

Viviane Grunert da Fonseca^{1,2}

¹ Instituto Universitário Dom Afonso III (INUAF)

² Centro de Estudos de Gestão, Instituto Superior Técnico, Unversidade Técnica de Lisboa (CEG-IST)

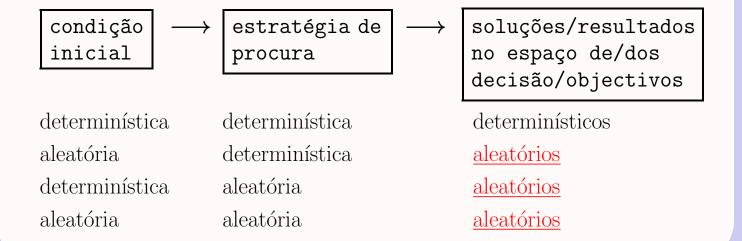
 $\verb|viviane.grunert@vodafone.pt|\\$

2ª Escola Luso-Brasileira de Computação Evolutiva, Guimarães, 18 de Julho de 2010

Avaliação do Desempenho de

Optimizadores Estocásticos

- \rightarrow Já conhecemos vários optimizadores **evolutivos**:
 - algoritmos genéticos, estratégias evolutivas,
 - algoritmos de colónias de formigas, etc.



- → Em geral, os algoritmos evolutivos são <u>optimizadores</u> <u>estocásticos</u> (OE) e produzem soluções/resultados aleatórios.
- \rightarrow Existem também outros OEs que <u>não</u> são algoritmos evolutivos, como p. ex. o *simulated annealing* que imita um processo de arrefecimento.
- → Tanto as soluções produzidas por um OE no espaço de decisão como os resultados correspondentes no espaço dos objectivos seguem uma distribuição de probabilidades.

 \rightarrow Caso simples no espaço dos objectivos:

$$P(\text{resultado} = x_i) = p_i, \quad i = 1, 2, \dots$$

O conjunto de resultados possíveis é enumerável e o OE tem uma distribuição de resultados discreta.

→ Um optimizador determinístico, que em cada execução produz o mesmo resultado a, pode ser visto como um "caso especial":

$$P(\text{resultado} = a) = 1.$$

→ No entanto, a distribuição de resultados de um OE pode ser muito mais complicada!

- → O **desempenho** de OEs (no espaço dos objectivos) tem que ver com
 - a qualidade dos seus resultados, e
 - o tempo que é necessário para produzir esses resultados.
 (nº de avaliações da função, tempo de CPU, tempo decorrido, etc.)
- → Há grande interesse na <u>avaliação</u> do desempenho de OEs, porque, dada uma instância de um problema de optimização, se deseja escolher o "<u>melhor</u>" optimizador de entre muitas alternativas.
- → O que significa **bom desempenho** de um OE?
 - produzir resultados em pouco tempo,
 - resultados de boa qualidade, ou seja, resultados que se localizam "próximo" do(s) valor(es) óptimo(s) da função objectivo.

Questões | relativas à qualidade dos resultados:

- (a) Não se conhece o óptimo no espaço de decisão, nem o(s) valor(es) óptimo(s) da função objectivo!
 - → Problemas de minimização: resultados melhores ≡ valores menores
- (b) A distribuição de resultados do <u>mesmo</u> OE varia em função da instância do problema de optimização!
 - → Na prática, assume-se que o desempenho observado anteriormente noutras instâncias do mesmo problema é representativo.
- (c) O significado de "resultados de boa qualidade" tem múltiplos aspectos que provêm da complexidade da distribuição de resultados.
 - → Tema da presente aula!

Estrutura da aula

- Optimizadores mono-objectivo:
 - Distribuições de resultados e desempenho
- Optimizadores multi-objectivo:
 - Distribuições de resultados
 - A abordagem da função de aproveitamento
 - A abordagem dos indicadores de qualidade
- Notas finais

Optimizadores mono-objectivo: Distribuições de resultados e desempenho

Consideram-se os resultados de OEs produzidos no <u>espaço dos objectivos</u> após um determinado tempo de execução.

Optimizador determinístico mono-objectivo

- O valor mínimo da função objectivo é um escalar $x^* \in \mathbb{R}$.
- Cada execução do optimizador produz o mesmo resultado, que é um escalar $a \in \mathbb{R}$, $a \ge x^*$.
- A distribuição de resultados é uma Distribuição de Um Ponto:

$$P(X=a)=1.$$

Distribuições de resultados e desempenho

- Os resultados são de <u>melhor</u> qualidade quando o escalar a é <u>menor</u>. [caso ideal: $a = x^*$]
- Um $Optimizador\ 1$ com resultado(s) a_1 tem melhor desempenho que um $Optimizador\ 2$ com resultado(s) a_2

$$\iff$$
 $a_1 < a_2$.

Nos optimizadores <u>determinísticos</u> mono-objectivo, o significado de "resultados de boa qualidade" é evidente, pois envolve um <u>único</u> critério!

Distribuições de resultados e desempenho

Optimizador estocástico mono-objectivo

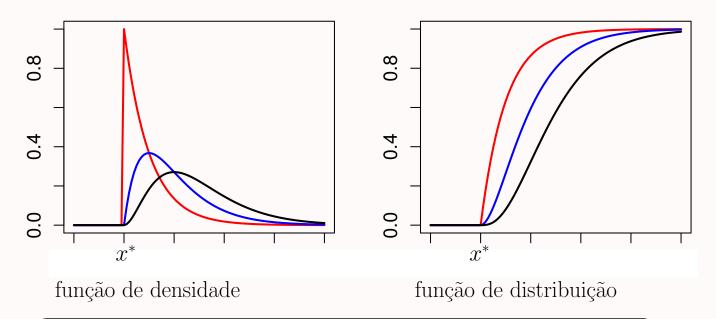
- O valor mínimo da função objectivo é um escalar $x^* \in \mathbb{R}$.
- Cada execução do OE produz um resultado <u>aleatório</u> que é representado por uma variável aleatória X em \mathbb{R} com realizações $z \in [x^*, \infty)$.
- A <u>distribuição de resultados</u> é uma distribuição *univariada*, discreta ou contínua, com suporte em $\mathbb{R}^{\geq x^*}$ que pode ser caracterizada pela **função de distribuição**

$$F_X(z) = P(X \le z)$$

onde $F_X(z) = 0$ se $z \in (-\infty, x^*)$.

Distribuições de resultados e desempenho

• Os resultados são de <u>melhor</u> qualidade quando a sua distribuição se concentra mais perto do valor mínimo $x^* \in \mathbb{R}$ da função objectivo . . .



→ Os resultados com a distribuição a vermelho são de melhor qualidade.

Distribuições de resultados e desempenho

..., ou seja, quanto ...

(a) menor no sentido estocástico for a variável aleatória X, ou ainda, quanto maior $F_X(z)$ para todo o $z \ge x^*$.

$$\left[\text{ caso "ideal": } F_X(z) = \mathbf{I}\{z \ge x^*\}\right]$$

- (b) menor o valor de uma **medida de localização**, tal como:
 - \circ *média*: $\mu = E(X) \ge x^*$
 - \circ mediana: $x_{0.5} \ge x^*$ onde $P(X \le x_{0.5}) = 0.5$
 - $\circ \ \alpha$ -quantil: $x_{\alpha} \ge x^*$ onde $P(X \le x_{\alpha}) = \alpha$

[casos ideais: $\mu = x_{0.5} = x_{\alpha} = x^*$]

Distribuições de resultados e desempenho

- (c) <u>menor</u> o valor de uma **medida de dispersão**, tal como:
 - $\circ variância: \sigma^2 = Var(X) \ge 0$
 - \circ amplitude interquartil: $x_{0.75} x_{0.25} \ge 0$

[casos ideais:
$$\sigma^2 = x_{0.75} - x_{0.25} = 0$$
]

Não faz sentido considerar o critério (c) <u>sem</u> ter em conta o critério (b).

A média é o 1^o momento $n\tilde{a}o$ -centrado de uma distribuição e a variância é o 2^o momento centrado de uma distribuição.

Distribuições de resultados e desempenho

Problema

 $F_X(\cdot)$ e as medidas de localização/dispersão são desconhecidas!

Análise inferencial – Estimação

A função $F_X(\cdot)$ e as medidas de localização/dispersão podem ser estimadas a partir de . . .

- uma amostra aleatória (simples) $X_1, X_2, \dots X_n$,
- de n variáveis aleatórias independentes com a mesma distribuição, que representam os resultados de \underline{n} execuções independentes do optimizador.

Distribuições de resultados e desempenho

Consideram-se, por exemplo, os seguintes estimadores:

o função de distribuição empírica:

$$F_n(z) = \frac{1}{n} \cdot \sum_{i=1}^n I\{X_i \le z\}$$

- \circ *média amostral*: $\bar{X} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i$
- mediana amostral:

$$Q_{0.5} = \begin{cases} \frac{1}{2} \cdot \left[X_{\left(\frac{n}{2}\right)} + X_{\left(\frac{n+2}{2}\right)} \right] & \text{se } n \text{ \'e par} \\ X_{\left(\frac{n+1}{2}\right)} & \text{se } n \text{ \'e impar,} \end{cases}$$

onde $X_{(1)}, \ldots, X_{(n)}$ são as variáveis aleatórias da amostra ordenada.

Distribuições de resultados e desempenho

 $\circ \alpha$ -quantil amostral:

$$Q_{\alpha} = \begin{cases} \frac{1}{2} \cdot \left[X_{(n \cdot \alpha)} + X_{(n \cdot \alpha + 1)} \right] & \text{se } n \cdot \alpha \in \mathbb{N} \\ X_{(\lceil n \cdot \alpha \rceil)} & \text{se } n \cdot \alpha \notin \mathbb{N} \end{cases}$$

onde $X_{(1)}, \ldots, X_{(n)}$ são as variáveis aleatórias da amostra ordenada.

$$\circ$$
 variância amostral: $S^2 = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (X_i - \bar{X})^2$

 \circ amplitude interquartil amostral: $Q_{0.75} - Q_{0.25}$

Como a distribuição de resultados deve ser **enviesada para a direita**, pode ser preferível considerar a <u>mediana</u> amostral em vez da média amostral e a amplitude interquartil amostral em vez da variância amostral.

Distribuições de resultados e desempenho

• Um $Optimizador\ 1$ com resultados X_1 tem melhor desempenho que um $Optimizador\ 2$ com resultados X_2

$$\Leftrightarrow$$
 xxx ???

Dúvida

Que critério usar para formular essa afirmação de equivalência?

 \rightarrow Rigorosamente falando, deve-se considerar a **caracterização completa** das distribuições de X_1 e X_2 , ou seja,

XXX: $F_{X_1}(z) > F_{X_2}(z)$ para todos os $z \ge x^*$

Distribuições de resultados e desempenho

 \rightarrow A comparação dos estimadores de $F_{X_1}(\cdot)$ e $F_{X_2}(\cdot)$ parece "pouco prática" porque involve <u>inúmeras</u> comparações individuais!

é possível com os **testes de hipóteses** da análise estatística inferencial (e.g. o teste Kolmogorov-Smirnov para duas amostras).

→ Na prática, a comparação do desempenho de dois optimizadores também pode ser feita relativamente a um ou mais <u>aspectos</u> das distribuições de resultados.

→ e.g. teste de Mann-Whitney (medianas), teste de Levene (variâncias)

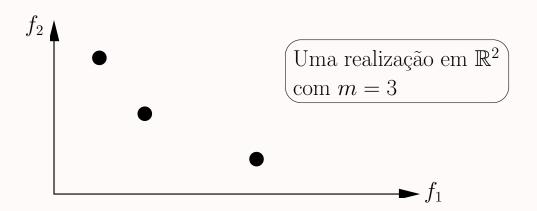
Distribuições de resultados

- Os valores mínimos (não-dominados) da função objectivo dão origem a uma fronteira óptima (de Pareto) \mathcal{X}^* em \mathbb{R}^d .
- Em cada execução, o optimizador produz <u>múltiplos resultados</u> aleatórios em \mathbb{R}^d que se representam por um **conjunto aleatório de pontos não-dominados** (conjunto APN)

$$\mathcal{X} = \{X_1, \dots, X_M \in \mathbb{R}^d : P(X_i \le X_j) = 0, i \ne j\},\$$

sendo

- $-X_1, X_2, \dots$ vectores aleatórios em \mathbb{R}^d e
- -M uma variável aleatória em \mathbb{N} .



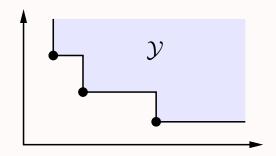
<u>Características</u> de um conjunto APN \mathcal{X} :

- \rightarrow Os pontos (vectores) $x_1, x_2, \dots x_m$ de uma realização de \mathcal{X} são não-dominados no sentido de Pareto.
- \rightarrow Os vectores aleatórios $X_1, X_2, \dots X_M$ são dependentes.
- $\rightarrow \mathcal{X}$ é fechado e é "não-estacionário".

Representações alternativas de um conjunto APN \mathcal{X} :

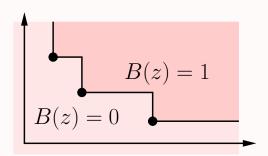
 \rightarrow o conjunto aleatório fechado ("conjunto atingido")

$$\mathcal{Y} = \{ z \in \mathbb{R}^d \mid X_1 \le z \lor \ldots \lor X_M \le z \}$$



 \rightarrow o campo aleatório binário

$$\{B(z), z \in \mathbb{R}^d\} = \{I\{z \in \mathcal{Y}\}, z \in \mathbb{R}^d\}$$



- A distribuição de resultados é bastante complexa pois compreende
 - as distribuições multivariadas de X_1, X_2, \ldots
 - a distribuição univariada discreta de M, e
 - a dependência entre X_1, X_2, \ldots

Dado $M \leq m^*$, ou seja, <u>dado que o optimizador não produz mais</u> <u>que m^* resultados por execução</u>, a distribuição de \mathcal{X} pode ser caracterizada pela **função de aproveitamento de ordem m^***

$$\alpha_{\mathcal{X}}^{(m^*)}(z_1,\ldots,z_{m^*}) = P(\mathcal{X} \leq z_1 \wedge \ldots \wedge \mathcal{X} \leq z_{m^*})$$

onde

$$[\mathcal{X} \leq z]$$
 significa $[X_1 \leq z \lor X_2 \leq z \lor \ldots \lor X_M \leq z]$.

Por palavras, $\alpha_{\mathcal{X}}^{(m^*)}(z_1,\ldots,z_{m^*})$ é ...

"a probabilidade de atingir todas as metas z_1, \ldots, z_{m^*} numa <u>única</u> execução do optimizador".

• Os resultados do optimizador são de <u>melhor</u> qualidade quando a sua distribuição se <u>concentra mais perto</u> da fronteira óptima \mathcal{X}^* em \mathbb{R}^d ,

..., ou seja, quanto ...

menor no sentido estocástico for o conjunto APN \mathcal{X} , ou ainda, quanto maior $\alpha_{\mathcal{X}}^{(m^*)}(z_1,\ldots,z_{m^*})$ para todo o vector $z_i \in \mathbb{R}^d$, $\mathcal{X}^* \leq z_i$.

A complexidade da distribuição dos resultados . . .

- torna <u>difícil</u> a sua ilustração gráfica para $m^* > 2$.
- deu origem a <u>muitos critérios</u> de desempenho para optimizadores multi-objectivo!

Duas principais abordagens

- 1. Abordagem da função de aproveitamento que é baseada em conceitos da teoria de conjuntos aleatórios, tendo em conta a não-dominância entre os elementos de um conjunto APN.
- 2. Abordagem dos indicadores de qualidade que transforma as realizações de um <u>conjunto</u> APN em <u>valores</u> em \mathbb{R} e estuda a distribuição <u>univariada</u> desses valores, (geralmente) em termos da sua média.

Optimizadores multi-objectivo: A abordagem da função de aproveitamento

- O desempenho de um optimizador multi-objectivo é avaliado na sua totalidade através de $\alpha_{\mathcal{X}}^{(m^*)}(z_1,\ldots,z_{m^*})$, onde m^* é o número máximo de resultados X_i por execução.
- Uma descrição de <u>tipo "média"</u> da distribuição de \mathcal{X} é possível com a **função de aproveitamento** (de ordem 1)

$$\alpha_{\mathcal{X}}^{(1)}(z) = \alpha_{\mathcal{X}}(z) = P(\mathcal{X} \leq z)$$

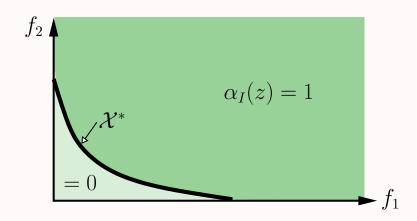
$$= P(X_1 \leq z \lor X_2 \leq z \lor \ldots \lor X_M \leq z),$$
ou seja, com a

"probabilidade de atingir cada meta $z \in \mathbb{R}^d$ numa
 única execução do optimizador".

A abordagem da função de aproveitamento

Tal como a média μ , a função $\alpha_{\mathcal{X}}(\cdot)$ <u>não</u> descreve a distribuição de \mathcal{X} <u>na sua totalidade</u> — a não ser que $\mathcal{X} = \{X\}$. Nesse caso, $\alpha_{\mathcal{X}}(\cdot)$ reduz-se a uma função de distribuição $F_X(\cdot)$!

 \rightarrow O caso ideal quanto ao desempenho em termos de $\alpha_{\mathcal{X}}(\cdot)$ é a função de aproveitamento ideal: $\alpha_{I}(z) = I\{\mathcal{X}^* \leq z\}$.



A abordagem da função de aproveitamento

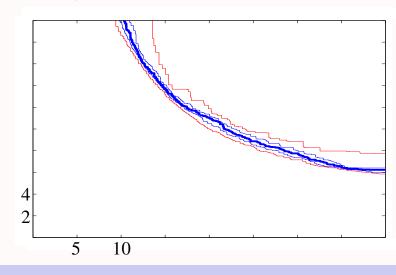
$$\rightarrow$$
 Estimação

A função $\alpha_{\mathcal{X}}(\cdot)$, que é <u>desconhecida</u>, pode ser estimada através da função de aproveitamento empírica

$$\alpha_n(z) = \frac{1}{n} \cdot \sum_{i=1}^n I\{\mathcal{X}_i \le z\}$$

<u>Ilustração</u> de um caso biobjectivo (n = 21):

Curvas de nível ϵ , 0.25, 0.5, 0.75, e 1 — ϵ



A abordagem da função de aproveitamento

→ Teste de hipóteses

Um teste de tipo "<u>Kolmogorov-Smirnov</u>" permite comparar duas funções de aproveitamento de dois optimizadores A e B.

- <u>Problema de teste</u> (bilateral):

$$H_0: \ \alpha_{\mathcal{X}_A}(z) = \alpha_{\mathcal{X}_B}(z) \quad \text{para todo o } z \in \mathbb{R}^d$$

versus

$$H_1: \alpha_{\mathcal{X}_A}(z) \neq \alpha_{\mathcal{X}_B}(z)$$
 para pelo menos um $z \in \mathbb{R}^d$,

A abordagem da função de aproveitamento

- Regra de decisão do teste bilateral: Para o nível de significância $\alpha \in (0,1)$, rejeitar H_0 se

$$D_{n,m} = \sup_{z \in \mathbb{R}^d} \left| \alpha_n^A(z) - \alpha_m^B(z) \right| > d_{n;m;1-\alpha},$$

onde $d_{n;m;1-\alpha}$ pode ser aproximado através de simulação ($teste \ de \ permutações$).

Também é possível formular testes <u>unilaterais</u>.

A abordagem da função de aproveitamento

• Uma descrição de tipo "mediana" da distribuição de \mathcal{X} é possível através do conjunto

$$V_{0.5} = \left\{ z \in \mathbb{R}^d \mid \alpha_{\mathcal{X}}(z) \ge 0.5 \right\}$$

(mediana Vorob'ev do conjunto atingido)

caso ideal:
$$V_{0.5} = \{z \in \mathbb{R}^d \mid \mathcal{X}^* \leq z\}$$

 $\underline{\text{N}}$ proporciona mais informação do que a função de aproveitamento $\alpha_{\mathcal{X}}(\cdot)$.

A abordagem da função de aproveitamento

• A descrição de tipo "variância" com a função de variância

$$\operatorname{Var}_{\mathcal{X}}(z) = \alpha_{\mathcal{X}}(z) - [\alpha_{\mathcal{X}}(z)]^2$$

também <u>não</u> fornece informação adicional, porque é determinada exclusivamente pela função de aproveitamento $\alpha_{\mathcal{X}}(\cdot)$.

- ullet Mais informação sobre a distribuição de ${\mathcal X}$ e, portanto, sobre o desempenho de um optimizador multi-objectivo
 - diz respeito à <u>dependência</u> entre $X_1, X_2, \dots X_M$, e
 - é capturada pelas funções de aproveitamento de ordem ≥ 2 .

A abordagem da função de aproveitamento

Dúvida

- Existem <u>muitas</u> funções de aproveitamento de ordem ≥ 2 , (no total: $m^* - 1$)
- e a sua complexidade aumenta gradualmente! . . .

Até que ordem vale a pena considerá-las?

Resposta

Não é claro!

No entanto, é certamente interessante considerar a chamada função de covariância

A abordagem da função de aproveitamento

 Uma descrição de <u>tipo "covariância"</u> da distribuição do conjunto APN X, baseada na função de aproveitamento de 2ª ordem, é possível através da *função de covariância*

$$Cov_{\mathcal{X}}(z_1, z_2) = \alpha_{\mathcal{X}}^{(2)}(z_1, z_2) - \alpha_{\mathcal{X}}(z_1) \cdot \alpha_{\mathcal{X}}(z_2)$$

A função mostra em que regiões do espaço dos objectivos duas metas têm tendência a ser . . .

- <u>atingidas conjuntamente</u>, na mesma execução do optimizador.

→ covariância positiva

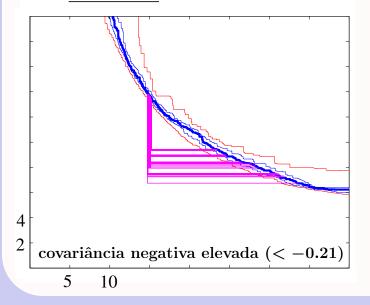
<u>atingidas em alternativa uma à outra</u>, na mesma execução do optimizador.
 <u>~ covariância negativa</u>

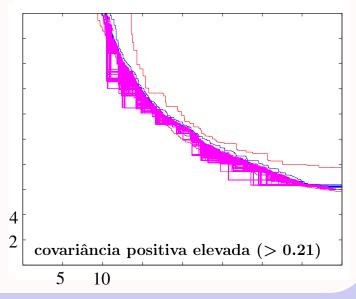
A abordagem da função de aproveitamento

A função $Cov_{\mathcal{X}}(\cdot,\cdot)$ tem o valor **Zero**, quando . . .

- as duas metas podem ser atingidas independentemente.
- uma das duas metas nunca é atingida (ou ambas o são sempre).

Ilustração da função de covariância empírica:





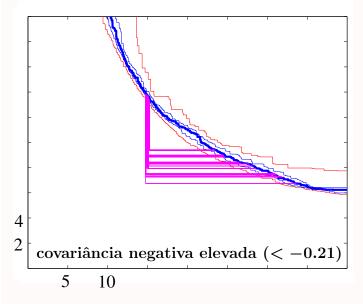
A abordagem da função de aproveitamento

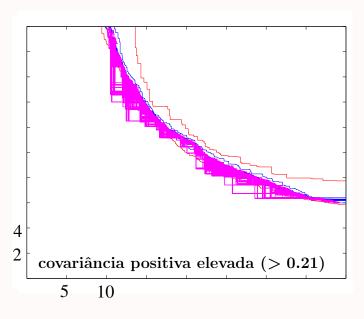
- \rightarrow Casos "<u>não</u>-ideais":
 - Covariância **positiva** entre metas **distantes**.
 - \implies Em cada execução, o optimizador aproxima toda a fronteira \mathcal{X}^* de maneira equilibrada, umas vezes melhor que outras.
 - Covariância **negativa** entre metas **distantes**.
 - \Longrightarrow Em cada execução, o optimizador aproxima apenas uma região (pequena) da fronteira \mathcal{X}^* , diferente em cada execução.

A covariância é sempre positiva para <u>duas metas próximas</u> e tem o valor da variância para duas metas iguais.

A abordagem da função de aproveitamento

Então ...





- Existem valores da função de covariância <u>negativos elevados</u> entre algumas metas <u>distantes</u>.
- Não existem valores da função de covariância <u>positivos elevados</u> entre metas <u>distantes</u>.

Optimizadores multi-objectivo: A abordagem dos indicadores de qualidade

Para evitar a complexidade da distribuição de um conjunto APN de resultados no espaço dos objectivos \mathbb{R}^d . . .

- transformam-se as realizações de \mathcal{X} em valores em \mathbb{R} , e
- considera-se a respectiva distribuição <u>univariada</u>, geralmente, em termos da sua <u>média</u>.

Exemplos tratados em seguida:

- 1. Indicador ϵ unário
- 2. Indicador da fração atingida
- 3. Indicador de hipervolume

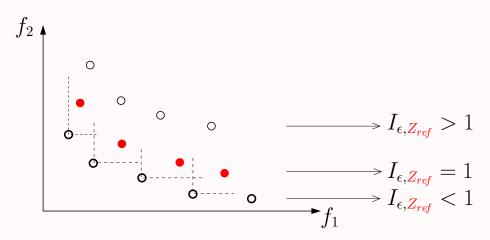
A abordagem dos indicadores de qualidade

- Indicador ϵ unário (com conjunto de referência Z_{ref}):
 - $\rightarrow \underline{\text{Definição}}$: Seja $Z_{ref} = \{z_1^{ref}, z_2^{ref}, \dots, z_k^{ref}\}$ com pontos nãodominados em \mathbb{R}^d .

$$I_{\epsilon,Z_{ref}}(\mathcal{X}) = \inf \left\{ \epsilon \in \mathbb{R}^+ : \prod_{i=1}^k I\{\mathcal{X} \le \epsilon \cdot z_i^{ref}\} = 1 \right\}$$

 \rightarrow O indicador tem realizações em $(0, \infty)$, onde um valor menor indica melhor qualidade do conjunto de resultados realizado.

A abordagem dos indicadores de qualidade



Ideia:

- Quanto é que Z_{ref} se tem que deslocar para <u>cima</u> para a realização de \mathcal{X} atingir <u>todos</u> os elementos z_i^{ref} ?
- Até onde é que Z_{ref} se pode deslocar para <u>baixo</u> para a realização de \mathcal{X} ainda atingir <u>todos</u> os elementos z_i^{ref} ?

A abordagem dos indicadores de qualidade

Em termos <u>absolutos</u>, Z_{ref} deverá representar um nível de qualidade <u>minimamente satisfatório</u> para um conjunto de resultados. Assim,

- um valor <u>médio</u> do indicador > 1 indicará uma qualidade <u>não</u>-satisfatória.
- um valor <u>médio</u> do indicador ≤ 1 indicará uma qualidade satisfatória.

??? Mas, por que não usar antes a <u>mediana</u> da distribuição deste indicador, cujo valor é

$$\inf \left\{ \epsilon \in \mathbb{R}^+ : \ \alpha_{\mathcal{X}}^{(k)}(\epsilon \cdot z_1^{ref}, \dots, \epsilon \cdot z_k^{ref}) = 0.5 \right\}$$

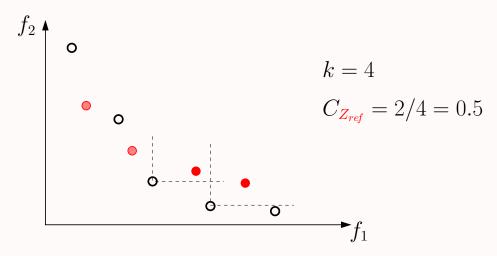
A abordagem dos indicadores de qualidade

- Indicador da fração atingida (com conjunto de referência Z_{ref}):
 - $\rightarrow \underline{\text{Definição}}$: Seja $Z_{ref} = \{z_1^{ref}, z_2^{ref}, \dots, z_k^{ref}\}$ com pontos nãodominados em \mathbb{R}^d .

$$C_{Z_{ref}}(\mathcal{X}) = rac{1}{k} \sum_{i=1}^{k} I\{\mathcal{X} riangleq z_i^{ref}\}$$

 \rightarrow O indicador tem realizações em [0,1], onde um valor <u>maior</u> indica <u>melhor</u> qualidade do conjunto de resultados realizado.

A abordagem dos indicadores de qualidade



- \rightarrow Em termos <u>absolutos</u>, dever-se-á escolher uma fração $C_{Z_{ref}}^*$ que represente uma qualidade satisfatória, dado Z_{ref} .
- \rightarrow A <u>média</u> da distribuição do indicador tem a forma

$$rac{1}{k} \sum_{i=1}^{k} lpha_{\mathcal{X}}(z_i^{ref})$$

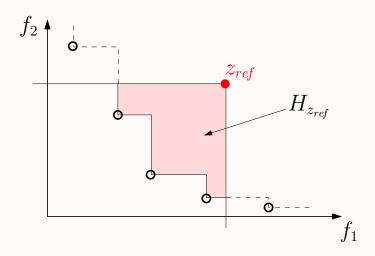
A abordagem dos indicadores de qualidade

- Indicador de hipervolume (com vector de referência z_{ref}):
 - \rightarrow Definição: Com $z_{ref} \in \mathbb{R}^d$

$$H_{z_{ref}}(\mathcal{X}) = \int \mathbf{I}\{\mathcal{X} \leq z\} \cdot \mathbf{I}\{z \leq z_{ref}\} \ dz$$

 \rightarrow O indicador tem realizações em $[0, H_{z_{ref}}(\mathcal{X}^*)]$, onde um valor maior indica melhor qualidade do conjunto de resultados realizado.

A abordagem dos indicadores de qualidade



- \rightarrow Em termos <u>absolutos</u>, dever-se-á escolher um valor $H_{z_{ref}}^*$ que represente uma qualidade satisfatória, dado z_{ref} .
- → A <u>média</u> da distribuição do indicador tem a forma

$$\int \alpha_{\mathcal{X}}(z) \cdot \mathbf{I}\{z \le z_{ref}\} \ dz$$

A abordagem dos indicadores de qualidade

- Testes de hipóteses (bilaterais ou unilaterais) permitem <u>comparar</u>, por exemplo, as médias, medianas, ou as distribuições completas de um indicador, relativamente a dois optimizadores.
- Seria interessante investigar quais dos aspectos "localização", "variabilidade", e "dependência entre os elementos X_i " do conjunto APN \mathcal{X} são avaliados por cada indicador, ou seja . . .

Qual é a relação entre um indicador e a função de aproveitamento (de ordem k)?

Notas finais

- O desempenho de optimizadores também pode ser estudado em termos da **qualidade** dos resultados **juntamente** com o **tempo** necessário para chegar a esses resultados.
 - → Na abordagem da função de aproveitamento, basta considerar o tempo como mais um objectivo.
- A função de aproveitamento <u>empírica</u> (de ordem k) é um estimador $n\tilde{a}o$ -paramétrico. Seria interessante encontrar também formulações paramétricos para essa função.
- As implementações computacionais continuam em desenvolvimento, havendo ainda limitações na aplicação prática destas funções.

• . . .

"Es gibt viel zu tun, packen wir es an!"

Obrigada!