often produes extremely large estimates for φ (ofaround 10e20!) under inreasing distortion (presumably beause of the �xedstarting value). Still, the two estimated variogram urves for A = 0 and
A = + tend to be similar beyond t = 1. Huge estimates of φ under A = +,nevertheless, seem to be (partly) responsible for the preferene pattern of σ̂:Given the former, estimates of σ are lose to zero. This is of advantage for σ̂when α in REALITY gets large and the true σ tends to be small (preferenefor A = + under more serious model deviation) and also shows when thetrue σ dereases with larger ξ2.Considerations under growing data dimension (m,n) indiate that badin�uene (if present) inreases in relative terms, but remains the same inabsolute terms. In these ases distortion seems to have an additive e�etindependently from the data dimension. Hene, inferential performane anbe expressed as v0+∆(α) where v0 refers to the ideal situation of no distortionand onverges to zero for n,m → ∞ (assuming asymptoti unbiasedness at
α = 0), and where ∆(α) > 0 is independent of (m,n). Relative positivein�uene may however inrease or derease, sine the orresponding additivee�et ∆∗(α) < 0, if it exists, is dependent on (m,n) due to |∆∗(α)| ≤ v0.The global performane statisti πd̄ neglets urve-segments before time
t = 1. This, obviously has a great impat on performane desriptions ofthe variogram estimator (loal onsiderations indiated highest in�uene forsmall t). Alternative approahes might be of interest, whih e.g. fous on the



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 153loation of the estimated level-o� point (if it exists).Up to this point, the disussion pertained to the performane of the variogramestimator. A further interesting onlusion refers to the mean responseestimator(s): A disrepany between ASSUMPTIONS and DATA in termsof α seems to in�uene the �rst treatment group only. There, performaneof Ŷ1(·) appears to improve(!). Still, all treatment groups show the sameperformane quality with respet to A = 0 and A = + and no prefereneis indiated. Note that performane annot be distinguished between dataontamination and model deviation here, sine distortion is not related tothe estimand. Estimators for the individual mean (response) parameters
b01, b02, b03, and b1 have not been onsidered separately to limit the overalllength of the study. Finally note the following:

• Some in�uene and preferene graphs appeared rather irregular, espe-ially the latter based on quotients. It might therefore be sensible toinrease the number B of simulated samples for any future studies.
• It is generally di�ult to simulate human interations within theinferene proess (Chat�eld, 1995, p. 434). The starting value (`initialestimate') for φ in the REML-algorithm has been �xed to the true value
0.5. In pratie, however, the applied statistiian would give a (moreor less subjetive) guess by looking at the resulting sample variogram.Presumably, the extremely large REML-estimates of φ ould havebeen avoided by suh a human deision. It is moreover ommonto reformulate the model assumptions when the sample variogramindiates non-stationarity in the data or when (�nal) diagnosti heksturn out to be unsatisfatory (Diggle et al., 1995, p. 91�). We simulatedsituations where the model is assumed to be known a priori.



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 1546.6 Final remarksAs in hapter 5, the simulation study is meant to illustrate the ideas andonepts of the previous theoretial hapters.Longitudinal data is haraterized by the fat that data units are (usually)omposed of more than one observation, measured through time and aom-panied by ovariates. The large amount of information within data units isre�eted in our more omplex regression model whih allows for orrelatedrandom errors (� 6.2.1). Various targets are possible for distortion of type ➀(data ontamination) and type ➁ (model deviation), both de�ned with refer-ene to REALITY. For onveniene, we hose one whih involves the model(6.4) for a orrelation struture within data units already implemented inthe oswald software (Smith et al., 1996). More preisely, distortion is on-sidered to a�et the measurement error omponent Zij and be quanti�ed bythe disrepany magnitude α ∈ [0, 1] in (6.12).The kind of distortion onsidered is not a `lassial' example in the robustnessliterature. In many appliations the approah is to inlude a measurementerror omponent into the model assumptions and a on�it between DATAand ASSUMPTIONS does not arise (at least not in this respet). Our hoiewas motivated by a di�erent thought: The assumption of a measurementerror omponent is literally direted to the e�etive data-generating proessrepresented by DATA. At �rst sight, this seems to ontradit our laim thatmodel assumptions (within data units) should address the real-world (� 3.2).However, the additional assumption desribed by Zij implies a generalizationof A = 0 and as suh does not ause a on�it between REALITY andASSUMPTIONS. Thus, whih of the two model assumptions A = 0 and
A = + give advantages in terms of inferential performane? � The simulationstudy based on loation-loseness indiates in most ases that there is nopreferene, no matter whether the measurement errors are real or not. Itremains an open question whether loseness in the meaning of spread wouldgive a di�erent answer.



CHAPTER 6. SECOND EXAMPLE: A LONGITUDINAL MODEL 155Consideration has been given to the REML-estimation method from whihseveral individual estimators are derived. The two main ones are theompound urve estimators for the variogram and the mean response pro�le(aspets of interest). Inferential performane assessment has again beenarried out with referene to REALITY. However, a di�erene in performaneunder data ontamination and model deviation ould only be studied whenthe orresponding estimand was related to distortion. This applied to thevariogram estimator, and to σ̂ and ν̂.In�uene graphs studied hanges in performane for the simpler assumptions
A = 0. An investigation with A = + might also be of interest, but has beenomitted for oniseness. Preferene graphs ompared the performane of theREML-method in support of the various estimators under A = 0 and A = +.Contrastingly to hapter 5, emphasis was given to the omparison of modelassumptions rather than individual estimators (whih are de�ned di�erentlybut alled the same under A = 0 and A = +). A further line of researh ouldompare the performane of the REML- and the ML-method, both based onthe same model assumptions (ompare with � 4.3.2.1 and � 4.3.2.2).Performane has been assessed in absolute as well as relative terms. Still,the objetive joint interpretation of preferene graphs, based on di�erenesor quotients, at times gave di�ulties. Q-preferene graphs of the variogramestimator indiated advantages for A = 0 under data ontamination when nis small, but due to high variability D-preferene graphs did not (for a furtherexample ompare the Figures 6.13, 6.14, C.17, and C.18). We tried to avoidthe problem by (only) reporting global impressions.



Chapter 7
Conlusions
7.1 Statistial inferene and the model tripletThe present work has touhed on one of the most fundamental issues instatistis. What is the aim of statistial inferene? We laim it to be real-world desription, instead of just data desription. The real-world is alwaysorret and re�ets the ultimate truth, whereas the data ould be wrong (�3.2). Chapter 3 gave several examples of real-world situations in whih someaspet of interest ould be desribed by statistial inferene. An importantonsequene of our laim soon beame lear and was explored in this thesis:The two soures of information available for statistial inferene, the dataand model assumptions, should somehow be validated with respet to thereal-world. Hene we are onfronted with a triple relation of data, modelassumptions, and real-world where the latter is regarded as entral (� 3.2).The way to the real-world desription has been illustrated by the infereneframework (� 3.3.2). Model assumptions re�et our prior knowledge in theform of a statistial model and inferene proedures, whih proess the data,give information about the unknown model parameters (seen in the widestsense). The aspet of interest from the real-world an then be desribedthrough one inferene proedure alone, or through one or more inferene156



CHAPTER 7. CONCLUSIONS 157proedures in ombination with the model assumptions. A non-parametridensity estimator would be an example for the former, while the parametriompound estimator of the variogram in hapter 6 is typial for the latter.The semi-parametri ACL-estimator of hapter 5 ould also be seen in theseond way, even though here the individual `sub-estimators' were not ofinterest. Overall, the model assumptions have been assigned to the following(optional) tasks:
• give a formal representation of the aspet of interest, suggest the kind(s)of inferene proedure to be used, and diretly ontribute to the real-world desription for nominal inferene, and
• propose statistial (performane) properties of the inferene proeduresinvolved for stohasti inferene.Note that we restrited the illustration to the problem of lassial inferene(sampling theory) and in partiular to estimation.The formal omparison of real-world, data, and model assumptions wasenabled through the idea of the model triplet REALITY, DATA, andASSUMPTIONS. The statistial models respetively represent the ideal,e�etive, and assumed data-generating proess (see the model frameworkin � 3.3.1). REALITY was onsidered to omprise the unknown true modelwhih again was seen to exist in some `objetive reality' independently fromany data-generating mehanism. Hene, statements suh as �the operational`true model' depends on the sample size� (Hampel et al., 1986, p. 411)loose their aepted meaning in our approah. Even though REALITY andDATA are prinipally of in�nite omplexity, we restrited onsiderations to`onventional' �nite models. A statistial model for the data situation ouldbe justi�ed by regarding the generation of data as a repetitive event. Thelatter has to be seen in hypothetial terms when repetitions are not possiblein pratie, e.g. in observational studies. Note that stritly speaking, DATAand REALITY are only `improper' statistial models. This is beause their



CHAPTER 7. CONCLUSIONS 158parameters are onsidered to be �xed. We are negleting this theoretialdetail for onveniene.A data unit was de�ned as the observable outome of a sampling unit (�3.3.1.1). The distintion between aspets of the model within and betweendata units (� 3.3.1.2) was of vital importane for the following onlusion:Statistial inferene requires orrespondene of the model triplet between1. DATA and REALITY relative to aspets within data units,2. ASSUMPTIONS and REALITY relative to aspets within data units,3. ASSUMPTIONS and DATA relative to aspets between data units.Requirement 1 and 2 are neessary for the purpose of nominal inferene,while item 3, together with 1 and 2, an be used for stohasti inferene.Note already that the seond purpose relates to an interesting ontroversialissue whih will be disussed further below. At this point we �rst of all wishto fous on the impliations of the above requirements.7.2 Data ontamination and model deviationA well-known problem in statistial inferene is the potential presene ofdistortion. It has already found extensive treatment in the literature, butwith a variety of interpretations whih may or may not mean the same thing(� 2.3.1). An elementary lassi�ation of distortion, to our knowledge, didnot exist so far and for the �rst time has been presented in this work (�3.4). Its main ontribution is the distintion between data ontaminationand model deviation. In detail we de�ned (referring to the requirements onorrespondene in the model triplet, see above)
• distortion of type ➀ as failure of requirement 1 (data ontamination),
• distortion of type ➁ as failure of requirement 2 (model deviation), and



CHAPTER 7. CONCLUSIONS 159
• distortion of type ➂ as failure of requirement 3 (model deviation).The distintion between data ontamination and model deviation beomesmost important for distortion types ➀ and ➁. Both a�et aspets of themodel within data units. This ould be a distributional spei�ation as suh(mostly studied in the literature) but may also apply to any dependenestruture within vetor observations (hapter 5) or between observations ofthe same data unit (hapter 6). Only what is atually assumed an be subjetto model deviation, while data ontamination is in priniple always possible.Thus, highly informative parametri model assumptions together with datanaturally give more possibilities to distinguish between data ontaminationand (type ➁) model deviation than just simple non-parametri assumptions.Going to the extreme, data ontamination an be seen independently from themodel assumptions while type ➁ model deviation still makes sense withoutthe presene of data. This is beause the referene point for DATA andASSUMPTIONS (relative to aspets within data units) is represented byREALITY. Thus, in theoretial studies the model DATA ould be formulatedin any suitable way, independently from the model assumptions and just withreferene to REALITY (if data ontamination as suh is the only interest).This is espeially important in non-parametri statistis where the problemof data ontamination is prevalent. Robustness studies, where the infereneproedure is seen as a random variable with distribution derived from themodel DATA, are therefore also possible in the latter area (and not justresistane studies where the inferene proedure is seen as a funtion of thedata independently from a statistial model, ompare with Hettmanspergerand Sheather (1992)).A short review of (unlassi�ed) distortion for some ommon statistial modelshas been given in � 2.3.3. Further in � 3.4.3, several examples disusseddistortion of types ➀ to ➂. They illustrated data ontamination in the formof measurement, reording, and rounding errors, and due to inappropriatesampling units. They explained that model deviation an be aused by



CHAPTER 7. CONCLUSIONS 160approximation and misspei�ation, but not through generalization. Theyalso indiated why aspets of the model between data units annot be subjetto data ontamination. One partiular example referred to the measurementproblem of a (physial) onstant. Elementary measurement errors, as partof the statistial error (� 2.3.1), imply data ontamination as an unavoidableonsequene. The problem has been addressed in a more omplex regressionontext in hapter 6. Finally, the term pseudo data ontamination has beenintrodued for non-representative samples, whih also re�et the statistialerror but do not imply data ontamination (� 3.4.4).Overall, the model triplet idea also has limitations. When a hange in theDATA-model (within data units) an be due to either data ontaminationor ontrolled interferene by the statistiian, a referene to REALITY isno longer a lear ase. This also applies to the orresponding parts of theASSUMPTIONS. The partiular hoie of a ensored survival/ompetingrisks model for the example of hapter 5 ould illustrate and at the sametime avoid this problem. A ensoring mehanism may be ontrolled by thestatistiian, but the model in the ontext of ompeting risks an perfetly bedisussed using the model triplet approah.7.3 Performane assessment under distortionDistortion an a�et the quality of the real-world desription. This shows inthe (bad) performane of individual inferene proedures and ould as wellbe due to diret ontributions of wrong model assumptions (� 4.2.1). Tostudy the problem as a whole we generally onsidered inferene proedures,possibly of ompound struture.Distortion was formalized and quanti�ed by the idea of model expansion tostudy performane under growing distortion. It involved the implementationof an extra parameter (the disrepany magnitude) or a parameter funtion(the disrepany struture) into some ideal referene model. The former



CHAPTER 7. CONCLUSIONS 161was used in the longitudinal example of hapter 6, while the latter gavethe novel desription of a distorted Koziol-Green model in hapter 5. Thegeneralization to disrepany strutures an �rst of all inrease the dimensionof potential distortion neighbourhoods and hene broaden the appliabilityof the approah. However, it is the disrepany magnitude whih ultimatelyspei�es the distane from the referene model. Thus, distortion struturesat the same distane need to be summarized again or onsideration is givento just a few of them (as in � 5.3.2). The omparison of orrespondingdisrepany magnitudes of REALITY, DATA, and ASSUMPTIONS �nallydetermines the type and amount of distortion. See � 4.2.2, and for a generalreview of urrent formalization approahes of distortion also � 2.3.2.Common interpretations of the performane quality of estimators have beenlassi�ed in � 2.4. We onentrated on the attribute loseness (of the es-timator distribution to the unknown estimand) and based performane de-sriptions on suitable performane statistis. A spei� notation underlinedtheir possible `input' of REALITY, DATA, and ASSUMPTIONS (� 4.2.3).In�uene graphs were introdued whih study the absolute or relative hangeof inferential (�nite sample) performane under inreasing distortion. Theyare determined by the omparison of expeted performanes in distorted andideal (undistorted) situations for a given sample size. Preferene graphs fol-low a related intention. They ompare performane of alternative infereneproedures and/or model assumptions under inreasing distortion, this timethrough expeted performane di�erenes or ratios. Three types have beendistinguished, as inferene proedures and assumptions may or may not bediretly linked to eah other (� 4.3).The methodology of in�uene and preferene graphs is appliable wheneverdistortion an be quanti�ed. Eah amount of distortion should howeverrepresent an `easily aessible' (small) lass of models. Hene, a lassspei�ed by a partiular Lévy or Prohorov distane, or ǫ-ontamination(gross-error model) seems to be rather general and less suitable for thispurpose. From the robustness theory point of view, we onsidered quite



CHAPTER 7. CONCLUSIONS 162restrited distortion neighbourhoods (Hampel et al., 1986, p. 9). Indeed,our aim was the interpretation of, and the study of inferential performaneunder, partiular forms of distortion. It was not the development of universalrobust proedures.The model triplet REALITY, DATA, and ASSUMPTIONS as the refereneframe for a performane statisti led to important onlusions (� 4.2.1 and �4.2.3): If performane is desribed as loseness in terms of
• loation, the performane statisti refers to the aspet of interestin REALITY (the estimand). For theoretial studies the latter isonsidered to be known. The expeted value of suh a performanestatisti is e.g. the bias of a point estimator.
• spread, the performane statisti does not refer to REALITY. Theexpeted value of suh a performane statisti is e.g. the variane ofa point estimator.Moreover, distortion refers to the aspet of interest (estimand) if the latter,seen as part of the model, is dependent on the disrepany struture ormagnitude. It espeially means that the aspet of interest, as part ofREALITY and relative to DATA, varies under data ontamination and modeldeviation. This is the ase for the unknown survival funtion of hapter 5,and beomes apparent for the parameters σ and ν and onsequently forthe variogram in hapter 6. Overall, a di�erene in performane underdata ontamination and type ➁ model deviation (if both are possible) antherefore be deteted, if distortion relates to the aspet of interest, andassessment is (at least) arried out in terms of loation-loseness. Anestimator ould be bias-robust under data ontamination or under modeldeviation. The orresponding type of distortion, in any ase, needs to bespei�ed.Having lassi�ed distortion and insisted on a referene to REALITY for per-formane in the sense of loation-loseness, we ritially reviewed some ur-rent approahes dealing with distortion (� 4.4). We onluded that the more



CHAPTER 7. CONCLUSIONS 163lassial approahes towards robustness refer to data ontamination. Theseare qualitative and quantitative robustness, and the approah based on in�u-ene funtions. Also, the aommodation approah for outliers as desribedin Barnett and Lewis (1995) seems to apply to data ontamination. Thereent robustness approah �on�gural polysampling� and the perturbationdiagnostis by Cook (1986), on the other hand, seem to address type ➁ modeldeviation.Chapters 5 and 6 presented simulation studies addressing performane interms of loation-loseness for two partiular estimation examples. Inboth ases, distortion was onsidered to a�et aspets of the model withindata units. Thus, data ontamination and type ➁ model deviation wereprinipally possible (with an exeption for the �rst example, however avoidedin the simulation study � see above). Data for the two examples weregenerated aording to DATA-models of growing disrepany magnitude.The models REALITY and ASSUMPTIONS were hosen aordingly so that�nally inreasing distortion of the two types ould be expressed. The �rstexample represented a ase of unwanted dependene within observations.The disrepany struture used to explain this kind of distortion (� 5.3.1) isappliable to any kind of multivariate data whih involves a 0-1-variable. Ageneralization to sales of higher order might be possible, but would requirefurther summaries within the distortion neighbourhood. The longitudinalexample of hapter 6 addressed distortion a�eting the dependene struturebetween observations of the same data unit. Distortion of this kind isespeially a onern within the time series ontext. The partiular (distorted)orrelation struture of the example (� 6.2.1 and � 6.3.1) applies to disreteas well as ontinuous time proesses. As a linear regression model withdependent errors the example ould further represent a rather omplexparametri model whih involves ompound as well as individual estimators.It was important that distortion only a�eted parts of the model, here thedistributional part but not the strutural one.The two studies revealed a di�erene in performane for the ACL-estimator



CHAPTER 7. CONCLUSIONS 164(hapter 5), the variogram estimator (hapter 6), and two individual pa-rameter estimators (hapter 6). The results were not surprising, sine typialsituations have been addressed in whih data ontamination as well as type ➁model deviation are possible and relate to the estimand, and simultaneouslyperformane is assessed in terms of loation-loseness. The mean-responseestimator(s) and a third parameter estimator in hapter 6 moreover exem-pli�ed a ase in whih distortion does not relate to the estimand. As anatural onsequene, performane ould not be distinguished between dataontamination and type ➁ model deviation.The fat that data ontamination as well as type ➁ model deviation arepossible and relate to the aspet of interest ours reasonably often. Theexamples hosen are representative for a wide range of estimation problems.First of all, data an always be generated with mistakes so that the trueaspet of interest in the real-world is improperly re�eted. Model deviationan `easily' relate to the aspet of interest, when model assumptions diretlyontribute to the real-world desription. This applies to the two ompoundestimators of the examples, but also to all other types of parametri or semi-parametri urve estimators. Further, this is relevant when a (parametri)model as a whole is of interest, e.g. an ARMA-model for predition purposes.In addition, assumptions may give a wrong representation of the aspet ofinterest in terms of model parameters. Model assumptions not aounting formeasurement errors (A = 0) in hapter 6 do only give a orret representationof the serial omponent variane σ2, for example, if REALITY orrespondsto the ideal referene model. Then σ2 equals ξ1/(ξ2 + 1). Otherwise, theorret representation of σ2 involves the disrepany magnitude α as a furtherparameter, whih A = 0 obviously does not suggest. Another examplewould be the estimation of the mode under the assumption of a symmetridistribution with mean parameter (addressed by the approah of on�guralpolysampling, � 4.4.6). Under the assumptions, the aspet of interest (themode) is onsidered to be the mean parameter. This is however only orretas long as the true distribution in REALITY is symmetri.



CHAPTER 7. CONCLUSIONS 165Beside in�uene graphs, the two examples demonstrated the appliation ofpreferene graphs. They analysed inferential performane in omparison witha ompeting estimator in hapter 5 and under alternative model assumptionsin hapter 6. Some problems beame apparent with the attempt to interpretthose omparisons simultaneously in absolute and relative terms (hapter 6).7.4 The duality of the model assumptionsThe ompletion of this work allows an interesting onlusion about the ob-jetive of statistial model assumptions. Inferential performane desriptionsin hapters 5 and 6 have been aquired through simulation. That is, the ex-peted values of (di�erenes or quotients of) performane statistis have beendetermined by averaging over DATA-generated samples. Similarly, one ouldtry to derive the results on theoretial grounds (even though this might bedi�ult). In any way DATA is onsidered to be known, with �xed parametervalues in the �rst ase and maybe pending ones in the seond. The situationis however di�erent in pratial irumstanes. To antiipate potential per-formane behaviour of inferene proedures (stohasti inferene), we wouldadditionally need to assume the DATA-model. The requirement 3 for modelorrespondene (page 158) does only serve for part of the purpose. Thus, weare onfronted with some kind of duality-problem: The statistiian has toassume the REALITY for nominal inferene, and in addition the DATA forstohasti inferene. Nevertheless, only one set of assumptions is ultimatelyformulated in statistial pratie.The problem beomes important when data ontamination is suspeted.The measurement error assumption in hapter 6 seems to be one goodompromise to this problem (as the simulation results indiate). Unavoidableelementary measurement errors an be inluded in the ASSUMPTIONSthrough generalization whih does not imply model deviation. Anotherobvious solution is to `lean' the data in order to avoid data ontamination.Of ourse, this is only possible within our limited (but hopefully orret)



CHAPTER 7. CONCLUSIONS 166knowledge about the truth in the real-world. Finally, one ould indeed tryto formulate two sets of model assumptions, one for the underlying real-world situation (referred to as ASSUMPTIONS in this thesis) and the otherfor the data. In other words, the �rst set is spei�ed before data olletionand is wholly based on prior knowledge, while the seond is determinedfrom the present data eventually aounting for knowledge gained fromearlier (equally ontaminated) data. We are aware that this sounds ratherdemanding, espeially when thinking of how little prior information we oftenhave available and that data-driven model formulation is in itself alreadyassoiated with a more or less substantial amount of unertainty (Chat�eld,1995).Dawid (1983, p. 92) remarks that �onditioning on an anillary does nothange the estimate (nominal inferene)�. Thus, anillary information aswell as the dummy-part of the model assumptions (� 3.3.2) do not need tobe validated by REALITY and the duality-problem does not arise in thisrespet. Neither does the problem our if after all statistial inferene isused for data analysis in its literal meaning, i.e. information is exlusivelydesired about the data and not about any real-world situation. This asehas not been onsidered in the present thesis, sine it rather belongs to therubri of desriptive statistis (see � 3.2).7.5 Future perspetivesSome future perspetives are brie�y listed below, either as statements or asquestions:
• Any study dealing with the problem of distortion in statistial infereneshould indiate whih type of distortion it refers to. This is espeiallyimportant when data ontamination and model deviation are simulta-neously possible.
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• The hoie of robustness approah in a pratial situation should bemade in the judgement of whih to fear more, data ontamination ormodel deviation. That is, the statistiian needs to deide whether itis more important for an inferene proedure to be robust (in terms ofloation-loseness) against errors in the data or against errors in themodel assumptions.
• Current approahes dealing with distortion seem to address exlusivelyeither data ontamination or model deviation (� 4.4): If at all possible,how an these approahes be generalized to onsider the two (three)types of distortion, eah on its own or even both simultaneously?
• We restrited onsiderations to lassial inferene. What is distortionfrom the point of view of other shools of inferene? Does thedistintion between data ontamination and model deviation have thesame importane?
• Can we make a di�erene between data ontamination and modeldeviation for missing data models?
• We have restrited onsiderations to (point) estimation problems. It isalso of interest to study the potential di�erene of performane underdata ontamination and model deviation in the ontext of intervalestimation and hypothesis testing, or even more generally in thedeision-theoreti framework.
• The methodology of in�uene and preferene graphs ould be general-ized to aount for more than one performane riteria summarized byan `appropriately' weighted average, or more than one kind of distortionin multiple dimensions.
• In�uene and preferene graphs ompare inferential performane asexpeted in the long-term. One evaluated, one ould try to ombinetheir information with some prior belief about the type (and amount) of



CHAPTER 7. CONCLUSIONS 168distortion for a partiular data situation. The result ould be expressedin form of a likelihood.
• The simulation studies in hapters 5 and 6 have been arried out undervarious restritions. To what extent an their results be generalized?Are the results of ACL- and KM-performane in hapter 5 also validfor other disrepany strutures s(·) and for other observed survivaldistributions FZ? Would an alternative mean or error model in hapter6 lead to di�erent onlusions? What happens in situations of non-balaned data strutures and irregularly spaed measurement times?
• The hoie of disrepany magnitudes γ and α in hapters 5 and 6fail to measure the amount of distortion in a way whih is invariantwith respet to hanges in sale (of γ and α). Hene, is it possibleto formulate invariant measures of the amount of distortion in theseexamples? (Our hoie of disrepany magnitudes was mainly due toonveniene. While α ∈ [0, 1] we preferred γ ∈ [0, p(1 − p)] to allow aomparison between di�erent values of p.)
• We ould extend the notion of distortion by relating to � 7.4. Then,a question whih ertainly has been addressed in the literature ould�nd a new interpretation: How is the performane of a performanestatisti a�eted under wrong assumptions of the DATA-model?



Appendix A
Proofs
A.1 Relationship to an alternative distortedKoziol-Green modelThe relationship of modelling a distorted KG-model aording to our s(·)-approah and the approah by Beirlant et al. (1992) has been formulated in� 5.3.3. The orresponding proof will now follow.Show that the funtion L∗(·) as formulated in (5.11) is slowly varying at theorigin with L∗(1) = 1: Assuming the existene of the densities fX , fY and
fZ and taking into aount (5.1) it is

fZ(z) = fmin{X,Y }(z) =
∂

∂z
[1− (1− FX(z)) · (1− FY (z))]

= (1− FX(z)) · fY (z) + (1− FY (z)) · fX(z).With the �rst part of (5.6) it further follows that the equation
λY (z) =

1− s(z)s(z) · λX(z)holds for z ∈ [0,∞) and s(z) > 0. Therefore
SY (z) = exp

[
−
∫ z

0

1− s(t)s(t) · λX(t) dt

]
= [SX(z)]

θ · L∗ [SX(z)] ,169



APPENDIX A. PROOFS 170where θ = (1 − s∞)/s∞ with s∞ = limz→∞ s(z) > 0 and the funtion L∗(·)as de�ned in (5.11).Sine it is obvious that L∗(1) = 1, it only needs to be shown that for any
ϑ > 0

lim
u→0

L∗(ϑ · u)L∗(u)
= 1(Beirlant et al., 1992, p. 27).Consider the ase 0 < ϑ ≤ 1 (the proof for ϑ ≥ 1 is analogous):Beause s(z) is assumed to onverge for large z, some z∗ ∈ (0,∞) exists, sothat [1 − s(z)]/s(z) is bounded for z ≥ z∗. Knowing that fX(z)/SX(z) ≥ 0for z ∈ [0,∞) and assuming that s(·) is ontinuous within [z∗,∞), a generalversion of the mean value theorem for integrals an then be applied, whihensures the existene of some ξu with z∗ ≤ S−1(u) ≤ ξu ≤ S−1(ϑ · u), so that

S−1(ϑ·u)∫

S−1(u)

1− s(z)s(z) · fX(z)
SX(z)

dz =
1− s(ξu)s(ξu) ·

S−1(ϑ·u)∫

S−1(u)

fX(z)

SX(z)
dz

=
1− s(ξu)s(ξu) · (−1) · lnϑ. (A.1)Now, it is

lim
u→0

L∗(ϑ · u)L∗(u)
= lim

u→0

{
exp

[s∞ − 1s∞ · lnϑ−
S−1(ϑ·u)∫

S−1(u)

1− s(z)s(z) · fX(z)
SX(z)

dz

]}

(A.1)
= exp

[s∞ − 1s∞ · lnϑ− lim
u→0

s(ξu)− 1s(ξu) · lnϑ
]

= exp(0) = 1,sine limu→0 ξu = ∞. �



APPENDIX A. PROOFS 171A.2 Expression for the longitudinal error-matrixShow that the (m × n)�error matrix of a single longitudinal data set anbe simulated aording to (6.15): The relations in (6.7) and (6.8) allow todesribe the variane of an arbitrary row ǫ′i = (ǫi1, . . . , ǫin) of the matrixaording to Var(ǫ′i) = Var(ǫi) = Var(ǫ) = ν2J + σ2H + τ 2Iwhere J is the (n× n)�unity matrix, I the (n× n)�identity matrix, and
H =

(
ρW (|j − k|)

)
j,k=1,...,nwith ρW (u) = exp(−φu). The subsript i of ǫi an be dropped sine errorsfrom di�erent data units are onsidered to be i.i.d. (Diggle et al., 1995, p. 81,87).The problem of simulating the omponents of the matrix ǫ an thereforebe reformulated by setting ǫ = W ′ · Z, where Z is a olumn-vetorof n independent N(0, 1)-distributed random variables and W an upper-triangular (n×n)�matrix of oe�ients. The latter is evaluated by a Choleskideomposition as W = hol [Var(ǫ)], sineVar(ǫ) = Var(W ′ ·Z)

= W ′ ·Var(Z) ·W = W ′ ·Wand hol(W ′ ·W ) = W.Staking independent and like Z distributed random vetors Zi one obtainsa (m× n)�matrix, so that �nally
ǫ =




ǫ′1...
ǫ′m


 =




Z ′
1...

Z ′
m


 ·W.

�



Appendix B
Some programming details forhapter 5
Spei�ation of a disrepany strutureA suitable disrepany struture s(·) from the lass EXP given FZ , p, γ, andthe sign of a is determined as follows:1. Evaluation of c whih produes a maximum disrepany γ∗ explainedby EXP given FZ , p and the sign of a:

• A su�ient ondition for maximizing |γ(z)| aording to (5.7) forall z ∈ [0,∞) with fZ(z) > 0 is given by (s(z) − p) · fZ(z) = 0.The latter is satis�ed for
z∗ =

log [(p− d)/a]

−c
.Sine s(·) is stritly monotoni, not more than one loal maximumexists.

• Maximize the disrepany magnitude
γ = u(a, c, d) =

∣∣∣∣
∫ z∗

0

[a · exp(−c · t) + d− p] dFZ(t)

∣∣∣∣172



APPENDIX B. PROGRAMMING DETAILS FOR CHAPTER 5 173with z∗ as above over all possible a, c and d (given FZ , p and thesign of a). Eah u(a, c, d) is evaluated by numerial integration,and maximization is arried out by an evolutionary strategy. Theresulting maximum disrepanies are presented in Table 5.1.2. Note the orresponding value of c.3. Evaluation of a and d (given a value for c as above and given FZ , p, γ,and the sign of a):Solve the following optimization problem over a and d by an evolution-ary strategy:
• Evaluate by numerial integrationresult 1 = |p(a, d)− p| ,where p(a, d) = P (∆ = 1) is alulated using (5.8) under somepreliminarily spei�ed a and d.
• Evaluate by numerial integrationresult 2 = |γ(a, d)− γ| ,where γ(a, d) is the disrepany magnitude under some prelimi-narily spei�ed a and d.
• Minimize: max(result 1, result 2) over a and d.4. Note the orresponding values for a and d.Evaluation of the true survival funtionUnder model deviation, the true survival funtion SX of interest is derivedaording to the relationship (5.5), sine in this ase REALITY orrespondsto a distorted KG-model. Depending on whether the respetive disrepanystrutures are taken from STEP or EXP, SX is then evaluated as follows:



APPENDIX B. PROGRAMMING DETAILS FOR CHAPTER 5 174STEP The partiular form of s(·) in this lass simpli�es (5.5) to
SX(z) =





[
SZ(z)

]a for z ≤ z∗

[
SZ(z

∗)
](a−b) ·

[
SZ(z)

]b for z > z∗.The above an be diretly implemented.EXP The produt-integral notation for (5.5)
SX(z) =

z

π
0

[1− s(t) · λZ(t) dt](ompare with Andersen et al. (1993), p. 49 and 89f) motivates the useof the following �nite sample ounterpart given as the �nite produt
ŜX(z) =

∏

j:zj<z

[
1− s(zj) · λZ(zj)

]

=
∏

z:zj<z

[
1− s(zj) · (1− 1− FZ(zj+1)

1− FZ(zj)

)]
. (B.1)The term (B.1) based on formula (1.2.7) in Lawless (1982, p. 10) is�nally implemented in order to avoid expressions with the density fZ .



Appendix C
Additional graphis for hapter 6
Figure C.1: Simulated responses for the three treatment groups (α = 0).Figure C.2: Sample variogram with estimated proess variane (α = 0).Figure C.3: Simulated responses for the three treatment groups (α = 1).Figure C.4: Sample variogram with estimated proess variane (α = 1).Figure C.5: Mean response estimates (group 2) under no distortion α = 0.Figure C.6: Mean response estimates (group 3) under no distortion α = 0.Figure C.7: Mean response estimates (group 2) under distortion α = 0.5.Figure C.8: Mean response estimates (group 3) under distortion α = 0.5.Figure C.9: Mean response estimates (group 2) under distortion α = 1.Figure C.10: Mean response estimates (group 3) under distortion α = 1.Figure C.11: D-in�uene graph for data ontamination based on πd(1).Figure C.12: D-in�uene graph for data ontamination based on πd(7).Figure C.13: D-in�uene graph for data ontamination based on πd(12).Figure C.14: D-in�uene graph for model deviation based on πd(1).Figure C.15: D-in�uene graph based on πY (2).Figure C.16: D-in�uene graph based on πY (3).Figure C.17: D-preferene graph for data ontamination based on πd̄.Figure C.18: D-preferene graph for model deviation based on πd̄.
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Figure C.1: Simulated responses forthe three treatment groups (α = 0). Time
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Figure C.2: Sample variogram withestimated proess variane (α = 0).
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Figure C.3: Simulated responses forthe three treatment groups (α = 1). Time
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Figure C.4: Sample variogram withestimated proess variane (α = 1).
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Figure C.5: Mean response estimates(group 2) under no distortion α = 0. 2 4 6 8 10 12
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Figure C.6: Mean response estimates(group 3) under no distortion α = 0.
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Figure C.7: Mean response estimates(group 2) under distortion α = 0.5. 2 4 6 8 10 12
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Figure C.8: Mean response estimates(group 3) under distortion α = 0.5.
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Figure C.9: Mean response estimates(group 2) under distortion α = 1. 2 4 6 8 10 12
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Figure C.10: Mean response estim.(group 3) under distortion α = 1.
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Figure C.11: D-in�uene graph fordata ontamination based on πd(1). 0.0 0.2 0.4 0.6 0.8 1.0
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Figure C.12: D-in�uene graph fordata ontamination based on πd(7).
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Figure C.13: D-in�uene graph fordata ontamination based on πd(12). 0.0 0.2 0.4 0.6 0.8 1.0
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Figure C.14: D-in�uene graph formodel deviation based on πd(1).
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Figure C.15: D-in�uene graph basedon πY (2). 0.0 0.2 0.4 0.6 0.8 1.0
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Figure C.16: D-in�uene graph basedon πY (3).
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Figure C.17: D-preferene graph fordata ontamination based on πd̄. 0.0 0.2 0.4 0.6 0.8 1.0
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Figure C.18: D-preferene graph formodel deviation based on πd̄.
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