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Abstract

O ver the years, image processing algorithms have achieved many advancements in the
medical imaging area, namely in skin lesion detection and classification. Still, skin

cancer has maintained its position at the top of the most common cancers all over the world.
Early detection of suspicious pigmented skin lesions has a determinant role in clinical prog-
nosis. Among them, melanoma, a malignant type of skin lesions, is the one that causes the
most deaths.

Several research works have moved forward the methodology and tools employed by expert
dermatology clinicians. Currently, most experts employ a dermatoscope in naked eye exami-
nation. However, in recent years, some public datasets of dermoscopy images have emerged,
enabling researchers to develop, validate, and assess new computer-aided methods. Such
methods include: pre-processing algorithms, aimed at removing artefacts and applying trans-
formations necessary for the following algorithms; segmentation methods, that aim at iden-
tifying and separating healthy skin from the lesion region; and classification or recognition
methods, which aim at detecting key lesion characteristics and even devise the lesion type.
However, none of these methods provide sufficient robustness for widespread usage.

In the pursuit for further advancements in this field, this thesis addresses and improves current
segmentation and classification algorithms, provides a new evaluation tool for dermatology
experts and researchers (by introducing a light-field dataset of skin lesion images to the field),
and proposes several approaches based on algorithms capable of differentiating melanoma
from non-melanoma images using 2D and 3D features.

Tackling the challenges in the literature, this thesis first proposes two segmentation ap-
proaches, while also performing extensive comparisons with other works, across multiple
datasets and performance metrics. From this endeavour, evidence that segmentation-detail
can contribute for melanoma discrimination is presented.

Using the Light-field Image Dataset of Skin Lesions (SKINL2), with images collected at the
Department of Dermatology of Centro Hospitalar de Leiria (Portugal), several methods are
presentedas thekeycontributionsof this thesis. First, theacquired skin surfacedepth is explored,
confirming that the use of depth data presents relevant information for melanoma classification
(data not present in 2D colour images). Then, further steps are taken to exploit both colour
and depth information under a joint process, whilst maintaining the capability of showing the
depth contribution to the classification performance. In any of these steps, proposed approaches
provide results superior the current state-of-the-art, when applied to the SKINL2 dataset.

Keywords: Medical Image Analysis, Dermoscopy, Skin Lesions, Melanoma, Medical dataset,
Image Segmentation, Feature Extraction, Image Classification
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Resumo

A o longo dos anos, a área de deteção e classificação de lesões cutâneas sofreu diversos
avanços. Ainda assim, o cancro de pele manteve a sua posição como um dos mais

comuns em todo o mundo. A deteção atempada de lesões cutâneas pigmentadas tem um
papel determinante no prognóstico clínico. Dentre os tipos de lesão, o melanoma, um tipo
maligno de lesões cutâneas, é o cancro de pele que causa mais mortes.

Diversos trabalhos impulsionaram as metodologias e ferramentas utilizadas por dermatolo-
gistas. Atualmente, os especialistas recorrem a um dermatoscópio para realizar o seu exame
visual – um instrumento portátil para rastreio de lesões da pele. Desta forma, nos últimos
anos, algumas bases de dados de imagens dermatoscópicas públicas surgiram para permitir a
pesquisa, validação e avaliação de novos métodos com recurso ao computador. Esses métodos
variam entre: algoritmos de pré-processamento, que visam remover artefactos e aplicar as
transformações necessárias aos métodos seguintes; métodos de segmentação, com o objetivo
de identificar e separar a pele saudável da lesão de pele; e métodos de classificação ou re-
conhecimento, que visam detetar características da lesão ou definir o seu tipo. No entanto,
nenhum deles confere robustez suficiente para que se possa assumir um uso generalizado.

Na busca de novos avanços, esta tese: aborda algoritmos de segmentação e classificação;
fornece uma nova ferramenta para especialistas e pesquisadores de dermatologia (introduzindo
uma base de dados de light-field da pele); e introduz abordagens experimentais através de
algoritmos capazes de diferenciar melanomas de outras lesões, usando informações 2D e 3D.

Esta tese propõe duas abordagens de segmentação, acompanhadas de comparações extensas
com outros trabalhos, usando várias bases de dados e métricas de desempenho. Desta forma,
mostra-se que contornos da segmentação podem contribuir para a discriminação do melanoma.

Utilizando a base de dados de imagens light-field de lesões cutâneas (SKINL2), cujas imagens
foram adquiridas no Departamento de Dermatologia do Centro Hospitalar de Leiria, Portugal,
vários métodos são apresentados – compondo as principais contribuições desta tese. Em
primeiro lugar, o relevo da pele adquirida é explorado, confirmando que o seu uso adiciona
capacidades relevantes para a classificação do melanoma. Em seguida são tomadas medidas
adicionais para unir as informações de cor e profundidade no mesmo processo de classificação,
mantendo-se a capacidade do modelo mostrar a contribuição da profundidade para o processo.
Em qualquer uma dessas medidas, as abordagens propostas fornecem resultados superiores
aos do estado do conhecimento atual (quando aplicadas à base de dados SKINL2).

Palavras-chave: Análise de Imagens Médicas, Dermatoscopia, Lesões Cutâneas, Mela-
noma, Dataset Médico, Segmentação de Imagens, Extração de Characterísticas, Classificação
de Imagens
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D espite the huge advances in algorithms for detection and classification of objects in
images, some applications present challenges that require novel approaches. One of

these fields is related to the detection of melanoma skin cancer. Although not being the most
common type of skin cancer, is the most likely to grow and spread to other organs. In spite
of its lethality, if detected at an early stage, the melanoma can be removed through minor
surgery. Therefore, much effort has been made to improve the early detection of such lesions.
One of the main issues with melanoma detection is that it is visually similar to another skin
abnormality called nevus, which is a very common benign type of skin lesion in the general
population. Dermatologists (currently using dermoscopy as the main type of skin cancer
screening technology), and even current computer systems, still struggle to discriminated
melanoma from atypical nevus skin lesions – while other lesion types are more easily classified.

In this context, the aim of this thesis is to address the issue of melanoma classification, by
exploring a new acquisition method that enables the extraction of information related to the
depth of the skin surface in order to improve melanoma detection rates. This depth surface
allows for the extraction of novel (computer vision) features and to further the understand-
ing regarding skin cancer in the existing literature. For this purpose, a new dataset of skin
images was acquired prior to study such depth dimension. In parallel to the acquisition of
the skin image dataset, other preliminary research was performed on segmentation methods
for dermoscopy related images, including their comparison to relevant literature and their
evaluation on the skin lesion classification process (Chapter 3). Afterwards, by using the new
dataset (of both colour and skin depth), a new research path has been devised using depth
information only. This is made to assess the gains achieved with this new dimension and
to exploit the 3D characteristics in the skin lesion surface, thus advancing beyond common
2D features. Specifically, two different classification approaches were proposed and compared
with the state-of-the-art (Chapter 4). Finally, having validated the usefulness of the third
dimension, further steps were taken to join both colour and depth information under the same
classification process, whilst maintaining the capability of showing the depth performance
contribution to the process – with the proposal of two classification approaches (Chapter 5).
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CHAPTER 1. INTRODUCTION

The remainder of this chapter presents the research motivations of this thesis (Section 1.1)
followed by the detailed proposed objectives and contributions (Section 1.2), as well as a thesis
outline (Section 1.3).

1.1 Motivation and Problem Statement

The complexity of computer models and pattern recognition algorithms has advanced signif-
icantly over the years. However, for the last decades, skin cancer has maintained its position
at the top of the most common cancers all over the world (Alliance, 2020). A skin lesion is
any kind of skin patch that presents different characteristics when compared to its surround-
ing area. There are many types of skin lesions, which can be described according to their
type, configuration, texture, colour, localisation, and distribution, among other clinical signs.
Generally, studies tend to focus on pigmented skin lesions (PSL), namely the melanocytic
lesions – as does this thesis. This type of lesions is primarily denoted as an abnormal prolif-
eration of melanocytes at the basal epidermis or upper dermis layers that may ultimately be
classified as benign or malignant (Cichorek et al., 2013). Its classification is typically based
on dermatologists’ visual inspection, with support of dermoscopic imaging and the diagnosis
by skin biopsy (Vestergaard et al., 2008).

Around the world, dermatologist work force shortage and the uneven global distribution of
pathology lab facilities set up the main reasons for the lack of access to prompt detection of
skin cancer, contributing to the increased morbidity and melanoma mortality (Feng et al.,
2018). Melanoma diagnosis rates have increased dramatically over the past three decades,
outpacing almost all other cancers (Alliance, 2020). As of 2020, in the USA, the risk of
developing melanoma was of 1 in 38 (2.6%) for Whites, 1 in 1000 (0.1%) for Blacks, and
1 in 167 (0.6%) for Hispanics (Society, 2020). A classical method to identify melanoma is
with parameters known as Asymmetry, Border, Colour, and Diameter – coined the “ABCD”
rule (Soyer et al., 2004). This method is based on the principle that melanoma lesions are
typically asymmetric, are larger than 6mm in diameter, have irregular borders, and tend to
have more than one colour. Additionally, one-third of all melanomas are thought to arise from
pre-existing nevus (a, sometimes, visually similar lesion but of benign origin) – thus detection
and removal of such nevus is of utmost importance in the prevention of melanoma (Pampena
et al., 2017). The process of lesion identification by specialists is labour intensive, time costly,
and error prone, therefore, it could be improved with the use of automated methods.

Following the previous arguments, it is then clear that early detection of suspicious PSL has a
determinant role in the clinical treatment. Therefore, non-invasive in vivo imaging techniques
(e.g. total body photography, automated diagnostic systems, reflectance confocal microscopy,
and dermoscopy) have been applied on the development of reliable systems to assist in the
clinical diagnosis decision (Smith & MacNeil, 2011). Concerning early detection of melanoma,
new solutions of Computer-Aided Diagnosis (CAD) based on Machine Learning (ML) tech-
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niques have also been investigated for feature extraction and pattern classification (Korotkov
& Garcia, 2012; Lalitha & Geetha, 2014). Beyond pattern analysis, the use of texture as a
clue for melanocytic classification has been widely discussed in the literature (Malvehy et al.,
2007). Some techniques like texture analysis using statistical methods (Materka & Strzelecki,
1998; Sheha et al., 2012; Riaz et al., 2014; Pereira et al., 2015), model-based methodologies
(Materka & Strzelecki, 1998), or bank filters in both frequency and in space-frequency do-
main (Materka & Strzelecki, 1998; Machado et al., 2016) achieved promising results, showing
evidence that texture features are a key for successful image characterisation (within a set of
different types of features). However, these 2D image processing approaches (using contact
dermoscopy), when analysed by ML algorithms, have revealed a wide range of performance
results (Korotkov & Garcia, 2012). These discrepancies are due to the use of different metrics
to show the results, to the variable contact pressure of a dermoscope (changing the texture),
and due to misleading identification of the most discriminant features in PSL. Beyond the
2D analysis, few works have also exploited the 3D information of PSL. The first attempt to
reconstruct 3D images was made with the introduction of the “Nevoscope” (Dhawan et al.,
1984). As the result of several consecutive reconstructions, lesion changes were evaluated
in regard to thickness, size, colour, and structure. Later characterisation approaches were
attempted with photometric stereo imaging (Anwar et al., 2012), allowing to extract features
for lesion classification like skin tilt and slant patterns (Smith et al., 2011), and statistical
moments of enhanced principal curvatures of skin surfaces (Zhou et al., 2010, 2011).

1.2 Objectives and Scientific Contributions

The core work of this thesis is on the research and development of new methods for identifica-
tion and classification of skin lesions, with the particular scope of discriminating melanomas
from other types of lesions. The aim of this thesis is to advance the current state-of-the-art by
exploiting light-field (plenoptic) image data in order to extract new 3D melanocytic surface
information, in pursuit of improved ML classification results. The major objectives of this
thesis are as follows:

Goal 1 - Research and develop new feature extraction algorithms and classification ap-
proaches to improve the state-of-the-art methods associated with melanoma skin lesions;

Goal 2 - Create, structure, and make available a dataset of light-field images featuring
melanocytic skin lesions, so to allow international cooperation and further validation
with international partners;

Goal 3 - Research, evaluate, and benchmark different melanoma detection approaches in
order to propose computer-based algorithms capable of differentiating melanoma from
non-melanoma images using 2D and 3D features from the novel light-field dataset of
skin lesions.

Taking into consideration the main goals, the work that led to this thesis has produced the
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following main contributions:

Contribution 1: Segmentation approaches
This contribution addresses certain types of segmentation methods absent in the lit-
erature, namely: a segmentation approach to extract a detailed lesion border; and an
approach that behaves like a dermatologist. The development of this task resulted in the
proposal of both a segmentation method, aimed at extracting a more spatially detailed
skin-to-lesion separation (published in Pereira et al., 2019a), and a dermatologist-like
segmentation method based mainly on colour gradients (published in Pereira et al.,
2019b) – presented in Sections 3.2 and 3.1, respectively. The comparison with other
literature works is not always easy, especially when different types of image datasets
are used and the results are expressed in different metrics. Therefore, a comparison
of a broad spectrum of segmentation methods was also performed, based on multiple
datasets and various performance metrics. This contribution, published in Pereira et al.
(2020a), is presented in Section 3.2.

Contribution 2: Assessment of segmentation-detail importance for classification
This contribution evidences that segmentation-details can contribute for melanoma dis-
crimination when the created segmentation masks are used to obtain border-line features
for the later classification process. First, in Section 3.4 (Pereira et al., 2020b), the two
previously proposed image segmentation methods are exploited to provide border-line
features from colour (2D) images. The achieved results confirm that a more spatially
detailed border-line definition provides better classification performance, and that these
features contribute to improve the performance of existing colour based classification
algorithms. Then, in Section 4.3 (Pereira et al., 2021d), a similar experiment is also
performed in the 3D domain, where extracted border-line features are obtained from
the depth information instead of color. In this case, the achieved results also confirm
that higher discrimination is achieved between the targeted classes, when border-line
features are added to the classification pipeline.

Contribution 3: Creation of a light-field dataset of skin lesions
Light-field images were acquired at the Department of Dermatology of Hospital of Leiria
and compiled into a publicly available dataset to enable further advancements in the
field of skin lesion classification and light-field technology in general. Currently, there
are two published (and publicly available) versions of the dataset (Faria et al., 2019c,a).
A third version also exists, however it is still in the acquisition phase, despite being
already publicly available. This contribution is presented in Section 4.1.

Contribution 4: Show the discriminative power of skin surface for classification
In order to investigate if the skin surface depth itself has discriminative information
in regard to melanomas, a first algorithm was proposed, as published in Pereira et al.
(2021c) and presented in Section 4.2, with the capability of selecting relevant features
from a broad set of generic extractors. Then, a second algorithm was also proposed
(in Pereira et al., 2021d, and presented in Section 4.3) showing that, even when using
depth information alone, lesions’ border-line surface detail has relevant information for
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the melanoma discrimination process. In addition to these two algorithms, two other
approaches were developed in order to provide an algorithm aimed at melanoma dis-
crimination. The first, published in Pereira et al. (2021b) and presented in Section 5.1,
is a step in the direction of merging current 2D state-of-the-art results with evaluated
3D characteristics. The second algorithm, published in Pereira et al. (2021a) and pre-
sented in Section 5.2, was created to be a single model capable of performing melanoma
discrimination independently of the use of either colour, depth, or both information.

1.3 Structure

The remainder of this thesis is organised in five chapters, as follows:

Chapter 2 - State-of-the-Art
This chapter introduces the main concepts and covers a set of background notions
necessary for the understanding of the literature and the remaining chapters. It starts
by giving some details on the target of this work: melanoma, skin cancer; followed
by the enumeration of several publicly available datasets and relevant metrics for this
work. Then, it covers the steps that have become common in the process of skin lesion
classification (where melanoma is included), and references previous works that feature
3D image acquisition and classification of skin lesions. Finally, some information on
light-field technology is also presented.

Chapter 3 - Segmentation and Classification of 2D Images
This chapter is dedicated to the developments accomplished with dermoscopic and macro
skin lesion images. In the absence of methods aiming for (round) dermatologist-like and
(detailed) computer driven segmentation, a method was devised for each of these types.
Then, to evaluate the proposed methods, comparisons to the segmentation methods in
the literature are made and their efficiency for classification evaluated. Additionally,
this chapter describes an initial assessment of the classification performance of a Deep
Learning (DL) algorithm when using Transfer Learning (TL).

Chapter 4 - Contributions using 3D Depth Maps
Regarding the dataset of light-field images, this chapter presents the hardware and
acquisition setup details of the so-called SKINL2 dataset, as well as its details regarding
the collected data. Then, two algorithms are investigated and developed to show that
the newly extracted depth dimension comprises information relevant to address the
problem of melanoma classification.

Chapter 5 - Towards Melanoma Classification
This chapter is dedicated to the results achieved by the use of both colour and surface
(depth) information for melanoma classification. Two classification approaches are de-
signed to enable comparison between the use of 3D information, namely: one by using a
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colour method combined with the extracted surface information; and a second model ca-
pable of performing melanoma discrimination independently of the use of either colour,
depth, or both sources of information.

Chapter 6 - Conclusion
This chapter summarises the final remarks and conclusions taken from this thesis, as
well as the research directions for future works.
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T his chapter provides some of the necessary background to better understand the re-
maining chapters. Before embarking on the relevant state-of-the-art for this work it

is important to understand its base target, i.e., melanoma, skin cancer, which is detailed in
Section 2.1.

In order to enable the broad study of PSL attributes, some image datasets have been made
publicly available by others in the past. These datasets can be used as basis for PSL research
works (Section 2.2).

Within the context of this thesis, two main tasks were carried out: segmentation and classifi-
cation of PSL. Depending on the targeted domain, several metrics exist to enable evaluation,
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comparison, and selection of methods and algorithms to be used on those datasets – depending
on their aim (as detailed Section 2.3).

The current literature for 2D melanoma imaging is well described in Korotkov & Garcia (2012),
Oliveira et al. (2016), and Pathan et al. (2018). As it can be inferred from the previous
literature works, it is evident that the classification of skin lesion related images includes
five steps (detailed in Section 2.4), namely: image acquisition, pre-processing, segmentation,
feature extraction, and classification. Particularly for the topic of segmentation, due to its
importance for this work, a relevant set of methods is presented and discussed in Section 2.5.

Besides simple 2D imaging, as presented in existing literature, it is also possible to extract 3D
information from the skin lesion to improve the 2D classification results (Section 2.6). This can
be done by using different acquisition technologies. In the scope of this thesis, the acquisition
of such 3D information is performed by resorting to light-field imaging (Section 2.4.1-Light-
Fields).

The remainder of this chapter reviews the literature pertaining to each of the mentioned key
background topics.

2.1 Skin and Skin Cancer

Skin is the largest organ in the human body and consists of two main layers: the epidermis and
the dermis (Fig. 2.1). The dermis is composed of sub-layers of collagen and elastic fibers. It
provides energy and nutrition to the epidermis. The later is a stratified squamous epithelium,
a layered scale-like tissue, which serves as protection against external agents. It consists of 4
types of cells (McGrath & Uitto, 2010):

• Keratinocytes, representing 95% of the epidermis.

• Melanocytes, dendritic cells that distribute packages of melanin pigment (via melanosomes)
to surrounding keratinocytes (to give skin and hair their colour).

• Langerhans cells, also dendritic cells, that exist to detect foreign bodies that penetrate
the epidermis and deliver them to the local lymph nodes.

• Merkel cells, which function as receptors to the touch sensation.

Although almost any cell in the body can develop cancer, some are more cancer-prone than
others. In the case of skin, most cancers develop from non-pigmented cells and not from
pigmented melanocytes (Kaufman, 2005). This makes the known ’basal cell carcinoma’ and
’squamous cell carcinoma’ the most common forms of skin cancer. However, ’melanoma’
(also called ’malignant melanoma’) is a less common but far more deadly skin cancer. Most
melanomas possess at least one type of dermoscopic structures: atypical networks, peripheral
streaks, atypical dots or globules, negative pigment network, off-center pigmented blotches,
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Figure 2.1: Anatomy of the skin, showing the epidermis, the dermis, and subcutaneous (hypoder-
mic) tissue. Copyright 2008 by Terese Winslow at http://www.teresewinslow.com/portshow.asp?
portfolioid={4B56C61F-9C24-47C6-9F4D-9444E1D75BA2}.

blue-white veil over raised or flat areas, atypical vascular structures, and peripheral brown
structureless areas.

The cancerous growths develop when the damaged DNA on skin cells remains unrepaired. This
is most often caused by ultraviolet radiation (from sunshine or tanning beds) (Matsumura &
Ananthaswamy, 2004; Ravanat et al., 2001; Kiefer, 2007). In a nutshell, this attained genetic
defects trigger mutations that may lead the skin cells to multiply rapidly and form what is
know as malignant tumours. In turn, these originate in the pigment-producing melanocytes
in the basal layer of the epidermis – the ones that produce melanin and give skin its colour
and tan. Melanomas often resemble moles, some develop from moles – known as nevus, a
similar lesion but of benign origin. The majority of melanomas are black or brown, but they
can also be skin-coloured, pink, red, purple, blue, or white. Apart from being mainly caused
by intense, occasional UV exposure, one can also be genetically predisposed to the disease.

Melanoma incidence is increasing among the world population. If identified and treated at
early stages it is almost always curable (Goldsmith et al., 1992). However, if not, the cancer
can progress and spread to other parts of the body. After spreading, it becomes harder to
target and treat, likely producing a fatal outcome (AJ et al., 1979; Wick et al., 1980). In
resume, early detection of skin cancer constitutes a determinant task in clinical prognosis
(Friedman et al., 1985).

Automated melanoma identification is useful to help dermatologists, and it is nowadays be-
coming possible with the development of new imaging techniques and advances in computing
capabilities (both in processing and storage), which are supporting and pushing the develop-
ment of new algorithms and the creation more image databases. Non-invasive in vivo imaging
techniques have been applied to develop reliable systems to assist in the clinical diagnosis
decision (Smith & MacNeil, 2011). Like in order scenarios, digital imaging proved to be
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a great improvement for both health practitioners and patients. Reviewed in Stoecker &
Moss (1992), the benefits of computer vision in dermatology soon became another success.
Objective non-invasive documentation of skin lesions, digital dermatological image archives,
quantitative description of clinical features of cutaneous lesions, among others, are some of
the benefits that already became a reality as a consequence of digital imaging.

2.2 Datasets

The literature includes some publicly available datasets of collected skin lesion images and skin
lesion type label annotations. The five datasets used in this thesis, detailed in the following
paragraphs and on Table 2.1, are all of dermatoscopic or macro-imaging origin. Apart from
these datasets (comprised by 2D/colour images), the work encompassed by this thesis also
produced a novel 3D image dataset. This dataset is detailed in Chapter 4.1.

Table 2.1: Relevant 2D Skin Lesion Datasets.

Dataset Modality Samples Classes Ref

Atlas dermoscopic 100 2 Argenziano et al. (2000)
Dermofit macro 1300 10 (Ballerini et al., 2013)
ISIC dermoscopic/macro 3438 3 (Collaboration, 2017)

MED-NODE macro 170 2 (Giotis et al., 2015)
PH2 dermoscopic 200 2 (Mendonça et al., 2013)

Atlas The EDRA-Interactive Atlas of Dermoscopy (Atlas) dataset (Argenziano et al., 2000)
is a representative set of images allowing comparisons among clinical, dermoscopic, and histo-
pathological samples. Images have 700×447 8-bit RGB pixels, and were acquired with a
Dermaphot/Optotechnik dermoscope. This dataset does not include segmentation masks.
However, it is possible to find in the literature some studies that introduce a segmentation
border to the images from this dataset in collaboration with dermatologists. This is the case
of the work by Celebi et al. (2010), whose segmentation results can be used as ground-truth. It
should be pointed out that with no formal ground-truth masks in the original dataset, there is
no guaranty that the selected ones are optimal and valid, nonetheless, whenever this dataset is
used in this thesis the Celebi et al. (2010) segmentation masks are considered as ground-truth.

Dermofit The Dermofit dataset (Ballerini et al., 2013) is a collection of 1300 high quality
focus skin lesion images (with sizes ranging from 177×189 to 3055×1630 8-bit RGB pixels),
all collected under similar conditions by the Department of Dermatology of the University
of Edinburgh, using a Canon EOS 350D SLR camera (at an average distance of 50 cm)
and a flash-ring for controlled lighting. This dataset includes a segmentation ground-truth,
generated by a method that uses a statistical model for annotation.
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ISIC The ISIC dataset (Collaboration, 2017) is a collection of images (of both dermoscopy
and macro imagery) created by The International Skin Imaging Collaboration, which is still
growing every year. When used for this work, the acquired dataset contained a total of 3438
images divided into 17 lesion types, including segmentation masks and a target classification
label obtained from an unspecified number of skin cancer experts, as well as several other
information such as: diagnosis type, clinical size, patient approximate age, general anatomic
site, patient sex, and whether or not the patient previously had melanoma.

MED-NODE The MED-NODE dataset (Giotis et al., 2015) consists of 70 melanoma and
100 nevus images from the digital image archive of the Department of Dermatology of the
University Medical Centre Groningen. The images were acquired with a Nikon D3 / Nikon D1x
camera and a Nikkor 105 mm f/2.8 micro lens, at an approximate distance of 33 cm between
the lens and the targeted lesion. Images of PSL originate only from patients of Caucasian
origin (majority of the population in the Netherlands). Prior to the dataset release, rescale
and resize (along with other operations like hair removal) were performed manually. These
operations are lesion-region dependent since some manual upscaling was performed to set the
images range from 349×321 to 1880×1867 pixels. Each image shows a single region-of-interest
(ROI) that contains both healthy and lesion skin, and an associated lesion type classification
label.

PH2 The Pedro Hispano Hospital (PH2) dataset (Mendonça et al., 2013) is another set of
dermoscopic images. It comprises 200 images (with sizes ranging from 761×570 to 769×577
8-bit RGB pixels) acquired with a Tuebinger Mole Analyzer system using a magnification of
20 times and the corresponding ground-truth segmentation masks (manually annotated by
an expert dermatologist). The PH2 has been used in different literature reviews for several
dermoscopy purposes (as in Silveira et al., 2009).

2.3 Evaluation Metrics

In the following chapters of this thesis, evaluation metrics capable of measuring and enabling
the performance assessment of algorithms and methods will be necessary to perform compar-
isons and extract relevant insights. Some of these metrics are only relevant for skin lesion
segmentation, presented in the following Section 2.3.1, while others are only used to measure
classification performance, presented in Section 2.3.2.
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2.3.1 Segmentation Metrics

Typically, a segmentation is used to locate objects and boundaries (lines, curves, etc.) in
images. More precisely, image segmentation is the process of assigning a label to every pixel
in an image such that pixels with the same label share certain characteristics. In the case of
skin lesion segmentation, the objective is to perform the binary separation of the image pixels
into either belonging to the healthy skin region or to the lesion area, as depicted in Fig. 2.2 –
where black pixels mark healthy skin region and white pixels mark the (nevus) lesion region.

(a) Nevus image (b) Ground-Truth mask

Figure 2.2: Segmentation Example: (a) nevus image from the Dermofit dataset and (b) correspond-
ing ground-truth image mask.

The process of comparing and determining the better segmentation is generally simpler when
performed for binary components, i.e., assigning each pixel to one of two possible types of
regions. It is possible to extract metrics such as how much area two segmentations have in
common, verify how much area is incorrectly included in the ROI, how far from each other
are the two pixel subsets, or establish the best intersection. The following paragraphs detail
such metrics, which are used in the experiments and assessments performed in this thesis (in
similarity to other literature works: Hance et al., 1996; Celebi et al., 2009b; Garnavi et al.,
2011). In addition, for metrics based on set theory, Fig. 2.3 provides an overview of their
application.

Border Error (BE) The BE is a broadly used metric to assess segmentation algorithms.
It was first proposed by Hance et al. (1996) and it can be described by Eq. (2.1). It allows
to measure the fraction of non-overlapping area between the proposed segmentation method
being evaluated (PS) and the ground-truth segmentation (GT). This area (i.e. number of
pixels) of the non-overlapping segmentation parts (exclusive-OR, ⊕) is calculated in percent-
age. In the equation, # represents the number of pixels that a region contains. When PS is
an exact match with GT (best scenario), BE is equal to zero (0%) since there are no errors.
In contrast, if there are errors, the upper-bound is constrained to the maximum number of
pixels the masks have.

BE(PS,GT) = #(PS⊕GT)
#(GT) =

#(PS ∪GT) −#(PS ∩GT)
#(GT) (2.1)
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BE = PS∪GT - PS∩GT
                   GT

SDC = PS∩GT + PS∩GT
                   PS+GT

JI = PS∩GT
       PS∪GT

TDR = PS∩GT
              GT

FDR = PS∩GT
              GT

GT

PS

PS ∩ GT

PS ∪ GT - PS ∩ GT

PS ∩ GTPS ∪ GT

SDC

JI

FDR

TDR

BE

Figure 2.3: Segmentation Metrics Visualisation. Given a proposed segmentation (PS) and the
ground-truth segmentation (GT), visualise metrics as Venn Diagram calculations.

True Detection Rate (TDR), False Detection Rate (FDR) The TDR, in Eq. (2.2),
measures the ratio of GT pixels that are correctly classified as lesion in PS, and the FDR, in
Eq. (2.3), measures the ratio of GT pixels that are incorrectly classified as lesion in PS. Both
TDR and FDR are in the rage of [0, 1]. In the best scenario, TDR should be 100% and FDR
equal to 0%.

TDR(PS,GT) = #(PS ∩GT)
#(GT) (2.2)

FDR(PS,GT) = #(PS ∩GT)
#(GT) (2.3)

Jaccard Index (JI) The JI, defined in Eq. (2.4), measures the similarity between two
sets. It is computed as the size of the intersection divided by the size of the union of the
segmentation masks. The metric is also known by “intersection over union index”, as it
provides the ratio of intersection over union areas between two regions, enhancing the common
region over the total ROI, which is seen as a central feature to distinguish segmentation
outputs. Nonetheless, the previously mentioned metrics also provide extra relevant details,
which is specially convenient when comparing similar JI. In the best scenario, JI should be
equal to one, meaning an 100% match between masks. As the masks become more distant,
JI will decrease and reach 0% when the two masks no longer overlap.

JI(PS,GT) = #(PS ∩GT)
#(PS ∪GT) (2.4)
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Sørensen-Dice coefficient (SDC) The SDC metric, defined in Eq. (2.5), is another sim-
ilarity metric, which is seen as equivalent to the JI metric. Given a value for the Jaccard
Index JI, the SDC metric value for the Sørensen-Dice coefficient can be calculated (and vice
versa), using equations SDC = 2JI/(1 + JI) and JI = SDC/(2 − SDC), respectively. Addi-
tionally, since the SDC does not satisfy the triangle inequality (caused by giving 2 times the
importance to the overlapping area), it can be considered a semi-metric version of the JI.

SDC(PS,GT) = #(PS ∩GT) +#(PS ∩GT)
#(PS) +#(GT) (2.5)

Hausdorff Distance (HD) The HD metric measures how distant are two non-empty sub-
sets (of a metric space), as shown in Eq. (2.6), where d measures the metric space from a
point p to the closest point of a non-empty set (either PS or GT). By definition, two sets
are close in terms of the HD if every point of either set is close to some point of the other
set. This means that in the best scenario, HD is equal to zero, while the maximum distance
upper-bound can be as large as the image diagonal distance (if the two masks comprise one
pixel each and are in opposing sides of the diagonal).

HD(PS,GT) = max {max
p∈PS

d(p,GT), max
p∈GT

d(p,PS)} (2.6)

2.3.2 Classification Strategies and Metrics

The main objective of the classification process is to assign labels to each element of a given
set (images, in the context of this work). More specifically, throughout this thesis, the goal of
the classification is to assign a specific skin lesion class label to each image in a given dataset.
In order to fulfil this purpose, several classification models based on different feature subsets,
samples, and classifiers are evaluated using test sets. Therefore, the predicted label of new
classified samples is compared to the known label, in order to evaluate the classification per-
formance. Among several evaluation procedures, cross-validation (CV) (Witten et al., 2005) is
the most commonly used in the literature to assess the results of skin lesion classification, since
it avoids over-fitting while testing the capacity of the classifier to generalize. The k -fold CV
(Maglogiannis & Doukas, 2009) and leave-one-out (Barata et al., 2014; Iyatomi et al., 2010)
methods are examples of CV proposed for classifying skin lesions in images. The half-and-half
test is another evaluation procedure which was applied by Iyatomi et al. (2008).

Statistical measures based on performance metrics are computed to compare the achievements
of different classification models according to the outcomes of the classifiers. Possible out-
comes of classifiers based on the predicted class and expected class are: true positives, true
negatives, false positives, and false negatives; which are typically expressed as a confusion ma-
trix, as shown in Table 2.2. These represent the number of correct (true) and incorrect (false)
classifications for each class (positive and negative). For instance, in a classification process
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Table 2.2: Confusion Matrix.

Predicted class
Positive Negative

Actual class Positive True Positive False Negative
Negative False Positive True Negative

involving two classes, one class may be considered positive and another negative. Positive
samples usually represent the most important class (e.g., skin cancer, melanoma), and nega-
tive samples the less important (e.g., benign lesions, nevus). Therefore, the true positive rate
(TPR), is the number of correctly classified positive samples, as expressed in Eq. (2.7); the
true negative rate (TNR), is the number of correctly classified negative samples, as expressed
in Eq. (2.8); the false positive rate (FPR), is the number of negative samples incorrectly
classified as positive samples, as expressed in Eq. (2.9); and the false negative rate (FNR),
is the number of positive samples incorrectly classified as negative samples, as expressed in
Eq. (2.10). These rates can be extracted from a confusion matrix (Table 2.2), which is the
basis for several metrics used by researchers to measure the classification performance (Alcón
et al., 2009; Situ et al., 2008; Smith et al., 2011; Satheesha et al., 2017; Pathan et al., 2018;
Hu et al., 2019).

TPR =
True Positive

True Positive + False Negative
(2.7)

TNR =
True Negative

True Negative + False Positive
(2.8)

FPR =
False Positive

False Positive + True Negative
(2.9)

FNR =
False Negative

False Negative + True Positive
(2.10)

For this thesis, as for most of the reference literature, the most relevant metrics are: the
accuracy (ACC), that is the percentage of correctly classified positive and negative samples
based on all samples, as expressed in Eq. (2.11); the sensitivity (SEN, also known as recall or
TPR), that is the percentage of correctly classified positive samples with respect to all positive
samples (typically representing the successful melanoma, or malignant lesion, identification
rate); and the specificity (SPE, also known as TNR), that is the percentage of correctly
classified negative samples with respect to all negative samples. More details about this
metrics can be found in Baratloo et al. (2015).

ACC =
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative
(2.11)

In addition to these evaluation metrics, since skin lesion classification is often an unbalanced
classification problem, the balanced-accuracy (BAC, as introduced in Hu et al., 2019) is
also used in this work when relevant for similar performance distinction. The BAC metric
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corresponds to the average value between sensitivity and specificity, as defined in Eq. (2.12).

BAC =
SEN + SPE

2
=

TPR + TNR

2
(2.12)

2.4 2D Skin Lesion Analysis Pipeline

According to the literature, established methods commonly comprise five steps for skin lesion
detection (as depicted in Fig. 2.4). It starts with Image Acquisition (Section 2.4.1), followed
by Pre-Processing (Section 2.4.2) of the data, which tries to enhance several aspects of the
image. Then, the aim is to find the image region where the lesion is located, a process known
as Segmentation (Section 2.4.3), to the extent of allowing Feature Extraction mechanisms
(Section 2.4.4) to be applied over the relevant image area. Finally, some sort of Classification
(Section 2.4.5) is applied over the attained features, in order to infer if the lesion area possesses
melanoma characteristics.

Image
Acquisition Pre-Processing Segmentation Feature

Extraction Classification

Figure 2.4: Five common steps for skin lesion detection.

Concerning early detection of melanoma, new solutions of CAD based on ML techniques have
been investigated for feature extraction and pattern classification Lalitha & Geetha (2014);
Hosny et al. (2019). Although it may seem a simple process, no unified procedure exists
for any of the mentioned steps (Korotkov & Garcia, 2012). This is so mainly because the
existing results are not all coherent with each other. Therefore, there is still a large space for
improvement. Morphological differences in skin lesion images directly influence the choice of
the method for, e.g., border detection.

2.4.1 Image Acquisition

Only recently, dermatologists have started to incorporate the novel imaging techniques in the
process of patient diagnoses. The image acquisition technique greatly dictates the type of
acquired information (and content) that can be used afterwards for skin lesion assessment.
In this thesis, only dermoscopy (or macro skin images) and imaging techniques based on
3D lesion analysis are considered (namely light-fields). Dermoscopy, in particular, is a fast
growing method to capture skin imagery and has been growing in both dissemination and
utilisation (Psaty & Halpern, 2009); and, as a consequence, dermoscopy is now a common
step in the initial examination for many patients.

— 16 —



2.4. 2D SKIN LESION ANALYSIS PIPELINE

Dermoscopy

The field of dermoscopy traces back to 1620 with Pierre Borel (Domínguez-Espinosa, 2014;
Kreusch & Rassner, 1990). However, it was only formally developed in the 20th century with
Saphier (1921), and, only in 1971, it was first used to explore pigmented lesions (MacKIE,
1971). It quickly turned into a vast research topic in the following years, primarily in Europe
and Australia, and only later in the United States (Nehal et al., 2002; Tripp et al., 2002;
Hosny et al., 2019; Collaboration, 2017).

As a stepping stone, it has been reported that dermoscopy used in conjunction with clinical
examination and patient history results in a 50% improvement in diagnostic accuracy (Kittler
et al., 2002) – although the diagnostic classification of small or featureless lesions remains
a problem (Blum et al., 2004; Pizzichetta et al., 2001; Menzies et al., 1996; Skvara et al.,
2005). It has also been noted that the isolated use of dermoscopy is not a good practice,
since some lesions are understood as being suspicious only when viewed in the context of the
surrounding skin and with information about the patient’s history (Carli et al., 2005). Even
so, new criteria are always emerging to help label lesions as melanocytic or non-melanocytic
(Argenziano et al., 2003, 2007; Korotkov & Garcia, 2012; Lalitha & Geetha, 2014; Pathan et al.,
2018; Oliveira et al., 2018). An example of melanocytic lesions are nevi, which, in general, tend
to be symmetric, uniform, display less than three colours, and possess an orderly, perhaps even
aesthetically pleasing, architecture. Melanomas however, a visually similar melanocytic lesion
type, can be marked as architectural disorder. As stated in Section 2.1, most melanomas posses
at least one of nine dermoscopic structures, even on different lighting-environments (polarized
and non-polarized) certain structures are better seen under different dermoscopy systems.

Still, given its usage and potential, dermoscopy-related algorithms are constantly emerging,
but with variable definitions of specific attributes – complicating diagnosis when using multiple
systems. This is why the International Dermoscopy Society created a consensus document for
the standardisation of how to effectively convey dermoscopic findings (Malvehy et al., 2007).
This was later used to start a study aimed at creating a unified dermoscopy algorithm (UDA)
by using the most popular and widely accepted algorithms developed by dermatologists. This
project was a multidisciplinary World Wide Web-based study that tracked the ratings and
scores of hundreds of histologically confirmed melanocytic lesions, nevi and melanomas, which
were evaluated according to some defined metrics (Carli et al., 2005; Henning et al., 2007;
Zalaudek et al., 2006).

3D Lesion Analysis

Original works that aim for the 3D lesion reconstruction began with the use of the device
named “Nevoscope” in 1984. It worked by obtaining images of transilluminated lesions at dif-
ferent angles and then applying a limited-view computed tomography reconstruction algorithm
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(Dhawan et al., 1984; Rigel et al., 2010; Kini & Dhawan, 1992). Later, in a similar way as in 2D,
features extracted from 3D lesions (generated through stereoscopy) were presented in McDon-
agh et al. (2008) as input to a Bayesian classifier to distinguish melanoma from non-melanoma.
Then, an evolved method was presented in Smith et al. (2011) based on skin tilt, slant patterns,
and statistical moments of enhanced principal curvatures of skin surfaces (Zhou et al., 2010,
2011), by using the photometric stereo technique. As in previous works, 3D features were
extracted and used as input to both an artificial neural network and a C4.5 tree classifier. The
isolated use of the 3D features did not outperform 2D features, however the combined used of
both sets of features provided superior performance results.

Light-Fields A fairly unexplored image modality in PSL is the recording of skin surface
visual information using light-field cameras, which are able to capture not only light intensity
but also its direction, providing richer visual information for research on new computational
methods (Donatsch et al., 2014; Dansereau et al., 2015). Light-field data allow to obtain
multiple views on the lesion and, from there, create a depth map. For instance, light-field
depth maps with sub-millimetre accuracy have been used in high precision robotic surgery in
Shademan et al. (2016). The use of light-fields in medicine for diagnosis, surgery planning and
execution, as well as training of health professionals has been attracting increasing research
attention (Makanjuola et al., 2013; Saha et al., 2014; Marshall et al., 2014). Analysis of PSL
can also benefit from the additional light-field visual dimensions, as reported in Baghdadchi
et al. (2014), where a commercial light-field camera of the first generation has been used to
visualise a skin condition, with some constraints in terms of resolution. For a more thorough
understanding of the concept that is light-field and its origin, refer to Lippmann (1908b);
Adelson & Wang (1992); Ng et al. (2005) and all other works/lectures from Lippmann.

2.4.2 Pre-Processing

As in other applications, after a clinical or dermoscopic image is acquired, it may not have the
adequate quality for subsequent analysis. Typically, PSL images have extraneous artefacts
– hairs, air bubbles, ink marks – around or inside the lesion area. Hence, the first step in
image processing pipelines is the correction of these artefacts, or the whole image itself (e.g.,
colour range or distribution correction), so that later border detection (segmentation) is more
accurate. Therefore, the good performance of the methods not only contributes to the correct
behaviour of the algorithms in the following stages of the analysis, but also loosens the con-
straints on the image acquisition process. Some common pre-processing methods are: mean
filter, wavelet denoising, median filter, Dull Razor method, Wiener filter, and morphological
closing (Oliveira et al., 2016) – apart from color adjustments and transformations.

Concerning colour adjustments, many colour spaces have been explored in order to extract
more specific information about the lesion colours. One such colour space, relevant for this
thesis is the CIE L*a*b* colour space (Barata et al., 2013, 2015; Rastgoo et al., 2015). Most

— 18 —



2.4. 2D SKIN LESION ANALYSIS PIPELINE

colour space transformations are performed to adjust colour distributions while others are to
enhance certain aspects of the image attributes. For example, conversion from RGB to the
CIE L*a*b* colour space is known to directly separate reds from greens and yellows from
blues – which can greatly help in some cases, such as in clustering and colour segmentation.

2.4.3 Segmentation

In this thesis, the process of discriminating between the lesion area and the healthy skin is
called segmentation. This distinction is important so that the forthcoming steps only utilizes
the ROI – region of interest, in this case the lesion region – and ignores the surrounding
normal skin. Nevertheless, lesion border detection is not a trivial task. Dermatologists, do
not usually delineate detailed lesion borders for diagnosis (but rather perform a rough iden-
tification of the area for incision, Day & Barbour, 2001), therefore, skin lesion datasets often
do not present an accurate segmentation ground-truth. Additionally, humans are generally
not very good at discriminating subtle variations in contrast or blur (Claridge & Orun, 2002),
thus in perceiving the boundaries of a lesion. This poses some difficulties when trying to
find the correct border line, mainly because of high inter- and intra-observer variability in
PSL boundary perceptions among dermatologists (Claridge & Orun, 2002; Joel et al., 2002;
Iyatomi et al., 2006). Apart from the human factor, the morphological structure of a lesion
itself (low lesion-to-skin gradient, multiple lesion regions, among others) can induce more
complexity for both manual and automatic segmentation. Up to date, a large number of
image segmentation techniques (which span almost all categories of segmentation algorithms,
Vestergaard & Menzies, 2008) has been presented by researchers, yet, none of them is suitable
for all sorts of applications.

Skin lesion morphological differences in clinical and dermoscopic images directly influence the
choice of method for border detection. This is due to the different techniques available for
image acquisition alongside with the chaotic mixture of environment-variables (e.g., type of
lesion, location, colour conditions, angle of view, and skin types) that increase difficulties in
segmentation when using the same imaging modality (Celebi et al., 2009a; Fleming et al.,
1998; Xu et al., 1999). Hence the existence of several databases, each with its approach and
points of view, where available methods aim to provide robustness for difficult segmentation
cases, by adapting it to specific conditions of the image type (e.g., Zhou et al., 2008).

A relevant selection of segmentation methods, pertinent for Chapter 3, is discussed is Sec-
tion 2.5.

2.4.4 Feature Extraction

After proper image adjustments and ROI determination, feature extraction takes place –
either with manual definition of such features or with their acquisition via machine learning
algorithms. This is a very important task, where the most prominent attributes or aspects
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of the image regions are evaluated. This process intends to select an optimal subset of lesion
characteristics so that they can be given as input for a classification process.

The first standard set of dermoscopy (manually defined) features was introduced in early
1994 (Nachbar et al.) as the “ABCD” rule mnemonic to distinguish between benign lesions
and melanoma. This was later compared with the “7-Point Checklist” analysis (Clemente
et al., 1991, which is based on simplified epiluminescence microscopy instead of dermoscopy)
in Argenziano et al. (1998). Afterwards, it was expanded to “ABCDE” by including the “E” to
denote the lesion evolution over time (Abbasi et al., 2004). Another increment immediately
took place the year after with the addend of “FG” for the diagnosis of melanoma (Fox, 2005).
In Seidenari et al. (2006), the asymmetry importance for melanoma identification was devised.
In Mendes et al. (2016), new methods were introduced to align and asses lesion growth over
time. The current “ABCDEFG” rule stands as follows:

Asymmetry : one half of the tumour does not match the other half
Border : edges are ragged, notched, blurred
Colour : pigmentation is not uniform

Diameter : greater than 6 mm and growing
Evolving : evolving lesion over time

Firm : lesion is firm to touch
Growing : growing rapidly in a few months or weeks

In 1998, the concept of “ugly duckling” appeared (Grob & Bonerandi, 1998) – it stated that
different melanocytic nevus/moles in the same person would resemble each-other, but a mela-
noma lesion would be different. More recently (Sadeghi et al., 2013), an approach has proposed
which detects and analyses irregular streaks in dermoscopic images.

Feature extraction may be based on lines, edges, textures, or points. However, in recent years,
texture, border and geometric based approaches became more relevant, as expressed in Barata
et al. (2018); Oliveira et al. (2018); Baig et al. (2020) – including abstractions acquired with
Deep Learning (i.e., machine learned features).

2.4.5 Classification

As a final step in the skin lesion pipeline, classification typically assumes the role of the der-
matologist or assists on its judgement (CAD systems). Nowadays, there is a diverse collection
of approaches, some are built to only distinguish melanoma from non-melanoma images, while
others attempt to also recognise other types of skin pathologies.

Assuming the existence of descriptors extracted in a previous step (Section 2.4.4), one or more
classification methods can be applied. Their performance depends on both the quality and
quantity of the data, the extracted descriptors, and on the chosen classifier. The comparison
of classification approaches should be performed on the same dataset and using the same set of
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descriptors, to provide adequate results. A research work presented in Maglogiannis & Doukas
(2009) performed a unified comparison of 11 of the most common classifier groups used in
PSL using over 3639 dermoscopic images. The work comprised three sub-experiments, each
aiming different classification outputs (either melanoma vs nevus, or dysplastic vs nevus, or all
three). In this study, Support Vector Machines (SVMs) showed the best overall performance,
but the author concluded that it was biased due to the set of extracted features.

Machine Learning, in particular for image recognition or classification, has become a major
topic in a wide range of research fields because of its ability to learn abstract data models
and intrinsic discriminative properties. The datasets used for training, validation and test-
ing are crucial elements required for research on image classification with ML. Amongst the
most important, there is the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
currently considered one of the standard references used in recent years as a benchmark stan-
dard for large-scale object recognition, i.e. image classification, single-object location and
object detection. ImageNet has been used by many authors to improve their image classifica-
tion/recognition algorithms. Its use promoted an exponential growth of research results and
significant improvements to the state-of-the-art techniques (Russakovsky et al., 2015).

A recent work in Esteva et al. (2017) uses DL to catalogue a wide range of skin diseases,
including melanoma. The authors used the Google Inception v3 (a convolution neural net-
work, CNN) model (Szegedy et al., 2015, 2016) as a starting point for their PSL detection
system. This technique, known as TL or Domain Adaptation (Pan & Yang, 2010), assumes
that neuron weights only change slightly from task to task and that a static architecture
may be maintained. This means, in this case, that if we start with an already good image
recognition network, as Google Inception v3 (GoogLeNet) that only had an error rate of 6.7%

in the ILSVRC of 2014 (Szegedy et al., 2015), odds are that it will quickly adapt itself to
recognise a new set of categories, like the different skin lesions. For example, based on the
AlexNet pioneer CNN architecture (Krizhevsky et al., 2012) several works, mainly triggered
by the International Skin Imaging Collaboration challenge of 2017, preferred TL instead of
starting from scratch (Sousa & de Moraes, 2017; Berseth, 2017; Harangi, 2017; Yu et al., 2017;
Murphree & Ngufor, 2017; Menegola et al., 2017; Shoieb et al., 2016; Liao et al., 2016).

In Hosny et al. (2019), a classification approach for segmented colour skin lesion images
of three datasets is performed using TL on the AlexNet CNN model (pre-trained in the
ILSVRC). In order to increase the number of dataset samples and lower the model overfit
probability, augmentation based on image rotation is performed. Data normalisation is also
employed, as originally applied for the previously trained ImageNet data (maintaining the
same colour feature space). As commonly used in TL methods, the model classification
output function is replaced by an appropriate softmax layer for either melanoma and nevus
(binary) or melanoma, seborrheic keratosis, and nevus (ternary) discrimination. After fine-
tuning the model weights on each dataset, and performing augmentation in both train and test
sets, the reported system ACC performance was measured as 96.86%, 97.70%, and 95.91%,
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for three different datasets, respectively. Without augmentation, the recorded performance
was 88.24%, 91.18%, and 87.31%, for the same datasets. Additional information about Deep
Neural Networks (DNN) in skin lesion applications can be found in Senan & Jadhav (2019).

2.5 2D Skin Lesion Segmentation Methods

Recent advances in machine learning approaches are rapidly changing the landscape of medical
image processing algorithms for detection, recognition and classification. In order to work
properly, these methods require datasets with accurate ground-truth image segmentation, both
for training and validation of such new computational models (Ker et al., 2018; Oliveira et al.,
2018). In the case of skin lesion segmentation, the difficulty of achieving accurate delineation
of ROI borders manually has driven research efforts to increase the availability of ground-truth
ROI through computational methods (Cheng et al., 2015; Kéchichian et al., 2014).

The creation of accurate segmentation masks is an important step in the classification pipeline,
since it enables classification or feature extraction algorithms to filter out features extracted
from surrounding healthy skin. As a consequence of not including extraneous information for
the studied problem, ML techniques achieve higher success rates (Lee et al., 2018).

This section presents existing segmentation methods that have been applied to skin lesions or
that were specially made for that purpose. Skin lesion segmentation methods can be grouped,
for example, based on their underlying algorithmic approach. The remainder of this section
refers to two groups of methods: those implemented by the author of the this thesis (following
other works’ descriptions) for application and validation against specific datasets, and those
not implemented by the author (since they already have metric information publicly available
for the relevant comparisons made in Section 3.2). The first group comprises 27 segmenta-
tion methods that are divided into the following seven categories: Threshold (Section 2.5.1),
Clustering (Section 2.5.2), Fuzzy Methods (Section 2.5.3), Quantization (Section 2.5.4), Ac-
tive Contours (Section 2.5.5), and Merging Threshold (Section 2.5.6). This categorisation is
shown in Table 2.3, where the first column (ID) is the acronym used to identify each method
and the last column corresponds to the associated bibliographic reference. Most of these refer-
ences indicate the publications where the original methods were proposed. The second group
of algorithms, recently proposed in the literature and based on diverse (not-implemented)
approaches, are listed in Table 2.4 and discussed in Section 2.5.7.

2.5.1 Thresholding Methods

Segmentation algorithms based on thresholding approaches can be generally divided into
Global and Local Thresholding, according to whether the entire input image or smaller par-
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Table 2.3: Conventional segmentation algorithms (Implemented).

ID Name Ref ID Name Ref

Thresholding Fuzzy Methods
UT Huang Threshold Huang & Wang (1995) FDEE Fuzzy Differential Evolution Entropy Sarkar et al. (2014)
IT Iterative Threshold Trussell (1979) FC-LS Fuzzy Clustering LevelSet Li et al. (2011)
KT Kapur Threshold Kapur et al. (1985) FCM Fuzzy C-Means Bezdek et al. (1984)

LT Li Threshold Li & Lee (1993) Quantization
MT Moment Threshold Tsai (1985) NQ Neural Quantization Dekker (1994)
OT Otsu Threshold Otsu (1979) AQ Wan Quantifier Wan et al. (1990)
ST Shanbhag Threshold Shanbhag (1994) UQ Wu Quantifier Wu (1991)
YT Yen Threshold Yen et al. (1995) RGB-MC RGB Median Cut Heckbert (1982)
BT Bradley Threshold Bradley & Roth (2007) PCT-MC PCT Median Cut Umbaugh et al. (1993)

RT Renyi Threshold Sahoo et al. (1997) Active Contours

Clustering CH Chan-Vese Chan et al. (2001)
KMC K-Means Colour MacQueen et al. (1967) VV Chan-Vese Vector Chan et al. (2000)
KMS K-Means Colour and Spatial Ilea & Whelan (2006b) LMS Lankton Mean Separation Lankton & Tannenbaum (2008)

MC Mean Shift Colour Fukunaga & Hostetler (1975) Merging Threshold
MCS Mean Shift Colour and Spatial Comaniciu & Meer (2002) SRM Statistical Region Merging Celebi et al. (2008)

Table 2.4: Machine learning-based algorithms (Not Implemented).

ID Name Ref

FCN Fully Convolutional Networks Long et al. (2015)
SSLS Saliency-based Skin Lesion Segmentation Ahn et al. (2015)
SCDRR Sparse Coding with Dynamic Rule-based Refinement Bozorgtabar et al. (2016)
MSCA Multi-scale Superpixel with Cellular Automata Bi et al. (2016)
mFCN Multi-stage Fully Convolutional Networks Bi et al. (2017)
JCLMM Joint Circular-Linear Mixture Model Roy et al. (2017)
CDNN Convolutional-Deconvolutional Neural Network Yuan et al. (2017)
CDNNE Enhanced CDNN Yuan & Lo (2019)
KL-LS Kullback-Leibler based Level Sets Riaz et al. (2019)
DermoNetDensely Linked Convolution Neural Network Baghersalimi et al. (2019)
PSO-DENParticle Swarm Optimization on Deep Ensemble Network Tan et al. (2019)
SWSDB Semi- and Weakly Supervised Directional Bootstrapping Xie et al. (2019)
DCL-PSI Deep Class-specific Learning with Prob. based Step-wise Int. Bi et al. (2019)

titions are used to optimise the process. The presented thresholding methods perform image
segmentation by generating a modified version of the image, whose grey-level values are sep-
arated using a threshold. The algorithms based on thresholding herein considered are the
following:

• Huang Threshold (UT) (Huang & Wang, 1995) is a method based on the minimisation
of the fuzziness of an image using a membership function to obtain the threshold. This
membership function denotes the relationship between a pixel and the region where it
belongs (either ROI or background);

• Iterative Threshold (IT) (Trussell, 1979) chooses an optimum threshold after successive
iterations, providing increasingly cleaner extractions of the ROI. It does so by trans-
forming a smooth grey-level picture into a bi-modal picture (in the greyscale colour
space) while maintaining, as close as possible, the average luminance of the picture;

• Kapur Threshold (KT) (Kapur et al., 1985) determines the threshold by maximising
the entropy on the grey-level histogram;

• Li Threshold (LT) (Li & Lee, 1993) addresses the threshold selection problem by min-
imising the cross entropy between the image and its segmented version, with no assump-
tions about the distribution;

— 23 —



CHAPTER 2. STATE-OF-THE-ART

• Moment Threshold (MT) (Tsai, 1985) uses an image moment-preserving principle where
the threshold values are deterministically computed in such a way that the grey-level
moments of an input picture are preserved in the output;

• Otsu Threshold (OT) (Otsu, 1979) is a non-parametric and unsupervised image segmen-
tation method for automatic threshold selection that uses a discriminant criterion. It
only utilises the zeroth- and first-order cumulative moments of the grey-level histogram
to calculate the optimum threshold, which separates two classes in such a way that their
combined intra-class variance is minimal.

• Shanbhag Threshold (ST) (Shanbhag, 1994) is a modified version of the Kapur Threshold
(Kapur et al., 1985) method, where a more pertinent information measure of the image
is obtained, consisting of viewing it as being composed by two fuzzy sets corresponding
to two different classes, with membership coefficients associated with their grey-level;

• Yen Threshold (YT) (Yen et al., 1995) is a method based on the use of both the dis-
crepancy between the thresholded and the original image, as well as the number of
bits required to represent the thresholded image. A maximum correlation criterion for
bi-level thresholding is considered by minimising a cost function;

• Bradley Threshold (BT) (Bradley & Roth, 2007) is a local threshold method that sets
each pixel to black if its brightness is a given percentage lower than the average of the
surrounding pixels within a specified window size, otherwise each pixel is set to white;

• Renyi Threshold (RT) (Sahoo et al., 1997) is a technique based on Renyi’s entropy.
Similar to the maximum entropy sum method of Kapur et al. (1985) and the entropic
correlation method of Yen et al. (1995), it proposes a thresholding technique using
two probability distributions (object and background) derived from the original grey-
level distribution of an image, and includes the maximum entropy sum method and the
entropic correlation method.

UT, IT, OT, YT, MT, and ST methods were introduced as general-purpose (bi- or multi-level)
segmentation algorithms for greyscale images and visually evaluated or compared with several
classical images. KT, LT, and RT were built upon two other methods, taking advantage of
the entropy concept in different ways. Finally, BT was proposed as a real-time solution for
live stream videos and augmented reality solution, by marking pixels as dark or light based
on the spatial variation in illumination.

2.5.2 Clustering Methods

Another type of segmentation algorithms is based on clustering, where pixels are grouped
according to a given metric of similarity. In other words, pixels in the same group have
similarities between each other (in a given sense). This type of algorithms is very common in
the literature for various applications. A brief description of each one is presented:

• K-Means Colour (KMC) (MacQueen et al., 1967) is a method of vector quantization that
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aims to partition observations into clusters, in which every single observation belongs
to the cluster whose mean value is closer to said observation;

• K-Means Colour and Spatial (KMS) (Ilea &Whelan, 2006b) is an adaptive technique for
colour-texture segmentation that is a generalisation of the standard KMC. It adds two
more dimensions to the problem that sample the local colour smoothness and the local
texture complexity. In addition, it also selects the dominant colours from the input image
using information from colour histograms, so that proper cluster centres may be selected;

• Mean-shift Colour (MC) (Fukunaga & Hostetler, 1975) is a non-parametric density
gradient estimation method of generalised kernel, in which a mean-shift estimate kernel
is presented for gradient estimation;

• Mean-shift Colour and Spatial (MCS) (Comaniciu & Meer, 2002) is a general non-
parametric technique for the analysis of a complex multi-modal feature space and to
delineate arbitrarily shaped clusters in it, where the basic computational module is the
MC. This method provides discontinuous clusters and preserves smoothing and image
segmentation by augmenting the feature space with additional (spatial) parameters from
the input domain.

As previously stated, both KMS and MCS are extensions of the more traditional KMC and
MC algorithms, respectively, which were designed to take advantage of information connecting
similar data-points, i.e., spatial information.

The KMC method was proposed with the aim of enabling a process for partitioning
N-dimensional populations into k sets on the basis of a sample. The KMS method was
designed for image segmentation, aiming to complement KMC with spatial information dur-
ing the space partitioning process. The starting point for the KMC approach was related to
problems in optimal classification where results are theoretically justified, while in KMS re-
sults are visually displayed for 6 images and visually compared with Mean-Shift algorithm. In
particular, in Ilea & Whelan (2006a), the KMS algorithm is employed by its original authors
to perform segmentation on a set of 6 skin cancer images. The KMS results are evaluated
using mean, standard deviation and root-mean-square of the Euclidean distance between the
pixels of the ground-truth image and the proposed segmentation results.

While both MC and MCS algorithms were proposed to provide further understanding of
dense information, they aim for different applications. MC was proposed as a non-parametric
density gradient estimation method of generalised kernel that is applied to several pattern
recognition problems (Gradient Clustering, Clustering and Data Filtering). Each kernel is
derived, guaranteeing it is asymptotically unbiased, consistent, and its estimate is uniformly
consistent (evaluation is made visually). On the other hand, MCS was proposed for analysis
of a complex multi-modal feature space and to delineate arbitrarily shaped clusters in it,
therefore the method has been successfully applied in several tasks and problems, like filtering
and segmentation.
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2.5.3 Fuzzy Methods

This type of segmentation methods uses a mixture of thresholding and clustering concepts,
aided by fuzzy logic or representation. The following algorithms are considered:

• Fuzzy Differential Evolution Entropy (FDEE) (Sarkar et al., 2014) creates fuzzy parti-
tions from the image histogram based on the entropy theory. Then, the entropy measure
is optimised to obtain the thresholds of the image using a differential evolution meta-
heuristic, which leads to a fast and accurate convergence;

• Fuzzy Clustering LevelSet (FC-LS) (Li et al., 2011) is another example of a clustering
algorithm based on an hybrid level model, alternating between global and local region
competitions. The algorithm directly evolves from the initial segmentation by using
spatial information in the fuzzy clustering technique, where the controlling parameters
are automated through estimation from the results of fuzzy clustering;

• Fuzzy C-Means (FCM) (Bezdek et al., 1984) is a clustering variant, where fuzzy parti-
tions and prototypes are firstly generated for any set of numerical data. Then a gen-
eralised least-squares objective function is used as the clustering criterion to aggregate
the subset.

Both FDEE and FC-LS were devised targeting the same application, but FDEE was originally
evaluated in Sarkar et al. (2014) by resorting to eight classical greyscale images and measuring
performance in terms of computational time, mean objective value, and standard deviation
of objective values. The FC-LS was proposed for medical image segmentation and it was
visually evaluated for different modalities (including carotid artery ultrasound images, liver
tumours CT scans, and cerebral tissue MRI slices). Finally, the FCM algorithm was originally
implemented in Fortran-IV (Bezdek et al., 1984) that is linked to an original publication of
Gustafson & Kessel (1979) through Bezdek (1981), which validates the method capability
using two classes that have some degree of overlap.

2.5.4 Quantization

Segmentation approaches based on Quantization reduce the number of distinct colour levels.
For skin lesion segmentation, quantization is performed until the image is segmented in two
levels, i.e., the ROI and the background. In the scope of this work, five quantization methods
were considered:

• Neural Quantization (NQ) (Dekker, 1994) is an algorithm that uses a self-organising
Kohonen neural network to quantize the colour image;

• Wan Quantifier (AQ) (Wan et al., 1990) is an variance-based algorithm used for mul-
tidimensional data clustering, that uses a sum-of-squared error minimisation criterion
between the original image and its quantized version;

• Wu Quantifier (UQ) (Wu, 1991) is based on variance minimisation through linear search.
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The RGB colour space cube is divided in two, in each of its axes and the division plane
that minimises the sum of variances at both sides of the colour space is selected, thus
creating two boxes. Then the process is repeated for the box with the largest variance.
The process stops when a predefined number of boxes is found, and the boxes’ centre
of gravity are selected as the representative colours.

• RGB Median Cut (RGB-MC) (Heckbert, 1982) maps colours to their nearest neighbours
in a colourmap, effectively quantizing and redrawing the original image;

• PCT Median Cut (PCT-MC) (Umbaugh et al., 1993) algorithm is based on an optimal
transform using the Principal Components Transform (PCT), also known as Karhunen-
Loeve or Hotelling transform.

All these methods were developed aiming to advance the capabilities of representing images
with less levels of intensity. NQ, AQ, and UQ were introduced as improvements over other
state-of-the-art algorithms. NQ is a 24bit-to-8bit image converter for both greyscale and
coloured images, which uses half the memory of other algorithms. UQ was proposed in the
same scope as AQ, being able to achieve 1/3 of the mean-square error attained by other
algorithms. Finally, RGB-MC and PCT-MC are intended to display high-quality reproduc-
tions of colour images with small frame buffers. The PCT-MC method is an alternative to
RGB Median Cut for two-colour-image segmentation on skin tumour images for extraction
of features like tumour border, crust, hair, scale shiny areas, and ulcer, with the underlying
objective of developing an automated visual feature identification program.

2.5.5 Active Contour

A fifth type of segmentation approach is called Active Contour algorithms, whose main ad-
vantage is the ability to delineate objects in potentially noisy 2D images. In such methods the
contour is defined by a constrained spline, which is obtained by minimising a cost function.
In the context of this work the following methods are used:

• Chan-Vese (CH) (Chan et al., 2001) is a model based on active contours proposed to
detect objects resorting to techniques of curve evolution, Mumford–Shah segmentation,
and level sets. It minimises an energy which can be seen as a particular case of a
minimal partition problem. The level set formulation iteratively improves the active
contour until the desired boundary, which does not depend on the gradient since it is
related to a particular segment of the image;

• Chan-Vese Vector (VV) (Chan et al., 2000) is an extension of the previous method
that minimises a Mumford-Shah function over the length of the contour, plus the sum
of the fitting error over each component of the vector-valued image. Like the original
Chan-Vese model, the vector-valued model also detects edges both with or without
gradient;

• Lankton Mean Separation (LMS) (Lankton & Tannenbaum, 2008) considers local image
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statistics and develops a contour based on local information. It essentially derives the
curve evolution that separates two or more values of a pre-determined set of statistics
computed over geometrically determined subsets of the image.

Both CH and VV are very similar as they have the same base method, however, the later
is specially tailored for object detection in vector-valued images (RGB). Both methods are
visually evaluated with several artificial images and a satellite image. In opposition, LMS was
proposed as an active contour algorithm that used local rather than global statistics, and it
was visually evaluated using 10 natural and artificial images.

2.5.6 Merging Threshold

A different type of algorithm is created when performing both threshold and quantization. In
the context of this work, the following method is explored as such:

• Statistical Region Merging (SRM) (Celebi et al., 2008) is presented as an inference ap-
proach that detects borders in dermoscopy images of PSL using an unsupervised im-
plementation based on the statistical region merging algorithm. The inference problem
models the image as an observed instance of an unknown theoretical image, whose statis-
tical regions are to be reconstructed. The optimal statistical regions share a homogeneity
property, such that inside any statistical region and given any colour channel, the pixels
have the same expectation, whereas the expectations of adjacent statistical regions differ
in at least one colour channel. This algorithm also contains a preprocessing stage which
first removes the circular black area (by verifying the lightness component of the CIE
L*a*b* colour space), and then applies a median filter (image smoothing) in order to
mitigate the detrimental effects of possible artefacts (hairs and bubbles, and skin lines).

SRM was proposed to be a fast and accurate way of producing skin lesion segmentation,
which is compared with four state-of-the-art automated methods. This is done resorting to
a border error metric and a dataset of images that lacks ground-truth images, where three
expert dermatologists produced the target ground-truth segmentation. In Celebi et al. (2008)
five algorithms are compared against a dataset with no ground-truths. Relevant to this
work are: SRM, FCM, and RGB-MC. Segmentation results are presented for the benign or
melanoma image classes. SRM is the only algorithm where the error rates do not increase in
the melanoma class. The authors refer that is “possibly due to the presence of higher border
irregularity and colour variegation in these lesions”.

2.5.7 Other approaches

So far, the discussed algorithms are based on traditional approaches, which have been pro-
gressively evolving towards a new generation of methods. Taking advantage of recent devel-
opments in the field of machine learning, a new type of algorithms has emerged. Among such
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recent machine learning methods, a few were specifically designed to segment skin lesions.
From the literature, 13 algorithms are considered:

• Fully Convolutional Networks (FCN) (Long et al., 2015) is a method based on Convo-
lutional Neural Networks that is presented as a proof-of-concept showing that convo-
lutional networks by themselves, trained end-to-end, pixel-to-pixel, are able to capture
feature representations that contain a high-level of semantic information through sev-
eral convolutional layers. This is done by resorting to a skip architecture that combines
semantic information (from deep and coarse layers) with appearance information (from
shallow and fine layers) to produce accurate and detailed segmentation;

• Saliency-based Skin Lesion Segmentation (SSLS) (Ahn et al., 2015) presents a hair re-
moval technique prior to the actual segmentation, consisting on a pixel level saliency
map and a lesion biased Gaussian model;

• Sparse Coding with Dynamic Rule-based Refinement (SCDRR) (Bozorgtabar et al.,
2016) is an unsupervised skin lesion segmentation method for dermoscopic images that
exploits the contextual information of skin image at the superpixel level with a Laplacian
multi-task sparse representation;

• Multi-scale Superpixel with Cellular Automata (MSCA) (Bi et al., 2016) uses image-
wise supervised learning to derive a probabilistic map for automated seed selection. It
also enables the inclusion of additional structural information in conjunction with a
Multi-scale Superpixel-based Cellular Automata;

• multi-stage FCN (mFCN) (Bi et al., 2017) is a recent approach that learns and refines the
skin lesion segmentation results across multiple stages. The algorithm then integrates
these complementary multi-stage segmentation results in an ensemble-like fashion;

• Joining Circular-Linear Mixture Model (JCLMM) (Roy et al., 2017) models hue and
chroma information assuming the multi-modal characteristics of skin lesions and deals
with heterogeneous margins for different mixture components;

• Convolutional-Deconvolutional Neural Network (CDNN) (Yuan et al., 2017) is an auto-
matic method for skin lesion segmentation, which leverages a deep convolutional neural
network of 19 layers. The method includes a set of strategies that attempt to ensure
effective and efficient learning with limited training data, as well as a loss function based
on Jaccard distance to remove the need of sample re-weighting (when using cross entropy
due to the strong imbalance between the number of foreground and background pixels);

• Enhanced CDNN (ECDNN) (Yuan & Lo, 2019) is an extended version of the previous
work in Yuan et al. (2017) that develops a deeper network architecture with smaller
kernels to enhance its discriminant capacity. The potential of using a deeper network
architecture with smaller convolutional kernels is investigated such that the new model
has increased discriminative capacity to handle a larger variety of image acquisition
conditions. The use of channels in other colour space, such as Hue-Saturation-Value
(HSV) and CIE L*a*b*, is also investigated as additional inputs to the network that
aim for a more efficient training while controlling over-fitting;
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• Kullback-Leibler based LevelSets (KL-LS) (Riaz et al., 2019) is an active contour based
method that uses Kullback-Leibler divergence between the lesion and skin to fit a curve
to the lesion boundaries after taking an initial lesion contour. These can be defined
using the gradient flow that minimises an appropriate cost function (that is embedded
as an external energy term in the existing distance regularised level sets evolution);

• Densely Linked Convolution Neural Network (DermoNet) (Baghersalimi et al., 2019) is
a deep neural network that encompasses techniques from several other segmentation-
aimed networks like autoencoder network funnelling and residual propagation aided with
dense convolution blocks;

• Particle Swarm Optimization on Deep Ensemble Network (PSO-DEN) (Tan et al., 2019)
is an evolving ensemble of deep networks and hybrid clustering models, where the learn-
ing hyper-parameters are optimised with a cascading particle swarm optimisation al-
gorithm and a majority voting strategy to combine the prediction results of each base
model to produce the final pixelwise classification outcome;

• Semi- and Weakly Supervised Directional Bootstrapping (SWSDB) (Xie et al., 2019) is
a combination of three deep networks: a coarse segmentation network (adapted from
other works and pre-trained on other datasets), a dilated classification network (adapted
and pre-trained from another work based on dense object location using dilation convo-
lutions), and an enhanced segmentation network (consisting of an autoenconder, where
the encoder and decoder are separated by a enhancement layer); in which the later is
trained with a hybrid loss function comprising dice loss and rank loss metrics;

• Deep Class-specific Learning with Probability based Step-wise Integration (DCL-PSI)
(Bi et al., 2019) is a deep convolutional neural network that is refined using a step-wise
integration approach that, using the image label classification probability, iteratively
maximises the pixel agreement between different network-models.

In Bi et al. (2017) seven algorithms are compared using a well known dataset. Relevant to
this work are: SCDRR, JCLMM, MSCA, SSLS, FCN, and mFCN. The mFCN attained the
highest similarity to the dataset ground-truth and is followed by: FCN, SCDRR, MSCA,
JCLMM, and SSLS; in this order.

2.6 3D Skin Lesion Classification

Beyond the 2D analysis, few works have exploited the 3D information of PSL. McDonagh et al.
(2008) obtained 3D shape moment invariant features from stereoscopy-generated images for
computer-aided diagnosis. In order to automatically distinguish between melanoma and non-
melanoma lesions, the features were fed into a Bayesian classifier along with relative colour
brightness information, relative variability, and peak and pit density features.

Later, characterization approaches were attempted with photometric stereo (Anwar et al.,
2012), allowing to extract features for lesion classification like skin tilt and slant patterns
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(Smith et al., 2011), and statistical moments of enhanced principal curvatures of skin surfaces
(Zhou et al., 2010). In Zhou et al. (2011), an ensemble classifier comprising three distinct
classifiers was tested on enhanced 3D curvature patterns and a selected set of 2D features. The
achieved results showed that 3D patterns alone did not outperform traditional 2D features,
however, when combined with 2D features, its effectiveness was demonstrated in melanoma
diagnosis. Recently, similar technologies using stereo-vision and structured light projections
have also mapped melanoma to 3D (Peña Gutiérrez, 2016; Ares Rodríguez et al., 2014; Ding
et al., 2015).

The extraction of 3D related features from a light-field surface, in which there are no 3D
features specifically studied for melanoma classification, is relevant for this thesis’ topic of
3D skin lesion information. Thus, a primary approach towards defining a relevant set of
such features is to look at other research fields, where 3D features have been used. Depend-
ing on the target recognition task, several 3D features have been developed and generalised
across multiple 3D datasets and tasks. This type of generalisation is performed to propose
a set of features that capture a broad spectrum of 3D characteristics – typically applied to
key regions, which are found by additional methods (hereinafter “keypoint detector”). Key-
point detectors are only necessary when feature extractors operate locally (i.e., in a region
surrounding a point of interest), thus said keypoint must be first properly identified. An ex-
ample of an algorithm capable of performing both keypoint detection and feature extraction
(on the identified keypoints) is the Normal Aligned Radial Feature (NARF, Steder et al.,
2011). The keypoint detector has two major characteristics. Firstly, keypoints are extracted
in areas where the direct underlying surface is stable and the neighbourhood contains major
surface changes. The resulting keypoints are located in the local environment of significant
geometric structures and not directly on them. Secondly, NARF takes object borders into
account, which arise from view dependent non-continuous transitions from the foreground to
the background. Thus, the silhouette of an object has a strong influence on the resulting
keypoints. The NARF keypoint detector pipeline is as follows: (i) transform point cloud to
range image; (ii) find object borders; (iii) compute normals to border points; (iv) compute
principal curvature for non-border points; (v) compute interest value for all points; and (vi)
isolate keypoints. Having found areas of interest, the NARF feature extractor can now take
place. The feature descriptor is computed by defining a normally aligned range value patch
around the feature point, computed by constructing a local coordinate system, where the ob-
server looks at the point along the normal. At this point, a star-shaped pattern is projected
into the patch (where each beam corresponds to a value in the final descriptor) capturing how
much the pixels under the beam change. Then, a unique orientation is extracted from the
projection and the values are shifted accordingly, to make this rotation invariant.

Another relevant keypoint detector is the Intrinsic Shape Signatures (ISS) keypoint detector,
which employs a saliency measure based on the eigenvalue decomposition of a scatter matrix
of the points belonging to a support value (Zhong, 2009). These points are only retained if
the ratio between two successive eigenvalues is below a predefined threshold. Their saliency is
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determined by the magnitude of the smallest eigenvalue, in order to only include points with
large variations along each principal direction. The rationale behind this pruning stage is that
points exhibiting a similar spread along the principal directions (where a repeatable canonical
reference frame cannot be established) should be avoided because a subsequent description
stage would hardly turn out effective. Afterwards, a point will be considered a keypoint
if it has the maximum saliency value on a given neighbourhood. Contrary to the NARF
detector, the ISS is much more selective and inherently produces less keypoints, reducing the
computation time.

In addition to NARF’s feature extractor, other relevant methods for this thesis (for 3D char-
acterisation) are now detailed in the following:

• In Marton et al. (2010, 2011), authors define the Radius-based Surface Descriptor (RSD)
as a descriptor that depicts the geometric property of a point by estimating the radial
relation with its neighbour points. First the radius is modelled as a relation between
the distance of two points and the angle between their normals. Then, the maximum
radius and minimum radius are recorded as the final features for each point.

• In Kanezaki et al. (2011), the RSD extractor is extended to the Global RSD (GRSD),
which computes a global histogram for the whole point cloud. First, the input point
cloud is voxelised and the RSD descriptor is generated for every voxel neighbourhood.
Then, voxel surfaces are categorised into six possible surfaces based on a set of defined
rules using the two RSD features. After categorising all voxels, the GRSD histogram
relies on the number of transitions between all of these local categories, which results in
21 features. GRSD allows the use of depth images with or without colour information.

• In Rusu & Cousins (2011), authors define the Principal Curvatures (PC), which returns
the eigenvector of the largest eigenvalue along with both the largest and the smallest
eigenvalues after performing a Principal Components Analysis on the points normal of
a surface patch (in the tangent plane of the given point normal).

• In Lazebnik et al. (2005), the Rotation Invariant Feature Transform (RIFT) is defined
such that, given a point, it extracts a sparse set of affine covariant elliptical regions
of the surrounding texture using the Harris affine or Laplacian blob detectors, which
detect complementary types of structures, and normalise each elliptical region into a
unit circle to reduce the affine ambiguity to a rotational one. Then, the method divides
the circular normalised patch into four concentric rings with equal width and compute a
gradient orientation histogram with eight orientations within each ring. This results in
a descriptor of 32 features that is later adjusted for rotational invariance by the radial
outward direction at each point.

• In Rusu et al. (2008), a method named Point Feature Histogram (PFH) that encodes
the geometric properties of the k-nearest-neighbours of a point is defined, by using the
average curvature of the multidimensional histogram around such point. This is done
by calculating, for each pair of points, the difference of three angular variables (obtained
from a Darboux frame where the third angular variable is normal to the point’s plane)
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and their euclidean distance. Finally a histogram is created with the 4 variables along
each computed pair.

• In Rusu et al. (2009a,b), a variant of PFH, the Fast Point Feature Histogram (FPFH), is
proposed as a computational simplification of PFH. In comparison, first, for each point,
FPFH uses a method similar to PFH to calculate the three angular variables and obtain
a simplified PFH. Then, a weighted neighbouring pairing is used to calculate the final
value of the histogram, where the weights depend on the centre point and a neighbour
point at a given distance metric space.

• In Tombari et al. (2010b, 2011), a method defined as Signature of Histograms of Orien-
Tations (SHOT) is proposed, based on disambiguated eigenvalue decomposition of the
covariance matrix of points within the neighbourhood region, where an isotropic spherical
grid defines the signature structure. These locations produce local histograms by count-
ing the number of points within a region of the spherical grid. The juxtaposing of all local
histograms with quadrilinear interpolation generates the final collection of features.

• In Wohlkinger & Vincze (2011), authors define the Ensemble of Shape Functions (ESF),
which comprises ten 64-sized histograms: three angle related histograms, three area re-
lated histograms, three distance related histograms, and one histogram of distance-ratio.
The first nine histograms are created by respectively classifying an angle formed by ran-
domly sampled three points, the area created by such three points, and a shape function.
While the last is built on the paring-lines generated during the shape function execution.

• In Frome et al. (2004), authors define the 3D Shape Context (SC3D) as a descriptor
that captures the local shape of a point cloud at a centre point using the distribution
of points in a spherical support. Within this support, a set of bins is formed by equally
dividing the azimuth and elevation, and logarithmically spacing the radial dimension.
Then, the final descriptor is computed as the weighted sum of the number of points
falling into bins.

• In Tombari et al. (2010a), authors define the Unique Shape Context (USC) as an im-
provement over the SC3D descriptor by adding a unique and unambiguous local reference
frame, with the purpose of avoiding computation of multiple features at each keypoint.
Given a query point and its spherical support region, a weighted covariance matrix is
defined so that three unit vectors of a local reference frame can be computed from the
Eigen Vector Decomposition of this matrix. The eigenvectors corresponding to the max-
imum and minimum eigenvalues are reoriented in order to match the majority of the
vectors they depicted, while the sign of the third eigenvector is determined by the cross
product. Once the local reference frame is built, the subsequent steps are analogous to
those in SC3D.
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D igital image segmentation is a key stage in medical image processing algorithms and
machine learning classifiers, where the accuracy of the border-line that defines the

ROI is of utmost importance for subsequent algorithms (e.g., classification, where previous
identification of discriminative features only belonging to the lesion area may be of critical
consideration). This step is common in computer-aided medical systems, which enable early
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diagnosis of serious medical conditions, including in the problem of differentiating melanoma
and nevus (Linsangan et al., 2018). Most of the existing image segmentation approaches aim
at minimising some error metric between computed and ground-truth ROI defined by medical
experts. From other works in the literature it is clear that proper segmentation of the lesion
area impacts the classification pipeline performance (Burdick et al., 2017).

In the topic of skin lesion classification, employed algorithms range from those using DL,
where the algorithm automatically learns which types of features will be employed for classi-
fication, to other classic ML algorithms which require hand-crafted features. The use of DL
algorithms has achieved significant performances (e.g., Namozov & Cho, 2018; Hosny et al.,
2019), however those algorithms require rich (sizeable and precisely annotated) datasets that
are not widely available. In DL classification approaches, the segmentation mask can be used
to drive the model to lesion area information, instead of having to initially learn to not spec-
ulate on the healthy skin colour information. On the other hand, in algorithms that require
hand-crafted features, the use of a segmentation mask might be necessary to remove features
extracted from healthy skin or even create features regarding the skin shape and size. There-
fore, different segmentation masks might originate the inclusion or not of certain pixels (for
DL) or features (when hand-crafting).

This chapter presents the contributions to the segmentation and classification of 2D skin lesion
images in the scope of this thesis. To satisfy the segmentation needs of the target applications,
two algorithms were proposed to address the limitations mentioned above. The first one, named
Gradient-based Histogram Thresholding (GHT), Pereira et al. (2019b), and discussed in detail
in Section 3.1, was created to provide segmentation results consistent with those presented by
dermatology experts. The algorithm resorts to the high image gradient separations between
lesion and healthy skin, not compromising the coarser delineation of the available ground-truth.
The second algorithm, named Local Binary Patterns Clustering (LBPC), Pereira et al. (2019a),
and described in Section 3.2, was created to be capable of finding more detailed borders of skin
lesions, i.e., with much more detail than the usual (round) dermatologist-like segmentation,
which is typically available in ground-truths. In addition, a comparative evaluation study was
carried out using three datasets (in Pereira et al., 2020a) to demonstrate the performance of the
LBPC algorithm against 38 other segmentation algorithms.

On the topic of lesion classification, in Section 3.3, a first pipeline is performed using Transfer
Learning (TL) to provide an experimental baseline for the 2D skin lesion imaging classifica-
tion on the large ISIC dataset (Pereira et al., 2018). In Section 3.4, a different classification
approach is proposed to assess the importance of the border-detail of the segmentation algo-
rithms. This approach, in Pereira et al. (2020b), relies on the details of the masks produced by
the segmentation algorithms, which are used to provide features for the classification process.

Finally, Section 3.5 summarises this chapter and highlights the discussed materials.
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3.1 Gradient-based Histogram Thresholding

In general, medical image processing systems include a segmentation stage to identify a ROI
for further processing, which may include texture and colour analysis, feature extraction,
among others. In the case of PSL, due to the rather limited human capability to discriminate
slight variations in contrast and blur, precise identification of relevant ROI boundaries poses
a problem to dermatologists (Claridge & Orun, 2002). Morphological aspects of skin lesions
alongside with the large number of environment-variables further increase the challenge of
accurate segmentation of the most useful ROI (Celebi et al., 2009a). This results in signifi-
cant inter- and intra-observer variability and coarse ROI segmentation. Thus, to reduce the
dependence of human factors, different types of computational methods have been used for
image segmentation, spanning over a quite considerable range of categories (Pathan et al.,
2018).

This section presents an accurate segmentation method for PSL, envisaging delineation of
melanoma as the main application. In general, this kind of medical images produce bi-
modal histograms and, although this characteristic has been used as the basis of different
segmentation methods, it results in either coarse borders or simply fails to provide significant
ROI in images with low colour contrast and smooth texture transitions. Therefore, this section
addresses the problem of accurate identification of the relevant ROI in such images, which
includes the ability to define the external border of the lesion with high level of precision.
Taking into account the clinical relevance of this aspect, a gradient-based metric is devised
to drive the proposed delineation method across a refinement histogram-based segmentation
algorithm. Two different types of medical images are targeted, which increases the challenge
of achieving efficient segmentation with accurate border details in both cases, as pointed out
in Zhou et al. (2008). For this purpose, the Dermofit dataset of macroscopic images and the
PH2 dataset of dermoscopic images are both used in this work.

This section is organised as follows: Section 3.1.1 presents the background that is relevant for
the proposed method. Section 3.1.2 describes the Gradient-based metric and Section 3.1.3
introduces the proposed method. In Section 3.1.4 the obtained experimental results are pre-
sented, alongside with the associated discussion. Finally, in Section 3.1.5 some conclusions
and future work perspectives are presented.

3.1.1 Relevant Background

As mentioned above, images of skin lesions exhibit two distinctive regions, one associated to
the lesion itself and another to the surrounding skin. This leads to bi-modal histograms, as
shown in Fig. 3.1.
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Figure 3.1: Skin lesion images (left) and the corresponding luminance (Y ) histograms (right), were
red dots represent peaks that correspond to the lesion and skin, respectively.

However, their histograms may present different characteristics. This results not only from
the lesion morphology, but also from the use of different image acquisition technologies and
lighting conditions. For instance, while accurate segmentation of the skin lesion shown in
Fig. 3.1a is quite easy to be obtained directly from its well-defined histogram, in the case of
Fig. 3.1c it poses a problem due to the blurry borders and low colour contrast. This can be
confirmed by the corresponding histogram shown on the right side of Fig. 3.1c, where the
pixels belonging to the relevant ROI are quite difficult to identify.

Histogram Thresholding Histogram thresholding techniques have long been used for seg-
mentation of these type of bi-modal images, where the region of the lesion can be distinguished
by its different tonality (Korotkov & Garcia, 2012). The underlying idea of these methods is to
perform a binary partition of the image based on the luminance level of each pixel, meaning, in
this case (e.g. Fig. 3.1), to successfully separate the region of the lesion (darker region↔ left
Y -peak: YPmin) from the surrounding skin (right Y -peak: YPmax). In a simple formulation,
the challenge of segmentation, in this application, is to find an optimum criterion to define a
threshold value (Yth) that leads to an accurate ROI extraction, i.e., the region of the image
that contains the lesion. Different threshold techniques have existed for decades (Sahoo et al.,
1988) and can be performed either directly on the Y -histogram or after a transformation, as
proposed in Rajab et al. (2004). Nevertheless, the performance of the method might strongly
depend on the distribution of luminance values, as inferred from Fig. 3.1c and even from
Fig. 3.1b.

Clustering Clustering algorithms have also been used for skin lesion segmentation based on
different approaches, as described in Section 2.5.2. These algorithms can be fed with image
data in different formats such as RGB, YUV, or YCbCr, but there are also systems using
only the luminance Y channel since the inherent fusion process of the RGB channels allows
inclusion of the relevant colour information (Maglogiannis & Doukas, 2009). An efficient
clustering approach is based on the so called K-Means, or Lloyd’s algorithm (Lloyd, 1982),
which is an iterative data-partitioning algorithm that assigns, for a predefined number of
clusters, every input observation to only one of the clusters. In skin lesion images, clustering
algorithms may take advantage of the bi-modal characteristics of the histogram to use the
corresponding peaks as the initial centroids.
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Other Approaches Several other segmentation approaches are used in this section as base-
line literature: FDEE and FC-LS as fuzzy methods; PCT-MC as quantization approaches;
CH and LMS as active contours; and OT and KMC as other traditional methods.

3.1.2 Gradient-based Metric

The figure of merit that is herein proposed to assess the accuracy of a given outside border-line
is based on the rationale that the segmentation contour separates regions with substantially
different tonalities. Accordingly, the magnitude of the image gradient on contour pixels is
expected to yield higher values than in other regions (i.e., either inside the lesion or in the
remaining skin). Following this argument, segmentation masks whose border-lines exhibit
higher gradient magnitudes should separate more accurately the two regions of the image.

For a given image I, the gradient magnitude in each pixel can be determined by Eq. (3.1),
where j denotes the colour (or luminance) channel under consideration (e.g., j = R,G,B, Y ).
For any point on the border-line defined by segmentation, the projection of the gradient vector
G⃗ onto the orthogonal direction of the line (n̂l), defines an accuracy metric for the border-line.
Such projection is given by Eq. (3.2).

»»»»»G⃗j
»»»»» = [(

∂Ij
∂x

)
2

+ (
∂Ij
∂y

)
2

]
1/2

, (3.1)

G⊥l,j = G⃗l,j ⋅ n̂l (3.2)

This concept is depicted in Fig. 3.2, where one can observe that the orthogonal direction of
the segmentation border-line (red) is not aligned with the gradient (blue) at the same point.
The higher the projection G⊥l,j computed by Eq. (3.2) the better (i.e. more accurate) is the
lesion contour segment.

G⃗l

n̂l

Figure 3.2: Segmentation border line (red) and gradient: the higher the projection of the image
gradient G⃗ onto n̂l, the more accurate is the border line (image P348a from Dermofit).

Therefore, following the above discussion, the average value ofG⊥l,j over all points of a contour
line l is used as the gradient-based metric to evaluate how accurately a given segmentation
contour represents the outside border on a skin lesion.
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3.1.3 Proposed Dermatologist-like Segmentation Method

The image segmentation method proposed for skin lesion delineation follows the representation
depicted in Fig. 3.3.
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Figure 3.3: Gradient-based Histogram Thresholding method workflow: given a grayscale input
image, an histogram is produced to find the two dominant colour peaks (arrows) of the image, which
provide boundaries for the RGB gradient maximisation step (green segmentation line); the same
input image goes through a clustering step (red segmentation line); finally, from the two previous
segmentation lines, an optimum border-line optimum is obtained (blue curve) from which image
binarisation produces the final mask.

The underlying idea is to find an optimal ROI delineation based on a trade-off between a ROI
with the highest gradient magnitude in the orthogonal direction of its border-line, and another
ROI with larger area but lower gradient. While the former identifies the sharpest boundary of
the skin lesion, the latter contains more boundary information which is also useful for medical
analysis and monitoring of temporal evolution. As described in the following, gradient-based
histogram thresholding and clustering are used to generate both ROIs for final optimisation
and delineation of skin lesions. A more detailed processing chain is shown in Fig. 3.4.
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Figure 3.4: Proposed Gradient-based Histogram Thresholding scheme.

Histogram Thresholding The bi-modal characteristic of skin lesion image histograms
is used to determine the two most important peaks, which in turn define the range limits
YPmin, YPmax for all possible thresholds, i.e., the best ROI must be found by cutting the
histogram at the optimum threshold Yth∗ ∈ [YPmin, YPmax] to be found between the two
peaks (e.g. red markers on the histograms of Fig. 3.1). In the method shown in Fig. 3.4,
histogram thresholding is performed for all values between YPmin and YPmax, generating an
equal number of images and the corresponding segmentation masks. After a filtering process
to remove small isolated regions and outliers, a clean ROI is determined for each image and
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the average gradient G⊥ is computed, as defined by Eq. (3.2). Then, the ROI whose border
yields the gradient with the maximum average is selected along with its histogram threshold.
In summary, this process ensures that the border-line of such ROI is the one with the highest
tonality variations across it. In the remaining sections, the ROI obtained by maximising the
gradient border through histogram thresholding is identified by HT .

Clustering Segmentation In the proposed method, clustering is used to identify a coarse
ROI for the skin lesion where the boundaries include, in general, the smooth transition regions
between the lesion and the surrounding healthy skin. In this work the variant K-Means++ was
selected, due to its faster clustering convergence and also good discriminative performance due
to different heuristics used for finding centroids (Arthur & Vassilvitskii, 2007). The iterative
clustering process is carried out with a maximum of 200 iterations seeking for two clusters with
a global minimum of the euclidean distance to cluster-centre. For the sake of reproducibility,
the initial centroids are defined as the histogram peaks. In the remaining sections, the ROI
obtained through clustering is identified by KM .

Filtering Due to noise, inherent illumination variations, and other factors, both the his-
togram thresholding and clustering methods described above produce ROIs with binary masks
that include not only a large blob (the skin lesion region) but also other small isolated regions
spread across the whole image. The filtering process devised to remove such unwanted regions
assumes that the lesion region limits are fully located within the image, so the first operation
is to remove all isolated regions with any boundary coincident with the image borders. This is
done by using a flood-fill algorithm based on morphological reconstruction (Soille, 2013). This
first cleansing operation is especially relevant when processing images from the PH2 dataset,
as they exhibit a black circular frame artificially introduced in the dermatoscope digitisation
process. The relevant ROI containing the lesion is then determined by extracting the blob
with the largest area in the binary mask, using a labelling procedure (Haralick & Shapiro,
1992, p. 40-48).

ROI Optimisation The optimisation step aims at improving delineation of skin lesions by
selectively expanding the ROI border that was previously found through histogram threshold-
ing with gradient maximisation, in order to further include relevant areas of transition regions.
This is necessary because gradient maximisation often leads to stringent contour lines which
only include the inner parts of the lesion and leave out relevant transition regions. Taking
into account that clustering-based segmentation usually results in the inclusion of a larger
region around the inner part of the lesion, the proposed optimisation procedure achieves the
best trade-off between gradient maximisation and increased ROI area to include transition
regions. This is done by finding an optimum threshold (Yth∗) that maximises, simultaneously,
both the gradient of the border-line G⊥ and the ROI area.
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For each ROI obtained through histogram thresholding (HT ) and clustering (KM), as de-
scribed above, let us define the following reference values:

• G⊥,KM and G⊥,HT : the average gradient of the border, in Eq. (3.2);
• AKM and AHT : the area of the ROI, i.e. skin lesion.

The corresponding values associated to an arbitrary histogram threshold Yth are defined as
G⊥,Yth and AYth , respectively. The ratios RG(Yth) and RA(Yth), in Eq. (3.3), define the
relative gradient and relative area of any ROI obtained with threshold Yth, using the HT and
KM ROIs as references.

RG(Yth) =
G⊥,Yth
G⊥,KM

RA(Yth) =
AYth

min(AKM , AHT )
(3.3)

The optimisation procedure consists in finding the optimum threshold Yth∗ that maximises
both RG(Yth) and RA(Yth). This is accomplished by maximising their product, provided that
the selected maximum does not lead to gradient values below that of the KM ROI (G⊥,KM )
and the new ROI area falls between those of HT and KM ROIs. This is equivalent to solve
the following constrained maximisation problem in Eq. (3.4).

Yth∗ = arg max
Yth∈Y

RG(Yth)RA(Yth) s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

RG ≥ 1,

RA ≥ 1,

AYth
max(AKM ,AHT ) ≤ 1.

(3.4)

In summary, the optimal histogram threshold Yth∗ to be used for delineation of skin lesions
is found through a trade-off between the border gradient and the amount of transition area
included in the ROI.

3.1.4 Results and Discussion

The performance of the segmentation algorithm described in Section 3.1.3 was evaluated using
sets of images from different databases. A total of 195 images from the Dermofit dataset and
32 images from the PH2 dataset were used. This selection followed two main criteria: i)
images without hair strands crossing the lesion, i.e., as hairless as possible and ii) lesion
limits within the image, i.e., the whole lesion boundary fully located inside the image.

In the first stage the input grayscale image passes through two segmentation processes, namely
HistogramThresholding and Clustering Segmentation. As pointed out in Section 3.1.3, the out-
put of both algorithmsmay exhibit some image artefacts, which can be observed in Fig. 3.5b and
Fig. 3.5e. Then the efficiency of the filtering stage, that is used after both segmentation algo-
rithms (described in Section 3.1.3), in removing the small isolated regions, is shown in Fig. 3.5c
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(a) Image B964 (b) Histogram TH (c) Filtered

(d) image B241 (e) Clustering (f) Filtered

Figure 3.5: Image segmentation using Histogram thresholding (HT) and K-Means (KM) clustering:
(a,d) original grayscale images from Dermofit, (b,e) segmentation output, (c,f) final binary mask after
the filtering operation.

and Fig. 3.5f. In these images it is possible to observe that the filtering process is effective in
providing an accurate lesion/skin segmentation mask without harming the border details.

After the segmentation and filtering stages, accurate ROI delineation is performed, following
the optimisation procedure described in the previous section. For visual evaluation and dis-
cussion, a set of representative types of skin lesions have been selected from the datasets to
represent the segmentation results, as can be seen in Fig. 3.6.

(a) D427b (b) D155b (c) B447a (d) D384 (e) A121a (f) B311c

(g) A92 (h) B17a (i) B964 (j) B1075 (k) IMD103 (l) IMD175

Figure 3.6: Skin lesion segmentation using KM (red), HT (green) and Proposed (blue). The white
line corresponds to the dataset provided ground-truth (GT). Images (a) to (j) are from Dermofit, and
(k) and (l) from PH2.

In Fig. 3.6 the lesion segmentation using KM is represented by a red line, the HT by a green
line and the proposed method by a blue line. The white line represents the ground-truth (GT)
provided by the dataset. From the representative results presented in Fig. 3.6a to Fig. 3.6e,
it can be observed that the algorithms are in general effective in the segmentation of images
and delineation of the relevant ROI.
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The Histogram Thresholding method (HT ) is able to achieve accurate delineation when there
is a sharp tonality difference between the skin lesion and the surrounding skin. However, as
mentioned before, in images with smoother lesion-to-skin transitions, the highest value of G⊥,
may result in a segmented region that is smaller than expected. This effect can be seen in
images from Fig. 3.6f to Fig. 3.6l. This kind of output is not the most useful from the clinical
point of view, as it may exclude a relevant part of the lesion.

In the case of Clustering ROI segmentation (KM), in general, the segmented region may
include smooth transition regions between the lesion and the surrounding healthy skin. This
commonly results in a larger region than that obtained by the Histogram Threshold method,
as can be seen in images Fig. 3.6h, Fig. 3.6i, Fig. 3.6j and Fig. 3.6l. In such cases, this might
not represent the best option as well.

In order to overcome theHT underestimation of the ROI and the possibleKM overestimation,
the proposed combined method relies on a trade-off between the ROI and the border gradient.
As can be observed in all images of Fig. 3.6, the blue line always represents a more precise
delineation of the ROI.

Some authors compare the segmentation results with the ground-truth segmentation masks
provided in the databases. Nevertheless, as can be visually observed in Fig. 3.6a, Fig. 3.6b
and Fig. 3.6f, the GT borders are not as accurate and spatially detailed as those obtained
with the used algorithms. It can also be observed that the GT lines often miss areas with
high texture variations.

In a quantitative evaluation, other performance indicators are usually considered as bench-
marks, namely Border Error (BE), True Detection Rate (TDR), and False Detection Rate
(FDR). The results obtained for these indicators are presented in Table 3.1, alongside with
those from the methods presented in Section 3.1.1. It can been seen that the performance
of the proposed algorithm (GHT) is generally inline with others published in the literature,
though not always consistent for all metrics. However, it should be kept in mind that these
indicators use the GT as reference, which does not provide segmentation masks with as much
spatial details as those herein obtained. Such difference can be clearly observed in Fig. 3.6

The gradient metric defined in Section 3.1.2 was also used to assess the performance of the pro-
posed method. The quotient of gradient between delineations for both datasets was determined
for such purpose and the results are presented in Table 3.2. Observing its first three lines, it can
be seen that HT has on average the highest G⊥ values, as the method was optimised for such
purpose, though in some cases this also corresponds to inaccurate segmentation. The second
group of three lines make it clear that the GHT method outperforms KM while only slightly
compromising theG⊥ value in comparison with themaximum of HT. The remaining data on the
table also shows that the GHTmethod produces segmentations withG⊥ values higher than any
of the other algorithms previously introduced. This means that skin lesion delineation obtained
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Table 3.1: Ground Truth (GT) based indicators.

Method Dermofit PH2

BE TDR FDR BE TDR FDR

OT 32.569 76.386 7.483 20.907 83.999 7.061
KMC 53.475 78.439 8.581 18.174 86.041 6.313
FDEE 1.017 37.819 25.731 50.499 50.734 15.319
FC-LS 2.439 49.500 50.084 20.352 82.846 6.872
PCT-MC 1.504 97.456 23.096 1.107 93.442 24.524
CH 2.383 69.381 35.618 48.521 68.161 14.119
LMS 2.164 0.0003 52.467 1.604 94.543 36.550

HT 36.253 64.920 9.409 34.763 65.586 11.165
KM 21.592 79.336 5.554 17.732 85.113 6.085
GHT 23.034 78.283 6.008 20.336 81.676 6.950

Table 3.2: Average Border Gradient Ratio (G⊥,i/G⊥,j) Indicator.

Indicators Dermofit PH2

G⊥,HT / G⊥,KM 1.173 1.271
G⊥,GHT / G⊥,HT 0.933 0.917
G⊥,GHT / G⊥,KM 1.082 1.086
G⊥,HT / G⊥,GT 3.908 4.742
G⊥,KM / G⊥,GT 3.364 3.997
G⊥,GHT / G⊥,GT 3.688 4.301
G⊥,GHT / G⊥,OT 1.831 1.916
G⊥,GHT / G⊥,KMC 1.831 1.921
G⊥,GHT / G⊥,FDEE 2.268 1.787
G⊥,GHT / G⊥,FC−LS 6.429 1.829
G⊥,GHT / G⊥,PCT−MC 2.894 2.701
G⊥,GHT / G⊥,CH 1.175 1.086
G⊥,GHT / G⊥,LMS 3.376 3.191

by the proposed method is more accurate than the others because the border-line is found where
the gradient is higher, i.e., a better discrimination between lesion and normal skin is obtained.

3.1.5 Conclusions

This section addressed the segmentation of skin lesion images using both histogram thresh-
olding and clustering algorithms to overcome the limitations presented by each method when
used individually. A gradient-based method was devised for optimised thresholding and ROI
border quality parameter. The segmentation masks obtained for the final ROIs indicate that
this method is accurate in delineation of the relevant lesion regions containing for a wide range
of images. The experimental validation, using two publicly available images datasets, shows
that the proposed approach is effective in delineating skin lesions with detailed geometry in

— 45 —



CHAPTER 3. SEGMENTATION AND CLASSIFICATION OF 2D IMAGES

regions with diverse tonality variations. The accurate delineation of skin lesions is a relevant
achievement to provide discriminative features for machine learning algorithms and also to
investigate patterns of temporal evolution of the borders.

3.2 Local Binary Pattern Clustering

As mentioned in the previous section, amongst all image processing steps commonly used in
dermoscopic images, the identification of the ROI is of central importance in the classification
framework (Korotkov & Garcia, 2012). In addition to the ROI delineation, segmentation
procedures are also used to extract other skin lesion information, namely the dynamics of its
growth process (Mendes et al., 2016).

The manual (round-like) segmentation obtained by dermatologists, and used as ground-truth
in the majority of image datasets, is mostly performed to identify surgical borders for excision,
lacking an objective rule or metrics. Moreover, variations in lightning conditions can influence
contrast and blur, thus precise identification of skin lesion boundaries poses a problem to
manual segmentation (Claridge & Orun, 2002). Even when clinicians are guided to perform
a cell-like based delineation of the lesion, this procedure has proven to suffer from observer
variability (Claridge & Orun, 2002; Joel et al., 2002; Iyatomi et al., 2006). As a consequence,
the resulting ground-truth, cell-like based, handmade segmentation lacks definiteness.

In the literature, a broad range of segmentation algorithms have been proposed, mostly cover-
ing the above mentioned round-like segmentation. These applications range from smoothing
and thresholding, to colour space conversions, to exploit specific aspects of skin dermoscopic
images, as reported in Oliveira et al. (2016). In fact, this wide range of methodologies is
related with dataset diversity regarding physical acquisition conditions (e.g., light, angle of
view), anatomical and local artefacts (e.g., hairs, skin curvatures), and equipment properties
(e.g., lens, light, image resolution) (Celebi et al., 2009a; Zhou et al., 2008).

Although cell-like based delineation is useful for assessment of lesion growing dynamics, it is
difficult to obtain a ground-truth reference for each image. Note that this type of segmentation
is absent in datasets and the manual delineation can be influenced by external factors.

This section presents a contribution to overcome the previously described shortcomings, by
proposing an algorithm for cell-like based segmentation, which is independent of human fac-
tors. The segmentation algorithm is based on the combination of LBP and K-Means clus-
tering with aim for detailed delineation in dermoscopic images. In comparison with usual
dermatologist-like segmentation (i.e., the available ground-truth), the proposed method is ca-
pable of finding more realistic borders of skin lesions, i.e., with much more detail. To promote
the proposed algorithm, a comparison is performed against 39 other literature works.
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This section is organised as follows: Section 3.2.1 presents the background that is relevant
for the proposed method. Section 3.2.2 presents the proposed method. Section 3.2.3 presents
results achieved using the proposed method and the reviewed methods, as well as comparative
analysis. Finally, Section 3.2.4 draws some conclusions and suggestions for future work.

3.2.1 Relevant Background

Specifically for this section, it is relevant to know that, in general, regions of normal skin in
dermoscopic images present flatter texture when compared to regions within the lesion. This
characteristic can be exploited in order to identify those different spots by using LBPs (Ojala
et al., 1996). The LBP operator is a 2D texture descriptor that assesses local variations on
the image, and codes them in terms of a spatial pattern with an associated grayscale scheme.
The underlying idea behind LBP operators is that texture can be represented locally by two
complementary components: a spatial pattern and a corresponding strength. In fact, LBPs
can be seen as an image operator, whose output is an array of integer labels describing small-
scale variations (high frequency content) in the image. These labels, or their statistics, can
then be used for further image analysis. Note that there are some variants of the classical
LBP algorithm.

3.2.2 Proposed Detailed Segmentation Method

The method herein proposed (LBPC) comprises a sequential processing flow, as depicted in
Fig. 3.7, which accepts generic dermoscopic images as input. The three main functional blocks
are the LBP processing, space transformation, and clustering, all of which implemented and
evaluated resorting to Matlab®.

The luminance (Y ) channel is obtained from a given input image and its pixel-wise LBPs are
computed. Then, a set of LBPs are selected and filtered with a Gaussian kernel to expand the
region towards the remaining ones, generating an image (L) comprising several homogeneous
regions. These regions provide rich information for the clustering algorithm, discriminating
the various skin regions with different intensity levels. This is due to the fact that the extracted
LBPs mark smooth surface areas on the object/image (a characteristic that is not usual in
the lesion area, given their chaotic appearance).

The subsequent step consists of a space transformation where the Y and L images are firstly
combined to ease visual separation. To this end, first a new three channel image is formed by
stacking the L image with the luminance (Y ) and L again. Then, this image stack is converted
using the well-known RGB to CIE L*a*b* transform, as a means of obtaining a pre-clustering
function for the next step. As explained in detail below, the Y and L dimensions have some
overlapping information where this transformation leads to a better discrimination of the
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Mask

Luminance 
Input (Y)

LBP Gaussian 
Filter (L)

LBP ϵ {0,2n}

a*b*

i ii iii

[L,Y,L]iv v vi

LBP Processing

Space Transformation Clustering

Figure 3.7: Local Binary Pattern Clustering method workflow: given a luminance input image
Y, pixel-wise LBP information is obtained (i) so that a specific set of LBPs is extracted (ii) and
smoothed with a Gaussian filter (iii); then, this information, named L, is combined with the input
Y in a particular fashion (iv) so that, after a conversion to the CIE L*a*b* colour space, the a*b*
channels present the rearranged data into an optimised form (v) which, when fed to a clustering
algorithm, groups the information into the two desired regions (vi).

image data into two groups of pixels (lesion vs non-lesion), thus easing the final clustering
process. With this new space, only value-providing dimensions (a* and b* ) serve as input to
a clustering algorithm that separates the information into two cluster regions: of normal skin
and lesion skin. The remainder of this section further details the processing pipeline steps
shown in Fig. 3.7. Note that the segmentation method works performs equally even if the
lesion has not a round shape or if it presents blurry edges.

i) Luminance to LBP Given an RGB image as input, the corresponding luminance image
is obtained by means of a weighted sum of R, G, and B channels, as proposed by Recom-
mendation ITU-R BT.601-7 (2011) with four decimal places. The luminance information Y
is then converted into a Local Binary Pattern (LBP) (Ojala et al., 1996) code for each image
using the definition in Eq. (3.5), where Ip and Ic are, respectively, the intensity of the periph-
eral and central pixels, and p is the number of neighbouring points. As the neighbourhood
of each pixel consists of 8 other pixels, a total of 2

8
= 256 different labels can be obtained,

depending on the relative values of the central pixel and its neighbours.

LBP =

7

∑
p=0

s(Ip − Ic)2p, s(x) = {1 if x > 0

0 if x ≤ 0
(3.5)

ii) LBP subset In this step it is important to understand some LBP characteristics. A
given LBP can be rotated up to seven times (in the 2D plane) to generate seven other LBPs.
This means that many LBPs are merely a rotation of another LBP. For example, LBP of value
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1 (represented by 00000001) can be (binary) rotated to generated LBPs 2, 4, 8, 16, 32, 64,
and 128 (represented by 00000010, 00000100, 00001000, 00010000, 00100000, 01000000, and
10000000, respectively). When LBPs are grouped in this fashion they are said to be Rotation
Invariant (Ojala et al., 2000). This grouping turns the 256 LBPs into 36 groups of patterns.

By convention, the LBP group number is defined by the lower LBP value present in the group.
For example, LBP-group-3 is comprised by LBPs 3 and its rotations (which are: 6, 12, 24,
48, 96, 192, and 129). Following the previous description, it is now possible to interpret that
these 36 groups have specific and comprehensible patterns. Namely, LBP 0 can represent
a flat surface, since it can be constructed when the central pixel is surrounded by pixels of
equal or inferior value. This is relevant because in skin lesion images the skin area is generally
smooth and the lesion area is not. Therefore LBPs representing smooth patterns will be
largely present in the skin area, while noisy patterns will dominate the lesion area.

Resorting to the image presented in Fig. 3.8a and its ground-truth mask in Fig. 3.8b, plot
Fig. 3.8c is constructed by extracting all LBP values generated from the image and checking
whether they were originated from either the skin or the lesion region of the ground-truth
mask. The plot displays the relationship between the frequency of occurrence (in percentage)
of each LBP for each region. The ratio between the two region areas is depicted by the blue
line. When an LBP is located below the blue line it means that it occurs more often inside the
lesion region. Contrarily, when an LBP is located above the blue line, it means that it occurs
more often outside the lesion region (i.e., in the skin area). Finally, if an LBP is on the blue
line it means that it occurs by the same proportion in both regions of the image. With this
information it is possible to visualise that some LBPs (and special groups) are particularly
suited to discriminate either the lesion area or the skin area, which is the case for the LBPs
rotated from 1 (“LBP 1 Rot.” in red).

Grouping the rotation invariant LBPs from Fig. 3.8c allows for a simpler visualisation, hence
Fig. 3.8d is presented. Here, apart from the LBP 0 and 1 group, it is clear that almost all LBP
groups tend to be present by the same amounts in either regions. For example, it is clear that
LBP group 3 is less dominant than group 0, being also of small importance since it is located
much closer to the blue line. Therefore this means that only LBP 0 and 1 groups (which can
also be expressed as LBPs of power of 2) are possible candidates to provide information about
the type of region the current LBP represents (in this case, the normal skin where the aforemen-
tioned property regarding flat textures exists). For a better understanding, data in Fig. 3.8d
was rotated (according to the reference blue line slope) to align the reference line with the x-axis.
Then, the distance of each LBP group to the line in Fig. 3.8d appears as shown in Fig. 3.8e. The
x-axis position of each data points was changed to match the LBP group pattern number.

Hence, in this step, the obtained LBP image is filtered so that only the pixels with an LBP
corresponding to one of the selected patterns remain, namely LBP values corresponding to
powers of two or zero (LBP ∈ {0, 2

n}, n ≥ 0), thus limiting the points to only 9 out of 256
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(a) IMD021 image (b) IMD021 mask
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(d) Invariant LBPs Presence Ratio
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Figure 3.8: Analysis of image (a) against 256 LBPs (c) and later grouped by binary rotation invari-
ance (d) and (e). Where (e) represents a rotation of plot (d) so that the blue-line matches the x-axis
and with points rearranged so that the x-axis represents the LBP value. Blue-line represents the ratio
between the number of pixels outside and inside the lesion given its ground-truth mask (b) from the
dataset Mendonça et al. (2013).

possible LBP patterns. These selected values are represented by zeros in the image matrix
and the remainder of the image is represented by ones, which are concentrated in the lesion
area. Only these patterns have been chosen, as they are able to represent the situation where
the algorithm is more sensitive to region transitions, i.e., a luminance difference between a
pixel value and its neighbours.

iii) Gaussian Filter A Gaussian filter (Haddad & Akansu, 1991), defined by Eq. (3.6), is
applied to the binary LBP image, thus creating the new matrix L with values ranging from zero
to one. The 2D-Gaussian kernel with a standard deviation σ = 3 and size of 13 pixels, generates
homogeneous regions in the LBP-image, namely in the lesion, thus removing most pixel-level
noise. This regions’ representation provides rich information to the clustering algorithm during
the segmentation process, since they highlight only one of the two image segments. Note that
these values were empirically attributed based on some of the early algorithms results. Thus,
13 pixels and σ = 3, which act as a low passing filter, may not be optimal values for all images.

F (x, y) = 1

2πσ2
e
−x

2+y2

2σ2 (3.6)

iv,v) Space transformation As mentioned above, the space transformation is a pre-
clustering operation that aims to produce an image with improved discrimination between
lesion/non-lesion image regions (steps iv) and v) in Fig. 3.7), which favours the clustering
algorithm ahead. The underlying idea is to use the specific characteristics of the RGB to
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CIE L*a*b* colour space conversion (Joint ISO/CIE Standard, ISO 11664-4:2008(E)/CIE S
014-4/E:2007, 2007) to obtain such discrimination as, in this case, it inherently contributes to
the normalisation of the data and dimensionality reduction. In this colour space conversion,
the a* dimension discriminates between R and G by representing R and G in the positive
and negative ranges of the a* axis, respectively. The b* dimension discriminates between
blue and yellow and, finally, the L* dimension represents lightness.

Taking these characteristics into account, a correspondence between RGB and the image
stack LY L previously referred is established, such that L → R, Y → G, and L → B. In one
hand, when the LY L image stack is observed in the RGB space, it is viewed as an image
containing pink colouring in the lesion area, due to the low concentration of LBP values in
R and B channels1 (i.e., the L channels), and a darker colour in the Y image (due to the
lower luminance values of the lesion area). On the other hand, in the non-lesion region,
the presence of LBP information (i.e. low L values) flattens the R and B channels, while
higher values in Y provide a green colouring, as can be seen in the images of Fig. 3.7. This
LY L→ RGB correspondence is of great importance since it places the lesion and non-lesion
information, respectively, in the red (R) and green (G) channels of the RGB space, which are
two opposite sides in the CIE L*a*b* s’ a* colour space channel. Moreover, the b* channel
provides information to the clustering algorithm, whenever the separation between red and
green is not evident (i.e., when the magnitude of lesion-to-skin gradient is low). The lightness
channel L* is discarded since it provides little information to the segmentation problem.

Small blobs of pink colouring may still appear over the non-lesion region since any LBP outside
the lesion has the same colouring effect as inside the lesion. However, since the luminance
values are lower in this region (where such blobs are located), this pink colouring effect will
have a more decolourised appearance, which does not present an issue for the algorithm.

vi) Clustering After the previously described colour space transformation, the resulting
channels a* and b* are resized into a vector that is fed into a k-means++ clustering algo-
rithm (Arthur & Vassilvitskii, 2007) – represented by step vi) in Fig. 3.7. This algorithm was
parameterised with the euclidean distance metric, with a maximum of 100 iterations and set
to find 2 clusters. Additionally, the algorithm execution is replicated 3 times to reduce the
chances of a bad initialisation (which are already mitigated by the ++ variant of k-means
adopted). Afterwards, the best solution is selected by its lowest sums (within each cluster) of
point-to-centroid (euclidean) distances.

Final Remarks After the clustering step, the information is reshaped back to the number
of rows and columns of the input image. This translates into a pair of binary images were
each pixel is assigned to either the lesion area or the skin area, thus creating two distinct and
mutually exclusive image segments/masks.

1Note: red+blue=pink and low concentration of LBPs mean high L values
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Due to the nature of the clustering algorithm, the outputted masks are not always in the same
order, i.e., it is not safe to assume that the 1

st segment is always the lesion area. Therefore, an
automated process was also conceived to correctly select the mask that depicts the lesion area
and the one related to the skin area. Since the segments match the pink and green areas of
the stacked image, the variation of the mean pixel values in the image (within each segment)
effectively measures the amount of pink in proportion to green that the segment contains,
from the a* to the b* channel. That is:

1. Because the pink points present more red than blue information, when merging the
values from the b* negative channel (blue) and the values from the a* positive channel
(red), the difference between the mean values of those two layers is always positive (or
zero);

2. The green is directly acquired by using the negative values in the a* channel, thus its
mean value is always negative and distant from 0.

This means that the image mask with the largest average value is always the image lesion area.
Note that positive b* values (mapped as yellow) do not exists, but are discarded nonetheless.

At this point, some morphological operations might be necessary to ensure that no small
artefacts remain within the lesion perimeter or in the surrounding skin (in this case incorrectly
masking the area with holes). These operations are optional since the artefacts provide insight
to some structures that might be present in the lesion area, like regression structures that
resemble normal skin but are part of the lesion, which are beyond the intent of this work and
are therefore excluded from the mask.

3.2.3 Results and Discussion

This subsection details about the results obtain with the proposed LBPC method and its
robustness and validation with a comprehensive study by direct comparison with other 39
segmentation algorithms using five evaluation metrics. From the 39 algorithms, 26 were
implemented and categorised to seven classes, as presented in Table 2.3. The remaining 13
machine-learning segmentation algorithms, presented in Table 2.4, are later compared with
the proposed method using the results reported in their original publication.

Datasets To enable comparisons with the proposed method, in addition to datasets PH2

and Dermofit, used in the previous Section 3.1, the Atlas dataset is also employed. The
use of three datasets provides robustness to the study by enlarging the representativeness of
the dermoscopic images and thus improving the generalisation and validation of the results.
All available images were used as test data. This is an important methodological aspect
to take into account in performance evaluation studies when applied to skin lesion image
datasets, because, in general, any single dataset is not well-balanced in terms of the different
types of images, different technical characteristics of the acquisition setup conditions, such
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as, for example, the type of dermoscope, illumination, and skin surface geometry in the lesion
region (Celebi et al., 2008). Another non-uniform characteristic of the chosen image datasets
is the identification of ROI (lesion region) and background skin. In some datasets the ROI
segmentation is absent, while others include segmentation masks that have been used for the
purpose of delineating surgical excision or clinical follow-up.

Evaluation metrics To assess the segmentation accuracy among the considered algorithms,
this section resorts to five complementary metrics (implemented in Matlab®): BE, HD, TDR,
FDR, and JI – detailed in Section 2.3.1. Only TDR and JI increase performance with higher
values, the remaining metrics are preferred with lower values.

Experiment Definition The achieved results of each algorithm (identified in Table 2.3),
using the previously mentioned metrics, are shown in Table 3.3 for the Atlas dataset, Table 3.4
for the PH2 dataset, and Table 3.5 for the Dermofit dataset. Additionally, Table 3.6 shows
results, in terms of JI metric, for other approaches using the PH2 dataset. The method’s
results in Table 3.6 were gathered from different sources and compiled in reference to the
most common used dataset and metric.

The performance was measured for each algorithm, in percentage, using the five metrics
described in the previous section. Lower BE, HD and FDR indicate better performance,
while for TDR and JI better performances are associated to higher percentages. For each
performance metric (columns), the segmentation algorithm (rows) that achieves the best
performance for each metric is identified by the boldface figure.

Considering the type of images and the nature of the ground-truths (manual or automatic) the
JI was used as the first (and most relevant) element under analysis, establishing a similarity
metric between the ground-truth and the obtained segmentation for each of the 27 methods.

Atlas Dataset Results In the absence of segmentation masks in the Atlas dataset, the
SRM segmentation algorithm proposed by Celebi et al. (2008) was applied to all images,
acting as segmentation ground-truth. Most segmentations (generated for Table 3.3) tend to
be slightly inside the SRM’s ground-truth. As it can be seen, LBPC, VV, and BT have the
best JI performance.

In the Thresholding group both BT and UT algorithms perform well. Between them, BT
appears to be more reliable as it provides better performance for all metrics, except HD
and TDR – but only by 0.3 percentage points (pp, unit measure of the arithmetic difference
between two percentages) that comes with a 1.3pp decrease in FDR.

In both Clustering and Active Contours group, the best performing algorithms are KMC and
VV. They provide over 80% JI, while the other metrics only go up to 67%.
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Table 3.3: Segmentation Results for Atlas dataset.

ID BE HD TDR FDR JI

Threshold
UT 27.3±63.5 519.0±163.9 88.0±7.7 7.6±7.8 82.2±13.1
IT 21.3±13.8 490.7±175.8 83.0±8.0 7.6±4.3 80.3±9.1
KT 31.1±27.7 486.8±165.5 72.2±28.9 12.1±12.4 69.7±27.5
LT 24.7±12.7 502.3±154.3 78.5±9.5 9.0±4.8 76.6±9.8
MT 25.0±15.1 483.4±172.1 80.1±10.9 9.0±5.2 77.0±11.0
OT 21.4±12.0 489.4±175.6 82.3±8.4 7.8±4.4 79.9±9.1
ST 41.6±19.9 444.9±186.0 61.4±20.3 14.5±6.8 59.6±19.0
YT 28.6±25.5 525.6±145.4 78.8±27.7 11.2±12.2 73.1±25.1
BT 17.3±10.6 543.4±139.8 87.7±8.2 6.3±4.3 84.0±8.8
RT 27.1±24.3 500.3±160.4 77.1±25.4 10.9±12.0 73.9±24.0

Clustering
KMC 18.9±10.6 485.6±174.5 84.9±6.9 6.9±4.1 82.3±8.1
KMS 74.8±83.4 400.1±180.3 84.5±11.6 21.9±15.7 63.0±22.4
MC 51.3±96.3 443.1±179.5 73.4±28.9 15.0±18.4 67.3±29.4
MCS 78.4±29.8 430.2±159.3 22.4±29.5 30.0±15.6 22.2±29.3

Fuzzy Methods
FDEE 58.0±25.6 433.2±166.8 42.9±26.0 21.9±12.7 42.5±25.6
FC-LS 21.7±9.3 381.6±291.1 80.7±8.7 8.1±4.4 78.9±8.4
FCM 22.4±12.9 490.7±176.0 81.4±8.5 8.1±4.5 79.0±9.2

Quantization
NQ 30.3±56.5 493.8±176.8 87.6±9.4 9.2±10.1 80.0±14.1
AQ 52.1±65.1 580.2±109.5 95.0±5.8 13.8±9.1 71.9±17.3
UQ 18.3±9.4 490.1±174.4 85.2±6.9 6.8±4.1 82.7±7.7
RGB-MC 61.5±64.1 532.1±151.8 95.6±6.6 16.5±8.5 67.9±17.4
PCT-MC 61.5±64.2 549.4±137.5 95.6±6.5 16.4±8.5 67.9±17.4

Active Contours
CH 52.7±34.8 404.5±203.4 52.4±25.2 19.0±11.7 51.7±25.3
VV 16.4±8.8 340.4±245.8 87.1±6.7 6.0±3.8 84.5±7.3
LMS 104.5±80.1 624.7±91.6 93.2±6.2 30.8±9.2 52.8±15.1

Pattern Clustering (Proposed)
LBPC 16.2±8.7 71.6±87.2 87.1±8.4 6.2±4.5 84.5±8.0

Apart from a direct JI comparison, other metrics help to characterise what happened during
the segmentation process and provide better means to compare similarly-performing algo-
rithms. In the Fuzzy group, both FC-LS and FCM provide similar JI results with the BE,
TDR, and FDR metrics differing only 0.68pp, 0.74pp, and 0.01pp, respectively, with FC-LS
being better in the BE and FDR metrics. When taking into account the HD metric, it is clear
that FC-LS might be preferable instead of the FCM since, overall, its errors are less distant
from the ground-truth masks.

In the Quantization group, UQ is the best for all metrics except TDR. But, if a small FDR
and HD compromise is acceptable to attain higher TDR, then AQ could be the next best
option. However, AQ might not be feasible since the BE metric would go from 18.39% to
52.12%, which means that, on average, a lesion segmentation would be always off by half the
lesion ground-truth area.
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Table 3.4: Segmentation Results for PH2 dataset.

ID BE HD TDR FDR JI

Threshold
UT 59.8±147.4 468.5±150.7 85.9±8.0 10.5±13.4 77.1±19.1
IT 25.1±48.9 495.7±141.2 87.1±6.5 6.5±4.6 82.1±10.8
KT 29.6±30.5 485.0±132.3 86.8±19.8 11.7±16.3 76.7±19.2
LT 20.5±9.1 477.8±146.6 82.7±7.7 6.9±4.3 80.6±7.4
MT 26.2±19.1 503.5±122.8 89.2±8.4 7.6±4.3 79.2±9.3
OT 18.3±7.2 497.8±138.3 86.0±6.9 6.1±3.6 82.9±6.1
ST 33.8±40.0 475.7±143.3 77.6±17.1 9.4±6.9 72.8±17.2
YT 25.0±21.2 488.1±147.1 89.8±14.6 9.4±12.6 79.7±14.4
BT 32.0±16.6 495.7±125.6 73.4±17.8 11.9±10.2 69.9±15.1
RT 25.5±23.6 489.0±142.2 88.5±15.6 9.8±13.3 79.3±15.4

Clustering
KMC 17.9±17.9 476.1±155.5 87.9±6.2 5.5±3.3 84.4±7.4
KMS 131.3±135.1 294.8±147.1 87.6±13.7 29.0±14.5 51.9±23.4
MC 70.2±79.8 410.8±148.6 44.3±43.1 23.1±22.3 40.0±39.9
MCS 91.5±25.6 430.5±114.5 8.6±26.3 33.4±22.1 8.5±25.7

Fuzzy Methods
FDEE 45.7±27.0 414.6±145.9 55.8±27.6 14.5±10.6 55.1±26.9
FC-LS 34.8±118.0 285.8±251.7 83.4±14.1 7.2±8.8 81.0±13.9
FCM 19.8±11.7 496.4±131.5 85.5±7.2 6.4±3.8 82.0±7.3

Quantization
NQ 73.5±157.1 490.5±132.9 88.7±16.9 14.5±17.4 72.9±23.5
AQ 109.3±135.7 396.4±176.2 94.5±7.4 21.3±12.4 59.8±22.7
UQ 16.3±6.4 493.9±139.8 87.5±6.6 5.4±3.4 84.7±5.8
RGB-MC 115.4±125.7 395.5±168.5 93.4±10.9 23.6±10.7 56.6±21.1
PCT-MC 114.1±125.4 397.5±172.3 94.1±10.7 23.3±10.6 57.1±21.1

Active Contours
CH 43.8±60.8 417.4±197.4 73.9±22.1 12.3±13.8 68.5±21.2
VV 26.9±28.8 459.0±183.4 82.6±16.2 7.5±4.2 77.2±16.4
LM 168.0±161.0 558.5±67.6 94.3±6.7 36.6±12.2 46.5±19.8

Merging Threshold
SRM 123.7±173.4 244.8±173.7 68.6±36.2 28.3±22.9 48.6±33.8

Pattern Clustering (Proposed)
LBPC 14.1±4.7 58.2±39.3 88.4±6.1 5.2±3.7 86.3±4.6

Finally, the proposed LBPC algorithm provides the best results, in terms of JI and BE, and
it is second only to VV, in terms of FDR by 0.2pp.

PH2 Dataset Results Result trends for the PH2 dataset (Table 3.4) are similar to those
achieved with the Atlas Dataset, but now they are obtained in respect to a ground-truth
provided by the dataset.

In the Thresholding group, looking at JI, both OT and IT perform similarly. However, IT is
preferable if a gain of 1.1pp in TDR is outperformed by the (error) gain of 0.4pp FDR.

In the Clustering, Quantization and Active Contours groups, KMC, UQ, and VV outperform
all algorithms in their groups, presenting higher JI.
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Table 3.5: Segmentation Results for Dermofit dataset.

ID BE HD TDR FDR JI

Threshold
UT 83.9±187.9 366.3±306.6 81.9±11.8 12.0±13.7 70.2±22.4
IT 65.3±144.7 343.3±305.4 79.2±11.7 11.0±11.1 69.8±19.6
KT 48.3±118.7 394.1±290.8 75.6±22.2 11.8±16.1 69.1±22.8
LT 57.8±126.8 327.7±297.0 75.3±12.2 10.8±10.1 68.5±17.7
MT 53.1±96.0 368.5±307.8 80.5±12.0 10.6±9.5 69.5±17.9
OT 48.9±103.5 331.4±297.3 76.9±12.0 10.0±9.7 70.6±17.1
ST 65.1±83.1 350.6±267.2 57.0±21.4 15.0±8.8 51.3±19.6
YT 42.4±116.0 443.4±291.2 80.2±21.3 9.8±14.7 73.2±22.1
BT 35.0±30.1 370.8±307.5 72.1±18.6 9.4±7.0 68.6±18.4
RT 48.5±131.6 386.5±292.8 78.8±19.9 11.0±16.0 71.7±21.6

Clustering
KMC 64.2±136.7 349.8±297.0 78.6±12.1 11.1±11.8 69.5±19.8
KMS 212.2±188.6 348.5±109.0 66.7±15.3 43.4±9.2 30.7±15.5
MC 232.4±355.8 290.1±212.6 89.7±15.3 40.6±34.7 51.7±29.3
MCS 54.5±35.2 286.6±212.8 49.7±27.4 16.2±11.5 49.0±27.2

Fuzzy Methods
FDEE 115.7±133.4 372.2±189.4 41.6±37.3 29.8±21.7 27.6±24.0
FC-LS 238.9±308.8 285.3±204.2 50.4±31.3 49.9±41.6 38.9±35.1
FCM 60.7±127.8 343.7±299.1 77.2±12.2 10.8±10.1 69.0±18.8

Quantization
NQ 177.6±290.3 439.8±296.2 86.5±17.3 25.4±24.1 57.5±29.4
AQ 154.8±243.9 627.0±222.9 91.3±13.6 23.5±18.3 56.2±24.7
UQ 52.6±108.4 321.9±298.0 77.9±12.7 10.7±12.7 70.6±18.5
RGB-MC 146.5±191.2 665.4±215.5 95.1±9.0 23.5±11.7 54.2±22.5
PCT-MC 145.7±190.4 664.1±222.4 95.4±8.2 23.4±11.5 54.4±22.3

Active Contours
CH 244.6±365.5 339.3±236.5 69.5±30.1 39.9±33.1 44.7±30.8
VV 240.6±398.1 295.4±256.5 77.7±24.5 33.9±33.0 52.1±31.0
LMS 213.0±86.8 369.8±88.0 0.1±0.5 53.5±12.4 0.0±0.3

Merging Threshold
SRM 55.0±65.9 167.1±150.8 52.0±34.2 15.0±12.6 50.2±33.1

Pattern Clustering (Proposed)
LBPC 29.6±41.1 110.4±105.1 78.7±21.6 7.7±7.5 74.8±21.4

In the Fuzzy group the best algorithm in terms of detection rate is the FCM with 85.54%

TDR and 6.44% FDR, however it might not be the best option if its higher erratic behaviour
(HD), in comparison to FC-LS, is undesirable. The FC-LS method provides almost 40 less
HD than the FCM algorithm, thus yielding smoother segmentation that better mimic the
ground-truth at the cost of 2.13pp TDR and 0.82pp FDR.

Finally, LBPC provides even better results than before, while the SRM provides almost the
worst results in Table 3.4.

Dermofit Dataset Results The Dermofit dataset results (Table 3.5) are consistent with
those obtained for Atlas and PH2.
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In the Thresholding group no algorithm stands out as optimal. Most results for the JI metric
are within a close range. YT emerges with the highest value and best balance between losses
and gains in the remaining metrics in comparison to the remaining peers.

In the Clustering group, KMC leads with the highest JI value. While not having the best
TDR value, by 11.1pp, it provides the best balance with a 29.5pp less FDR in relation to MC.

Likewise, for the Fuzzy group, FCM shows the best values for all metrics except HD.

Similarly, in the Quantization and Active Contours groups, both UQ and VV stand out. They
are only outperformed by other algorithms regarding their lower TDR and BE, respectively.
But, other algorithms present worse values for all the other metrics, which are disproportional
to a the small gain they provide.

Finally, the SRM algorithm provided average results and the LBPC algorithm has the best
performance balance in comparison to all others.

Across Datasets Analysis Overall, the top 3 algorithms across the datasets (sorted by an
average JI performance weighted by the number of images in each dataset) are: LBPC, UQ,
and KMC; with 81.7%, 76.3%, and 75.5%, respectively. Generally speaking, Thresholding
methods tend to provide results above average, while the remaining groups have a less linear
behaviour. For dermoscopic datasets, Clustering, Fuzzy, and Quantization algorithms provide
average results, while Active Contours methods tend to perform below average (except VV
that is above average). For the macro images dataset (Dermofit), only Thresholding and a
short number of methods provide results above average. Most algorithms tend to discard
small portions of the ground-truth masks and include surrounding skin. Finally, as previously
described, the proposed LBPC provides the best results across the different datasets.

Recent Works Comparison As discussed in the previous section, for the considered
datasets, the LBPC algorithm was found to be the one with the best JI metric results in
comparison to the revised classical algorithm implementations. The study carried out went
beyond those approaches and, as shown in Table 3.6, the performance of LBPC was also com-
pared to 13 more recent algorithms based on machine learning techniques (ordered by year
of publication) for the PH2 dataset (as in the 13 published algorithm works). The presented
JI metric values were gathered from the published papers that describe these methods and
from Bi et al. (2017); where now, the proposed method (LBPC) is only second to SWSDB,

Table 3.6: Recent Segmentation Results for PH2 dataset.

ID FCN SSLS SCDRR MSCA mFCN JCLMM CDNN CDNNE KL-LS DermoNet PSO-DEN SWSDB DCL-PSI LC
JI 82.15 68.16 76.00 72.33 83.99 70.72† 84.33† 76.5 71.54† 85.3 77.75† 89.04† 85.90 86.34

† Jaccard index value generated from published Sørensen–Dice metric.
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and even in this case for a margin smaller than 3pp. This can be explained by the fact that
LBPC algorithm is more directed and guided towards the target domain, whereas machine
learning algorithms, that depend on ground-truths to learn, need large amounts of data and
still might not converge to the desired results.

Although other methods such as Bayraktar et al. (2019) and Kéchichian et al. (2014) exist
and could be compared with our proposal, their published results are based on a different set
of ground-truths that are incompatible with those of Table 3.6, thus these comparisons were
considered out of the scope of this work.

Summary Globally, excluding the LBPC algorithm, Thresholding methods perform the
best. Nevertheless, having defined JI as the most discriminant performance metric, the LBPC
algorithm provides proper results across the datasets. In the presence of more recent and
complex algorithms, LBPC slightly behind SWSDB.

3.2.4 Conclusions

Automated melanoma identification is crucial to help both dermatologists and computer ex-
pert systems. An accurate skin lesion segmentation can improve the initial assessment and
help computer vision techniques to provide insights and enhance the users abilities. Therefore,
image segmentation of skin lesion plays a major role for forthcoming algorithms. This work
provides a unified comparison between several segmentation methods and datasets in order
to present a better understanding of some of the currently available techniques. The study
compares the proposed method with a specific set of 26 conventional segmentation algorithms,
grouped by the type of their methodology, tested for 3 different datasets.

The comparison results showed that different segmentation methods of a same type tend to
behave similarly. Even so, their behaviour highly depends on the datasets’ image characteris-
tics. In spite of that, some conclusions can still be drawn from this study. The Thresholding
type of algorithms seems to be the most constant in terms of expected results, however the
results achieved are not that accurate in the general context. In contrast, Active Contours
algorithms provide, on average, the worst FDR measurements, since they tend to stick close
to the lesion borders, thus typically presenting more inner segmentations. Quantization, as a
group, is on average one of the worst in any scenario, however the quantization UQ algorithm
actually performs above average. The sole Merging Threshold algorithm, which is reported
to have a good performance for the Atlas dataset, does not stand out across the selected
metrics on the remaining two datasets. Finally, the proposed Local Binary Pattern based
algorithm appears as the leading method when compared to the existing ground-truths. As
future research, adaptions of the proposed method will be investigated on other datasets, as
well as, potential clinical applications.
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Across the observed results, the proposed LBPC method is always superior in terms of BE,
HD, and JI. It is also the best performer in the FDR metric for both the PH2 and Dermofit
datasets. The best performing algorithms for the TDR metric usually create a segmentation
that is too large, covering not only the lesion area but also marking other areas as lesion.
Despite their higher TDR, they perform worse in the remaining metrics.

The proposed unsupervised method is tested with three certified datasets and comprises three
main phases: LBP image enhancement, space transformation, and binary clustering. It has
performed better than the 26 classic methods of segmentation. Additionally, it was also
compared against 13 recent skin lesion segmentation approaches, published between 2015 and
2019, for the PH2 dataset. The proposed method outperforms most of the other algorithms,
while is computationally less expensive. It behaves independently from the dataset (given its
unsupervised setting) but it is sensitive to hairs and possible artefacts present in the image.

Overall, apart from presenting a new segmentation method capable of outperforming the
current state-of-the-art, this work provides insightful information about the behaviour and
performance of different image segmentation algorithms.

3.3 Classification using Transfer Learning

Traditional ANN have been investigated in the past for skin lesion classification. Nowadays,
their performance is useful to assist in medical diagnosis and decision processes, namely when
performing transfer learning on pre-trained networks.

This section focuses on studying the performance of skin cancer detection using highly-
accurate networks, which were developed for ImageNet. To this end, the ISIC dataset (Col-
laboration, 2017) is selected as the collection of skin lesion images.

This section is organised as follows: Section 3.3.1 presents the background that is relevant for
the proposed experiment. Section 3.3.2 presents the transfer learning approach used in this
research study and the selected networks with pre-trained weights from ImageNet. Then, in
Section 3.3.3, the classification performance is evaluated and discussed. Finally, Section 3.3.4
draws some conclusions.

3.3.1 Relevant Background

Recent advances in visual recognition led to the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) (Deng et al., 2009; Russakovsky et al., 2015), which uses a dataset comprising
more than 14 million images (of which 1 million have bounding box annotations) that can be
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divided into 1000 different labels – manually validated through crowd-sourcing. The ImageNet
Challenge is currently considered to be one of the most important initiatives. Therefore its
dataset has became a benchmark standard for large-scale object recognition, i.e., image classi-
fication, single-object location, and object detection. Due to its competition-based approach,
many authors are constantly improving their image classification/recognition algorithms every
year. This has led to an exponential growth of related research and significant advances in
state-of-the-art techniques (Russakovsky et al., 2015).

3.3.2 Proposed TL Classification Approach

The proposed approach follows a processing pipeline from the input image data to the output
classification results. Firstly, before entering the network, a pre-processing stage is responsible
for performing data augmentation and then image resizing, to match the network intake.
Secondly, these data enters in the pre-trained network whose output is fed to the final classifier.
Several classifiers are studied in this work. Different alternatives are separately trained,
resorting to both original data and augmented data with 20% random information holdout
for later evaluation of the trained network.

Architectures In ILSVRC history there are several pre-trained networks, already capable
of image classification over 1000 different categories. This work elects 5 of the most frequently
used networks, which have shown to be able to adapt to other identification and classification
problems. These networks are: Alexnet (Krizhevsky et al., 2012), pioneering networking
comprising 25 layers (winner of the 2012 ILSVRC); VGG16 and VGG19 Net (Simonyan &
Zisserman, 2014), reinforced the notion that convolutional neural networks must have layers
in depth, such that visual data present a hierarchical representation; GoogLeNet (Szegedy
et al., 2015), has the Inception module that deviates from the standard sequential layer-
stacking approach (winner in 2014); and ResNet50 (He et al., 2016), presents an innovative
way of solving the vanishing gradient problem, it comprises 177 layers (winner in 2015).

Pre-processing To increase accuracy, data augmentation is performed by using a limited
set of random transformations (Lemley et al., 2017). In this work the following transformations
were selected: Intensity Values Adjustment : increases the contrast of the image; Contrast-
Limited Adaptive Histogram Equalisation: enhances the contrast of a given grayscale image
by transforming the values, such that its distribution matches a uniform/flat histogram (256
bins); Random Brightness: induces brightness variation to the image; Random Edge-Aware
Local Contrast : enhances or flattens the image local contrasts; Random Sharpness: sharpens
the image using the unsharp-masking method; PCA Colour Jitter : modifies the intensities
of the RGB channels in the image, according to the PCA transformation; Random Affine
Transformations: operation between affine spaces that preserves points, straight lines and
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planes. As a final note, the augmentation strategies are not all used at the same time.
The PCA Colour Jitter and Random Affine Transformations are always used at the end of
the augmentation step, but the remaining operators are only randomly applied with a 10%

change (each). After this stage, each image is augmented 200 times, thus effectively making
the dataset 200 times larger.

After a possible augmentation step, and before entering the network, all input data (images)
is resized to fit the network intake. Apart from Alex-Net, which receives a 277x277 (pixel)
RGB image, all other networks accept a 224x244 (pixel) RGB image. Therefore, as a final step
before entering the network, the images are resized to their smallest dimension (maintaining
aspect ratio) and centre-cropped, to remove the outer border in excess (if any).

Learning Strategy As mentioned before, the overall architecture includes ImageNet net-
works and a transfer learning scheme for feature extraction using alternative classifiers. Since
the selected pre-trained architectures already provide highly accurate predictions in the Im-
ageNet challenge, it is assumed that they are also able to extract a great variety of abstract
knowledge/features from the given images containing skin lesions. In this transfer learning
strategy, the output of the last convolutional layer in the pre-trained ImageNet network is
connected to several alternative classifiers. The classifiers used in this work are: the SVM
classifier, the K-Nearest Neighbours, the Tree classifier, a Linear classifier, and a NaiveBayes
classifier.

3.3.3 Results and Discussion

For the study of the performance of skin cancer detection using highly-accurate networks, the
ISIC dataset (Collaboration, 2017) is selected as the collection of skin lesion images. This
dataset contains a total of 3438 images that can be divided into: 2380 benign and 1058

malignant lesions. These malignant lesions are classified as melanoma, basal cell carcinomas,
and squamous cell carcinoma, while the remaining ones are benign. Such classification was
obtained from an unspecified number of skin cancer experts.

Using the ImageNet networks as feature extractor on the original 3438 images, while holding
out 20% of this data for later testing, the network knowledge provides an average ACC of 61%

on the testing data, while the ACC obtained in training data is 87% on average. The overall
results are shown in Table 3.7, where it can be observed that the best performing classifier is
the KNN with an average ACC of 72% on unseen test data across the different networks and
100% on the training data. Still regarding the training data performance, the SVM and the
Tree classifiers achieve accuracies of 99% and 98%, respectively. However, only 62% and 61%

ACC is obtained on unseen test data.
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Table 3.7: Transfer Learning Test Results without using Augmented Data in training.

Model
AlexNet VGG16 VGG19 GoogleNet ResNet50

ACC SEN SPE BAC ACC SEN SPE BAC ACC SEN SPE BAC ACC SEN SPE BAC ACC SEN SPE BAC
SVM 30.9 99.5 0.4 50.0 34.6 97.6 6.7 52.2 46.7 69.2 36.8 53.0 30.7 100 0.0 50.0 30.7 100 0.0 50.0
KNN 74.5 61.1 80.5 70.8 67.7 56.9 72.5 64.7 71.3 60.2 76.3 68.3 73.8 57.3 81.1 69.2 72.8 60.2 78.4 69.3
Tree 68.7 46.9 78.4 62.7 64.2 40.8 74.6 57.7 64.0 40.3 74.6 57.5 67.7 51.2 75.0 63.1 61.3 49.3 66.6 58.0
Linear 70.3 4.3 99.6 52.0 69.4 55.9 75.4 65.7 55.5 86.3 41.8 64.1 73.9 52.1 83.6 67.9 75.8 47.9 88.2 68.1
NaiveBayes 64.9 73.5 61.1 67.3 62.6 66.4 60.9 63.7 64.8 64.5 64.9 64.7 64.9 73.9 60.9 67.4 72.5 55.9 79.8 67.9

When data augmentation is used, the performances increase by 9pp on the test-set and de-
crease 12pp ACC on the training-set. Table 3.8 is presented for comparison with the previous
results. In this case the training-set only comprises augmented images, while the test-set is
the same as before. It is observed that image augmentation provides some improvement to
the classification results. Despite the small improvement of the KNN classifier, which only
gains 0.6pp ACC on test data, the SVM classifier more than doubles its performance. Taking
into account the training results (not shown here), this increase in performance is justified by
the reduction of overfitting resulting from data augmentation.

Table 3.8: Transfer Learning Test Results using Augmented Data in the training.

Model
AlexNet VGG16 VGG19 GoogleNet ResNet50

ACC SEN SPE BAC ACC SEN SPE BAC ACC SEN SPE BAC ACC SEN SPE BAC ACC SEN SPE BAC
SVM 72.6 54.5 80.7 67.6 71.9 58.8 77.7 68.3 71.9 58.8 77.7 68.3 71.6 60.7 76.5 68.6 72.8 53.1 81.5 67,3
KNN 75.1 62.6 80.7 71.7 70.3 52.1 78.4 65.3 70.3 52.1 78.4 65.3 71.8 55.5 79.0 67.3 75.4 64.9 80.0 72,5
Tree 65.5 48.8 72.9 60.9 68.0 46.9 77.3 62.1 68.0 46.9 77.3 62.1 67.5 46.0 77.1 61.6 69.3 53.1 76.5 64,8
Linear 78.0 52.1 89.5 70.8 60.8 80.1 52.3 66.2 60.8 80.1 52.3 66.2 69.4 69.2 69.5 69.4 78.5 43.1 94.1 68,6
NaiveBayes 67.1 66.8 67.2 67.0 69.3 0.0 100 50.0 69.3 0.0 100 50.0 62.6 70.6 59.0 64.8 67.7 72.5 65.5 69,0

3.3.4 Conclusions

ILSVRC winning networks achieve an ACC greater than 95% in the ImageNet dataset. How-
ever, when adapted to classify skin lesions, their performance drops to modest results, even
when data augmentation is used. This work performed transfer learning to classify skin le-
sions as malignant or benign using five cornerstone neural network architectures, which have
been proven to produce high results on other domains. The results demonstrate that there
is significant room for further research, using highly accurate networks and transfer learning
for specific classification in the field of medical imaging. In particular, it is necessary to in-
vestigate how to improve transfer learning performance using networks trained on completely
different domains.

Since the results of this experiment did not uphold the baseline expectations, following ex-
periments focused on hand-crafted features and validation of previous findings.
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3.4 Classification using 2D Border-Line Features

Machine learning algorithms are progressively assuming an important role as a computational
tool to support clinical diagnosis, namely in the classification of PSL. The current classification
methods commonly rely on features derived from shape, colour, or texture obtained after image
segmentation, but these do not always guarantee the best results. When the new features
are combined with the classical ones, the experimental results show higher accuracy, which
positively impacts the overall performance of the classification algorithms. To improve the
classification accuracy, this work proposes to further exploit the border-line characteristics of
the lesion segmentation mask. In the proposed method, these border-line features are used
together with the conventional ones to enhance the performance of skin lesion classification
algorithms.

The main contribution in this section is to demonstrate the relevance of the proposed features
(extracted from the segmentation border-line information) to improve a classification algo-
rithm, in addition to other commonly used features (Jafari et al., 2016). Hence, this work does
not aim to validate the segmentation or classification algorithms, but the information gain
achieved with the proposed features. The proposed method uses two existing segmentation
techniques: Gradient-based Histogram Thresholding (GHT, Pereira et al., 2019b), detailed
in Section 3.1, and a variant of the recent Local Binary Patterns Clustering (LBPC, Pereira
et al., 2019a, 2020a), detailed in Section 3.2. The border-line features are extracted and used
as input for automatic classification of melanocytic lesions using ML algorithms. To this end,
only images of melanoma and nevus are used. As previously mentioned, melanoma is the
most aggressive form of skin cancer and one-third of all melanomas arise from pre-existing
nevus, thus detection and removal of such nevus is of utmost importance in the prevention of
melanoma. In summary, this section exploits the additional insight that, based on statistical
features, border-line information provides relevant information to enhance discrimination of
skin lesions.

The remainder of section is organised as follows: Section 3.4.1 presents the literature involved
in this work. Section 3.4.2 introduces the proposed approach, detailing the segmentation
techniques, feature extraction and the pigmented skin lesion classification. Section 3.4.3
presents and discusses the results with statistical validation information, and Section 3.4.5
highlights the conclusions and future work.

3.4.1 Relevant Background

Only recently, delineation information of skin lesions border-line has emerged as an input fea-
ture in ML algorithms. Based on a detailed segmentation border, several feature characteristics
of its perimeter may be determined. For such purpose, some research work has been carried
out in this topic. In Linsangan et al. (2018), using a clustering algorithm, the authors ex-
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tracted features related to the perimeter border from 90 images and classified them as Benign,
Malignant, and Unknown. Similarly, in Mane & Shinde (2018) the authors also extracted the
perimeter information, as well as colour and texture features. These emerging features pro-
vide new dimensions to the solution and have potential to be added directly to most existing
approaches. One of such works is presented in Hameed et al. (2018), where several features
are benchmarked with Matlab classifiers (present in the classifier app), attaining an average
ACC of 87%. Other implementations, like those based on Deep Learning, namely Namozov &
Cho (2018); Chen et al. (2019), already obtain state of the art results. However, the inclusion
of manually extracted features is more challenging in these approaches. Nevertheless, most
neural network applications, like Majumder & Ullah (2018), are easily adaptable since they
already behave like a feature classifier. Currently, a feature-based descriptor for skin lesions
that mainly includes some types of border-related features was also introduced in Mahdiraji
et al. (2018).

In spite of the fact that such approaches provide state-of-the-art results, they do not utilise the
same datasets or classifiers, making the comparison of their results a difficult task. Therefore
this comparison is not performed in the scope of this work.

3.4.2 Proposed 2D Border-Line Classification Approach

This section presents the method’s pipeline, which comprises three steps: Segmentation,
Feature Extraction, and Classification. Firstly, the lesion image is segmented with the GHT
and the LBPC algorithms from Section 3.1 and Section 3.2, respectively. Then common
border-line features of the binary segmentation mask are extracted and used by the lesion
classifier in the third and final step.

Segmentation While GHT exploits luminance intensity variations, LBPC is more sensitive
to texture patterns, therefore in both methods the luminance (grayscale) image (Y ) is used,
being obtained by means of a weighted sum of R, G, and B channels, as defined in ITU-
R (2011) with four decimal places. Particularly for this study, LBPC was changed to not
use the CIE L*a*b* colour space. Instead, the transformed LBP image is subtracted from
the grayscale image and the resulting pixel values are input to the k-means++ clustering
algorithm, as it was found to lead to better performances at this study’s classification step.

The resulting segmentation output mask obtained with these two techniques can be observed
in Fig. 3.9 for image B355b of the Dermofit dataset (Ballerini et al., 2013). As can be seen,
the segmentation from both the GHT and LBPC algorithms provides much higher detail on
the lesion borders than that of the dataset Ground-Truth (in Fig. 3.9b).
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(a) Input Image (b) Ground-Truth mask (c) GHT output mask (d) LBPC output mask

Figure 3.9: Segmentation results for B355b image of the Dermofit dataset.

Feature Extraction In order to extract features from the proposed segmentation masks,
the detailed border-lines are reshaped from their rounded lesion-shape to an unfolded line,
resulting in the lines shown in Fig. 3.10a and Fig. 3.10b. The line unfolding is carried out by
firstly calculating the centre of mass of the segmented region. Then, the euclidean distance
d (in pixels) from each pixel to the centre of mass is represented by d(i) and, from this
representation, the new line-segment is obtained. This unfolded line maintains all the original
information, except the lesion shape. As can be observed from Fig. 3.10a and Fig. 3.10b,
the lines segments originated from both algorithms have different sizes. This is due to the
segmentation boundary generated by each corresponding algorithm. Although the algorithms
provide similar shaped-segmentations, GHT displays a smoother curve than LBPC. Hence
the LBPC segmentation is intrinsically larger (in terms of perimeter pixels) than GHT. This
is further evidenced observing Fig. 3.9.
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(a) Detail of LBPC border-line
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(b) Detail of GHT border-line

Figure 3.10: Border-lines extracted from B355b image of Dermofit dataset.

Based on this representation, a new set of features were extracted from the unfolded border-
line (as can be seen in Fig. 3.10a), namely: root-mean-square level (F1); average d value
(F2); height of main peak (F3) and height and position of second peak of an autocorrelation
sequence calculation (F4-5); magnitude of the highest peak of each of the first 6 bins of a
Discrete Fourier Transform spectrum (DFT) using 4096 points, where the sampling resolu-
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tion is 2π/4096 rad/sample (dividing it in 32 equal-size bins) (F6-11); frequency component
corresponding to the 6 points of the previous features (F12-17); sum of values of 5 equal-
length segments produced by splitting its periodogram power spectral density (PSD) (Auger
& Flandrin, 1995) (F18-22). The number of peaks/segments (F6-22 ) was optimised using
correlation analysis.

Classification As previously mentioned, the main research question addressed in this sec-
tion is to verify whether segmentation border details and the type of lesion might be somehow
correlated. This is done in a nevus versus melanoma setting. It is known that the melanoma is
the most aggressive form of skin cancer and one-third of all melanomas arise from pre-existing
nevi. Thus, detection and removal of such nevi is of utmost importance in the prevention of
melanoma. If such hypothesis is true, the use of border-line features might prove to be useful
in providing additional discriminatory information that will help to improve the classification
accuracy of skin lesions. To test and validate the raised hypothesis, three classifiers were used:
two of them are based on a linear SVM of similar parameters, while the third implements
a Feedforward Neural Network (FNN) for classification. Deep Learning classifiers were not
selected for this study due to the selected segmentation algorithms variable length outputs
and the datasets’ size constraints. The experiments were made in a MSI GT683DXR-423US
laptop, which provides an Intel® Core™i7-2670QM CPU @ 2.20GHz with 8GB of RAM.

The first classifier, namely the SMO, employs an SVM classifier using Sequential Minimal Op-
timization. This classifier was proposed in Jafari et al. (2016) for skin lesions classification and
implements a robust supervised learning method with a linear kernel function that is solved
iteratively through the sequential minimal optimization. The classifier, imported from Weka
3.8.2, is employed to enable comparison with Jafari et al. (2016). In this algorithm, the SVM
problem is broken into a series of smaller sub-problems, which are solved analytically (Platt,
1998). For this method default literature parameters were used: complexity constant of 0.5

and epsilon of 1 × 10
−7.

The second classifier, namely the ISDA, also employs an SVM classifier, however, instead of
solving the problem with the sequential minimal optimization, as in the SMO, this version uses
the Iterative Single Data Algorithm proposed in Kecman et al. (2005b). For this classifier,
an existing implementation present in Matlab™ R2018b was used. Unlike SMO, ISDA solves
a series of one-point minimisation that does not respect the linear constraint and does not
explicitly include the bias term in the model. The ISDA implementation uses the same
parameters, as in the SMO.

The third classifier, referred to as FFN, is a Feed Forward Network (present in Matlab®

R2018b patternnet function) that was implemented based on a common rule of thumb, which
states that the number of neurons n in a network should be determined taking into considera-
tion the number of samples, features (inputs) and possible classifications (outputs), expressed
by n = (#sample ∗ (#inputs +#output))/w where, the weight w was set to 2, halving the
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result, in order to force lower overfitting probability, as it limits the networks’ number of
degrees of freedom. In this network, the traditional sigmoid activation function (Cybenko,
1989) was employed. This network was trained using Scaled Conjugate Gradient Backprop-
agation (Møller, 1993) with cross-entropy as the network performance measurement and no
normalisation or regularisation for simplicity. The FFN classifier was included in this exper-
iment because it was shown to be a universal approximator and could, thus, provide better
results (Csáji, 2001). The following default literature parameters were used in this method:
5 × 10

−5 for derivative approximation (sigma), 5 × 10
−7 for the indefiniteness of the Hessian

(lambda), a minimum performance gradient of 1 × 10
−6, and maximum 6 validation fails.

For the tests, the SVM classifiers were trained using 90% of the available data and tested on
the remaining, unseen, 10% of the data. For the FNN, the network was trained on 70% of the
data, validated on untrained 20% (to prevent overfitting), and later tested using the remaining
10% of the data. The results obtained in the different classifiers are presented in terms of the
average of all tests that have been repeated 10 times using 10-fold Cross-Validation (CV) –
100 executions. Training and test proportions of 70%-30% and 50%-50% were also considered,
presenting similar results.

3.4.3 Results and Discussion

The obtained results cover two datasets, namely the MED-NODE dataset (Giotis et al.,
2015) and the Dermofit dataset (Ballerini et al., 2013), since they provide different acquisition
methods and constraints. Particularly for the Dermofit dataset, a pre-processing step occurred
with the aim of removing hairs from the images by using the algorithm described in Koehoorn
et al. (2015). Although the lesions’ diagnostics in this later dataset span across ten different
classes, only melanoma and nevus are of interest for this research. Using this criterion, 407
images were selected, obtaining an unbalanced setting of 331 nevi and 76 melanomas.

For each dataset, the image data was evaluated by using the three classifiers described in Sec-
tion 3.4.2, classification paragraph. In each case, two feature sets were employed. Firstly, 10
features (F23-F32 ) proposed in Jafari et al. (2016) are used as input to the classifiers (five of
which assess the lesions’ asymmetry aspects, one assesses border condition and four consider
lesions’ colour attributes). Later, in order to assess the contribution of the detailed border-line
information to the classifiers performance, the remaining 22 features (F1-F22 ) described in Sec-
tion 3.4.2, feature extraction paragraph, are used as input to the classifiers, thus resulting in a
total of 32 features. The results obtained in these assessments are expressed in terms of percent-
age of classification accuracy (ACC), specificity (SPE), and sensitivity (SEN), similarly to Situ
et al. (2008); Smith et al. (2011); Satheesha et al. (2017); Pathan et al. (2018); Hu et al. (2019);
Pereira et al. (2020b). This experiment, as described, is estimated to take two and half hours to
execute – including segmentation and feature extraction of all images in the dataset, and later
classification of this data using the four different sets of features for the three classifiers.
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Table 3.9: Border-Line Results for the MED-NODE dataset.

Seg. Ft. (#)
SVM-SMO SVM-ISDA FFN

ACC SEN SPE BAC ACC SEN SPE BAC ACC SEN SPE BAC

GHT
F23-F32 (10) 73±1.5 45±3.7 92±3.0 69±1.5 76±1.2 66±2.4 83±1.4 74±1.9 76±1.9 63±4.6 84±2.1 73±2.3
F1-F32 (32) 74±1.2 56±6.4 86±6.2 71±0.8 78±2.0 66±2.4 86±1.3 76±1.8 76±2.4 63±4.7 84±2.7 73±1.4

LBPC
F23-F32 (10) 75±1.2 49±3.0 93±2.0 71±1.4 77±1.3 69±2.2 83±0.9 76±1.5 75±1.7 64±4.1 83±1.7 73±2.8
F1-F32 (32) 78±1.3 58±5.6 91±3.4 74±3,2 79±1.5 65±2.7 88±1.1 76±0.9 77±1.9 66±5.8 86±2.2 76±2.8

MED-NODE dataset The experimental results for the MED-NODE dataset can be seen
in Table 3.9.

When using the GHT segmentation, adding the proposed border-line features led to limited
improvements of 1pp and 2pp on SMO and ISDA, respectively; and no improvements for the
FFN classifier. With these results the best classification results correspond to ISDA, which
achieves 78% ACC, followed by the FFN with 76% ACC. In this scenario, the main problem
faced by classification algorithms is to wrongly classify the melanoma samples as nevus, which
leads to poor SPE results. It is, however, worth noting that with SMO the inclusion of the
proposed border-line features have substantially increased the SPE by 11pp.

The obtained results show that using border-line features extracted from LBPC-based seg-
mentations consistently leads to better results in all classification methods. This is likely to be
associated with the dense local texture information provided by LBPs localised detail which,
in this case, led to improvements of 3pp for the SMO and 2pp for the remaining classifiers.
Moreover, the SPE also increased 9pp with the SMO, showing that for these classifiers the
addition of the border-line features to the commonly used features helps solving the main
issues in the classification, as discussed in the previous paragraph.

Dermofit dataset The Dermofit dataset poses a different challenge to the classifiers due to
the unbalanced dataset, despite providing more data for training. As previously mentioned,
the dataset was classified using the proposed approach by testing each of the 2 proposed
segmentation methods (GHT, LBPC) plus the provided ground truth segmentation, GT.
The features were extracted from each segmented image using both methods. Then, they
were tested separately with three classifiers (SMO, ISDA, and FFN) to perform the lesion
classification, achieving the results depicted in Table 3.10.

When using the provided GT segmentation, the additional border-line-based features led to
ACC enhancements of 6pp, 6pp, and 4pp on SMO, ISDA, and FFN, respectively. The best
performance was obtained with the ISDA classifier (89% ACC). It is also relevant to notice
the significant gains in SPE (46pp, 42pp, and 13pp), which indicates that adding the new
features helps the classifiers to better cope with the class imbalance.
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Table 3.10: Border-Line Results for the Dermofit dataset.

Seg. Ft. (#)
SVM-SMO SVM-ISDA FFN

ACC SEN SPE BAC ACC SEN SPE BAC ACC SEN SPE BAC

GT
F23-F32 (10) 82±0.1 3±1.4 100±0.4 52±0.5 83±0.6 17±2.5 98±0.3 58±1.3 84±1.9 38±5.6 95±1.5 67±3.5
F1-F32 (32) 88±0.9 49±4.2 96±1.1 73±1.9 89±0.5 59±1.2 96±0.5 77±0.4 88±0.8 51±3.9 96±0.8 73±2.3

GHT
F23-F32 (10) 83±0.2 9±1.3 100±0.3 54±0.5 88±0.3 52±1.6 97±0.3 75±0.9 86±0.8 49±2.8 96±0.9 72±1.8
F1-F32 (32) 88±0.4 40±3.9 99±1.3 69±1.4 90±0.4 56±2.1 98±0.2 77±1.1 88±0.9 54±2.9 96±0.8 75±1.8

LBPC
F23-F32 (10) 81±0.7 5±5.4 99±0.8 52±2.4 84±0.8 27±1.9 97±0.6 62±1.2 86±1.1 50±5.2 95±1.2 73±3.1
F1-F32 (32) 87±0.6 43±3.8 97±1.0 70±1.6 89±0.5 64±1.7 95±0.5 79±0.7 91±0.8 68±3.5 96±0.6 82±1.6

Concerning GHT-based segmentations, the first observation is that it yields better results
than GT even with only the initial features, which can be seen as a indication of a higher
quality lesion segmentation. With the additional border-line-based features, gains of 5pp, 2pp,
and 2pp were now observed in ACC, with ISDA reaching a top score level of 90%. As with
GT, more significant increases were observed in the SPE (31pp, 4pp, and 5pp), showing that,
again, the new border-line features make the classifiers better prepared to handle the dataset
class imbalance.

Finally, the LBPC segmentation method presents results similar to those previously discussed.
In this case, gains of 6pp, 5pp, and 5pp were obtained in the ACC, and of 38pp, 36pp, and
18pp in SPE, with FFN outperforming the other two classifiers.

On a global analysis, GHT features (with the ISDA classifier) and LBPC-based features (with
the FFN classifier) led to best results in terms of ACC (90% and 91%), but with the latter
exhibiting a better SPE (68% against 56%), indicating it deals better with the previously
mentioned dataset class imbalance problem.

3.4.4 Statistics

To validate the previous results, the following paragraphs presents statistical information
about: 1) the discussed material, providing an insight about each feature’s usefulness; 2)the
reason why all features are kept, instead of using only the most useful; 3) the classifier’s
statistical information using the selected features.

To improve the presentation of the results, only the Dermofit dataset and the SMO classifier
were considered. The dataset was chosen due to its large class unbalance. The choice of the
classifier is related to its low computational constraints.

Feature Information Three separate feature selection algorithms were used due to their
different capabilities to evaluate the worthiness of an attribute: one to measure the correlation
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Table 3.11: Border-Line Feature Evaluation using 3 algorithm metrics. Numbers in Attr column
refer to the features proposed in Feature Extraction paragraph of Section 3.4.2.

Correlation InfoGain Relief

Merit Attr Merit Attr Merit Attr

26,6±3,0 1 34,0±1,3 1 10,2±0,4 1
25,2±3,0 2 31,6±2,0 2 9,3±0,5 2
22,1±1,0 6 17,7±2,0 3 3,9±0,3 12
12,4±1,7 15 7,0±1,6 19 3,6±0,4 4
12,3±2,0 16 7,5±3,8 5 2,7±0,7 6
12,2±2,4 3 6,8±0,7 6 2,5±0,4 3
12,0±2,0 17 8,7±4,9 12 2,1±0,1 20
11,9±2,0 14 4,6±2,7 4 2,1±0,1 22
11,0±1,7 13 5,2±0,7 21 2,1±0,1 21
8,7±1,7 12 5,2±0,6 18 2,1±0,2 19
5,9±2,4 18 5,2±0,6 22 1,7±0,2 18
7,5±1,5 4 4,9±0,6 20 1,2±0,1 10
6,1±2,6 19 0,0±0,0 17 1,1±0,3 11
6,2±1,7 11 0,0±0,0 13 0,9±0,3 7
5,2±2,6 20 0,0±0,0 16 0,8±0,1 8
4,9±2,5 22 0,0±0,0 14 0,9±0,3 5
3,5±1,0 7 0,0±0,0 15 0,7±0,2 9
4,4±2,5 21 0,0±0,0 7 0,6±0,1 15
3,1±1,3 10 0,0±0,0 8 0,6±0,1 17
3,1±1,4 8 0,0±0,0 10 0,6±0,1 16
2,7±1,2 9 0,0±0,0 9 0,6±0,1 14
1,9±1,3 5 0,0±0,0 11 0,5±0,1 13

(Pearson’s) between the attributes and the class, dubbed Correlation; one to measure the in-
formation gain with respect to the class, dubbed InfoGain; and another dubbed ReliefF (Kira
& Rendell, 1992; Kononenko, 1994; Robnik-Šikonja & Kononenko, 1997) that performs the
evaluation by repeatedly sampling an instance and considering the value of the given attribute
for the nearest instance of the same and different class. All the above algorithms were exe-
cuted using their default literature parameters. Table 3.11 shows the results resorted by the
algorithms’ metric. All experiments were done with 10-fold CV.

In the presented results, it is clear that features F1 and F2 are the most relevant. This may
be due to their indirect ability to provide a proportionality of the lesions’ average size. Then
F6 and F3 are the next dominant features across the three feature selection algorithms, again
providing information about lesion dimension. Apart from these, the following most significant
features belong to the magnitude of the 6 peaks of the DFT and the 5 periodogram PSD.

By the magnitudes provided by the algorithm metrics, many features seem to provide very
little information. Specifically with InfoGain, there are 10 features that seem to be completely
useless. But this is not case, because if they are removed, there is a strong negative combined
impact in the classifier.
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Feature Selection As mentioned in the previous subsection, there are many features that
provide very little information or correlation apart from the first two. Fig. 3.11 provides more
detail on the feature contribution for the SMO classifier. The initial x-label ‘i ’ denotes the
use of the previously mentioned 10 base-features from Jafari et al. (2016). Afterwards, at
each step along the x-axis, each feature (F ), denoted in the x-label, is incrementally included
in the dataset to plot the corresponding ACC, SPE and SPE y-axis values. As can be seen in
the this figure, including all the other features moves the SPE up by 18.4pp and SPE down
by only 0.9pp. This, overall, improves the ACC by 2.7pp, which is reason to use all features
in this work.
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Figure 3.11: Feature inclusion plot with Accuracy, Specificity and Sensitivity metrics for the Der-
mofit dataset and the SMO classifier.

Classification Significance The results provided by the classifiers were validated with
a corrected paired t-test (Nadeau & Bengio, 2000) to assess if the obtained results with 32
features (32F) are significantly better than the previous 10 features (10F), using a significance
α = 0.05. Two hypothesis are tested: H0) verifies if the 32F are significantly worse than 10F;
and H1) verifies if the 32F are significantly better than 10F. If both null-hypothesis are
confirmed then it means 32F and 10F are equal. Table 3.12 shows the overall results for the
SMO classifier over the three used metrics. The conclusion for the corrected paired t-test is
given in column T. The annotation indicates whether a specific result is statistically better
(v) or worse (*) than the baseline scheme (10F). Note that they are never statistically equals.

With the presented results it is possible to state that the results obtained with the 32F are
significantly better in terms of ACC and SPE, but worse (even if slightly) in terms of SPE,
as expected from the previous experiments.

3.4.5 Conclusions

This section addressed the importance of the lesion border information on classification of
melanocytic skin lesions (namely nevus vs melanoma) in 2D images. Two previously pro-
posed image segmentation methods are exploited to provide the lesion contours, namely the
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Table 3.12: Border-Line Features Classification Significance Results.

Seg. Metric H0 H1 T
≥ 0 p-value ≤ 0 p-value

GT Acc. rejected 0.0000 not rejected 1.0000 v
SEN rejected 0.0000 not rejected 1.0000 v
SPE not rejected 1.0000 rejected 0.0000 *

GHT Acc. rejected 0.0000 not rejected 1.0000 v
SEN rejected 0.0000 not rejected 1.0000 v
SPE not rejected 0.9873 rejected 0.0127 *

LBP Acc. rejected 0.0000 not rejected 1.0000 v
SEN rejected 0.0000 not rejected 1.0000 v
SPE not rejected 0.9935 rejected 0.0065 *

Gradient-based Histogram Thresholding and the Local Binary Pattern Clustering, from which
the border-line features are extracted.

The achieved results confirm that segmentation accuracy contributes to enhance the classifi-
cation performance, namely in methods based on GHT and LBPs, which clearly outperform
the GT segmentation provided with the Dermofit dataset. The results obtained with the three
considered classifiers confirm that adding border-line lesion features does indeed contribute
to improve the performance of automatic classification algorithms.

Moreover, the use of finer segmentation algorithms such as GHT and LBPC was found to
be particularly suited for this approach. In fact, the features extracted from their spatially
detailed border-lines segmentation improved the classification performance by figures above
the gains obtained with the coarser GT segmentation line provided for the Dermofit dataset.

It was shown that using border-line based features together with other commonly used sets
can lead to classification results with ACC above 90% in the tested datasets. Additionally, it
was shown that these features improve the SPE, which is important when dealing with class
imbalanced datasets, as commonly occurs with medical image datasets. Hence, future en-
deavours might include these types of features to compensate for class imbalance and improve
the classification results in general.

3.5 Summary

This chapter is focused on the dominant 2D/colour image classification pipeline of skin lesion
images. Two segmentation algorithms were proposed, focused on different objectives. One
objective was to perform the segmentation like a dermatology expert, by centring the segmen-
tation logic around the fact that skin lesions are bi-model histograms of two dominant peaks.
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Another objective was to perform detailed segmentation, capable of finding more realistic
borders, which was validated against 39 other literature methods. A comparison was carried
out as a contribution to improve dermoscopic image segmentation knowledge against three
known datasets. This study allowed to show that, overall, the proposed segmentation method
was capable of outperforming the state-of-the-art.

On the topic of classification algorithms, two approaches were proposed. One focused on TL,
performing an experimental process that aimed to create a baseline on the current classifica-
tion expectations to be used with existing DL models. While the other focuses on evaluating
the importance of the segmentation mask detail in the classification process, which was per-
formed by assessing the discriminability of the classification of melanoma images. Evidently,
the segmentation masks with higher border detail provided higher classification performance
in comparison to both the datasets ground-truth masks and the round-like (dermatologist)
masks.

With this chapter’s insight, further research can be done in the field of skin lesion image
segmentation to either improve existing segmentation methods that are lacking in performance
or refine the existing top performers. This work allows the detection of which segmentation
algorithm is more suitable for a given application by inspecting the strengths and weaknesses
of each of the listed algorithms and to decide whether a given algorithm can be further
improved.
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L ight-field imaging technology has been attracting the attention of researchers and
engineers due to the ability to capture enriched visual information, which expands

the processing capabilities of conventional 2D imaging systems. Light-fields cameras can, for
instance, provide dense multiview and multiple focus planes images and extract accurate depth
maps. This technology is also emerging in medical imaging research, allowing to find new
features and improve classification algorithms, namely those based on ML approaches. Only
recently have practical light-field cameras appeared in the market for general use, as a result
the availability of light-field content is still a scarce resource for research and development of
new image processing algorithms.

This chapter introduces a publicly available light-field image dataset of skin lesions, named
SKINL2 (Faria et al., 2019c,a). The dataset currently contains 377 light-fields, captured
with a focused plenoptic camera, divided into eight clinical categories, according to the type
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of lesion. Each light-field is comprised of 81 different views of the same lesion and a lenslet
image. A dermoscopic image of each lesion is also included. This dataset has high potential for
advancing medical imaging research and development of new classification algorithms based on
light-fields, as well as in clinically-oriented dermatology studies. Therefore, in order to explore
and understand the possible gains of this new dimension and exploit the 3D characteristics
in the skin lesion surface (thus advancing beyond common features such as, shape, colour,
and texture, extracted from dermoscopic RGB images), only 3D information of captured
light-fields are used for feature extraction and classification in this chapter.

This chapter describes the developments made with 3D skin lesion surface (depth maps). Skin
lesion depth information has not been thoroughly investigated in other works. The hardware
and acquisition setup details of the SKINL2 dataset and its contents are discussed in Sec-
tion 4.1. In the investigations made with this dataset, two algorithms were developed to show
that this new dimension has discriminative information relevant for the problem of melanoma
classification. The first proposed algorithm, presented in Section 4.2 and published in Pereira
et al. (2021c), is a novel approach to this field, where a relevant set of features is investi-
gated to obtain 3D skin lesion characteristics from the depth information. These features
were used to train a Bag-of-Features (BoF) model to distinguish between malignant and be-
nign lesions (MAvsBE) or to perform discrimination of melanoma from all other lesion types
(MvsAll). The second proposed algorithm, described in Section 4.3 and published in Pereira
et al. (2021d), presents a contribution that exploits the lesions’ border-line characteristics us-
ing this new dimension. A selected group of features is extracted from the depth information
to be used for classification of melanoma or nevus images (MvsN) using a quadratic SVM.
Finally, Section 4.4 summarises this chapter contributions and highlights the achieved results.

4.1 SKINL2 Dataset

The concept of light-field imaging, also known as plenoptic imaging, was first introduced
in Lippmann (1908a), as a technique to capture all the information conveyed by the light
rays from a visual scene. Following recent technology advances, light-field imaging has been
receiving increasing attention, especially since consumer-grade cameras were made available
to researchers and the public in general (Raytrix, 2018). The distinctive feature of these
devices is their ability for recording not only light intensity, as conventional cameras, but also
the direction of light-rays reaching the camera. This is accomplished by using a specially
designed array of micro-lenses (MLA) placed in front of the camera sensor (Harris, 2012),
each one capturing a different perspective of the scene. More information on other light-field
acquisition systems can be found in Zhou & Nayar (2011); Levoy (2006); Levoy & Hanrahan
(1996). The ability to capture visual information comprising the light intensity from each
point and the direction of the light rays travelling towards the sensor, brings a whole new
range of possibilities for 2D and 3D image processing. In fact, light-field image processing
allows to render images with different focal planes, depth-of-field or viewing perspectives
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(Donatsch et al., 2014; Dansereau et al., 2015), as well as the creation of depth maps (Jeon
et al., 2015), which can be used for reconstruction and characterisation of a skin lesion surface,
as shown in Fig. 4.1.

Figure 4.1: Example of a 3D skin lesion reconstruction (left) and the corresponding depth map
(right).

Dermoscopy and other non-invasive medical imaging technologies have been using digital
images of pigmented lesions to detect and assess early signs of malignant lesions. For instance,
digital processing of dermoscopic images enables extraction and visualisation of morphological
features, which are not discernible by visual inspection. Given its richer content, light-field
images add new dimensions of visual information to dermoscopy. Its use is expected to improve
medical evaluation by means of a more robust diagnosis, given the additional contribution
for higher sensitivity and specificity. In the case of melanoma, the most aggressive form of
skin cancer, this technology is particularly relevant because when diagnosed at an early stage,
this disease presents high cure rates, and yet using classical imaging techniques it is usually
misclassified as a benign nevus.

Sharing publicly available datasets of light-field images with skin lesions is crucial to pursue
research at a global scale, and also to establish common references for comparison of results
and benchmarking. The new image dataset presented in this section, named Light-field Image
Dataset of Skin Lesions (SKINL2), is an enabling resource for pushing forward worldwide
research in this specific field. Furthermore, within the scope of the new standard JPEG Pleno
(Ebrahimi et al., 2016), new possibilities arise in the development of rendering algorithms,
processing techniques and lossy/lossless compression methodologies, specifically tailored for
this kind of medical applications. Additionally, the richer content of light-field images of skin
lesions can be exploited in terms of the new capabilities of focal plane and depth of field
manipulation, as well as 3D-based studies. The main impact of these research results are
expected to be in clinical assessment frameworks, which should benefit from the improved
feature extraction algorithms and automated classification systems. Some light-field image
datasets have been introduced in recent works for different purposes (Rerabek & Ebrahimi,
2016; H. et al., 2016; Guillo et al., 2018), but, to the authors’ best knowledge, this is the first
dataset of pigmented skin lesion light-field images to be made publicly available.

Currently, there are two published and publicly available versions of the SKINL2 dataset. A
third version, also publicly available, is still being updated with new images. The datasets
and all its associated information are available at http://on.ipleiria.pt/plenoisla.
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The remainder of this section is organised as follows. Section 4.1.1 describes the working
principle of plenoptic cameras. Section 4.1.2 presents the light-field acquisition setup and
procedure. Section 4.1.3 details the acquired datasets and Section 4.1.4 concludes the section.

4.1.1 Plenoptic Cameras

The research efforts on plenoptic cameras has resulted in two different optical designs, com-
monly referred to as Plenoptic 1.0 and Plenoptic 2.0 (Ahmad et al., 2018; Georgiev, 2009).
Both share the principle of placing a MLA between the image sensor and the mains lens, but
differ on its relative position. In Plenoptic 1.0 cameras the MLA is placed at the focal plane of
the main lens, so the image generated by each micro-lens (micro-image) contains information
about only one spatial point in the scene. Each pixel in a micro-image is therefore associ-
ated to a particular light ray direction and the spatial resolution of the captured light-field is
determined by the number of micro-lenses.

Figure 4.2: Plenoptic 2.0 camera diagram.

In Plenoptic 2.0 cameras, the MLA is focused onto the image plane of the main lens, as shown
in Fig. 4.2, allowing each micro-lens to record a region of the scene, therefore each point in the
scene is visible by different micro-lenses from slightly different perspectives. Although there
is a trade-off between spatial and angular resolution that depends on the overlap between
micro-images, this enhanced design overcomes the limited spatial resolutions of Plenoptic
1.0 cameras, whose micro-lenses are not focused on the image created by the main lens. A
further improvement in some Plenoptic 2.0 cameras is the use of a MLA with different types
of lenses, each with a particular focal length, enabling to extend the depth-of-field of the
captured light-field.

4.1.2 Acquisition

Setup The acquisition process uses a Raytrix camera, named R42 Galilean, with a Ricoh
25mm f/1.8 lens, which was developed as a Plenoptic 2.0 camera with extended depth of field.
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Figure 4.3: Acquisition setup: light field camera housing (left) and the camera main lens plus the
illumination LED ring (right).

Its MLA comprises three types of micro-lenses, each with a different focal length. As shown
in Fig. 4.3, the camera is placed inside a cylindrical acrylic-built black housing. This setup
allows the camera to be always placed at the same distance from the imaged object (initially
at a distance of d ≈ 197mm from skin lesion), thus ensuring optimised focusing conditions and
the same magnification factor for all images. The lens is at a distance of d ≈ 140mm from the
scene, which is illuminated with a ring of 5 neutral white 5050 LEDs, placed inside the tube
(≈ 150mm above the imaged object), with the black coating preventing the interference of
ambient light. The light intensity of the LEDs is controlled by a computer running dedicated
software, thus optimising the illumination conditions for each acquisition.

The camera is provided with the Raytrix’s RxLive software (Raytrix, 2019), which is used
for both the MLA and metric calibrations, and to record the light-fields. Moreover, RxLive
exhibits in real time an all-focus image of the scene, as well as multiview and lenslet images,
the corresponding depth map and 3D reconstruction. Information from a given scene can be
exported in the form of a total focus image, lenslet or a proprietary format ’.ray’ (which can
afterwards be used to extract total focus/multiview images and depths maps). An API is also
available with the same image extraction capabilities of RxLive.

Methodology The acquisition methodology comprises first the calibration of the camera
and then the light-field acquisition, integrated in the standard procedures of clinical appoint-
ments at the Department of Dermatology of Centro Hospitalar de Leiria, Portugal. The
camera was calibrated following the manufacturer’s documentation, using a calibration tar-
get, with a 2.0mm point pitch, as described in Johannsen et al. (2013). In this procedure,
the position of the camera with respect to the calibration plate was changed using a precision
micrometer, so the different distances were established with an accuracy of 0.01mm.

The light-field images of skin lesions were acquired in dermatology clinical appointments and
the procedures were evaluated and approved by a health ethics committee. Additionally, the
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procedure and purpose of the study were explained to all volunteers before signing an informed
consent form. Further imaging procedures, such as dermoscopy and standard photography,
were also carried out to capture different types of images. Given the variety of skin and
lesion tonalities, the light intensity of the LEDs in the acquisition setup was adjusted before
capturing every image, in order to prevent either over or underexposure. The skin lesions
were manually classified by dermatologists and organised on a clinician diagnosis according
to ICD10 (International Classification of Diseases), and a histopathological analysis was done
whenever a confirmation was required.

4.1.3 Dataset

A quick overview of the datasets composition is shown in Fig. 4.4 and some thumbnail samples
are provided in Fig. 4.5. The SKINL2 datasets are classified into eight categories, according
to the type of skin lesion/ICD code:

• Melanoma / C43;

• Melanocytic Nevus (Nevus) / D22;

• Basal-cell Carcinoma / D04;

• Seborrheic Keratosis / L82;

• Hemangioma (Angioma) / D18;

• Dermatofibroma (Fibroma) / D23;

• Psoriasis / L40;

• Others.

Any light-field that does not match one of the first seven ICD codes it is archived under
Others.
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Figure 4.4: Pathological distribution of captured light-fields.
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(a) SKINL2 v1 (b) SKINL2 v2 (c) SKINL2 v3

Figure 4.5: Central-view sample images for each version of the SKINL2 dataset. In each, from left
to right, top to bottom: Angioma, Carcinoma; Nevus, Melanoma; Keratosis, and Others.

The light-field dataset is made available in two different formats: i) a lenselet, with a resolu-
tion of 7716×5364 pixels (8-bit depth RGB components), and ii) a matrix of 9×9 views, each
one with a resolution of 3858 × 2682 pixels, where each pixel is represented by 16-bit depth
RGB components. This matrix of views was obtained from the light-field, using the Raytrix
API (Raytrix, 2018), by adjusting the parameter VirtCamPinholeStd_ViewOffsetMM_g in
function RxSetPar. The views are horizontally and vertically spaced by 1mm, and the di-
mension of 9× 9 was considered the ideal number of views for estimation of the depth maps,
following the analysis in Wanner (2014). Each light-field also includes a version of the central
view in the all-focus format (as shown in Fig. 4.5) and the depth map obtained with the
Raytrix API. Additionally, a regular dermoscopic image of each lesion is also provided, with a
resolution of 1920×1080 pixels, being each pixel represented by 8-bit depth RGB components.
In summary, this means that, for each recorded light-field, 82 files exist in the database.

SKINL2 v1 The SKINL2 v1 dataset comprises 250 light-fields. The light-fields in the
dataset are representative of the diversity of observed pathologies (see Fig. 4.4a) with nevus
as the largest pathology group represented.

SKINL2 v2 A second version of the dataset is also available with 87 images. This version
was adquired during a shorter time frame and therefore possesses fewer images. Some changes
were introduced in the setup, with the distance between the camera being reduced to d ≈
95mm (and so the LED ring to d ≈ 105mm). These changes were introduced in order to
increase the magnification by ≈ 30% when compared to the SKINL2 v1 dataset setup, thus
enhancing the spatial detail and, consequently, the depth map resolution. This magnification
is visible when comparing Fig. 4.5a with Fig. 4.5b.

SKINL2 v3 The third version of the dataset is still in the acquisition phase at the moment
of publication of this thesis, however its progress was affected by the interruption on medical
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screening during the Covid-19 pandemic. As it is visible in Fig. 4.4c, the third version is still
very small in comparison to the previous iterations.

4.1.4 Conclusions

This section described a new publicly available light-field dataset currently containing 377
skin lesions acquired with a focused plenoptic Raytrix camera. These light-field images are
classified into eight different categories, according to the type of skin lesion. Moreover, the
dermoscopic images corresponding to each lesion are also provided in the dataset together
with the total focus image, a matrix of views, and depth maps. This publicly available set
of light-field images intends to contribute for further research in the fields of medical imaging
and clinical diagnosis support, as performed in the JPEG proposal Faria et al. (2019b).

4.2 Classification using Bag-of-3D-Features

Various feature extraction methods resorting to 3D information are already described in the
literature, as presented in Section 2.6. From those, a total of 11 were selected to be used
in this work to either characterise the underlying 3D image globally or characterise it in key
local regions. The adequate selection of these regions is also a research topic, therefore two
different methods are studied.

The main contribution of this section is to demonstrate that 3D information from skin lesions
contains relevant discriminative features capable of providing high classification precision of
melanoma versus nevus. Such third dimension, that is beyond conventional colour, texture,
and shape proves to be beneficial for the classification process. This research’s main focus
is to to evidence that skin surface topology has potential discriminative information for the
classification. However, it does not aim to use RGB information nor improve existing algo-
rithms.

The remainder of this section is organised as follows: Section 4.2.1 presents the background
that is relevant for the proposed method. Section 4.2.2 presents the proposed approach,
describing feature extraction and relevant classification details. Section 4.2.3 presents and
discusses the attained results and Section 4.2.4 highlights the conclusions.

4.2.1 Relevant Background

Since BoF models (Sivic & Zisserman, 2003; Csurka et al., 2004) were proposed for skin lesion
classification in 2008 (Situ et al.), several research works have been published resorting to
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it (Hu et al., 2019). In image classification, a bag of features is a vector of occurrence counts
of a dictionary of local image features, which can also be understood as a histogram over
extracted image features. This type of structure can be employed for classification resort-
ing to a SVM classifier. The image features that compose the BoF models are designed for
object detection, classification, or retrieval generally fall under two base types: signature or
histogram (Serratosa & Sanfeliu, 2006). Signature-based feature extractors aim to register
specific object characteristics or attributes capable of providing discrimination against other
objects or scenes, effectively, a signature of a set is a unambiguous representation of its his-
togram. Examples of signature based features extractors are: Normal Aligned Radial Features
(NARF) (Steder et al., 2011), Radius-based Surface Descriptor (RSD) (Marton et al., 2010,
2011), Global RSD (GRSD) (Kanezaki et al., 2011), and Principal Curvatures (PC) (Rusu
& Cousins, 2011). In contrast, histogram-based extractors aim to produce a summarised
representation of the underlying data, typically, the presence of a set of features and their
occurrence count. Examples of histogram based features extractors are: Rotation Invariant
Feature Transform (RIFT) (Lazebnik et al., 2005), Point Feature Histogram (PFH) (Rusu
et al., 2008), Fast PFH (FPFH) (Rusu et al., 2009a,b), Signature of Histograms of OrienTa-
tions (SHOT) (Tombari et al., 2010b, 2011), Ensemble of Shape Functions (ESF) (Wohlkinger
& Vincze, 2011), 3D Shape Context (SC3D) (Frome et al., 2004), and Unique Shape Context
(USC) (Tombari et al., 2010a). More details on these features are described in Section 2.6.

In some cases, having a large number of features can be a problem, e.g., when several features
are extracted but their relevance for the intended solution is unknown or when there are
insufficient data samples. A useful method to reduce the number of features, by selecting the
most meaningful ones, is the Neighborhood Component Analysis (NCA) (Yang et al., 2012).
NCA is a non-parametric algorithm that enables feature selection with the goal of maximising
prediction accuracy of regression and classification algorithms.

4.2.2 Proposed Bag-of-3D-Features Classification Approach

The main goal of the work described in this section is to perform the classification of malignant
skin lesions based on 3D surface information. To this end, the utilised methodology comprises
a BoF approach, as in Sivic & Zisserman (2003); Csurka et al. (2004); Situ et al. (2008), with
a dataset holdout of 30% on the SKINL2 dataset where, as a pre-processing stage, pixel values
in the RGB channels of all images were replaced by zeros (since some of the selected feature
extractors also consider colour information). This means the colour information is not used,
only the depth. The following paragraphs provide added details to the pipeline, namely about
the selected keypoint detectors and feature extractors, as well as information about the BoF
model.

Features A total of 5215 features were extracted from each image using 11 features ex-
tractors. These extractors were selected based on the relevance of their characteristics for
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the input signal (3D information). RIFT (32 features) was selected because it provides in-
variant to illumination, viewpoint, scale, and rotation. Like RIFT, NARF (42 features) and
PFH/FPFH (125/33 features) also possess some of these characteristics, PFH/FPFH, in par-
ticular, provides robustness against outliers and noise. Other features extractors as SHOT
(361 features), SC3D (1989 features), and USC (1969 features) also provide robustness against
noise. Additionally, both SHOT and USC are reported to provide uniqueness amongst detec-
tion, as well as unambiguous representations. Finally, ESF (640 features), PC (5 features),
RSD (2 features), and GRSD (21 features) were selected for being descriptive, simple, and
intuitive shape descriptions. ESF has proven to be efficient and expressive, while GRSD
adds expressiveness to the simple RSD, by partitioning the image point cloud into several
voxel-surfaces of understandable shapes.

Apart from ESF and GRSD, the other feature extractors operate on specified image key-
points, which must be predetermined. In order to provide such set of locations, two keypoint
detectors were selected: NARF and ISS. The NARF detector seems specially suited for skin
lesion imaging since it selects locations of high surface changes and takes object borders into
account, as in skin to lesion borders, which have already been noticed to have relevant infor-
mation (Pereira et al., 2020b). Then, ISS is also selected because, like NARF, it produces
keypoints which tend to be at saliency regions, like the lesion border or texture-full regions
inside the lesion, but in a more selective manner (outputting less keypoints).

BoF model The dataset images were divided into a training and a testing set, the former
with 70% and the latter with 30%. A set of keypoints are extracted from the training process,
producing 5215 features each, and a SVM model is trained on the histograms produced after
applying k-means clustering to those features. A SVM model is selected for this work because
the mentioned dataset provides fewer images than typically necessary for DL approaches.
When building the BoF model, for classification of malignant versus benign (MAvsBE) lesions
or for melanoma versus all other lesions (MvsAll), the used SVM classifier is a polynomial
kernel of second order and has box constraint of 1. Since all experiments are defined for
binary classification, the SVM solver is the Iterative Single Data Algorithm, which minimises
by a series of one-point minimisations and does not respect the linear constraint nor explicitly
includes the bias term (Kecman et al., 2005a).

Because some of the features might not contribute for the adequate label separation, or might
effectively injure the model’s capability, during the classification training process the feature
selection is also performed with NCA (on the targeted 70%) before training the BoF model.
Fitting of the NCA model is done with all training samples and using a stochastic gradient
descent solver. The NCA algorithm is susceptible to overfitting but possesses a parameter to
prevent it throughregularisation. Thisvalue isfine tunedviagrid-search in the rangeof [0; 0.003],
where 20 equidistant grid-points are selected. At the end, the NCAmodel provides a relevance-
weight for each of the 5215 features. In this experiment, only those with a relevance superior to
0.02∗max(1,max(fw))are selected,where fw is a vectorwith all providedNCAfeatureweights.

— 84 —



4.2. CLASSIFICATION USING BAG-OF-3D-FEATURES

4.2.3 Results and Discussion

The proposed pipeline was applied to the publicly available SKINL2 dataset. Particularly in
this work, the second version of this dataset was used, due to its increase in lens magnification
of about 30% (which means more detail) in comparison to the first version of the dataset.
At the time of this study the dataset comprised 19 malignant lesion images (9 melanomas,
9 basal cell carcinomas, and 1 squamous cell carcinoma) and 66 benign lesion images (32
nevi, 13 angiomas, and 21 seborrheic keratoses), which undergo the pre-processing, feature
extraction and classification processes, described in Section 4.2.2.

The results obtained from these assessments are recorded in terms of percentage of classifi-
cation accuracy (ACC), specificity (SPE), and sensitivity (SEN). In addition, because this
is an unbalanced problem, the named balanced-accuracy (BAC) is also used (as in Hu et al.
(2019)) as it corresponds to the average value between SEN and SPE.

Table 4.1: Bag-of-3D-Features Overall Top Results.

Experiment Detector #Clusters ACC SEN SPE BAC

MAvsBE NARF 84 73.08 75.00 66.67 70.83
96 80.77 100.00 15.00 57.50

MvsAll NARF 48 84.62 66.67 86.96 76.81
96 84.62 66.67 86.96 76.81

ISS 96 84.62 66.67 86.96 76.81

The main experimental results are shown in Table 4.1 and the individual behaviour of the
different extracted features is plotted in Fig. 4.6. Table 4.2 adds to Table 4.1 with results
resorting to the features selected after running the NCA algorithm. Only best BAC results
are shown in the tables. In these tables, results are shown without background shading while
values above 75% are highlighted in grayscale towards 100%. Given the available dataset
samples previous described in this section, in these tables the column “Experiment” indicates
the classification objectives, being either “MAvsBE” for malignant versus benign lesions or
“MvsAll” for melanoma versus all other skin lesion types. Additionally, as mentioned in Sec-
tion 4.2.2, a keypoint detector is necessary for most of the feature extractors, therefore column
“Detector” is present to indicate which of the two selected keypoint extractors was used. As
the BoF model pipeline uses a k-means clustering algorithm, column “#Clusters” expresses
the number of specified clusters. In this research the number of clusters was defined as: either
6 or multiples of 12 up to 96, in a total of nine variations, as represented by x-axis of Fig. 4.6.

From Table 4.1, the highest ACC result obtained for detecting malignant skin lesions is 80.77%,
when the BoF pipeline uses 96 histogram bins for classification. Although this is not the best
overall result, some clinicians find it appealing as it presents 100% SEN, meaning that no life-
threatening condition goes unchecked. It is important to notice that, in this case, the SPEmetric
indicates that correct classification of benign lesions occur only 15.00% of the time, meaning
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Figure 4.6: Performance of each feature extractor for Me vs All classification problem: (a) ACC
metric and (b) BAC metric.

that 83.33% of the benign lesions are incorrectly labelled as malignant instead of benign. A
more balanced solution is achieved with 73.08% ACC when merging some of the data points, by
using less clusters (84). This solution comprises 75.00% SEN and 66.67% SPE, meaning that
25% of the malignant lesions pass as benign but only 33.33% of the benign lesions get classified
as malignant, in comparison to the previous 83.33%. Focusing on the melanoma lesion type, a
higher ACC result of 84.62% is achieved when performing direct comparison betweenmelanoma
and the remaining skin lesion images. In this case, the best results achieved using the NARF
detector are also attainable using the ISS detector. However, balanced SEN and SPE results
show that: the algorithm is only capable of correctly classify melanomas 66.67% of the time
(SEN), while the benign lesions are correctly classified 86.96% of the time (SPE).

The achieved balance of the metrics shows that some information exists in the 3D surface
that enables a level of discrimination between skin lesion types. By observing the individual
behaviour of the different feature extractors in Fig. 4.6, it is possible to infer their contributions
towards the current melanoma classification results shown in Table 4.1. Such behaviour is
not uniform across all features extractors, but from the accuracy metric in Fig. 4.6a it can
be seen that there is a trend to provide superior accuracy results as the number of clusters
increases, although not all feature extractors follow this rule. An exception to this trend
occurs, for instance, for RSD features, which provide a constant 11.54% accuracy, resulting
from the classification of every sample as melanoma. This also means that the BAC metric
for the RSD, in Fig. 4.6b, is 50% ((100 + 0)/2). Another example of a non-discriminative
set of features is the PC, which always presents a BAC performance lower than RSD, e.g.
32.61% for 96 Clusters, despite presenting a higher accuracy. A possible reason for this type
of contradictory results is the use of a unbalanced dataset. RSD always labels samples as
melanoma, the smaller class (lower accuracy), while PC mostly labels samples as nevus, the
larger class (higher accuracy). Apart from the mentioned outliers, what stands out the most
in Fig. 4.6b is that several individual feature extractor results (26, at different cluster settings)
achieve BAC performances that are superior to the recorded 76.81% in Table 4.1, which are only
achievable with balanced SEN and SPE settings, thus also generating high accuracy values. In
particular, results above 80% are attained when using either NARF, RIFT, SC3D, SHOT, or
USC. Specifically, USC and RIFT are able to reach a top performance of 86.96% BAC.

— 86 —



4.2. CLASSIFICATION USING BAG-OF-3D-FEATURES

Table 4.2: Bag-of-3D-Features Overall Top Results after NCA.

Experiment Detector #Clusters ACC SEN SPE BAC

MAvsBE NARF 6 61.54 100.00 50.00 75.00
84 69.23 83.33 65.00 74.17

MvsAll NARF 24 84.62 66.67 86.96 76.81
48 88.46 100.00 86.96 93.48

With the previously mentioned insights, it becomes clear that the BoF model is not able
to withstand the presence of non-discriminative features and performs poorly in comparison
to use only a feature extractor’s individual-set of features. Nevertheless, the combination of
various subsets of different feature extractors could still yield even higher performance results.
For this reason, the NCA feature selector is introduced in the experimental setup. Results
obtained after applying the NCA selection are depicted in Table 4.2. Only the experiments
with the highest performing BAC are shown in the table (changing the selected “#Clusters”
column from Table 4.1 to Table 4.2).

When applying NCA to the Malignant versus Benign problem, 21 features are selected and
the performance of the BAC metric increases from the previous 70.83% to 75.00%. Also,
when applying NCA to the melanoma versus all other lesions problem, fewer (14) features
are selected, but the BAC metric achieves the best performance of 93.48% (from the previous
76.81% in Table 4.1). Independently of the problem, the best training results were achieved
with a lambda of 0.0028. In comparison to the results presented in Table 4.1, the NCA
selected feature subset provides significant improvements (in Table 4.2). With 48 clusters, the
BoF model achieves 88.46% accuracy by only using depth-based features, in the melanoma
versus all other lesions problem. In addition, the generated model presents the capability of
correctly identifying all melanoma samples (100.00% SEN), while only incorrectly labelling
13.04% of benign lesions as malignant ones (86.96% SPE). As expected, these results are far
superior than using an individual set of features with only one feature extractor, e.g. 93.48%

BAC for NCA, in Table 4.2, against 86.96% BAC for USC at 96 Cluster, in Fig. 4.6b.

4.2.4 Conclusions

Despite recent advances in the classification technology, classification (or discrimination) of
melanoma versus nevus still remains difficult to achieve, due to its similarity at an early stage
of the lesion development. A reliable solution might depend on the use of new acquisition
modalities instead of the widely available, and utilised, 2D dermoscopic images, which may
introduce new fairly unexploited dimensions.

The main contribution of this work is exploitation of depth information from light-field images
for classification of skin lesions. This newly introduced type of 3D data was specifically
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acquired for this purpose and has shown the ability to provide rich information for image
classification. Several literature methods already exist to extract 3D surface information for
general classification purposes. However, these features were not originally developed for skin
lesion classification. Some of these works jointly extract and classify 3D surface information
resorting to a Bag-of-Features model.

As previously exposed, classification between benign and malignant lesions achieved 75.00%

BAC, comprising 61.54% accuracy, 100.00% SEN, and 50.00% SPE. In a more explicit setting,
discrimination of melanomas against all other available skin lesions was achieved with 88.46%
accuracy, 100.00% SEN, and 86.96% SPE, with a BAC of 93.48%. These results evidence the
usefulness of unexploited 3D lesion surface information in the classification process of skin
lesions.

4.3 Classification using 3D Border-Lines Features

Depth information can be obtained from images through different approaches and acquisi-
tion setups. In this section, depth maps are extracted from dense light-fields of the SKINL2
dataset. Each light-field presents over 10, 000, 000 pixels, yet if only a small line of less than
5, 000 pixels is extracted along the lesions’ perimeter region, it might contain relevant in-
formation to classify the type of lesion. From such border-line, features can be calculated
using solely the depth information present along the set of connected pixels. Assuming that
surface-level information (texture) differs from melanoma to nevus, the respective border-lines
are expected to have structural differences between them or a different overall geometric be-
haviour. This is similar to what was performed in Section 3.4 but now using depth information
of the skin surface. Thus, discriminative features capable of extracting relevant information
about such type of details must be used. Features extracted from electrocardiogram (ECG)
signals seem specially suitable for this task, since in ECG classification problems it is neces-
sary to discriminate patterns from fine variations along a one-dimensional signal. Therefore, a
similar type of features may be employed for classification of skin lesions, based on the depth
values of the border-lines.

Overall, the main contribution of this section is the exploitation of 3D information from
skin lesions, aiming to achieve high discrimination in the classification of melanoma versus
nevus and, consequently, showing that this third dimension provides significant information
for classification. Different from previous studies, this work investigates new 3D information
from the segmentation mask border-line to provide evidence that skin surface topology has
potential discriminative information.

The remainder of the section is organised as follows: Section 4.3.1 presents relevant back-
ground and other similar experiments. Section 4.3.2 describes the proposed approach and
details about data pre-processing, feature extraction and classification. Finally, Section 4.3.3
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presents and discusses the experimental results and Section 4.3.4 exhibits the conclusions and
future work.

4.3.1 Relevant Background

Classification results obtained using only dermoscopic information are rather limited, as only
planar information can be retrieved from such data. To overcome this limitation, in McDonagh
et al. (2008); Smith et al. (2011), a method using a stereoscopy technology is presented.
Although the literature addressing 3D surface studies of melanoma and other skin lesions is
almost nonexistent, some previous research indicate that improved results arise when using
depth information (McDonagh et al., 2008; Smith et al., 2011). In Satheesha et al. (2017),
artificial 3D information was generated for datasets to improve the classification results.

Similarly to the method proposed in Chapter 3.4 (which uses dermoscopic images), published
in Pereira et al. (2020b), in this work only depth information located at the lesions’ border
region is utilised for classification. The remaining image data of the lesion is discarded. This
depth information in the border-line is represented by a one-dimensional signal, from which
a set of discriminative features is extracted.

In regard to feature extraction, one can consider two main approaches: either DL or hand-
crafted features. In this work, the latter option was used since the SKINL2 dataset is very
small in comparison to what is normally necessary for DL approaches. Due to the reduced size
of the dataset and the large amount of pixel data in each light-field, the global depth map of
the skin lesion is reduced in size, although keeping its 3D discriminative characteristics. This
is done by only considering few border-lines of the segmented lesion. Such data reduction is
also necessary to avoid over-training, as pointed out in McDonagh et al. (2008); Smith et al.
(2011).

The depth information of a border-line can be analysed as a time-series, like other types of
known signals such as ECG for instance. Thus, relevant characteristics can be discriminated
by extracting the same type of features. Examples include regression/prediction coefficients
as in Zhao & Zhang (2005), localised entropy values as in L. & Z. (2016), or some form of
wavelet observation as in Leonarduzzi et al. (2010).

In Zhao & Zhang (2005), the authors present a feature extraction approach for reliable heart
rhythm recognition. After data pre-processing and feature extraction steps, the classifier
recognition of 6 types of heart rhythm reaches 99.68% by receiving two sets of features: the
transform coefficients of a wavelet transform; and the values of auto regressive modelling
applied to the temporal structures of ECG wave forms (model order selection is described by
minimisation methods). In L. & Z. (2016), the authors detail experiments about the influence
on the performance of different mother wavelets and level of decomposition for wavelet packet
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decomposition, type of entropy, and the number of base learners in a random forest classifier.
The authors state that experimental results were superior to those of several state-of-the-art
competing methods, showing that wavelet packet entropy had promising results for 1D signal
classification, such as of ECG. In Leonarduzzi et al. (2010), the authors explain that such
signals present complex irregular fluctuations. Hence, to extract information related with
such fluctuations, the authors use multi-fractal analysis, specifically wavelet leader based
multi-fractal analysis in short-time windows, which had already been proposed in Jaffard
et al. (2006) and achieved superior results.

4.3.2 Proposed 3D Border-Line Classification Approach

In this approach, the main goal of the skin lesion classification is to distinguish between
melanomas and nevi. To this end, as depicted in Fig. 4.7, the utilised methodology pipeline
is comprised of three main steps: data preparation, comprised of extraction, preparation, and
augmentation; feature extraction; and classification.

Data Preparation For each 4-channel image (RGB+Z) of the SKINL2 dataset (Fig. 4.8a),
a lesion mask (Fig. 4.8b) is manually generated (using the colour RGB channels, Fig. 4.8c) so
that the lesion perimeter pixels could be identified and their depth channel values (hereinafter
the “Z” channel, Fig. 4.8d) sequentially extracted from a random starting position (hereinafter
the “border-line” vector, Fig. 4.8e).The Z-pixel values might not be all within acceptable
ranges (mainly due to errors caused by light reflection), therefore all border-line values higher
than 10mm (chosen as empirically threshold) were replaced by previously valid values in the
sequence. Afterwards, border-line Z-values are normalised to a range of [−0.5, 0.5]. Note that
RGB is only used to produce the segmentation mask (being discarded discarded afterwards),
as all data used to train the model is from the Z channel.

Additionally, three supplementary border-lines may be extracted depending on the experiment
augmentation settings. If enabled, this step iteratively shrinks the lesion mask by 20 pixels
until it produces 3 inner border-lines, which are inside the lesion region. The rationale behind
this is that melanoma and nevus surfaces are different, hence more information would allow
to compensate any model overfitting and also reinforce a better comprehension about the
problem dimension to the classifier.

Since not all border-lines have the same length (as skin lesions come in all shapes and sizes),
it was necessary to uniformise their size before the feature extraction process. Thus, four
transformations were considered: T1) pad smaller lines with zeros; T2) repeat (by rotation)
smaller lines; T3) linearly stretch smaller lines; or T4) cubicly interpolate smaller lines.

In addition to the already mentioned options, further data augmentation techniques were
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Figure 4.7: Proposed methodology pipeline
comprises three main blocks, which are executed
inside a 9-Fold Cross-Validation scheme that is
executed 10×. Given train and test data, the first
block prepares the data by: generating a lesion
mask so that border lines may be extracted from
the Z dimension; which are then normalised and
transformed to a uniform size; and augmented
in the end. Given the prepared data, the sec-
ond block performs feature extraction by: com-
puting named AutoRegressive Coefficients, Shan-
non Entropy Values, and Multi- fractal Wavelet
Leader Estimates. Given the extracted features,
the third block trains an SVM using features gen-
erated from the fold-dependent train data and
a defined cost matrix, and later tests the SVM
model using features generated from the fold-
dependent test data. Blue arrows indicate the
pipeline training sequence. Red arrows indicate
the pipeline testing sequence. Black arrows indi-
cate previous dependencies or common progres-
sions through the pipeline.

added to evaluate the generalisation of the model: by flipping/inverting all border-lines (dou-
bling the dataset size); and repeating data to balance-out the smaller class samples.

Feature Extraction After having a set of equal-sized border-lines, feature extraction takes
place. Most of the features provide global representations of the border-line (which makes
fine details along smaller sections become expressionless) or require continuous samples of the
data to generate meaningful coefficients. Due to these cases, border-line vectors were either
empirically split into chunks of eight equal-sized windows or observed with windows of size
8. The selected list of features (186 in total) corresponds to a set that includes the more
relevant features, regarding their performance in classifying waveform signals with similarity
to border-lines. Their description is as follows:

• AutoRegressive model coefficients of order 4 (Zhao & Zhang, 2005) over eight equal-
sized windows (producing 4 × 8 features). For each window, the model coefficients are
estimated using the Burg method (Kay, 1988), which estimates the reflection coefficients
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(a) RGB+Z, 3D view (b) Lesion Mask (c) RGB, 2D view

1.8

2.8

3.8

(d) Z, 2D view

0 500 1,000 1,500 2,000 2,500 3,000

2.5

3

3.5

Border Line Index

D
ep

th
(Z

)

(e) Border Line

Figure 4.8: SKINL2 Dataset melanoma data sample 0059 (a) 3D visualisation, (b) lesion segmen-
tation mask, (c) RGB central view, (d) depth channel “Z” central view with blue-to-light-blue colour
bar, and (e) extracted border line Z-values in millimetres.

and enables the reflection coefficients to estimate the AR parameters, recursively. Based
on Zhao & Zhang (2005), where model order selection methods are used to determine
the model order that provides the best fit in a similar classification problem, order 4
was selected for our model.

• Shannon entropy values (Walden & Cristan, 1998) for the maximal overlap discrete
wavelet packet transform at level 4 (L. & Z., 2016) applied to the signal divided into
eight windows, resulting in 2

4 × 8 features.
• Multi-fractal wavelet leader estimates (Jaffard et al., 2006) of the second cumulant of

the scaling exponents and the range of its exponents, which quantify the local regularity,
or singularity spectrum as in Leonarduzzi et al. (2010), creating 2 × 8 and 10 features,
respectively. Wavelet variance measures the variability in a signal by scale (over octave-
band frequency intervals), being extracted for each signal over the entire data length,
as in Maharaj & Alonso (2014), based on Walden & Cristan (1998). In order to have
an unbiased estimate of the wavelet variance, it is necessary to use only levels with at
least one wavelet coefficient unaffected by boundary conditions. Our signal (border-
line) length and the Daubechies 2 (db2) wavelet (Cohen, 1994) result in the usage of
10 levels. Similarly to Leonarduzzi et al. (2010), the width of the singularity spectrum
obtained from multi-fractal 1D wavelet leader estimates was selected as a measure of
the multi-fractal nature of the border-line signal. Note that the second order cumulants
were selected because they broadly represent the departure of the scaling exponents from
linearity – scaling exponents are scale-based exponents describing power-law behaviour
in the signal at different resolutions.

Classification The classification of the lesions is performed resorting to a SVM model with
a polynomial kernel of second order and a box constraint of 1. Given that this is a binary
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classification problem, the SVM solver is the Iterative Single Data Algorithm, (which is opti-
mised through a series of one-point minimisations and neither respects the linear constraint
nor explicitly includes the bias term) (Kecman et al., 2005a).

In addition, due to the unbalanced nature of the dataset, adjustments to the classifier’s cost
matrix were also tested. In this matrix, each element consists of the cost of guessing that a
sample belongs to class X (lines) when it belongs to class Y (columns), leaving all elements
of its main diagonal equal to zero. Therefore, since the melanoma class is three times smaller
than the nevus class, the experimental cost matrix adjustments were made to accommodate
this discrepancy in unit steps: making a mistake in the melanoma classification have an
importance equal to that of a nevus ([0 1; 1 0]), or have twice ([0 1; 2 0]), or thrice ([0 1; 3 0])
the said importance.

4.3.3 Results and Discussion

The proposed classification methodology was applied to the publicly available SKINL2 dataset.
Like in the previous Section (4.2), the second version of this dataset was used due to its in-
crease in lens magnification of ≈ 30% (which means more detail) in comparison to its first ver-
sion. For the target classification labels, this dataset currently comprises 9 melanomas and 27
nevi images (MvsN), which undergo the pre-processing, feature extraction, and classification
processes described in Section 4.3.2. All experiments were performed using Leave-One-Out
Cross-Validation (which effectively results in a 9-fold CV because of the dataset size) and
were executed 10 times to mitigate any biased or stochastic decision in the model.

The results achieved in these assessments are evaluated in terms of percentage of classification
ACC, SPE, SEN, BAC. To facilitate the reader’s understanding, each experiment is first
summarised into the BAC metric (Table 4.3) and then only the best results are detailed
with the other three previous mentioned metrics (Table 4.4). Metric results above 75% are
highlighted with a colour gradient white-to-grey.

Additionally, as mentioned in Section 4.3.2-Data Preparation, data augmentation variations
are also shown in the results table “Augmentation” column. Four variations are tested: no
augmentation (“—”), flipping the data (“Flip”), balancing-out (“BalanceOut”), or flipping
and balancing-out data (“Flip+BalanceOut”) during training. The experiments also include
tests using a variable number of lines (column “#Lines”), as described in Section 4.3.2-Data
Preparation (i.e. whether to use or not the 3 supplementary border-lines). As mentioned
in Section 4.3.2-Classification, because of the unbalanced dataset distribution, balancing of
the classifier’s training was also performed resorting to its cost matrix, as expressed in the
tables by column “CostMatrix”. Furthermore, each combination of the previously mentioned
variations is used four times, since there are four possible ways of adjusting the border-lines
length (that is T1/T2/T3/T4, as expressed in Section 4.3.2-Data Preparation).
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Table 4.3: Summary Results for each experiment using 3D Border-Line Features.

BAC

#Lines CostMatrix Augmentation T1 T2 T3 T4

1 [ 0 1 ; 1 0 ] — 93.55 50.00 90.91 72.73
Flip 87.69 52.22 78.13 85.00

BalanceOut 95.00 55.00 78.13 85.00
Flip+BalanceOut 87.69 55.00 81.94 69.95

[ 0 1 ; 2 0 ] — 95.00 65.00 72.73 81.94
Flip 82.15 45.00 90.91 78.82

BalanceOut 70.46 45.00 63.24 74.10
Flip+BalanceOut 72.58 65.00 69.95 70.38

[ 0 1 ; 3 0 ] — 93.55 55.00 89.71 78.82
Flip 82.15 58.71 70.33 81.94

BalanceOut 68.58 66.07 64.07 78.82
Flip+BalanceOut 70.46 62.96 66.07 69.95

1+3 [ 0 1 ; 1 0 ] — 89.45 46.49 90.91 80.85
Flip 84.74 61.11 82.75 88.90

BalanceOut 70.09 36.26 71.35 71.37
Flip+BalanceOut 71.09 55.82 69.95 78.13

[ 0 1 ; 2 0 ] — 86.38 46.49 73.81 82.15
Flip 83.25 44.37 80.20 80.13

BalanceOut 67.90 48.83 68.76 81.85
Flip+BalanceOut 62.96 56.71 68.89 77.24

[ 0 1 ; 3 0 ] — 76.52 48.66 71.98 78.82
Flip 68.52 57.94 69.95 87.69

BalanceOut 68.52 36.16 68.81 68.33
Flip+BalanceOut 65.17 48.41 78.17 73.13

The experimental setup takes, on average, 17 minutes to process the dataset, extract features,
and classify using an SVM with 9-Fold CV over 10 executions. There are 2 × 3 × 4 × 4

experiments of 9-Fold each in Table 4.3 (but only 1 × 2 × 4 × 1 in Table 4.4), which are run
10 times for variance verification. The highest standard deviation is 4.3, and most executions
have 0.0 (zero).

From Table 4.3, the highest and lowest results are achieved with experiments involving line size
transformations T1 and T2, respectively, with an average difference of 26.72pp BAC between
both. As expected, looping the extraction of Z values (along the mask perimeter until the
recorded vector reaches the same length of the largest mask perimeter – T2) did not provide
proper results because the repetition of information/details introduced large variations on
the extracted features (which take into account the signal’s structure). Experiment T3 has a
similar behaviour to T1 but the linear interpolation seems to degrade the results by 3.41pp

BAC, on average. Experiment T4, on the other hand (with cubic interpolation), only degrades
0.73pp, on average. Therefore the scenario T1, which pads the remaining space with zeros,
provides the overall best results.
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Table 4.4: Detailed Metric Results for the best group.

T1 (Padding Zero)

#Lines CostMatrix Augmentation ACC SEN SPE

1 [ 0 1 ; 1 0 ] — 88.89 100.00 87.10
Flip 88.89 85.71 89.66

BalanceOut 91.67 100.00 90.00
Flip+BalanceOut 88.89 85.71 89.66

[ 0 1 ; 2 0 ] — 91.67 100.00 90.00
Flip 86.11 75.00 89.29

BalanceOut 75.00 50.00 90.91
Flip+BalanceOut 77.78 53.85 91.30

Balancing the data by repeating samples of the smallest class (BalanceOut augmentation)
provides a similar result to balancing the SVM cost matrix for the dataset unbalanced data
([0 1; 2 0]), which is also evident in Table 4.4 (91.67/100.00/90.00, rows 3 and 5).

Still in Table 4.3, the presence of “normal” and “flipped” vectors (Flip augmentation) almost
always provides worst results. From the observed experiments, the presence of flipped vectors
greatly induced homogeneity across the features space, which makes it harder, or impossible,
for the classifier to find a proper separation in the data. Therefore, using the two augmentation
settings (Flip+BalanceOut) had similar outcomes. Depending on the configuration, one of the
augmentation modes always induces worse results. Although this could be a misinterpreted
effect due to the size of the dataset.

Regarding the number of extracted lines, the use of extra border-lines generally degraded
the results, except in T4. In 28 (out of 48) experiments, using more than one border-line,
provided worse results in comparison to using a single border-line. This can be explained by
the fact that, having used a small dataset, the classifier might not find the best hyper-plane
separation and the added samples help nudge it, albeit the added samples are of a different
origin thus can also decrease some of the data separability. Note, however, that in T4, in 9
out of 12 experiments the results improved in comparison to the use of only one border-line.
Thus, it is more evident that, despite of the data interpolation, the results are improved by
using the additional border-lines.

As can be seen in Table 4.4, SPE values range from 87.10% to 91.30%, which are the best results.
SPE indicates the ability to correctly reject healthy patients without a condition. This (high
SPE) makes it useful for ruling in disease. However, given that the SKINL2 dataset is very
unbalanced, it is not easy to obtain balanced SPE and SEN results at the same time. Even so,
manually balancing the data through augmentation or repetition seems to help in certain cases.
The accuracy performance is 91.67% when forcing sample balancing either by replicating the
smaller class or adding more weight to said class misclassifications. It must be noticed that
the proposed method exploits only the lesion depth information for feature extraction and
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classification (for the melanoma vs nevus – MvsN – problem). However, while showing results
similar to other methods reported in the literature, it is not directly comparable because
the other methods are based on RGB colour images and, consequently, in other datasets.
Additionally, this approach relies on a less invasive technology (does not require physical
contact with the patient) that uses light-field cameras instead of dermatoscopy devices.

Other top results, as the 89− 90% BAC in experiment T3, could also be worth noticing. Be-
cause of the behaviour of the BAC metric, factually, any result above 80% can only have SEN
and SPE values in the [61, 100] range. While results above 90% need SEN/SPE values in the
[81, 100] range. This means that other not-detailed results could compete with state-of-the-
art skin lesion classification algorithms (if not for the data modality constraint, which makes
direct comparison impossible). On a practical perspective, a passive mechanism even with
results of 70% BAC could be appealing, since false positive detection of nevus as melanoma
is not completely undesirable. In T1, cost matrix [0 1; 2 0], the highest SPE of 91.30% is
achieved (72.58% BAC), which means that a system would identify 7 out of 9 melanomas,
albeit a misclassification rate of 6 out of 27 nevi.

As previously mentioned, this work focuses on showing that skin surface topology has potential
discriminative information for melanoma classification and, as such, comparisons with other
literature works that resort to RGB only are neither possible or relevant. Additionally, at the
time of writing, to the authors best knowledge, there are no works published by other authors
resorting to a dataset that provides RGB+Z images.

4.3.4 Conclusions

Automated melanoma detection is crucial to help dermatologists to improve their diagnostic
accuracy. Among all skin lesion discriminations, classification of MvsN is considered the most
difficult, therefore a computer expert system is of utmost importance. As an alternative to
recent works, where skin lesion classification is based on dermoscopic images (2D), this section
investigated other type of image information, which have been fairly unexplored, e.g., surface
(3D) information; to find out whether it could potentially provide better discrimination of
melanoma from nevus. Taking advantage of the recently introduced technology of light-field
cameras, this work provides a new insight on this domain, being the first one to demonstrate
that it is possible to achieve with quite good accuracy the classification of skin lesions, based
on multi-dimensional imaging. To this end, the 3D border-lines of the lesion were used to
perform a classification with high discrimination. Due to its characteristics, the extracted
signal, obtained from the border-lines, can be classified using 1D features.

The achieved experimental results present a discrimination of melanomas against nevi of
95.00% BAC (100.00% SEN and 90.00% SPE). Since these results are comparable with others
available in the literature, they provide evidence that skin lesion classification (of melanoma
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and nevus) is possible using non-invasive techniques and avoiding the additional artifacts that
the use of a dermatoscope (and gel) induces in algorithm pipelines.

Overall, this work provides insight for further research in the field of skin lesion image de-
tection, segmentation, and classification to either improve existing methods/models that are
lacking in performance or refine the existing top performers. It is also demonstrated that the
extended 3D information enabled by the light-field cameras is useful, beyond conventional
texture (2D), to improve lesion discrimination algorithms.

4.4 Summary

This chapter focused on creating and describing the SKINL2 dataset – a novel publicly avail-
able dataset providing depth information about skin surface – and two studies exploiting
the 3D characteristics of the skin lesion surface. In one, a novel approach to this field is
presented, exploiting the 3D characteristics of the skin lesion surface, thus advancing beyond
common features such as shape, colour, and texture extracted from dermoscopic RGB images.
These features were used to train a Bag-of-Features model to distinguish between malignant
and benign lesions and discriminate melanoma from all other lesion types. The achieved ex-
perimental results indicate the existence of relevant discriminative characteristics in the 3D
surface of skin lesions, which allow the improvement of existing classification methods based
only on 2D image characteristics.

In a different approach, only the lesions’ border-line characteristics are investigated. A se-
lected group of features is extracted from the depth information of 3D images, which are
then used for classification. Despite class imbalance often present in medical image datasets,
the proposed algorithm achieves high performances while using only depth information for
the detection of melanomas. Such results showed that potential gains can be achieved by
extracting information from this often overlooked dimension, which provides more balanced
results in terms of SEN and SPE than other settings.

The insight drawn from these experiments could foster further research that takes advantage of
all the information provided by the light-field cameras, namely embracing depth information
with texture information (2D) to improve lesion discrimination algorithms (as performed in
Chapter 5).
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L esion identification by specialists is a labour intensive, time costly, and error prone
process. Therefore, it could be improved with the use of automated methods. Fortu-

nately, with the advent of DL, computer-aided diagnosis of cancers seems increasingly possible
(Litjens et al., 2017). Indeed, automated DL techniques for skin lesion classification may au-
tomate future screening and enable early detection of skin cancer (Adegun & Viriri, 2020).
However, as detailed in Yao et al. (2021), available skin lesion datasets are usually very small
in comparison to what is normally used to train DL models. Therefore, many studies prefer to
extract hand-crafted features in order to reduce the model learning space and, consequently,
its natural capability to overfit (Yang et al., 2018; Satheesha et al., 2017).

Datasets used in skin lesion classification use the same type of information as dermatology
experts, i.e. dermoscopic images (2D/colour). The resulting classification performances are
yet to become sufficient to professionally help dermatologists. Despite the limited composition
of current datasets, other type of image information could also be used for this end. This
includes other data dimensions, which are fairly unexplored as they are not suited for direct
human observation, but can still provide relevant information for computer systems. One of
these modalities is 3D imaging (e.g., stereo), which has already proven to enhance skin lesion
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discrimination performances due to the added depth information (McDonagh et al., 2008;
Smith et al., 2011).

Thus, this chapter is dedicated to developments made by using both 2D/colour information
and 3D/surface information (depth maps) for melanoma classification. With this aim, two
classification approaches were created. The first, presented in Section 5.1, is a step in the direc-
tion of merging current 2D state-of-the-art results and evaluated 3D characteristics by using,
respectively, an ensemble comprised of a DL model for colour classification and a Multiple In-
stance Learning (MIL) model for 3D surface classification. The second approach, described in
Section 5.2, was created to be a single model capable of performing melanoma discrimination
independently of the use of either colour, depth, or both; and allow DL classification even in
the presence of small data quantities. Both classification approaches were designed to enable
comparison of whether or not 3D information should be used and if features of such third
dimension could be beneficial for the classification process. In either classification approach,
the target classification labels are: binary discrimination of melanoma versus nevus samples
(MvsN); or binary discrimination of melanoma versus all other skin lesion types (MvsAll).
Finally, Section 5.3 summarises this chapter and highlights the most relevant conclusions.

5.1 Joining 2D Classification and 3D Characteristics

This section’s contribution focuses on the proposal of an ensemble model that enables mela-
noma classification by resorting to 3D surface data when the initial colour classification is
uncertain. Both the colour of 2D images and the corresponding depth information are used
by resorting to a dataset of light-field skin lesions. Classification of colour or depth informa-
tion is performed separately. For 2D information, a Transfer Learning (TL) approach (Hosny
et al., 2019) comprising a DL model is used. While for the depth information, features ex-
tracted from the 3D surface feed a Multiple Instance Learning (MIL) approach when the DL
model shows high uncertainty towards classification. Both local and global features are used
to characterise the 3D depth surfaces. Feature selection also takes place and it is performed
by an automatic feature reduction algorithm, which allows the model to cope with the dataset
size.

The remainder of section is organised as follows: Section 5.1.1 presents the literature and
background involved in this work. Section 5.1.2 describes the proposed approach and the
corresponding pipeline, which comprises an ensemble of two models. Section 5.1.3 describes
the first model, including relevant details about model training and classification, and Sec-
tion 5.1.4 describes the second model, including relevant details about feature extraction and
selection, and classification. Finally, Section 5.1.5 presents and discusses the attained results,
while Section 5.1.6 highlights the conclusions and future work.
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5.1.1 Relevant Background

In recent years, the DL paradigm has attracted research in several domains of medical im-
age analysis, demonstrating that noticeable improvements are achieved beyond conventional
approaches (Ravì et al., 2016; Shen et al., 2017; Li et al., 2018; Tang et al., 2020). In the
field of skin lesion classification, Convolutional Neural Networks (CNN) have also produced
promising results (Gonzalez-Diaz, 2018; Tang et al., 2020). In Kawahara et al. (2016), a CNN
pre-trained on the ILSVRC is used as a feature extractor (rather than trained from scratch).
This work demonstrated that the existing filters (used on the ILSVRC natural images) gen-
eralise well for a set of 10 classes using non-dermoscopic images. More recently, research
with such pre-trained models reported the highest performance measurements ever published
across multiple test datasets (Hosny et al., 2019). The use of pre-trained models is typically
accompanied by a TL approach (Shin et al., 2016; Barata et al., 2018), which can be further
aided by manually extracted features (e.g., as in Hagerty et al., 2019). In Hosny et al. (2019),
classification of segmented colour skin lesions is performed using TL with the pre-trained
AlexNet CNN (Krizhevsky, 2014) to achieve high accuracy performance values.

The research addressed in the remainder of this section comprises several concepts to which
relevant information is provided. Therefore, the remainder of this section is structured into
paragraphs that address such concepts.

Uncertainty Sometimes, DL classification results are enhanced with the model’s inner
statistics, namely the features’ distribution that exists before a Softmax layer. If the model’s
values prior to this layer are not well separated, it might indicate that the model is uncertain
about the target label that corresponds to the correct answer, or even if both are equally
correct. For this reason, some researchers look for a better solution to replace the Softmax
layer (Khan et al., 2019). These model’s values can be used to determine network class uncer-
tainties or, for example, the CNN belief in the classification of the segmented pixels (Sensoy
et al., 2018; DeVries & Taylor, 2018; Abdar et al., 2020). Such uncertainty values, which exist
before the Softmax layer, have been used to improve CNN models (Cho et al., 2020; Abdar
et al., 2020; Sensoy et al., 2018). As highlighted in Leibig et al. (2017), further inspection of
uncertain decisions results in better performance. Additional research on uncertainty can be
found in Abdar et al. (2020).

Multiple Instance Learning (MIL) Assuming the calculation and usage of such uncer-
tainties, other models can be used (or combined) to compensate a previous DL model that is
uncertain of its classification output. These other models need not be of matching technique
but a new combination of multiple models. When a new model depends on multiple outputs
of a previous one, such composition is known as Multiple Instance Learning (MIL). This con-
cept was introduced in Keeler et al. (1990), and was later used, in Maron & Ratan (1998), to
solve a machine vision scene classification problem.
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In Keeler et al. (1990), an instance is defined as one or more fixed-size sub-images of a given
image, and the bag of instances is the image itself. An image is labelled positive if it contains
a target scene related instance or negative otherwise. For this to work, it is assumed that a
relationship between the instances within a bag and the class label of the bag exists, allowing
the classification itself to be performed in several ways. For example, given each instance
classification, a bag of instances can be given the final label by a thresholding model, by a
count-based assumption, by the presence of a single positive or negative class, or by more
complex models, like for example a multidimensional-polynomial-border created by a SVM
model (Kecman et al., 2005a).

In Wang et al. (2020), the same concept is exploited. The authors proposed a weakly super-
vised DL framework with uncertainty estimation, in order to address a disease classification
problem. Firstly, a CNN instance-level classifier is iteratively refined by using the proposed
uncertainty-driven deep MIL scheme. Secondly, a Recurrent Neural Network takes each of
the previous instances features (from the same bag/image) as input and generates the final
prediction, considering each local instance and their global aggregated representation.

Segmentation Mostmethods dealingwith skin lesion classification require some form of prior
lesion segmentation or region identification (Hosny et al., 2019). Several previous works present
some form of skin lesion segmentation to prepare the data for classification, such asHagerty et al.
(2019); Gonzalez-Diaz (2018); Tang et al. (2020); Li et al. (2018); Ravì et al. (2016); Barata et al.
(2018). This preprocessing step is typically needed since skin information (or image acquisition
artefacts) can produce outlier features or expand the dimension of the hyperspace in which the
parameter search is performed by DL algorithms (as, for example, with CNN), urging for a
preprocessing step in order to avoid undesirable outcomes. A relevant example of such method
is described in Navarro et al. (2018), where the image is segmented into super-pixels using local
features and then iteratively merged into regions to form two classes of regions (lesion and
non-lesion), while considering a spatial continuity constraint on the super-pixels colour.

Dataset To the best of the authors’ knowledge, all published literature works that use pub-
licly available datasets operate on 2D datasets, either of dermoscopic or macro images. Hence,
the most common type of existing features comes from the same 2D modality. Although signif-
icant performances have already been achieved using these single modality datasets (Pathan
et al., 2018), the low granularity of the information might still pose limitations to the classi-
fication problem, as only planar lesion-information can be retrieved from such data.

To overcome this limitation, alternative modalities, such as using stereoscopy technology (Mc-
Donagh et al., 2008; Smith et al., 2011), have already shown to be efficient in identifying the
type of skin lesion when a third dimension is present. Even so, literature on 3D surface of
melanoma or related skin lesions is still very scarce. Nevertheless, existing research indicates
that proper results arise when using depth information (3D), like the study in Satheesha et al.
(2017), that artificially generated 3D information to enhance an existing 2D dataset. In order
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to fill the void of 3D skin lesion data, a dataset named Skin Lesion Light-fields (SKINL2) was
made public to enable research over skin lesions 3D surface information (Faria et al., 2019c).

Hand-crafted Features As mentioned before, most works in the literature rely on 2D
datasets, that either extract hand-crafted features for melanoma classification or, more re-
cently, use DL or TL to automate the process. Some of these hand-crafted features include: le-
sion type and configuration (primary and secondary morphology), colour, distribution, shape,
texture, and border irregularity (Mahmouei et al., 2018; Korotkov & Garcia, 2012; Pathan
et al., 2018). After the feature extraction step more automated ML methods such as K-Nearest
Neighbours, ANN, Logistic Regression, Decision Trees, and SVMs are used to perform clas-
sification, typically with no more than moderate success (Korotkov & Garcia, 2012; Pathan
et al., 2018). Hence, the literature transition in recent years to more rewarding DL methods
which relieve the research on new features. Examples of related work using 2D hand-crafted
features and known classifiers can be found in Korotkov & Garcia (2012); Barata et al. (2018).

So far, there are no 3D features specifically studied for melanoma classification. Thus, a
primary approach towards defining a relevant set of such features is to look at other research
fields, where 3D features have been used. Depending on the target recognition task, several
3D features have been developed and generalised across multiple 3D datasets and tasks. This
type of generalisation is performed to propose a set of features that capture a broad spectrum
of 3D characteristics – typically applied to key regions. In general, an algorithm responsible
for extracting the designed features is called feature extractor and the key regions where
these feature extractors are applied are determined by a keypoint detector. In the scope of
this work, the Normal Aligned Radial Features (NARF, Steder et al., 2011) is used as both a
keypoint detector and feature extractor. Other relevant feature extractors are the following:

• Radius-based Surface Descriptor (RSD, Marton et al., 2010),
• Global RSD (GRSD, Kanezaki et al., 2011),
• Globally Aligned Spatial Distribution (GASD, Lima & Teichrieb, 2016),
• Rotation Invariant Feature Transform (RIFT, Lazebnik et al., 2005),
• Point Feature Histogram (PFH, Rusu et al., 2008),
• Fast PFH (FPFH, Rusu et al., 2009a),
• Signature of Histograms of OrienTations (SHOT, Tombari et al., 2010b),
• Ensemble of Shape Functions (ESF, Wohlkinger & Vincze, 2011),
• 3D Shape Context (SC3D, Frome et al., 2004),
• Unique Shape Context (USC, Tombari et al., 2010a).

Feature Selection In many cases, the initial number of features can be overwhelming for
the classification algorithm, particularly when the number of data samples is not enough to
enable a correct understanding of all feature space combinations. Thus, feature reduction is
necessary to select the most meaningful ones, which can be done by using several methods,
such as, a diagonal adaptation of Neighborhood Component Analysis (NCA, Yang et al.,
2012). NCA is a non-parametric algorithm that enables feature selection with the goal of
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maximising the prediction accuracy of regression and classification algorithms. The algorithm
performs better when estimating feature importance for distance-based supervised models that
use pairwise distances between observations to predict the response. NCA can be understood
as a pre-processing step before the classification step, as in Jiménez et al. (2019); Artzi et al.
(2019); Rahman et al. (2019), allowing the removal of similar or noisy features from the feature
space. But it can also be used between models (Akram et al., 2018a), namely when initial DL
models produce too many latent features in comparison with the amount of available data
samples (Akram et al., 2018b).

5.1.2 Proposed Multi-Instance Learning Classification Approach

As pointed out before, the proposed approach explores depth information (Z), in addition to
conventional colour (RGB), to improve beyond current classification results. To this end, a
new pipeline was devised (as summarised in Section 5.1.2-Overview), to operate over a dataset
with lesion segmentation masks (generated as described in Section 5.1.2-Segmentation). This
pipeline utilises both a DL process, as a baseline 2D classification model (Section 5.1.3), as
well as a two-step model scheme that resorts to hand-crafted features from the 3D surface
(Section 5.1.4). This is an ensemble classification approach, where the objective is to collec-
tively obtain better predictive performances than those from any of the individual learning
algorithms on its own.

Overview An overview of the pipeline is depicted in Fig. 5.1. Given a 4D dataset, with its
lesion segmentation masks, at any 10-fold CV partition k, a Traink and Testk datasets are
received by the ensemble pipeline. As training precedes the test step, the Traink-set is first
used to train both a TL model and a MIL model, prior to the use of the Testk-set.

4D Image+Mask Dataset

10 Fold Cross-Validation

Traink Testk

fold k:

MIL
Process

Test

 

High
Certainty

?
 

No

Save TL Test Result

Save MIL Test Result Yes

Train

TL
Process

TestTrain

Ensemble

Figure 5.1: Proposed Ensemble Pipeline: a
given dataset is partitioned into 10 folds for cross-
validation; at any stage, both TL and MIL are
trained on 9 training folds and later tested on
1 test fold; afterwards, if the TL process cer-
tainty is high, the TL test image classification
result is recorded, otherwise the MIL classifica-
tion result is recorded. Blue arrows indicate the
pipeline training sequence. Red arrows indicate
the pipeline testing sequence. Black arrows indi-
cate previous dependencies and/or abstract pro-
gressions through the pipeline.
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TL is performed with a DL model to update its weights to the classification problem at hand.
The other part of the ensemble classifier (MIL) comprises a two-step learning approach. The
Softmax layer present in the CNN model allows to predict the level of confidence the CNN has
in its prediction, which is known as the model certainty. It can be asserted either naively or by
imposing alternative computations. Therefore, if the CNN 2D classification model is certain
of its prediction it is set as the ensemble prediction, otherwise, the MIL 3D-classification
model is preferred.

Segmentation The employed segmentation method is based on a modified version of the
algorithm described in Li et al. (2004), dubbed Lazy Snapping, which resorts to an internal
method to group similar pixels. However, in this work, such method is replaced by a more
recent approach named Simple Linear Iterative Clustering (SLIC), described in Achanta et al.
(2012), which has been observed to achieve good performance in coloured images of skin lesions
in Navarro et al. (2018).

Given an RGB coloured image (Fig. 5.2, top-left), pixels are first grouped into super-pixels
(Fig. 5.2, top-right) using the SLIC method. This method serves as a pre-processing step
for the Lazy Snapping algorithm, as it compacts the problem dimension to less samples
(super-pixels). In this work, the SLIC compactness is set to 10 and its clustering phase is
performed for 10 iterations. Then, the Lazy Snapping algorithm constructs a graph of the
image super-pixels, where each super-pixel is a node connected by weighted edges. The higher
the probability that pixels are related, the higher the weighted edge. The algorithm cuts along
weak edges, achieving the object segmentation by maximising the colour similarity within
the object. To generate the necessary binary segmentation mask, that separates foreground
from background, the graph-cut is guided with user provided information (Fig. 5.2, bottom-
left) about pixels belonging to the lesion (foreground, green points in the figure) and pixels
belonging to the non-lesion skin (background, red points in the figure).

Given the user input, the separation between foreground object and background elements is
generated by the Lazy Snapping algorithm, as a segmentation mask (Fig. 5.2, bottom-right).

5.1.3 TL Process

A model named AlexNet is created with the ILSVRC pre-trained weights and, as such, it only
receives 2D RGB images. The process is performed for 32 epochs of batch size 10, with a
learning rate of 0.001. The colour images first undergo a segmentation process (described in
Section 5.1.2-Segmentation), where the non-lesion skin is coloured black, effectively removing
colour information and forcing the CNN to focus on the RGB characteristics of the target
lesion area. Data augmentation (by rotation) is also performed, as described in Hosny et al.
(2019), but only during training and not in the testing stage.
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(a) Angioma, SKINL2 v2 (b) Nevus, SKINL2 v3

Figure 5.2: SKINL2 Lesion Segmentation Method: given a coloured central-view image (a) or (b)
dataset (top-left); the image pixels are grouped through superpixel over-segmentation (top-right);
then, visually, some pixels regarding the lesion (in green) and skin region (in red) are marked to help
guide the segmentation process (bottom-left); lastly, a skin lesion segmentation mask is generated
(bottom-right).

Additionally, in the present work an uncertainty-enhancement is used. Instead of naively
using the internal Softmax probabilities for the ensemble model uncertainty, the model is
reinforced with the capability to generate its internal classification certainty during training.
Thus, the loss function is changed from the default Softmax cross entropy to the sum of two
components (Sensoy et al., 2018), as expressed by

loss =
∥v1∥2

2 + ∥v2∥2
2

2
× 0.005 +UIF(eo, a), (5.1)

where ∥X∥2
2 represents the L2-norm, defined as 1

2
∑x

2
i , where xi are the elements of the

vector X, v1 and v2 are the outputs of the first and last classification layers, o are the values
at the end of the network, and a the target classification one-hot label probabilities. The
mean-square-error uncertainty-infused function (UIF), is expressed as

UIF(b, a) = (b − a
s )

2
+

a × (s − a)
s2 × (s + 1) +KL(P(b, a)∥Q), (5.2)

where s is the sum of all one-hot exponential values and KL is the Kullback-Leibler divergence
term, defined as KL(P′∥Q), where P ′ is the result obtained from applying Eq. (5.3) and Q is
the one-hot distribution.

P(b, a) = (a − 1) × (1 − b) + 1 (5.3)

The KL divergence is used in this context to regularise the predictive distribution by penal-
ising predictions that diverge from the desired uncertainty, which is known as Learned Loss
Attenuation (Sensoy et al., 2018).

At the end of the Alexnet uncertainty-infused-model training stage, a classification uncertainty
for each class can be obtained by dividing the number of possible output classes by the
exponential of the values outputted by the network. For the proposed ensemble, a classification
certainty above 50% is considered high.
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Both the classification labels and uncertainties are output to the ensemble definition described
in Section 5.1.2-Overview.

5.1.4 MIL Process

The MIL process performs skin lesion classification using only 3D surface information. A
detailed pipeline of this process is depicted in Fig. 5.3. Note that the correct dependency-
flow starts with the training stage (blue-arrows), which might initiate black-arrow flows. Any
procedure is only executed if all input training flows (arrows) are present or if it has already
been executed for training.

MIL Process

2. NCA Features Selection

Trainkft Testkft

3. SVM-Keypoints

1. Feature Extraction

Trainkf Testkf

Traink Testk

Depth Only
Detect 

Keypoints
Extract 

Features

Bayesian Search: λ

6 Fold Cross-Val.

Train
NCA

Save 
NCA 

model 
with 

lowest 
Test 
loss

Test 
NCA

Trainkb Testkb

Select Top 
Meaningful 
Features

NCA
model

Parameter Fine-Tuning

Test
SVM

Save 
best 
SVM 

model

1/9 Holdout

Train
SVM

Eval 
SVM

4. SVM-Threshold

Train Linear SVM Test SVM

Figure 5.3: MIL Process Pipeline, comprising
four blocks: 1) given an image dataset, only
depth information is kept and features from de-
tected image keypoints are extracted; 2) given
a keypoints training-set, an NCA model is cre-
ated with the lowest possible loss. This is ob-
tained by performing a Bayesian search over a 6-
fold cross-validation of the train data to find the
NCA optimal λ value. Given the NCA model,
the algorithm advances to next block with the
top meaningful features; 3) given the selected fea-
tures, a fine-tuned SVM model for keypoint clas-
sification is created. This tuning occurs through
a parameter search using 1-out-of-9 folds for eval-
uation of said SVM model, and the SVM key-
point classification labels bagged by image ad-
vance to the next block; finally, 4) given a dataset
with bags of labels, a linear SVM is trained to
provide the grouped image final classification la-
bel. Blue arrows indicate the pipeline training
sequence. Red arrows indicate the pipeline test-
ing sequence. Black arrows indicate previous de-
pendencies and/or abstract progressions through
the pipeline.

The process comprises four main blocks, each being executed only after the previous one’s
completion. Blocks named 1 and 2 comprise the dataset pre-processing stage with feature
extraction and selection, while blocks 3 and 4 comprise the actual MIL aspect of the process.
Detailed information about each block is provided in the following four subsections.
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Feature Extraction Given either a training or a test-set of 4-channel images (RGB+Z), pixel
values in the RGB channels of all input images are replaced with zeros. This operation is per-
formed to guarantee that no colour related feature is generated, meaning that further processing
only uses depth. Having only the 3D surface, the NARF keypoint detector elects several key
locations in each image. Using the lesion masks (as described in Section 5.1.2-Segmentation),
after a dilation process to extend each mask by 25 pixels, keypoints not belonging to the new
lesion region are discarded. Then, feature extractors are applied to each of the remaining key-
point locations. In essence, this block generates a new datasetkf from the input set of images,
where each image is now represented by multiple instances (keypoints) of multiple features.

The NARF keypoint detector was selected because it seems specially suited for skin lesion
images, since it selects the surface locations where abrupt changes occur and takes object
borders into account, such as skin-to-lesion borders, which have already been recognised as
relevant information (Pereira et al., 2020b). The keypoint detector has two major character-
istics. First, keypoints are extracted in areas where the direct underlying surface is smooth
and the neighbourhood contains major surface changes. The resulting keypoints are located
in the vicinity of significant geometric structures and not directly on them. Second, NARF
takes object borders into account. Such objects are detected when non-continuous transitions
from the foreground to the background arise. Thus, the silhouette of an object has a strong
influence on the resulting keypoints.

As for the feature extractor methods, 11 are utilised, generating a total of 5726 features per
keypoint. These extractors were selected based on the relevance of their characteristics for
the type of input signal in use, i.e., 3D information. RIFT (32 features) was selected because
it provides invariance to illumination, viewpoint, scale, and rotation. Like RIFT, NARF
(42 features) and PFH/FPFH (125/33 features) also possess some of these characteristics,
PFH/FPFH, in particular, provides robustness against outliers and noise. Other features
extractors as SHOT (361 features), SC3D (1989 features), and USC (1969 features) also
provide robustness against noise. Additionally, both SHOT and USC are reported to provide
uniqueness amongst detection, as well as unambiguous representations. Finally, ESF (640

features), RSD (2 features), GASD (512 features), and GRSD (21 features) were selected for
being descriptive, simple, and intuitive shape descriptors. ESF has proven to be efficient and
expressive, while GRSD adds expressiveness to the simple RSD by partitioning the image
point cloud into several voxel-surfaces of understandable shapes.

NCA Feature Selection Given a (training) feature dataset, feature reduction is performed
resorting to an NCA model. This is done because some of the extracted features might not
contribute for the adequate label separation during later classification process.

Since NCA uses internal mechanisms similar neural networks as part of its creation process,
it is possible that the generated feature’s meaningfulness-weight is overfitted to the training
data. To overcome this problem, NCA includes a regularisation parameter λ that helps to
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prevent overfitting. Since this parameter has to be predefined, a Bayesian search had to
be performed to find the λ value that yields the lowest average test loss of a six-fold CV
partitioning scheme of the given (training) features dataset. This inner CV is implemented
to further prevent data overfit.

Having found the NCA model with the optimal λ, the (training) features dataset can now be
reduced to the most meaningful features. Meaningfulness-weights obtained from the training
data can be applied to later testing-sets. In this model, only features with a normalised absolute
meaningfulness greater than 0.02 are selected – meaning that features with meaningfulness-
weights below 2pp are discarded. In essence, this block generates a new datasetkft from the
feature dataset, where only features relevant to classification are maintained.

The implemented Bayesian search is performed by constraining λ values to the range [0.00001,

0.1], using four initial seeds randomly chosen from the λ search range. This search is executed
for 50 steps, comprising 24 evaluations each. To promote a balance between the search
exploitation and exploration (Gelbart et al., 2014), the Bayesian propensity to explore is
0.5. In addition, to avoid over-exploiting, the acquisition function in Gelbart et al. (2014) is
modified as suggested in Bull (2011).

As for the NCA model parameters, the inner network is optimised using Stochastic Gradient
Descent and an initial learning rate is determined by selecting 200 random dataset samples
and training a temporary model on increasing learning rates for 15 epochs. The learning
rate providing the lowest loss is selected as the initial learning rate (on average, the initial
learning rate is 51.20000). With the initial learning rate defined, the network is trained
using all training data (five-folds) over 10 epochs with a mini-batch size that enables at least
40 iterations per epoch. At each epoch, the learning rate is decreased when a convergence
tolerance of step size 0.000005 is met.

Since there is only one regularisation parameter (λ) for all weights, and the weight magnitudes
must be comparable, i.e. within the same range, any dataset data entering the model is
normalised with zero mean and unitary standard deviation.

Keypoint-level Classification Given a (training) dataset of meaningful-features, which
comprises multiple instance data (keypoints) for each image, label classification of each image
keypoint takes place resorting to a SVM. As SVMs have several hyper-parameters, parameter
fine-tuning is necessary at this stage. Due to the complexity of the pipeline, the theoreti-
cal determination of the optimal SVM implementation is not feasible. Assuming an initial
data partitioning into 10 folds CV (as detailed in Section 5.1.2-Overview), the training data
comprises nine folds. Therefore, the last fold is hold-out from the SVM classification train-
ing process, so that it can be later used for the SVM selection during the parameterisation
fine-tuning. This single fold is called evaluation fold. Having found the SVM model with
the best performance in the evaluation fold, the same model can be applied to later testing-
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sets. In essence, this block generates a new datasetkb comprising a bag of classified keypoints,
that is, a label classification for each keypoint of each image. During pipeline training stage,
classification label results from both training and evaluation folds advance to the next block
as one training-set – i.e., maintaining the original dataset data sample counts. Evaluation
results will not be perfect, but this is helpful during the next pipeline block training stage as
it provides behavioural insight of how the model operates on unseen data.

As for the SVM parameter fine-tuning, instead of using a full Bayesian search, several prede-
fined parameters were evaluated for simplicity. The SVM kernel function can be either linear,
polynomial, or Gaussian. In the case of polynomial, it can be either of order 2 or 3. In the
case of Gaussian, it can be either of kernel scale 0.9, 3.6, or 14. Data normalisation always
takes place and the box constraint is set to 1. This enables the evaluation of six different
SVM models in total. The quadratic kernel SVM is typically the top performing.

The SVM solver is the Iterative Single Data Algorithm (ISDA, Kecman et al., 2005a), given
that this is a binary classification problem. In addition, the SVM also comprises a custom
cost matrix, which is set to [0 1; 2 0] to enforce a double penalty when missclassifying the
melanoma class. In this matrix, each element consists of the cost of guessing that a sample
belongs to class X (lines) when it belongs to class Y (columns), leaving all elements of its
main diagonal equal to zero.

Image-level Classification Finally, given bags of labels, a last SVM model provides the
image-level label classification. Since the objective is to reduce a variable-sized list of keypoint-
level labels to a single image-level label, the data is summarised to enable thresholding. That
is, given an arbitrary number of data samples belonging to an image, the data is transformed
into two sums: the number of melanoma labels and the number of non-melanoma labels. Then,
these sums are normalised to the [0, 1] range, while making their sum 1, producing a probability
distribution over predicted output classes, as occurs in a Softmax layer. Furthermore, these
probabilities are given as features to a SVM model of linear function and ISDA solver, with
box constraint set to 1, and without implicit data standardisation. In a training pipeline, this
effectively produces a threshold along the probability distribution that attempts to separate
the target class labels. A SVM is used rather than a common thresholding technique, due to its
capability for better forming the threshold boundary and also because it would enable future
work beyond binary classification. As in the keypoint-level classification, the SVM cost matrix
is adjusted to enforce a double penalty when missclassifying the melanoma class ([0 1; 2 0]).

In a testing pipeline, the linear SVM model image-level labels are sent to the ensemble, as
described in Section 5.1.2-Overview.
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5.1.5 Results and Discussion

The performance of the proposed method is evaluated and discussed in this section, en-
compassing two classification experiments, both executed applying 10-fold CV, as previously
mentioned. The first experiment, consists in MvsN, i.e., a more difficult task, and the second
experiment covers classification of MvsAll.

Dataset The proposed pipeline was applied to the publicly available SKINL2 dataset. Par-
ticularly in this work, the second and third versions of this dataset were used. Both versions
are present due to their increase in lens magnification of approximately 30% (which means
more detail) in comparison to its first version. At the time of writing, the third version
was still under development and the available data was used as an extension of the second
version. In total, 98 images were used (70 from the second dataset and 28 from the third).
These images comprise 14 melanomas, 36 nevi, and 48 other lesion types (16 angiomas, six
basal cell carcinomas, one dermatofibroma, 24 seborrheic keratoses, and one verruca). All
images undergo the pipeline described in Section 5.1.2. Therefore, experiment MvsN com-
prises 14 melanoma samples against 36 nevus samples, while experiment MvsAll comprises
14 melanoma samples against all other 84 non-melanoma samples.

Feature Selection In the pipeline described in Section 5.1.2, the MIL process is responsible
for performing the classification when the TL process does not have enough certainty. The
feature selection performed within fold samples in this step is a key component of the former
process. Depending on the fold, different dataset samples arrive at NCA Feature Selection
block (Section 5.1.4-NCA Feature Selection), which in turn will induce different features to
be marked as meaningfully in different folds for the classification objective.

Table 5.1, comprising five major columns, provides some statistics regarding feature selection.
For each feature extractor in the first column, the number of inner features comprising said
extractor is shown in the second column. Subsequent columns are sub-divided to provide
information for either the MvsN or the MvsAll experiment, respectively. Across the 10-fold
execution, the number of unique features that are selected at least once are defined in the
third column, while the total amount of features (regardless of repetition) selected across
folds is presented in the fourth column. Finally, the fifth column indicates how many times a
feature extractor is used, that is, if any of its features were used in any given fold.

This table shows that most literature features considered potentially relevant for melanoma
surface discrimination are not selected. This can be considered a normal behaviour since
features with higher discriminative power overshadow the lesser ones, making the NCA model
algorithm reduce their meaningfulness to marginal values. This occurs as they do not present
added information to the higher representative features.
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Table 5.1: Features Outputted in Feature Selection block.

Feature
Extractor
Name

Features
Inside

Extractor

Unique
Features
Selected†‡

Total #
Features
Selected†‡

# Times
Extractor
is Used†‡

ESF 640 28 26 126 92 10 10
FPFH 33 0 0 0 0 0 0
GASD 512 35 32 200 149 10 10
GRSD 21 2 2 14 13 9 7
NARF 42 0 2 0 2 0 1
PFH 125 0 0 0 0 0 0
RIFT 32 2 3 7 17 5 9
RSD 2 0 0 0 0 0 0
SC3D 1989 0 0 0 0 0 0
SHOT 361 0 0 0 0 0 0
USC 1969 0 0 0 0 0 0

†
Values resulting from the aggregation of 10-fold cross-validation.

‡
Values for MvsN and MvsAll results, respectively.

It is also possible to observe that only the ESF, GASD, GRSD, and RIFT feature extractors
are selected across the two experiments, with NARF being used in only one fold of the second
experiment (MvsAll). Concerning the feature extractors, it can be seen that, if the uniquely
selected features were always the same across folds (third column), then the total amount of
features selected (fourth column) would be 10× that value, which is never the case. However,
this does not mean that no feature is meaningful enough to be selected across folds.

For the five selected feature extractors, Fig. 5.4 presents the number of times each feature
extractor is used across folds (bar plot representing the same information as in Table 5.1), as
well as the number of times each feature extractor’s feature is used (scatter plot). From this
figure, it is possible to observe that: in the MvsN experiment, four ESF and six GASD features
are always selected (i.e. having usage count equal to 10) independently of the fold data, while
in the MvsAll experiment, only two ESF and two GASD features are always selected. This
suggests that discrimination between melanoma and nevus is possible in more ways than in
melanoma versus every other class, as evidenced by the scatter plot’s data-points spread.
Also, in the second experiment, the NCA model algorithm excluded some features while
adding others, namely including two features from NARF in one fold, as previous mentioned.
All in all, from one experiment to the other, a total of 50 features change from either being or
not being used in the experiment pipeline, while 40 remain in usage at least once. On average
across folds, the feature selection block chooses 33.8±4.8488 features in the MvsN experiment,
and 28.1±4.5080 features in the MvsAll experiment.

Results In this subsection, the results are presented in terms of percentage of classification
ACC, SPE, SEN, and BAC, where SEN represents the successful melanoma identification rate
and SPE the successful identification of the other class.
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Figure 5.4: Number of times that features (or feature extractors) are selected during the 10-fold
CV process. Scatter plot values indicate how many times a given feature (from a feature extractor)
is marked meaningful for classification during the feature selection block. Bar plot bars indicate
how many times a feature extractor is meaningful for classification (.i.e having any of its features
selected for usage in a fold) during the feature selection block. Only features extractors which had
any meaningful features for classification are displayed.

Table 5.2: Ensemble Experimental Results.

Experiment Model ACC SEN SPE BAC

MvsN TL-naive 68.00 21.43 86.11 53.77
MvsN Proposed Ensemble 84.00 71.43 88.89 80.16

MvsAll TL-naive 73.47 14.29 83.33 48.81
MvsAll Proposed Ensemble 90.82 78.57 92.86 85.71

naive: as in Hosny et al. (2019), without explicit uncertainty.

As detailed in Section 5.1.2, the proposed ensemble model is comprised of two processes: TL
and MIL. The TL process includes alterations to enable the classification uncertainty to be de-
termined in a non-naive manner. Therefore, the TL model without the mentioned uncertainty
calculations is referred to as “TL-naive”, which corresponds to the effective implementation of
the method described in Hosny et al. (2019), providing the literature baseline classification
result in both experiments. As can be observed in Table 5.2 the ACC performance of the TL-
naive is of 68.00% and 73.47% for the MvsN and MvsAll experiments, respectively. While the
ACC increases in the experiment with more data (which has 48 additional samples in compar-
ison with MvsN), it is important to point-out that the SEN metric decreases by 7.14pp, even
though the number of melanoma samples is the same (14) in both experiments. This decrease
represents one melanoma misclassification. The SPE metric is not comparable between both
experiments, since the amount of samples differs between experiments. Across folds, TL-naive
identifies 31 out of 36 nevus in the first experiment, and 70 out of 84 non-melanoma lesions
in the second experiment.

In the MvsN experiment, TL-naive incorrectly classifies 16 samples in the testing stage. Per-
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forming naive uncertainty calculations with the TL-naive model (using the internal Softmax
probabilities) enables the identification of nine potential misclassifications. Among these,
only six are actually misclassifications, while three were originally correct. If the uncertainty-
enhancement is performed during training, the (TL) model incorrectly classifies 17 samples
in the testing stage, but enables the correct identification of 11 (instead of six) of these mis-
classifications (while also incorrectly identifying one sample that was actually correct). This
improvement to the TL uncertainty identification enables MIL, which has a 72.00% ACC and
78.57% SEN, to potentially correct or disregard said misclassifications (as described in the
proposed ensemble pipeline, Section 5.1.2-Overview). From the TL-uncertain-classifications,
MIL corrects 10 out of 11 misclassifications and only wrongly changes one sample that was
originally correctly identified, although with low certainty, improving from the TL initial
performance to 84.00% ACC, as shown in Table 5.2 for the “Proposed Ensemble”.

In MvsAll, the detailed observations are similar to the previous experiment. The TL-naive
incorrectly classifies 26 samples in the testing stage from which the naive uncertainty calcula-
tions enable the identification of 12 potential misclassifications – 10 comprising actual misclas-
sifications and two originally correct. If trained with the uncertainty-enhancement, the (TL)
model incorrectly classifies 28 samples – but potentially enables the correct identification of 21
(instead of 10) misclassifications (while also incorrectly identifying three samples which were
actually correct). As with the previously detailed-experiment results, this improvement to
the TL uncertainty identification enables MIL, which has a 51.00% ACC and 71.43% SEN, to
potentially correct or disregard the misclassifications. From the TL-uncertain-classifications,
MIL corrects 20 out of the 21 misclassifications and incorrectly classifies one of the three
uncertain (but correctly classified) samples – improving from the TL initial performance to
90.82% ACC, as shown in Table 5.2 for the “Proposed Ensemble”.

In this section, all comparisons with the baseline classification results obtained with TL-naive
have shown that the proposed ensemble method provides superior performance results. This
can be interpreted as an indirect comparison with the works considered in Hosny et al. (2019)
and other works that resorted to the same dataset and metrics as Hosny et al. (2019). In
essence, since TL-naive (Hosny et al., 2019) reports results superior to 11 other methods, it
indicates that the proposed ensemble method should present a higher performance than these
methods as well. It is possible to apply this bias in relation to other published works, as Pereira
et al. (2020b); Tang et al. (2020); Barata et al. (2018); Pathan et al. (2018); Hagerty et al.
(2019), which are applied to the same datasets and use the same metrics as Hosny et al. (2019).

5.1.6 Conclusions

Automated melanoma detection is crucial to help dermatologists improve their diagnostic
accuracy. Still, even with DL methods, current systems are yet to achieve satisfactory sensi-
tivity performances. Instead of continuously attempting to improve algorithms with available
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colour (2D) datasets, which are commonly used by dermatology experts, new dimensions and
modalities may be explored as, for example, surface (3D) information; which can potentially
provide new melanoma discrimination capabilities. In order to advance beyond current state-
of-the-art results, more reliable solutions might depend on the joint exploitation of both 2D
and 3D information. Taking advantage of the recently introduced technology of light-field
cameras, the main contribution of this work is to exploit depth information, in addition to
colour, for classification of skin lesions using a recent dataset of multi-dimensional imaging,
which was specifically acquired to provide richer information for image classification. Ac-
cordingly, this research aims to build a model that takes advantage of the recent scientific
advances in both 2D and 3D modalities. As a result, this work is the first to incorporate
DL uncertainty evaluation mechanisms with Multiple Instance Learning for the training of a
robust synergistic ensemble classifier with the intent of performing skin lesion classification
using light-field imaging.

Targeting the melanoma class with this model, despite the large class imbalance – often
present in medical image datasets – and limited data samples, the ensemble model achieves
a cross-validation ACC of 84.00%, with 71.43% SEN and 88.89% SPE. These results account
for the classification against nevus lesions and show an ACC increase of 16.00pp (supported
by a SEN increase of 50.00pp) from the baseline method applied to the SKINL2 dataset. In a
more challenging setting, discrimination of melanomas against all other available skin lesions
was achieved with 90.82% ACC, 78.57% SEN, and 92.86% SPE, with a similar ACC increase
of 17.35pp from the baseline, also supported by a SEN increase of 64.28pp. The performed
experimental assessment allows to extrapolate that melanoma skin lesion classification can be
improved by including 3D information, such as surface depth.

In the presence of untrustworthy 2D features, the achieved results indicate that the 3D surface
provides redeeming results, showing that improvement of existing methods is still possible
when looking beyond 2D image characteristics.

5.2 Melanoma Classification with Morlet Scattering Transform

In general, image classification requires the use of representations that reduce non-informative
intra-class variability and yet preserve discriminative information across classes. In DL, deep
neural networks (DNN) build hierarchical invariant representations learned by applying lin-
ear and non-linear operators in succession during training. These are learned in a dataset-
dependent basis, however most image classification problems have generic learnable repre-
sentations that are common across fields. When multiple instances of the same element are
present in a dataset, translations, rotations, and scaling are common sources of variability for
most images. Changes in the object view point and perspective projections of three dimen-
sional surfaces correlate many of the dataset samples. With the use of Wavelet Scattering
(WS) (Bruna & Mallat, 2013), it is possible to build neural networks invariant to these trans-
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lations and rotations (Sifre & Mallat, 2014). These can be implemented as a convolutional
neural network (CNN) with successive spatial wavelet convolutions at each layer.

This section explores the use of depth data from skin lesions combined with colour information
by resorting to light-field images and semi-automated segmentation masks. Based on a publicly
available dataset named SKINL2 (Section 4.1), a DL-based classifier is developed. The DL
model relies on Morlet Wavelet-based features that greatly reduce the dimensionality problem
by performingWavelet Scattering Transforms on the input data (Andén &Mallat, 2014; Bruna
& Mallat, 2013; Sifre & Mallat, 2013). These features are used as an alternative to a deeper
model by providing unique features invariant to translation, rotation, scale, and frequency
shifting – a transformation bearing similarities to Gabor filters in initial CNN convolutions
(Springenberg et al., 2015; Yosinski et al., 2015). The contribution of these new depth features
is shown in comparison to the classification of 2D colour images. Additionally, the extent to
which depth information can improve current state-of-the-art skin lesion classification systems
that only resort to the traditional 2D imagery is also assessed.

The main contribution of this section is the exploitation of 3D surface skin data as an alter-
native data modality for melanoma discrimination. Additionally, the Morlet Wavelet-based
features are also introduced for this type of data and compared to the current state-of-the-
art results. Since this data is originated from light-field imagery, a comparison to typical
colour based classification is possible, as the used dataset provides both colour image and 3D
information for every image-pixel data.

The remainder of section is organised as follows: Section 5.2.1 presents the literature involved
in this work, including the concept of wavelet scattering. Section 5.2.2 describes the proposed
approach pipeline, including relevant details about the experiment parameters, segmenta-
tion, data pre-processing, augmentation, normalisation, model feature extraction, and the DL
model. Section 5.2.3 performs parameter selection and discusses the attained results. Finally,
Section 5.2.4 highlights the conclusions.

5.2.1 Relevant Background

Image recognition and classification using ML has become a major topic in a wide range of
research fields, specially with DL. For instance, in the field of skin lesion classification, CNNs
have produced promising results (Gonzalez-Diaz, 2018; Tang et al., 2020) when operating on
2D/colour information. Yet, recent research based on data-driven models have reported the
highest performance measurements ever published across multiple 2D test datasets (Hosny
et al., 2019). The use of these pre-trained models is typically accompanied by a Transfer
Learning (TL) method (Shin et al., 2016; Barata et al., 2018), which can be additionally
aided by manually extracted features (e.g., as in Hagerty et al., 2019).
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In order to properly address various concepts or areas necessary to support this work, the
remainder of this section is structured into four paragraphs, namely: Deep Learning, segmen-
tation, datasets, and Wavelet Scattering (WS).

Deep learning Deep CNN-based models (DCNN) automate many aspects of skin cancer
classification (Gessert et al., 2019; Xie et al., 2020; Yuan et al., 2017; Esteva et al., 2017; Liu
et al., 2020). However, diagnostic performance is still hindered by several already mentioned
factors, making large sets of data necessary for adequately training, as exemplified by the
use of millions of images in the ILSVRC (Deng et al., 2009). Recently, some works have
shown that TL can enable significant classification results, comparable to those of professional
dermatologists diagnostics (Esteva et al., 2017; Liu et al., 2020).

On large-scale image classification tasks (e.g., ILSVRC), improving the DCNN structure from
an initial AlexNet (Krizhevsky et al., 2012) to the recent RegNet (Radosavovic et al., 2020),
or increasing the model parameter capacity (Radosavovic et al., 2020; Tan & Le, 2019; He
et al., 2016), enables better performances. However, in small-scale image datasets it is very
difficult to increase the performance, as increasing the number of parameters may induce the
model to transition from an under-fitting space to space where the over-fitting probability is
higher (Belkin et al., 2018). In some works described in the literature, DCNNs are selected
without taking into account the new dataset size and the new intra- or inter-class variations,
avoiding such issues by using mechanisms that mitigate the over-fitting problem (Esteva et al.,
2017; Liu et al., 2020; Yu et al., 2018; Han et al., 2018; Brinker et al., 2019; Hosny et al.,
2019). Some of these mechanisms are TL (Hosny et al., 2019), data augmentation (Bisla et al.,
2019; Hosny et al., 2019), and multi-target weighted loss functions (Fernando & Tsokos, 2021;
Hosny et al., 2019). Alternatively, other data and model adjustments that have been learned
from large-scale image classification, such as data normalisation into certain ranges or residual
connections between distant layers, can be used (Radosavovic et al., 2020; He et al., 2019; Wu
& He, 2018; Ioffe & Szegedy, 2015; Mishkin et al., 2017). A combination of such mechanisms
is used in Hosny et al. (2019) using TL with a pre-trained AlexNet CNN model.

Datasets The research developed in this section relies on the SKINL2 dataset. In this
context, it is relevant to note that this dataset is even smaller than other available 2D datasets
like the one used in Yao et al. (2021).

Wavelet scattering Also relevant for this work is the concept of Scattering Transform and
its early use in CNN architectures as alternative to initial convolution layers, since it provides
unique features invariant to translation, rotation, scale, and frequency shifting, allowing the
creation of lesser deep models.
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In Mallat (2012), the concept of Lipschitz-continuous translation- and rotation-invariant op-
erators for wavelets is presented, where differentiable manifolds are smoothly mapped with
invertible functions – diffeomorphism. Lipschitz continuity is the central condition to guaran-
tee the existence and uniqueness of a solution to an optimisation problem. This condition is
discarded by CNNs when matching patterns during the training process, allowing similar pat-
terns to exist (even if only initially) and match identical solutions (Bruna &Mallat, 2013). This
wavelet-propagating operator is a path-ordered product of nonlinear and not-comparable oper-
ators, each one computing the modulus of a wavelet transform. The scattering transform win-
dow is generated by a Lipschitz-continuous local integration, which converges to a translation-
invariant wavelet scattering transform as the window size increases. The scattering coefficients
also provide representations of stationary processes (Mallat, 2012; Waldspurger, 2017).

Based on this core concept is the Wavelet Scattering (WS) framework, which is used as con-
volution layers for NNs. The convolutions obtained from WS – whose filters are fixed to be
wavelet and low-pass averaging filters coupled with modulus non-linearities – compute trans-
lation invariant image representations, which are invariant to deformations while preserving
high frequency information for classification. In Bruna & Mallat (2013), the mathematical
analysis of wavelet scattering networks explain important properties of DCNN classification,
presenting results for handwritten digits and texture discrimination.

Some degree of invariance to translation and diffeomorphism is necessary for many classifi-
cation or regression tasks. In DL, using CNNs for example, the use of the WS framework
can create an initial model that includes one or more layers responsible for transforming the
non-linear input into representations invariant to geometric transformations (translations, ro-
tation, scale and frequency shifting), while preserving a high degree of discriminability (Bruna
& Mallat, 2013; Waldspurger, 2015; Sifre & Mallat, 2013). These transformations have two
main advantages. First, they perform dimensionality reduction to the data, while allowing
a structured feature representation to be captured for a given task. Second, the geometric-
invariant representation that is mapped into a smaller dimension space allows for simpler
model building, especially in the presence of small training sets (Adel et al., 2017; Bruna &
Mallat, 2013; Chudáček et al., 2013).

Across several fields, replacement or augmentation of learnable convolutions is being per-
formed with this WS framework. In summary, the scattering transform is defined as a
complex-valued CNN whose filters are fixed to be wavelets and the non-linearity is a complex
modulus. Because wavelet transform is contractive, as is the complex modulus, so is the whole
network, resulting in a reduction of variance and added stability relative to additive noise.
Also, since each layer is a wavelet transform that separates the scales of the incoming signal,
invariability to deformation of the original signal is also attained. All these aforementioned
properties enable the representation of structured signals such as natural images, textures,
audio recordings, biomedical signals, and molecular density functions, among others.
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5.2.2 Proposed Wavelet Scattering-based Classification Approach

As pointed out before, the aim of this work is to improve the accuracy of melanoma dis-
crimination of conventional methods that only use colour (RGB) information, by including
an additional dimension (depth) that characterises the skin surface rugosity. To achieve this
goal, a pre-processing and classification pipeline is proposed to enable the use of RGB and cor-
responding depth (Z), which are referred to as image components along with a segmentation
mask to be computed at the first stage of the pipeline. The influence of depth information
in melanoma discrimination is also evaluated when both types of data are simultaneous used
(i.e., RGBZ), in comparison with the use of RGB information only. The classification pipeline,
in particular, comprises two main stages: a Morlet Scattering Transform, which mimics initial
DL convolutions by computing initial features with high discrimination capacity and enabling
the use of a shallower model; followed by the actual DL model, comprised of learnable con-
volutions and a softmax output.

Overall, the proposed pipeline has three types of configurations in this study: target classes;
target dimensions; and model extensions. The target classes configuration, which will be
further detailed in Section 5.2.3, sets the classification spectrum as either: binary discrim-
ination of melanoma versus nevus samples (MvsN); or binary discrimination of melanoma
versus all other skin lesion types (MvsAll). The target dimensions configuration sets the
data dimensions (e.g. image size after resize) at a given classification study (Section 5.2.2-
Data Pre-Processing). Finally, the model extensions defines a set of training configurations,
which provide extended results to the target dimensions and help the interpretation of the
model capabilities (Section 5.2.2-Morlet Scattering and Section 5.2.2-Classification). Both
target dimensions and model extensions are defined in this section and later exploited in Sec-
tion 5.2.3-Parameter Selection to define the final configuration of the proposed method for
the selected dataset classification targets.

The processing pipeline comprises six stages, as depicted in Fig. 5.5, which are detailed in the
following six paragraphs. Given a RGBZ dataset, where each pixel consists in colour (RGB)
and depth (Z) information, a lesion segmentation mask is firstly generated, as described in
Section 5.1.2-Segmentation. After extraction of the lesion segmentation mask, a given dataset
sample is comprised of an RGB image, its depth map Z, and the segmentation mask, i.e. a total
of five components at the pixel level (RGBZ plus segmentation mask). This dataset undergoes
a process of data augmentation by means of random rotations in order to reduce the overfitting
probability, as described in Section 5.2.2-Augmentation. Using the segmentation mask, the
minimal lesion-bounding-box is determined and the pixels beyond such box are removed from
the data, effectively making the new data a rectangular crop of the segmented lesion area.
Concurrently, pixel values belonging to healthy skin in this crop area are set to zero. At this
point, as described in Section 5.2.2-Data Pre-Processing, the parameters defined by target
dimensions configuration define which image components to maintain and to what shape resize
the data sample. Then, data is normalised into a defined range (Section 5.2.2-Normalisation) to
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6. Classification
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SLIC Lazy SnappingUser Input

RGBZ Image
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Figure 5.5: Proposed Pipeline: a given light-
field (RGBZ) dataset 1) ask for user input and
perform segmentation using Lazy Snapping em-
powered by SLIC; 2) apply augmentation by
a random rotation to both RGBZ data and
segmentation; 3) pre-process data by cropping
around segmentation lesion area, hide skin infor-
mation, select which image components to main-
tain, and resize the cropped image to the target
experiment size; 4) apply normalisation by trans-
forming the cropped image values into a range
between [−2, 2]; 5) create the scattering convo-
lutions and extract a set of scattering coefficients;
and finally 6) apply a classification model that se-
quentially transforms said set into a larger one,
which is then reduced through pooling for a fi-
nal fully connected layer to provide the softmax
discrimination label.

feed the Morlet Scattering Transform (Section 5.2.2-Morlet Scattering), which extracts features
to fuel the DL model (Section 5.2.2-Classification). This model increasingly expands the data
sample analysis, before feeding the final fully connected layer that provides the softmax discrimi-
native label. Detailed information about each stage is provided in the following six subsections.

Augmentation Classification algorithms, as is the case of DCNN, usually require large
amounts of data to yield proper performance (class separation) and convergence (feature
discovery). The dataset used in this work has a small number of images, therefore it is
necessary to expand it by augmenting the existing images. To this aim, all input training
image samples are randomly rotated from 0 to 360 degrees prior to be used in the training
phase. Additionally, each epoch comprises 72 passes through the training dataset, which
allows each image to be analysed at 72 potentially-different angles before a new epoch begins
with another set of 72 random rotations. This is a similar approach to that implemented in
Hosny et al. (2019), but in this case the rotation-degree is not restricted and augmentation is
not used during the test phase.
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At this stage, each input training image (i.e., dataset sample) comprises five components (C):
an RGB image, the corresponding depth data, and the lesion segmentation mask. All image
channels are geometrically transformed by the same rotation, keeping the information aligned,
such that the segmentation mask still provides the correct lesion location in both the RGB
and depth information.

Data Pre-Processing Given an RGBZ dataset sample and its lesion segmentation mask,
the pre-processing stage sets the target dimensions configuration parameters for the experi-
mental setup. There are two parameterisations: i) selection of the image components; and
ii) model input image size. Besides these options, the image data entering the pre-processing
stage is cropped to the bounding limits defined by the lesion segmentation mask. Concur-
rently, the healthy skin region in this cropped area is removed by setting the corresponding
pixel values to 0 (zero). The removal of the surrounding healthy skin region is intended to
focus the model on the lesion, not allowing speculations about possible patterns or features
of regions outside the lesion area.

In regard to the image components, the pipeline can operate in different modes by exploiting
either only colour (RGB) data, only depth (Z) data, or both colour and depth (RGBZ) data.
Only the selected components are used by the proposed algorithm. The selection of such
different operational modes, has obvious impact on the learning process and consequently on
the model, allowing to compare the performance between models obtained by learning with
different image components.

In regard to the image size parameter, three possible re-scaling factors are considered, where
the image is resized: to 32 × 32, to 64 × 64, or to 128 × 128 pixels. This image resize is nec-
essary because the crop of the lesion region generates different area sizes for different images,
creating conflicts of input data sizes for the model along the proposed pipeline. Additionally,
considering that the original image size may be too large, depending on the number of images
available in the dataset, the model resources may be inadequate, for instance, accelerating
the model overfit. Therefore, the last step of the pre-processing stage is to resize the existing
images to a fixed (smaller) size using bilinear interpolation.

Normalisation Given the image components entering in this stage, the respective data is
normalised to improve the model convergence. This is a usual procedure due to the fact that
CNNs, or NN in general, perform better if the input data is constrained to certain ranges.

For the colour components, the normalisation transforms the data to the approximate range
[−2, 2] as in other DCNN applications (namely Hosny et al., 2019). This is, as traditionally
applied in ImageNet, normalisation is carried out by subtracting the values of (0.485, 0.456,

0.406) and dividing by the values of (0.229, 0.224, 0.225) for the R, G, and B components,
respectively, so that the value range is comprised between [−2, 2]. For the depth component,
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the same operation is performed by subtracting 6.26 and dividing 3.03, in order to constrain
it to the range of [−2, 2]. This normalisation stage operates on either colour, depth or both
components according to the selection made in the previous data pre-processing stage.

Morlet Scattering At this stage, a dataset sample is represented by either 3, 1, or 4
channels (C) (only RGB, only Z, or RGBZ, respectively). Prior to be processed by the classi-
fication model (Section 5.2.2-Classification), unique features invariant to rotation, translation,
and scale are extracted using a WS framework with a Morlet wavelet as the mother wavelet
(Sifre & Mallat, 2013). In addition to the extraction of unique features, this process also re-
duces the data volume and, consequently, further prevents model overfitting. This extraction
of features can be performed either by calculating only first-order coefficients or by extending
to second-order calculations, which are considered as part of the model extensions parameters.

The mother wavelet (ψ(t)) used in this work is the Morlet wavelet and, to speed-up the process,
the convolutions are performed in the Fourier domain. The corresponding family of wavelets is
generated by dilation and translation from the mother wavelet as in Eq. 5.4, where a is a scale
factor and b is the time index, while the factor ∣a∣1/2 is used to ensure energy preservation. In
this work, the input data is represented as 2D matrices of N × N values, where N can only
assume the values 32, 64, or 128. Let x[n] be any signal on this N ×N grid, as x[n,m]. The
periodic convolution with another signal y[n] is denoted by x⊛y[n]. The scattering transform
uses a wavelet filter bank for each order greater than zero, that is ψ(1)

λ1
[n] for the first-order

and ψ(2)
λ2

[n] for second-order respectively, where λ1 and λ2 are frequency indices in the sets Λ1

and Λ2. The low-pass filters are represented by φJ[n], specifying an averaging log-scaling filter
of 2

J (which nearly linearises the variations of scattering coefficients), where J is a regulator
variable. Input data partitioning is also computed in relation to J as non-overlapping patches
of size 2

J , thus producing N/2
J partitions. This logarithmic non-linearity is first applied to

invariant scattering coefficients to linearise their power law behaviour across scales. This is
similar to the normalisation strategies used with bag of words (Lazebnik et al., 2005) and deep
NNs (LeCun et al., 2010). Together with a non-linear function p(t), the filters comprise the
scattering transform. The non-linear function employed in this work is the complex modulus
p(t) = ∣t∣, as in Andén & Mallat (2014); Bruna & Mallat (2013).

ψa,b(t) = ∣a∣1/2 ψ ( t − ba ) (5.4)

The zeroth-order scattering coefficient S0(x[n]) is the local average as given by Eq. 5.5. The
first-order scattering coefficients are obtained from convolution of x[n] with the first-order
wavelet filter bank, as defined in Eq. 5.6. These are the least computationally expensive
coefficients to be used in the classification process. Second-order coefficients are obtained as
an extension of the first-order ones, as defined in Eq. 5.7, where further data structures are
captured by decomposing the p(⋅) results using the second filter bank ψ(2)

λ2
. Note that this

is only performed for a subset Λ2,∗ ⊂ Λ2 defined only for the elements of Λ2 corresponding
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to elements of Λ1, since results from the first-order p represent low-frequencies. The Morlet
filters are similar to normalised zero-mean Gabor functions and are, therefore, computed as
such for simplicity. To reduce computational load, data obtained from p(t) is down-sampled
as in Sifre & Mallat (2014).

S0(x[n]) = (x⊛ φJ)[n] (5.5)

S1(x[n, λ1]) = (p ((x⊛ ψ
1
λ1)[n])⊛ φJ) [n], λ1εΛ1 (5.6)

S2(x[n, λ1, λ2]) = (p ((p ((x⊛ ψ
1
λ1)[n])⊛ ψ

2
λ2)[n])⊛ φJ) [n], λ1εΛ1, λ2εΛ2(λ1) (5.7)

In this work, the J regulariser is always set to 2 and a rotation parameter r, which defines
how many filter rotations are performed to induce rotation-invariance, is set to 8. Assuming
the already mentioned N ×N pixel-grid, the Scattering Transform of the WS framework with
a scale J and r angles will generate a 3D set of features VS , as expressed in Eq. 5.8, for
methods configured to use only first-order coefficients, or as expressed in Eq. 5.9, for methods
including second-order coefficients. An input dataset image generates a one-fourth-sized grid
N̂ of either 8 × 8, 16 × 16, or 32 × 32, with either K = 17 or K = 81 feature values in each
cell, depending if they are configured to use only first-order or both first-order and second-
order coefficients. For example, if the experiment is configured to run RGB components (i.e.
three pixel-grids, C = 3) with first-order coefficients, then three sets are generated, each with
K = 17 features per cell – a total of three 17 × N̂ feature sets per dataset image.

VS1K = 1 + rJ , VS1x =
N

2J
, VS1y =

N

2J
(5.8)

VS2K = 1 + rJ +
r
2
J(J − 1)

2
, VS2x =

N

2J
, VS2y =

N

2J
(5.9)

Prior to the next stage, feature sets are stacked along the VSK dimension to generate a single
feature set V̂ of size KC × N̂ . This means, for example, if three blocks are produced (as
occurs when processing RGB data), then the new set V̂ will maintain the second and third
dimensions, while the first dimension grows to three times the size – assembling a V̂ of 3K×N̂

features. Stacking is performed on the first dimension (K), in opposition to other dimensions
of size N , so that features regarding the same image location but of different components
remain grouped together. That is, when working with the image components, vectors of K
features that are extracted from each individual component (in a particular region) are stacked
together in order to simplify the visualisation of the feature-information by the subsequent
CNN classification model convolutions.

Classification As depicted in Fig. 5.6, given a set of features V̂ , the classification is per-
formed by a CNN model that, apart from the first convolutions, is a fixed-size network for
the whole experiment. The model comprises three main parts: i) a fitting part, where input
features are convolved with a kernel designed to fit the data to the fixed network dimensions;
ii) an expanding part, where two repeating blocks process and expand the data; and iii) a
classification part, where a fully connected layer provides the classification output.
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Figure 5.6: Classification Model Pipeline. Re-
ceiving a feature-set V̂ of scattering coefficients,
train a deep learning model comprised of three
main parts: (i) a initial data fitting, (ii) a main
processing part with convolutions that expand a
given data volume, and finally (iii) a fully con-
nected layer.

For all convolutions, the value of the stride is 1 pixel, the kernel size is 3 × 3 unless stated
otherwise, and the value of the bias is set to zero. In all batch-normalisation layers (Ioffe &
Szegedy, 2015), the running estimates parameter is set to 0.1 and possess learnable affine-
transformation parameters, unless stated otherwise. For the remainder of this section, every
convolution layer is followed by a batch-normalisation and a Relu activation function, unless
stated otherwise.

The fitting part of the network (i) comprises batch-normalisation and a convolution layer of
32 kernels. In this first convolution layer, the feature-set V̂ , which has an experiment-variable
size KC × N̂ , is transformed to a fixed size of 32 × N̂ . The first part of the network has
K × C × 288 + 64 trainable parameters. Additionally, the initial batch-normalisation has no
learnable affine-transformation parameters and only exists to further regularise the input data
range for the model.

The expanding part of the network (ii) is a structure that repeats twice, each comprising four
working blocks (WB) with a residual connection. The only difference from one structure to
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the next is the target number of kernels in every convolutional layer, which are 64 and 128

for the first and second structure, respectively. Each of the four mentioned working blocks
comprises two convolutions. The first working block of each structure has an additional
third convolution, which receives the same data as the first convolution (performing the same
operations). However, this block’s kernels are of size 1 × 1 and there is no Relu at the end.
The output of this third convolution is added to the second convolution batch-normalisation
output, before Relu, as residual information. These two-parts of the network structure have
279,680 and 1,116,416 trainable parameters, respectively.

The classification part of the network (iii) performs a binary softmax classification with the
result of a biased fully connected layer of 512 inputs to two neurons. This layer is adopted,
with the traditional sigmoid activations, as it is an universal approximator (Csáji, 2001) for
classification problems. Since the set V̂ entering the network has size KC × N̂ , at this point,
after all convolutions, it will have 128× N̂ . This means that it will have a variable size in the
second and third dimensions, represented by N̂ . In order to encapsulate this information into
a fixed size, so that models compiled for different input sizes remain comparable, an average
pooling layer is added before the fully connected layer to adaptably reduce the data volume
into a fixed sized 128× 2× 2 volume (i.e. the referred 512 input values of the fully connected
layer). This last part of the network has 1,026 trainable parameters.

The fully described network is trained using Stochastic Gradient Descent with Nesterov mo-
mentum (Sutskever et al., 2013). The learning rate is fixed at 0.001 and the momentum at
0.9. Additionally, weight decay (L2 penalisation) is also performed at 0.0005, in order to
exponentially decay weights to zero, limiting the number of free parameters in the model and
avoiding rapid over-fitting.

In this work, instead of having the learning rate influencing the new momentum velocity by
scaling the gradients, the velocity does not depend on the learning rate. Rather, the learning
rate is used when updating the model parameters, scaling the whole velocity equation result
(meaning that it also scales the previous momentum-ed velocity). This choice was made to
smooth the model learning, as to further challenge early overfitting.

Finally, to promote balanced classification-error corrections in the network during training,
the model softmax-cross-entropy loss function is weighted (via cost matrix) for a given class,
as the number of training samples in the largest class divided by the given class number of
training samples. Effectively, this makes one error in the smaller class more significant than
one error in the larger class, implicitly balancing the dataset.
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5.2.3 Results and Discussion

The experimental results presented in this section are expressed in terms of percentage of
classification ACC, SEN, and SPE, aligned with most of the cited works, where SEN represents
the successful melanoma identification rate and SPE the successful identification of the other
class. Since this is an unbalanced problem, BAC is also used.

These results encompass two main classification experiments (target classes), both executed
applying 10-fold Cross Validation (CV). The first experiment, refers to melanoma classification
against nevus samples (MvsN), while the second experiment performs the classification of
melanoma versus all other skin lesion types (MvsAll).

The learning process was run for seven epochs in all executions, aiming for approximately
500 dataset passes through the model, as each epoch comprises 72 random rotation of each
sample. In the model extensions configuration the following four different batch sizes were
used for the model: 20, 40, 60 and 80.

The remainder content of this section is organized as follows: Firstly, the used data and the
used target classes partitioning is described. Secondly, a description of the parametrisation
selection of the final model is performed. Finally, the achieved results with the selected
parameters are discussed and compared to the current state-of-the-art.

Dataset The pipeline was evaluated using the publicly available SKINL2 dataset, as previ-
ously described in Section 5.1.5-Dataset.

Parameter Selection

Before any final results can be extracted and compared with the state-of-the-art, the model
parameters must be adjusted to the dataset and image data. Three parameter configurations
need to be discussed: coefficients order (i.e. either first or second order coefficients), target size
of resized images and model batch size. To understand the influence of the coefficient order
and the image size on the data components, the results for the more balanced MvsN dataset
is first analysed. Table 5.3 depicts the average BAC results for the image size parameter in
each data dimension when using either the first- or second-order coefficients. BAC values are
the averaged results obtained by the different batch sizes.

As can be seen in Table 5.3, the best average BAC performance in each coefficient order
(marked in boldface) is achieved by the intermediate image size of 64×64 pixels, with 81.25%

and 68.30% BAC performance in the first-order, for RGB and depth respectively, and 82.89%

and 67.01% in the second order results. The higher performance in the intermediate image
size is expected because using the smaller 32 × 32 image size removes too much information
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Table 5.3: Average BAC for each image resize and for 1st and 2nd order coefficients, over the possible
data components - MvsN experiment.

Order Image Size Data Components
RGB Z

1st

32 × 32 78.08 64.29
64 × 64 81.25 68.30

128 × 128 79.32 65.67

average 79.55 66.09

2nd

32 × 32 77.48 58.28
64 × 64 82.89 67.01

128 × 128 76.36 59.87

average 78.24 61.72

due to the down-sampling. However, using a larger 128×128 image size slightly decreases the
classification performance as the model quickly overfits on more detailed features provided by
the WS framework during the training on this small dataset.

Table 5.3 also allows to analyse the average performance, for all images sizes and batch sizes,
(marked in italics) for the two different coefficient orders. The best average result is obtained
for the first-order coefficients with 79.55% and 66.09%, for RGB and depth respectively,
against 78.24% and 61.72% BAC when using second-order coefficients.

The results shown in Table 5.4 for the MvsAll experiment were obtained under the same test
conditions. In this case, the best average BAC is not achieved for the same image size. Yet,
the different results obtained for each image size allows to observe that 64 × 64 offers the
best compromise in both coefficient orders. For example, in the first-order coefficient results,
selecting 128 × 128 instead of 64 × 64, causes an improvement of 1.3pp in the Z average BAC,
while for the RGB the performance drops 3.28pp. Therefore, 64×64 is preferred, favouring the
RGB classification. This analysis also works for the second-order coefficients. If the 32 × 32

image size is selected instead of the 64×64, the average BAC for Z improved by 0.15pp, while for
RGB it drops 7.88pp. Therefore, 64×64 is preferred, also favouring of the RGB classification.

Similarly to the image size, the best coefficient order for the MvsAll experiment is not an
obvious choice. Resorting to the same rationale as in MvsN, in Table 5.4 the best average BAC
across image and batch size (marked in italics) is obtained by the second-order coefficients
with 71.73% and 61.86%, for RGB and Z respectively, against 69.59% and 59.92% for the first-
order coefficients. This can be partially explained due to the added variability in the dataset
comprising the MvsAll experiment. In this case, there are seven different skin lesion types,
instead of only two, creating a broader view of the classification problem and, consequently,
requiring more detailed features, as present in second-order coefficients. The difficulty in
selecting the best parameters in the case of the MvsAll experiment is probably due to the fact
that in this experiment classes are even more imbalanced than in MvsN.
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Table 5.4: Average BAC for each image resize and for 1st and 2nd order coefficients over the possible
data components - MvsAll experiment.

Order Image Size Data Components
RGB Z

1st

32 × 32 68.60 56.99
64 × 64 71.73 60.71

128 × 128 68.45 62.05

average 69.59 59.92

2nd

32 × 32 66.67 62.50
64 × 64 74.55 62.35

128 × 128 73.96 60.71

average 71.73 61.86

From these comparisons, it is safe to conclude that a good compromise in terms of the aver-
age BAC metric performance is achieved when configuring the image size as 64 × 64, using
first-order coefficients for the MvsN experiment and second-order coefficients for the MvsAll
experiment.

The batch size for each experiment can also be determined following the same approach. Since
these experiments contain different amounts of data samples, 50 for MvsN and 98 for MvsAll,
it is expected that the preferred batch size will also differ in a similar ratio. Resorting to a
box and whisker plot, Fig. 5.7a depicts the average BAC metric-value for the different batch
sizes in MvsN independently of the image size, the coefficient order, and the use of either
RGB or depth data. As before, looking for the average best performing metric value sets the
best batch size as 40 with 75.30% BAC average performance.
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Figure 5.7: Box-plot of BAC (with data points) for the different batch sizes in (a) MvsN and (b)
MvsAll across the remaining parametrisation options.

A similar analysis is performed for the MvsAll experiment, as depicted in Fig. 5.7b. In this
figure, box-plot data-dispersion appears smaller than in Fig. 5.7a, most likely due to the
increase in the dataset size. Starting from the left, MvsAll results appear initially similar
to MvsN: a compact spread at batch size 20; an average improvement peaking at 40 with
some data points polling down the average performance; then starting to lose performance
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Table 5.5: Proposed Morlet-based Method Results.

Dataset Method ACC SEN SPE BAC

MvsN Baseline (RGB) 68.00 21.43 86.11 53.77
Proposed (RGB) 84.00 78.57 86.11 82.34
Proposed (Z) 74.00 50.00 83.33 66.67
Proposed (RGBZ) 94.00 92.86 94.44 93.65

MvsAll Baseline (RGB) 73.47 14.29 83.33 48.81
Proposed (RGB) 86.73 50.00 92.86 71.43
Proposed (Z) 85.71 14.29 97.62 55.95
Proposed (RGBZ) 89.80 78.57 91.67 85.12

Baseline: as in Hosny et al. (2019)

at batch size 60. In opposition, the average BAC performances rise again to a new peak
at batch size 80, providing a even better average performance as well as a more compact
behaviour than with 40. This is expected since the amount of data samples is almost twice
in the MvsAll experiment than in the MvsN. Thus, the selected batch size for the MvsN and
MvsAll experiments are 40 and 80, respectively.

Results

Using the parameters defined just above, that is: image size of 64× 64; first-order coefficients
and batch size 40 for the MvsN experiment; and second-order coefficients and batch size 80

for MvsAll – the proposed model achieves the results depicted in Table 5.5. These results were
obtained using RGB and Z (depth) components individually, Proposed (RGB) and Proposed
(Z) respectively, and with all components, Proposed (RGBZ). The results are also compared
to the state-of-the-art method in Hosny et al. (2019), named Baseline (RGB), providing
classification results for both experiments (MvsN and MvsAll). This classification method
was selected as baseline since it performs comparisons with three well-known 2D datasets
and outperforms other 11 state-of-the-art algorithms. Averaging across the three datasets
mentioned in its’ work, this method reports a 96.8% ACC performance when using data
augmentation and 88.9% when not using it. At the time of writing this thesis, to the author’s
knowledge, there are no other works published by other authors resorting to the SKINL2
dataset, which could be used for comparison.

Using the dataset employed in this work (SKINL2), the baseline method provides a 68.00%

and 73.47% ACC performance with 53.77% and 48.81% BAC for the MvsN and MvsAll
experiments, respectively. While the ACC increases in the MvsAll experiment (which has
48 additional samples in comparison with MvsN), it is important to point-out that the SEN
metric decreases by 7.14pp even though the number of melanoma samples is the same (14) in
both experiments. This decrease represents the misclassification of one additional melanoma,
identifying only 3 out of 14 in the MvsN experiment and 2 out of 14 in MvsAll. The SPE
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metric is not comparable since the amount of samples differs between these experiments.
Across the 10-fold CV, the baseline method correctly identifies 31 out of 36 nevus in the first
experiment, and 70 out of 84 non-melanoma lesions in the second experiment.

As can be seen in Table 5.5 for the MvsN experiment, the proposed approach (Proposed
(RGBZ)) achieves 94.00% ACC and 93.65% BAC, an increase of 26.00pp and 39.88pp, re-
spectively, when compared to the Baseline (RGB) method. This improvement comprises the
utilisation of both RGB and depth components. If only the RGB data dimension is used, the
proposed pipeline achieves only 84.00% ACC and 82.34% BAC, 10.00pp and 11.31pp lower
than the results achieved when using both components, respectively. Also, the use of only the
depth component does not perform as well as using RGB component, however its performance
is still superior than the baseline method for all metrics, except for SPE.

As expected, the combined use of both RGB and depth components surpasses the individual
usage of only one of them, allowing to infer that the depth component owns discriminative
power not present in RGB. For instance, exploring the label predictions performed by the sep-
arate RGB and Z models, it is clear that two melanoma samples, which are correctly classified
using depth, are not correctly classified when using RGB only. Getting the two components
together in the new model (RGBZ) also allows the prediction of the other two melanoma
samples, which were wrongly classified using only RGB components, thus supporting the as-
sumption that the skin lesion surface has potential to improve the discrimination between
melanoma and nevus.

For the experiment MvsAll, the results achieved by the proposed pipeline are also shown in
Table 5.5, where Proposed (RGBZ) attains 89.80% ACC and 85.12% BAC, an increase of
16.33pp and 36.31pp respectively, when compared to the Baseline (RGB) method. Like in the
MvsN experiment, this increase corresponds to the use of both RGB and depth components.
When using the RGB component alone, the proposed approach achieves only 86.73% and
71.43%, that is 3.07pp and 13.69pp lower than the Proposed (RGBZ) results, although still
superior than using the Baseline (RGB) method.

If the method uses only the depth component, similarly to the case of MvsN, the results are
also lower than the Proposed (RGBZ) results, yet still superior to the Baseline (RGB) results
for all metrics. In this MvsAll experiment, however, the data imbalance is greater than in
MvsN. Incorrect melanoma classifications almost go unnoticed by the ACC metric since, for
instance, a classification of all data as non-melanoma image samples immediately achieves
85.71% ACC. Nevertheless, this would be noticeable because the BAC metric would only
achieve 50.00%. This means that, although the proposed RGBZ method achieves a similar
ACC performance, the total number of melanoma-misclassification is lower, because the BAC
performance is 85.12%, accounting for 78.57% SEN in this case. This corresponds to the
correct classification of 11 out of 14 melanoma samples, nine more than the Baseline (RGB).

— 130 —



5.2. MELANOMA CLASSIFICATION WITH MORLET SCATTERING TRANSFORM

In this section, all comparisons with the baseline classification method have shown that the
proposed approach provides superior performance results. Accordingly, this can be seen as an
indirect benchmark comparison of the proposed method with the works compared in Hosny
et al. (2019) and other works that resorted to the same dataset and metrics. In essence,
since the baseline method reports results superior to 10 other works, it is expected that the
proposed approach could also show results superior to the mentioned works, if they were to
be applied to the SKINL2 dataset. This hypothesis may be further extended to other works
like Pereira et al. (2020b); Tang et al. (2020); Barata et al. (2018); Pathan et al. (2018);
Hagerty et al. (2019)), that use the same datasets and metrics as the baseline method.

In addition to the discussed results, it is worthwhile to mention some studies that compare
the results of computational models with human classification of skin lesions performed by
specialists, i.e. dermatologists. This is the case, for instance of Esteva et al. (2017); Marchetti
et al. (2018); Haenssle et al. (2018); Brinker et al. (2019), where the SEN and SPE are
evaluated and compared. In Brinker et al. (2019), these comparisons were carried out in
regard to the task of performing MvsN classification, involving 157 dermatologists that span
across 12 German university hospitals. The test dataset used in this experiment comprises 20
melanomas and 80 nevi randomly selected from the ISIC dataset. Indirectly, this enables the
comparison of the proposed approach with the results obtained from the 157 dermatologists. A
mean of 74.1% for SEN and 60% for SPE was achieved by the dermatologists with dermoscopic
images. This is inferior to the performance reported in Table 5.5 for the proposed RGBZ
approach, which provides an additional 18.76pp in SEN and 34.44pp in SPE. Furthermore, in
Marchetti et al. (2018) and Haenssle et al. (2018), respectively, 8 and 58 dermatologists have
also participated in a similar study on another set of 100 images, obtaining 82% and 86.6%

for SEN, and 59% and 71.3% for SPE. Again, on average, the proposed approach outperforms
these classification results obtained by specialists.

Although the results obtained in Table 5.5 cannot be directly compared with the studies cited
above, they establish a valuable reference for the expected classification performance made
by specialists in the same MvsN dataset. Therefore, it is possible to infer that, on average,
the proposed Morlet Scattering approach would outperform the human-based classification.

5.2.4 Conclusions

Currently, even with DL methods, discrimination of melanoma remains a challenging problem
and current systems are yet to achieve satisfactory sensitivity performances. Rather than
continuously attempting to improve algorithms by using the same data as commonly used by
dermatology experts, other dimensions and modalities (as the skin lesion 3D surface) should
be explored. In order to go beyond current state-of-the-art results, more reliable solutions
might include merging 2D data together with other dimensional aspects, such as surface,
which has potential to provide extended melanoma discrimination capabilities.
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Taking advantage of the recently introduced technology of the light-field cameras, the main
contribution of this section, apart from the proposed pipeline, is the evaluation of the skins’
3D surface data as an alternative data modality when performing melanoma classification, as
well as its comparison to current state-of-the-art results. This is done resorting to a recent
dataset of multi-dimensional imaging, which was specifically acquired for this goal. Since the
data originates from light-field imaging, every image-pixel data comprises both dimensions,
enabling the creation of the proposed pipeline, which operates in a comparable setting.

Despite the large class imbalance (often present in medical image datasets) and limited data
samples, the attained classification results appear to surpass the sensitivity and specificity
to discriminate melanomas from nevi, not only of the state-of-the-art algorithms, but also of
human specialists. In the proposed approach pipeline (RGBZ ), the melanoma discrimination
against nevus was achieved with 94.00% ACC (comprising 92.86% SEN and 94.44% SPE)
when combining 2D data with depth, a 26.00pp ACC increase in relation to the state-of-the-
art baseline method. In a similar setting, for the discrimination of melanomas against all other
available skin lesions, the proposed approach achieved 89.80% ACC (comprising 78.57% SEN
and 91.67% SPE), an increase of 16.33pp relative to the state-of-the-art baseline method.

The experimental assessment allows to conclude that image classification problems, including
melanoma skin lesion classification, can be further improved by including 3D information,
such as surface depth data.

5.3 Summary

This chapter focused on using the SKINL2 dataset to propose two approaches that go beyond
the current state-of-the-art 2D results by jointly exploiting the characteristics of both tex-
ture/colour and surface of skin lesions, while defining a user-accessible segmentation method.

The first approach comprises a model of two competing classification methods, which were
combined using an uncertainty-aware decision function. The methods either classify 2D/colour
information or, if uncertain of the classification label, classify 3D/surface data. Despite the
large class imbalance, the ensemble model achieves high cross-validated melanoma classifica-
tion accuracy. The results showed that, in the absence of discriminative 2D characteristics,
the 3D surface provides redeeming results, demonstrating that improvement of the existing
methods is possible when looking beyond 2D image characteristics.

The second approach proposes a processing pipeline which uses a Morlet Scattering Transform
for feature extraction and a CNN model for classification, while also allowing to perform
a comparison between using only 2D information, only 3D information, or both. Results
showed that discrimination of melanoma achieved higher results when both 2D and 3D are
used together. Overall the results of this section demonstrate significant improvements over
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conventional approaches.

Expanding on the presented concepts, further research can be done in the field of skin lesion
image classification to either improve existing methods that lack in performance or refine
existing top performers, as shown in this research. Thus, future works should aim to enlarge
existing datasets and acquisition modalities to enable the emergence of features specifically
tailored for skin lesion detection and classification.
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S kin lesion detection and decision making are very sensitive matters that require the
intervention of experts such as dermatologists and pathologist. However, with recent

advances on computer vision applications and systems, new tools have been developed to
aid the decision-making process and even perform screening where the attention of a medical
professional cannot be easily reached.

Early detection of suspicious PSL has a determinant role in clinical prognosis. One of the
main issues with melanoma (skin cancer) detection is that it can also be visually similar to
other skin abnormalities. Therefore, several techniques have been studied to develop reliable
systems that aim to assist in the clinical diagnosis decision. This thesis addresses this issue by
exploring existing methods from the literature and by creating new methods and approaches
to advance this research field.

This chapter recaps the covered issues and the highlights addressed in this document.

6.1 Synthesis

The first set of contributions was presented in Chapter 3 describing two segmentation algo-
rithms developed for different objectives. Works on skin lesion segmentation generally aim
at round-like dermatology-expert delineation, since these are the available ground-truths that
accompany public datasets. Hence, the first segmentation algorithm was created to tackle
this problem by assuming that skin lesions can be represented by bi-model histograms of two
dominant peaks and by finding the optimal gradient in which the segmentation would pro-
vide such peak separation. Then, in order to extract more detailed information of the skin
border, a second segmentation algorithm was developed with the aim of finding more realis-
tic borders. These two algorithms were compared against several methods described in the
literature, and showed that, overall, the proposed segmentation methods were capable of out-
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performing the state-of-the-art ones. Additionally, in preparation for the following research
tasks, an experimental approach was created to validate the importance of the previously
created segmentation masks by extracting features from them for the purpose of melanoma
classification.

A second set of contributions was introduced in Chapter 4, which extended the previous
knowledge on 2D images to the acquired 3D (light-field) dataset. The proposed approaches
focus on providing evidence that images comprising the created dataset have relevant depth
information for melanoma discrimination and classification by exploiting the 3D characteris-
tics of the skin lesion surface. This was performed by combining existing algorithms with new
techniques that exploit the new 3D information, clearly improving the classification perfor-
mance. As an extension of the previous contributions, depth information along detailed lesion
borders was also evaluated, showing that such information is still relevant for the classification
process.

Finally in Chapter 5, the previous contributions were gathered to create two approaches for
melanoma discrimination in light-field images of skin lesions. These methods exploit the
characteristics of both texture/colour and the surface of skin lesions. The achieved results
showed that, in the absence of discriminative 2D characteristics, the 3D surface provides
redeeming results. In fact, discrimination of melanoma achieved higher results when both
2D and 3D are used together, demonstrating significant improvements over conventional 2D
approaches.

6.2 Summary of Scientific Contributions

The core of this thesis is based on the developments associated to the identification and classi-
fication of skin lesions, with the particular scope of discriminating melanomas using light-field
images. The major objectives included the research and development of new feature extraction
algorithms and classification approaches, which would improve the state-of-the-art associated
with melanoma skin lesions. To this end, a dataset of light-field images featuring melanocytic
skin lesions was created and made publicly available aiming to increase the research in this
area, at national and international level. Additionally, research and evaluation of different
melanoma detection approaches using computer-based algorithms capable of differentiating
melanoma from non-melanoma were proposed using the created dataset.

Working towards the goals established in Chapter 1, the work presented in this thesis resulted
in the following contributions:

Contribution 1: Segmentation approaches
This contribution is presented in Sections 3.1 and 3.2 with the proposal of the GHT and
LBPC segmentation methods (published in Pereira et al., 2019b,a). These proposals
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target the generation of segmentation masks as dermatologists do (using visual colour
gradients), as well as the extraction of detailed border-line definitions of the lesion
border. In addition, Section 3.2 presents a comparison of the LBPC algorithm with
other 39 segmentation algorithms, across three datasets and five performance metrics,
setting a baseline of comparisons for future studies. This algorithm and study was
published in Pereira et al. (2020a).

Contribution 2: Assessment of segmentation-detail importance for classification
This contribution is presented in Sections 3.4 and 4.3, and published in Pereira et al.
(2020b) and in Pereira et al. (2021d). Previously, lesion border detail was not well
expressed in the literature as a means of classification. With this research, evidence
emerged confirming that segmentation-details can contribute to melanoma discrimina-
tion.

Contribution 3: Creation of a light-field dataset of skin lesions
The creation of a new dataset, with a new acquisition method and new data dimension,
is also a relevant contribution, as presented in Section 4.1 (and published in Faria et al.,
2019c,a), since it enables further advancements in the field of skin lesion classification
by using light-field technology (Faria et al., 2019b).

Contribution 4: Show the discriminative power of skin surface for classification
This contribution is related with the approaches proposed in Sections 4.2 and 4.3. It is
also evident in Sections 5.1 and 5.2, where the inclusion of features extracted from the
depth dimension increase the classification metric performance (as expressed in Pereira
et al., 2021c,d,b,a).

Finally, in addition to the experience gained, various journal articles and conference papers
were submitted and published during this research as a result of the targeted goals. The
following is a list of all scientific publications and presentations performed during the devel-
opment of this work:

• Pereira, P. M. M., Fonseca-Pinto, R., Paiva, R. P., Assuncao, P. A. A., Tavora, L.
M. N., Thomaz, L. A., and Faria, S. M. M., Dermoscopic skin lesion image segmenta-
tion based on Local Binary Pattern Clustering: Comparative study, Biomedical Signal
Processing and Control, vol.59, pp.1–12, 2020.

• Pereira, P. M. M., Fonseca-Pinto, R., Paiva, R. P., Assuncao, P. A. A., Tavora, L. M.
N., Thomaz, L. A., and Faria, S. M. M., Skin lesion classification enhancement using
border-line features – The melanoma vs nevus problem, Biomedical Signal Processing
and Control, vol.57, pp.1-8, 2020.

• Pereira, P. M. M., Thomaz, L. A., Tavora, L. M. N., Assuncao, P. A. A., Fonseca-
Pinto, R., Paiva, R. P., and Faria, S. M. M, Multiple Instance Learning using 3D
Features for Melanoma Detection, IEEE Journal of Biomedical and Health Informatics,
–, pp.–, Q1, 2021 (submitted).

• Pereira, P. M. M., Thomaz, L. A., Tavora, L. M. N., Assuncao, P. A. A., Fonseca-
Pinto, R., Paiva, R. P., and Faria, S. M. M., Melanoma Classification using Light-Fields
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with Morlet Scattering Transform and CNN: surface depth as a valuable tool to increase
detection rate, Medical Image Analysis, Special Issue on Image Analysis in Dermatology,
–, pp.–, 2021 (submitted).

• Pereira, P. M. M., Tavora, L. M. N., Fonseca-Pinto, R., Paiva, R. P., Assuncao, P. A.
A., and Faria, S. M. M., Image Segmentation using Gradient-based Histogram Thresh-
olding for Skin Lesion Delineation, 12th International Joint Conference on Biomedical
Engineering Systems and Technologies, vol.2, pp.84-91, Prague, Czech Republic, Febru-
ary, 2019.

• Pereira, P. M. M., Fonseca-Pinto, R., Paiva, R. P., Tavora, L. M. N., Assuncao, P. A.
A., and Faria, S. M. M., Accurate Segmentation of Dermoscopic Images based on Local
Binary Pattern Clustering, 42nd International Convention on Information and Com-
munication Technology, Electronics and Microelectronics, pp.314-319, Opatija, Croatia,
February, 2019.

• Faria, S. M. M., Santos, M., Assuncao, P. A. A., Tavora, L. M. N., Thomaz, L. A.,
Pereira, P. M. M., Fonseca-Pinto, R., Santiago, F., Dominguez, V., and Henrique,
M., Dermatological Imaging using a Focused Plenoptic Camera: the SKINL2 Light Field
Dataset., Conference on Telecommunications, pp.1-4, Lisbon, Portugal, June, 2019.

• Faria, S. M. M., Filipe, J. N., Pereira, P. M. M., Tavora, L. M. N., Assuncao, P.
A. A., San-tos, M. O., Fonseca-Pinto, R., Santiago, F., Dominguez, V., and Henrique,
M., Light Field Image Dataset of Skin Lesions, 41st Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, pp.3905-3908, Berlin, Germany,
July, 2019.

• Pereira, P. M. M., Thomaz, L. A., Tavora, L. M. N., Assuncao, P. A. A., Fonseca-
Pinto, R., Paiva, R. P., and Faria, S. M. M., Skin Lesion Classification using Bag-of-
3D-Features, Conference on Telecommunications, pp. 1-6, Leiria, Portugal, February,
2021.

• Pereira, P. M. M., Thomaz, L. A., Tavora, L. M. N., Assuncao, P. A. A., Fonseca-
Pinto, R., Paiva, R. P., and Faria, S. M. M. Skin lesion classification using features
of 3D border lines, 43rd Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, pp.1-6, Guadalajara, Mexico, October, 2021.

• Pereira, P. M. M., Dermo-Plenoptic Imaging for Skin Surface Assessment, Presented
at Encontro Ciência, Lisbon, Portugal, 2018.

• Pereira, P. M. M., Melanoma Detection based on Light-Field Imaging, Presented at
Encontro Ciência, Lisbon, Portugal, 2018.

• Pereira, P. M. M., Skin Lesion Classification using Light-Field Imaging, Presented at
Medical Imaging Summer School - Medical Imaging Meets Deep Learning, Favignana,
Sicily, 2018.
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6.3 Future Directions

Many different experiments and validations have been left for the future due to constraints
of time and data availability. Future work can be focused on the expansion of the current
dataset and the development of acquisition methods for other untapped dimensions.

Short-term Perspectives

Continuing with the research made in this thesis, future work can look for more detailed
methods for skin surface extraction from light-field imaging. This is possibility since ex-
tracted depth originated from the proprietary Raytrix software. This software is not open
source, thus hindering possible improvements and adaptations focused on the skin lesion do-
main characteristics. The added detail provided from such improvement might unveil new
skin characteristics and enhance the currently proposed methods. As an example of an im-
provement, future work could take into account the existence of hairs and, therefore, exclude
such information from depth maps (by filling the hair regions with surrounding skin projected
from other view angles), while developing a specialised skin surface extraction method.

The SKINL2 dataset, introduced in this thesis, must remain publicly available, such that
future research can be built upon the proposed methods and new proposals can be developed.
It is also relevant that the dataset continues to grow, not only to improve future classification
results, but also to ease the current implementation constraints (in terms of data imbalance
and quantity), and thus allow better modelling of testing and validation.

Long-term Perspectives

Having concluded that the skin surface has relevant information when aiming to perform skin
lesion classification, future work can consider looking deeper than the skin surface whilst still
maintaining the portability and simplicity of the acquisition setup. This generally overlooked
dimension would help dermatologists, as it provides a new source of information that, included
in CAD systems, would allow to perform better informed judgements. Additionally, such
dimensional information would enable research on deep-skin structures, with the potential of
allowing better discrimination of existing types of skin conditions.

Construction of 3D models of deeper layers of the skin might enable the analysis of the lesions’
3D structures and the mapping of skin lesion structures to particular layers of the skin. This
would automatically exclude certain diagnosis and allow to focus algorithms in particular skin
lesion cases that can only occurs at such depths.
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