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ABSTRACT 

This research work addresses the problem of music emotion recognition using audio 
signals. Music emotion recognition research has been gaining ground over the last two 
decades. In it, the typical approach starts with a dataset, composed of music files and 
associated emotion ratings given by listeners. This data, typically audio signals, is first 
processed by computational algorithms in order to extract and summarize their charac-
teristics, known as features (e.g., beats per minute, spectral metrics). Next, the feature 
set is fed to machine learning algorithms looking for patterns that connect them to the 
given emotional annotations. As a result, a computational model is created, which is 
able to infer the emotion of a new and unlabelled music file based on the previously 
found patterns. 

Although several studies have been published, two main issues remain open and are 
the current barrier to progress in field. First, a high-quality public and sizeable audio 
dataset is needed, which can be widely adopted as a standard and used by different 
works. Currently, the public available ones suffer from known issues such as low quality 
annotations or limited size.  Also, we believe novel emotionally-relevant audio features 
are needed to overcome the plateau of the last years. Supporting this idea is the fact that 
the vast majority of previous works were focused on the computational classification 
component, typically using a similar set of audio features originally proposed to tackle 
other audio analysis problems (e.g., speech recognition). Our work focuses on these two 
problems. 

Proposing novel emotionally-relevant audio features requires knowledge from sev-
eral fields. Thus, our work started with a review of music and emotion literature to 
understand how emotions can be described and classified, how music and music dimen-
sions work and, as a final point, to merge both fields by reviewing the identified relations 
between musical dimensions and emotional responses. Next, we reviewed the existent 
audio features, relating them with one of the eight musical dimensions: melody, har-
mony, rhythm, dynamics, tone color, expressive techniques, musical texture and musical 
form. As a result, we observed that audio features are unbalanced across musical dimen-
sions, with expressive techniques, musical texture and form said to be emotionally -rele-
vant but lacking audio extractors. 

To address the abovementioned issues, we propose several audio features. These 
were built on previous work to estimate the main melody notes from the low-level audio 
signals. Next, various musically-related metrics were extracted, e.g., glissando presence, 
articulation information, changes in dynamics and others. To assess their relevance to 
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emotion recognition, a dataset containing 900 audio clips, annotated in four classes 
(Russell’s quadrants) was built.  

Our experimental results show that the proposed features are emotionally-relevant 
and their inclusion in emotion recognition models leads to better results. Moreover, we 
also measured the influence of both existing and novel features, leading to a better un-
derstanding of how different musical dimensions influence specific emotion quadrants. 
Such results give us insights about the open issues and help us define possible research 
paths to the near future.  

 

 

Keywords: audio music emotion recognition, music information retrieval, emotionally-
relevant audio features, musical texture, expressive techniques, bi-modal approaches, 
music and emotion; 
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RESUMO 

Este trabalho aborda o tema do reconhecimento emocional em música utilizando sinais 
áudio polifónicos. A área do reconhecimento de emoções em música tornou-se um foco 
de estudo nas últimas duas décadas. Nesta área, a abordagem típica começa com um 
conjunto de dados e respectivas anotações emocionais geradas por ouvintes. Estes dados, 
sendo a forma mais comum os sinais áudio, são primeiro processados por algoritmos 
computacionais para extracção de informação sobre os mesmos (e.g., batidas por minuto 
ou métricas de energia). De seguida, o conjunto de características extraídas é analisado 
por algoritmos de aprendizagem computacional, identificando padrões que associam as 
mesmas às diferentes emoções associadas. O resultado final é um modelo que utiliza as 
regras aprendidas para identificar a emoção numa nova música ainda desconhecida. 

 Embora vários investigadores tenham abordado o tema, consideramos que existem 
dois problemas principais que se mantêm em aberto e contribuem para a falta de pro-
gresso nesta área. Primeiro, faltam conjuntos de dados de qualidade, tamanho conside-
rável e livre acesso que sejam adoptados como testes-padrão deste ramo de investigação 
e assim facilitem a comparação de trabalhos. Para além disso, e não menos importante, 
são necessários novos algoritmos computacionais capazes de extrair do sinal áudio carac-
terísticas musicais emocionalmente relevantes. Na base desta ideia, está o facto de a 
grande maioria dos trabalhos anteriores ser mais focada na componente de classificação 
computacional, limitando-se durante a extracção de características a utilizar algoritmos 
criados para outros problemas (e.g., reconhecimento de fala). Este trabalho tem como 
principal objectivo o de atacar estes problemas. 

A extracção de características emocionalmente relevantes a partir de sinais áudio 
requer um conhecimento sólido em diversas áreas. Assim, este trabalho começou com 
uma revisão da literatura nas áreas da música e da emoção. Estas serviram de base para 
perceber os diferentes paradigmas na classificação de emoções, as várias componentes e 
dimensões musicais e identificar as relações que são conhecidas entre dimensões musi-
cais e respostas emocionais específicas. De seguida, foram analisados vários dos algorit-
mos computacionais existentes para extracção de características de áudio, associando 
cada um destes com uma das oito dimensões musicais possíveis: melodia, harmonia, 
ritmo, dinâmica, timbre (ou tom da cor), técnicas de expressividade, textura e forma. 
Como resultado, verificámos que dimensões como a textura e forma musical ou técnicas 
de expressividade são apontadas como relevantes emocionalmente mas poucos são os 
algoritmos que tentam capturar alguma desta informação. 

De forma a mitigar esta lacuna, foram propostos vários algoritmos para extrair ca-
racterísticas musicais. Estas começam por utilizar trabalho anterior, transformando o 
sinal áudio numa estimativa das notas que representam a melodia principal. Através 
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destas, são extraídas diversas métricas, e.g., presença de glissando, informação sobre arti-
culação, variações de dinâmica, entre outras. Para avaliar a influência destas no reconhe-
cimento emocional, foi criado um conjunto de dados de 900 excertos musicais anotados 
em quatro classes (quadrantes) e devidamente balanceados. 

Os resultados experimentais demonstram que a adição das características propostas 
melhora a classificação de forma estatisticamente significativa. Além disso, foi também 
medida a influência das várias características, levando a uma melhor compreensão de 
como as diferentes dimensões musicais influenciam estados emocionais específicos. Es-
tas permitem traçar alguns caminhos para investigação futura, uma vez que o problema 
do reconhecimento emocional em música está longe de estar resolvido. 
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Chapter 1  
 
INTRODUCTION 

usic is engrained in our history since the beginning of humankind, always 
present in our lives, serving a myriad of purposes both socially and individu-
ally. It has been present in fields as diverse as religion, sports, health or war. 
Across different religions, it has the power to help believers pray and experi-

ence the transcendental; in sports and during physical exercise, it is used to motivate 
athletes and improve performance, or mark a specific exercise cadence; connected to the 
celebration of life events, from birthdays to weddings and funerals or in specific occa-
sions such as Halloween, Thanksgiving, Bar Mitzvah or Christmas Eve; in the entertain-
ment and health fields, music helps listeners to relax, creating pleasurable moments and 
changing our mood; even in war scenarios, for instance with percussion instruments to 
guide marching soldiers or instigate fear and tension in the enemy. Music is a universal 
form of communication used all over the world, across civilizations and over distinct 
epochs, conveying emotions and perceptions to the listeners, which may vary between 
cultures and civilizations.  

Nowadays, music is all around us, in advertisement, at our homes and cars via tele-
vision and radio, at the gym, elevators and supermarkets. Unsurprisingly, it plays a big 
role in the world economy. The music distribution industry has received a tremendous 
impulse as a result of technological innovations in the last decades. Factors like the 
widespread access to the Internet, bandwidth increasing in domestic and mobile accesses 
or the generalized use of compact audio formats, such as mp3, and streaming services, 
such as Spotify and YouTube, have contributed to that boom.  

As an indication of this fact, in the USA, the music industry runs billions of US 
dollars per year. As an example, in 2005 it was estimated that Apple iTunes sold approx-
imately 1.25 million songs everyday (TechWhack.com, 2005), achieving a total of over 
6 billion songs sold by the end of 2008 (Schonfeld, 2009). At the time, over 10 million 
songs were available in the iTunes library (Schonfeld, 2009). In 2011 this number rose 
to 28 million, with the same service also providing videos and applications. In the first 
quarter of 2011 alone, iTunes store’s revenues totaled a record sum of nearly US$1.4 
billion (Dilger, 2011), surpassing the barrier of 16 billion songs sold by October, 2011 
(Melanson, 2011). Also in Portugal, music shows sold 30 million euro in tickets, in 2007 
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(Lusa, 2009). In 2017, digital music revenues rose to US$7.8 billion, now accounting 
for 50% of the global music revenues, while the global recorded music market grew by 
5.9%. According to the International Federation of the Phonographic Industry, this 
growth in revenues has been fueled “through ongoing investment, not only in artists, 
but also in the systems supporting digital platforms, which has allowed for the licensing 
of over 40 million tracks across hundreds of services” (IFPI, 2017). In the last years, we 
have witnessed the widespread massification of very fast wired and wireless broadband, 
where users with smartphones are always connected. As a result, the digital distribution 
paradigm has been moving from buying and downloading songs to streaming directly 
from massive online services, such as Spotify, Apple Music, Google Play Music, Amazon 
Music Unlimited and even YouTube. As an example, in the second quarter of 2018 
Spotify hit 83 million premium subscribers and a total of €1.27 billion in revenue 
(Schneider, 2018), while Apple Music surpassed the 50 million subscribers (including 
free trials) (Variety, 2018) becoming a US$10 billion business (Duggan, 2018). 

This frenetic growth in music supply and demand uncovered the need for more 
powerful methods for the automatic retrieval of songs in a given context from such enor-
mous databases. In fact, any large music database, or, generically speaking, any multime-
dia database, is only really useful if users can find what they are seeking in an efficient 
manner. Furthermore, it is also important that the organization of such data can be 
performed as objectively and efficiently as possible (Paiva, 2006, p. 4). Currently, explor-
ing such music repositories is hindered by the available search methods, mostly based 
on manually added metadata information (e.g., artist, title, genre, album, year), which 
needs to be already known by the user. Additionally, the user can also rely on social -
based information, such as music tags defined by other users (e.g., in platforms such as 
Last.FM1, an online social music service), or by recommendations from friends, radio, 
and so on (e.g., user created playlists or thematic radios in Spotify). 

Hence, the necessity of new, more advanced tools, providing new capabilities for 
easily searching and browsing large music collections based on the needs of specific in-
dividuals lead to the emergence of Music Information Retrieval (MIR) as a key research 
field (Schedl, Gómez, & Urbano, 2014). MIR is a relatively recent research area that is 
gaining greater and greater awareness due to the present mentioned challenges. Several 
universities, research institutions and companies (e.g., Phillips, Sony, Gracenote, Fraun-
hofer, Echo Nest and Spotify) worldwide are investing on this field worldwide. Some 
popular commercial applications are already available today, e.g., Shazam2, based on 
music identification technologies.  

However, we must bear in mind that “music’s preeminent functions are social and 

                                                        
1 https://www.last.fm 
2 http://www.shazam.com/music/web/about.html 
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psychological”, and so “the most useful retrieval indexes are those that facilitate search-
ing in conformity with such social and psychological functions. Typically, such indexes 
will focus on stylistic, mood, and similarity information” (Huron, 2000). In this direc-
tion, studies on music information behavior have identified emotional content of music 
as “important criterion used by people in music seeking and organization” (Y.-H. Yang 
& Chen, 2011a, p. 2), an idea supported by 28.2% of the participants surveyed in (Lee 
& Downie, 2004). Moreover, users on Last.FM social music tagging website use emo-
tions as the third most frequent tag (after genre and locale) (Lamere, 2008). Such needs 
opened the door to the appearance of Music Emotion Recognition (MER) as a sub-area 
of MIR. This thesis aims, therefore, to offer novel contributions to address the current 
MER problems, as will be presented in the following sections. 

In this opening chapter, we present the motivation, objectives, results and main 
contributions of this research work, as well as the overall organization of the thesis. This 
chapter is structured as described in the following paragraphs. 

 

Section 1.1. Motivation and Scope 

We begin by introducing the motivation and scope of this work. The problem of music 
emotion recognition is presented and some of its research areas are described. The rele-
vance of applications of emotion recognition in music is then discussed. 

Section 1.2. Objectives and Approaches 

In the second section, we describe our main objectives and briefly introduce the em-
ployed approaches. 

Section 1.3. Results and Contributions 

Next, the main contributions accomplished with this work are summarized. The publi-
cations that resulted from this work are also listed and briefly described. 

Section 1.4. Thesis Outline 

Finally, we end this chapter with the structure of the document by briefly resuming each 
chapter. 
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1.1. Motivation and Scope 

As abovementioned, in recent years the growth rate of the electronic music delivery in-
dustry has been tremendous. It is expected that this frenetic growth will continue in the 
next years at an even higher rate as we move to a more global world each day. This 
demands more advanced, flexible and user-friendly search mechanisms, adapted to the 
requirements of individual users. In particular, methods relying on the emotional con-
tent of music play a significant role, providing much more refined methods for a better 
browsing and filtering of such databases. 

In the music information retrieval field, several works have already approached mu-
sic emotion synthesis and emotion analysis. From these, the first dealt with MIDI or 
symbolic representations (Katayose, Imai, & Inokuchi, 1988), while nowadays most 
tackle the problem of emotion detection in audio music signals. Presently, there is al-
ready a significant corpus of research works on different perspectives of MER, e.g., clas-
sification of song excerpts (Feng, Zhuang, & Pan, 2003; Laurier & Herrera, 2007; Y.-H. 
Yang, Lin, Su, & Chen, 2008), emotion variation detection (L. Lu, Liu, & Zhang, 2006), 
automatic playlist generation (Flexer, Schnitzer, Gasser, & Widmer, 2008), exploitation 
of lyrical information (Malheiro, Panda, Gomes, & Paiva, 2018), cross-cultural and 
cross-dataset works (Hu & Yang, 2017) and multimodal approaches (Panda, Malheiro, 
Rocha, Oliveira, & Paiva, 2013). 

Although this field has received increasing attention in recent years, limitations can 
be found and several problems are still open, since it still is a fairly recent research topic. 
Namely, the lack of a consensual and public dataset and the need to further exploit 
emotionally-relevant acoustic features. Most of the attention in recent studies has been 
on different perspectives, datasets and improved machine learning techniques while ap-
plying already existent audio features developed in other contexts, such as speech recog-
nition or music genre classification. Particularly, we believe that features specifically 
suited to emotion detection are needed to narrow the so-called semantic gap (Celma, 
Herrera, & Serra, 2006) and their lack hinders the progress of research on MER. More-
over, reality shows that the state-of-the-art solutions are still unable to accurately solve 
simple problems, such as classification with few emotion classes (e.g., four to five). This 
is supported by both existing studies (Y. E. Kim et al., 2010; X. Yang, Dong, & Li, 2017) 
and the small improvements observed in the 2007-2017 Music Information Retrieval 
Evaluation eXchange (MIREX) Audio Mood Classification (AMC) task3 results, an an-
nual comparison of MER algorithms. There, the best algorithm achieved 69.8% accuracy 
in a task comprising 5 categories4. Moreover, this score has remained stable for several 

                                                        
3 http://www.music-ir.org/mirex/ 
4 http://www.music-ir.org/mirex/wiki/2017:MIREX2017_Results. Moreover, as it will be discussed 

in Section 5.1, several limitations have been identified in this dataset. 

http://www.music-ir.org/mirex/wiki/2017:MIREX2017_Results


Chapter 1.   Introduction 5 

 

years, which calls for methods that help breaking this so-called “glass ceiling” (Celma et 
al., 2006). 

 

Besides its usefulness in the music distribution industry, the range of applications 
of music emotion recognition is wide and varied: 

 Emotion-based playlist generators and music selectors. Such tools could give the 
possibility for users exercising or instructors to choose what kind of tracks they 
would like to listen to, ranging from high tempo, fast songs to calm and relaxing 
songs, to be used in meditation sessions; 

 Advertisement, television and music industry. These areas could make use of 
these capacities to find songs that match a desired emotional context, instigat-
ing fear, anger, joy or captivating the attention;  

 Call center waiting music. Call centers that tend to have clients waiting in line 
listening to the same classical music excerpt over and over could now automat-
ically pick some more recent songs from alternative genres that would adjust to 
the objective of maintaining the costumer happily waiting;  

 Gaming industry. MER mechanisms would permit searching for the right sound 
to apply in specific moments to increase tension, mark a moment of happiness, 
anger, revenge and other similar emotions frequently present in games;  

 Health informatics. MER may also find applications in the clinical field, such 
as the motivation to compliance to sport activities prescribed by physicians, as 
well as stress management. 

 Personal use. Any regular person who, after an exhausting day wants some re-
laxing music, songs that will cheer him/her up after some sad events. 

1.2. Objectives and Approaches 

Overall, this study addresses the automatic analysis and classification of emotional con-
tent in musical pieces. Despite the broad range of opportunities of such a system, a 
satisfactory solution to the problem is yet to be discovered, probably with several years 
of research work ahead. During the last decade, the MIR field has gained substantial 
research interest. Still, research in music emotion recognition received less attention in 
part due to the subjectivity and ambiguity of the field. 

Previous work on the analysis and classification of emotion in music was based on 
solutions used successfully in other MIR areas, namely on other classification problems, 
such as genre classification. Over the years, several authors proposed solutions using 
classification and regression approaches (e.g., (Aljanaki, Yang, & Soleymani, 2017; Feng 
et al., 2003; Hu & Yang, 2014, 2017; L. Lu et al., 2006; Y.-H. Yang, Lin, Su, et al., 
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2008)). Most of these differed in the audio features and machine learning techniques 
employed, testing combinations proposed before in distinct fields such has music genre 
classification or speech recognition. Few have tackled what we believe to be, presently, 
one core problem: proposing novel and adequate emotion-related features and related 
strategies. As a consequence, the improvements in MER over the last years have been 
low. The best performing emotion classification system in MIREX’2007 achieved 
61.7%5 accuracy. In 2010, the best algorithm attained 64.2%6 accuracy and in 2011 
topped at 69.5%7. Until 2017 the best performing solution to this challenge obtained 
69.8%8, representing an improvement of 8.1% in ten years, with virtually no improve-
ment in the last six. Furthermore, in approaches based on continuous (rather than dis-
crete) models of emotions, a similar ceiling is present, with weak results particularly the 
“low accuracy of valence”, which is still “an unsolved problem in MER” (X. Yang et al., 
2017). 

Our main objective is then to offer contributions to narrow the semantic gap be-
tween the audio signal (and the usually extracted low-level audio features) and the high-
level cognitive/perceptual features, in this particular case perceived emotion.  

We start by presenting a thorough review of the literature. This comprehensive re-
view serves to: a) understand what emotions are and how can emotions be classified 
according to psychology research; b) recognize the main dimensions that relate and de-
fine music, according to musicology research; c) understand what relations have been 
found to exist between these musical dimensions and emotions; d) make a survey of the 
existent audio features implemented in state-of-the-art audio frameworks and how they 
relate to existent musical dimensions; e) summarize the existent MER approaches, un-
derstanding how they compare and their capabilities and limitations.  

Several of the analyzed studies identified relations between musical attributes and 
emotions states. Some of these musical characteristics associated with emotion are: ar-
ticulation, dynamics, harmony, interval, loudness, melody, mode, musical form, pitch, 
rhythm, timbre, timing, tonality and vibrato (Friberg, 2008; Gabrielsson & Lindström, 
2001; Juslin & Laukka, 2004; Juslin & Timmers, 2011; Laurier, Lartillot, Eerola, & 
Toiviainen, 2009). Some illustrative examples are: 1) major modes are frequently related 
to emotional states such as happiness or solemnity, whereas minor modes are often as-
sociated with sadness or anger (Gabrielsson & Lindström, 2001; Lindström, 2006); 2) 
simple, consonant, harmonies are usually happy, pleasant or relaxed. On the contrary, 
complex, dissonant, harmonies relate to emotions such as excitement, tension or sad-
ness, as they create instability in a musical motion (Juslin & Laukka, 2004). However, 

                                                        
5 http://www.music-ir.org/mirex/abstracts/2007/MIREX2007_overall_results.pdf 
6 http://www.music-ir.org/mirex/wiki/2010:MIREX2010_Results 
7 http://www.music-ir.org/nema_out/mirex2011/results/act/mood_report/summary.html 
8 http://www.music-ir.org/nema_out/mirex2017/results/act/mood_report/summary.html 
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by analyzing the existent audio features we concluded that: 

 The majority of computational extractors available nowadays are low-level, 
related with tone color or timbre, capturing information about the fre-
quency spectrum; 

 Most of these have been created to solve other problems, such as Mel-Fre-
quency Cepstral Coefficients (MFCCs) to speech recognition; 

 A lower number of features are related with the remaining musical dimen-
sions, where expressive techniques, musical texture and musical form are 
the most underrepresented. 

Based on the identified problems we propose a set of novel, higher-level, emotion-
ally-relevant audio features to improve the MER field. As noted, many of the existent 
features are low-level. However, we naturally rely on higher-level cues such as melodic 
lines, notes and scores to assess musical dimensions such as harmony, melody, articula-
tion or texture. Thus, the first step consists in deriving MIDI notes from the existing 
audio waveform. While such a task is still an open research problem, we believe that 
estimating musical attributes such as predominant melody lines, even if imperfect, gives 
important information currently missing from MER. To this end we built on previous 
works by Salomon et al. (2012) and Dressler (2016) to estimate predominant fundamen-
tal frequencies and saliences. The resulting pitch trajectories are then segmented into 
individual MIDI notes based on previous work by Paiva el al. (2006).  

From the obtained notes and multiple contours estimation we then propose several 
features that cover various musical dimensions. Namely, melody (e.g., register distribu-
tion information), dynamics (e.g., crescendo and decrescendo), rhythm (e.g., changes in 
note durations), musical texture (e.g., information on the number of musical layers) and 
expressive techniques (e.g., measuring articulation or vibrato). 

Besides using the audio signal, we also explore additional sources of information to 
improve MER. Empirically, we know that the message transmitted by the singer (lyrics) 
and how it is being transmitted (voice characteristics) may also be relevant. While the 
voice information is already in the original audio signal, some studies suggest that “using 
singing voices alone may be effective for separating the “calm” from the “sad” emotion, 
but this effectiveness is lost when the voices are mixed with accompanying music” and 
“source separation can effectively improve the performance” (X. Yang et al., 2017). Thus, 
we extract audio features from the voice-only signal, obtained using source separations 
techniques (Z.-C. Fan, Jang, & Lu, 2016), which, although still imperfect, may contrib-
ute to improve the situation. 

As for lyrical content, several authors exploited it using natural language processing 
(e.g., (Hu & Downie, 2010a; Malheiro et al., 2018; Y.-H. Yang, Lin, Cheng, et al., 2008)), 
in some cases obtaining better emotion classification results when compared to audio 
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signals. Hence, we explore this knowledge combining all these approaches into a multi-
modal solution to the problem. 

1.3. Results and Contributions 

This work encompasses a number of contributions to improve the state-of-the-art in the 
MER research field, namely: 

 Creation of an audio dataset containing 900 song clips, and proposal of a semi-
automatic methodology, annotated following the Russell’s circumplex model 
quadrants and enriched with relevant metadata (e.g., artist, title, year, album, 
genre and additional emotion information, besides the main quadrant-emo-
tion) which can be used to explore new MER perspectives (e.g., multi-label clas-
sification, regression, as discussed in Section 4.1); 

 A review of the existing musical elements, organized in eight major dimensions 
(melody, harmony, rhythm, dynamics, tone color or timbre, expressive tech-
niques, musical texture and musical form) and the associations that have been 
found in the literature between these elements and emotional responses. 

 A knowledge-base regarding audio features available in state-of-the-art audio 
frameworks and their relation with the eight employed musical dimensions; 

 Novel emotionally-relevant audio features related with the most underrepre-
sented musical dimensions (namely, expressivity and musical texture), which 
added to the existing achieved a 9% improvement in F1-Score when compared 
to a similar number of standard-only features; 

 The uncovering of possible relations between musical elements (and features) 
and emotion responses, namely the weight of specific features and musical di-
mensions to each emotion quadrant, the possible influence of voice acoustics 
to valence (in low arousal situations) or the importance of expressive techniques 
and texture elements, as discussed in Section 4.6;  

 

These contributions were published in the following journal and conference arti-
cles. Two publication metrics are reported when available: the impact factor in the pub-
lication year (if available), according to Clarivate Analytics / Thomson Reuters9, and the 
quartile ranking (1 to 4) for the most relevant research area according to Scimago10. 

                                                        
9 http://jcr.incites.thomsonreuters.com/JCRLandingPageAction.action 
10 https://www.scimagojr.com/ 

https://www.scimagojr.com/
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1.4. Thesis Outline 

Chapter 1: Introduction 

In this introductory chapter, we present the motivation, objectives and main contribu-
tions of this research work. 

Chapter 2: Music and Emotion 

Music emotion recognition is an interdisciplinary field resorting to knowledge from dis-
tinct areas such as computer science, artificial intelligence, music psychology and musi-
cology. This chapter surveys the existent knowledge regarding music and emotion and 
the possible relations between them. 

Section 2.1 serves as introduction, discussing the definitions of emotion and its 
relation with music. Following this, Section 2.2 introduces the most known and well-

http://doi.org/10.5281/zenodo.849887
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accepted emotion classification models, a main research area in psychology. In Section 
2.3 we go from emotion to the music field, describing the typical musical elements and 
organizing them in eight typical musical dimensions encompassing the various musical 
characteristics. Finally, Section 2.4 combines music and emotion by introducing the re-
lations between them that have previously been identified by researchers. 

Chapter 3: Music Emotion Recognition Literature Review 

The overview of the music and emotion fields is followed by an in-depth review of the 
MER state-of-the-art. 

Section 3.1 presents a summary of the computer frameworks used to analyze and 
extract musical features from audio. In addition, it comprehensively describes the audio 
extractors available in state-of-the-art frameworks, relating then with the musical dimen-
sions identified in Chapter 2.  

Following, Section 3.2 critically reviews the most relevant MER works to date. This 
section begins with a general explanation of the typical MER system based on audio 
features, which comprises three distinct parts: 1) dataset acquisition, reviewing the major 
datasets existent in the field; 2) feature extraction and selection; and finally 3) classifica-
tion and evaluation. 

After the general explanation, the Section ends with a historic contextualization of 
the progress achieved in the MER field by describing some of the most relevant works 
over the last three decades. 

This review reinforced our understanding that MER research has been focused on 
different classification or regression strategies and exploring different MER perspectives, 
while neglecting research in novel features that better capture emotional information in 
audio music. 

Chapter 4: A Novel System for Music Emotion Recognition: New Dataset and Audio 
Features 

Building on the gathered knowledge, Chapter 4 presents the research work carried out 
to address the identified problems by proposing novel emotionally-relevant audio fea-
tures and a dataset. 

The first step in this direction is the construction of a sizeable dataset used to vali-
date our work. Section 4.1 describes the entire procedure, which includes data gathering 
from the AllMusic platform11, transformation from emotion tags (categorical view) to 
Russell quadrants (dimensional view), filtering and validation. 

                                                        
11 A comprehensive online music guide available at https://www.allmusic.com/ 
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Section 4.2 describes the novel proposed features. To this end, we link the musical 
dimensions organized in Section 2.3, their relations to emotional responses approached 
in Section 2.4, and the current panorama in standard audio features of Section 3.1. This 
approach allowed us to identify the emotionally relevant musical dimensions that lack 
computational extractors.  These include musical texture, expressive techniques such as 
articulation or vibrato and others, for which audio features are proposed. 

A typical MER classification strategy is then followed, described in Sections 4.3 and 
4.4, to assess the performance of the novel features when compared to the existent fea-
tures. 

Finally, the classification results obtained in each of the problems tested are dis-
cussed in Section 4.5, showing that emotion recognition is significantly improved with 
the addition of novel features. To conclude, the most influential features to each prob-
lem are discussed in Section 4.6, uncovering some interesting relations. Namely, the 
influence of the novel musical texture features in quadrants classification, the high num-
ber of features related with expressive techniques that contribute to valence classifica-
tion, or how specific feature characteristics seem to be more related with each quadrant 
(e.g., Q1 with rhythm, Q2 with dissonance, and how the voice-only signal seems im-
portant for the remaining two quadrants). 

Chapter 5: Other Experiments 

In addition to the main contributions described in previous chapters, a number of ad-
ditional experiments were conducted. These served to test different ideas, improve on 
existing approaches and build a solid foundation in MER. Some of these consisted in 
the construction of other datasets, bi-modal approaches exploring audio and lyrics or 
the analysis of existent works and datasets. 

Chapter 6: Conclusions and Perspectives 

To close, we summarize the main conclusions of this thesis and mention potential di-
rections for future research based on the difficulties identified or faced. 

Bibliography 

The entire set of references used and cited in this thesis is listed under this chapter. 

Appendices 

In Appendix A, we provide an extended description of various musical characteristics 
composing each of the eight musical dimensions introduced in Section 2.3. 
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In Appendix B, the list of emotion tags used in our novel dataset are listed. This 
information is organized by quadrants, providing the number of songs for each emotion 
tag and quadrant, as well as the total values. 

Finally, Appendix C complements Section 4.6, providing additional information 
regarding the relevance of the analyzed features for MER. This includes graphical repre-
sentations of the feature weights by musical dimension as well as the best features for 
organized by musical dimension for each MER problem. 
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Chapter 2  
 
MUSIC AND EMOTION 

n this chapter, essential knowledge about musical dimensions, emotions and the 
relations between them is discussed, building the foundations needed for novel con-
tributions to the music emotion recognition (MER) field. 

 

Section 2.1. What is Emotion? 

With that in mind, we first explore the definitions of emotion from a scientific perspec-
tive and how emotion in music can be regarded: as the emotion expressed by the per-
former, the emotion perceived by listeners, or the emotion felt by the listener (induced). 

Section 2.2. Emotion Taxonomies 

After understanding what emotion is, we delve on how it can be classified. Here, we 
explore the two main views, categorical or dimensional, as well as some alternative ap-
proaches and evaluate how adequate they are for MER research.   

Section 2.3. Musical Dimensions 

Next, we review the major musical elements, organizing them into eight dimensions: 
melody, harmony, rhythm, dynamics, tone color (or timbre), expressive techniques, mu-
sical texture and musical form. 

Section 2.4. Relations between Music and Emotions 

Finally, we connect the dots between music and emotions from a music psychology per-
spective. As a result, we build a well-grounded knowledge base on the musical elements 
associated with specific emotional responses. 

. 

I 
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2.1. What is Emotion? 

The word “emotion” has been a scientific term and research subject in the psychology 
field only since the 19th century, in part due to the influential article “What Is an Emo-
tion?” by William James (1884). Nowadays, more than a century later, scientists are yet 
to find a consensual answer to James’ question, with some researchers even sustaining 
that the term is “ambiguous and has no status in science”, and thus should be dropped 
(Izard, 2010b, pp. 367–368). 

Nowadays, Merriam-Webster dictionaries12 define emotion as: 

1. a (obsolete) : disturbance 
b : excitement 

2. a : the affective aspect of consciousness : feeling 

b : a state of feeling 
c : a conscious mental reaction (such as anger or fear) subjectively experi-
enced as strong feeling usually directed toward a specific object and typically 
accompanied by physiological and behavioral changes in the body 
 

To better understand emotion and the discussion around its definition we should 
know its history. The word “emotion” was introduced in the English language around 
the 16th century. The first references in English literature were the Montaigne essays 
translated from French. In them, the translator apologized for the introduction of vari-
ous “uncouth terms” from French, which included the word “emotion” (Montaigne, 
1603, p. A5f.). At the time and until the 18th century, emotion denoted “physical dis-
turbance and bodily movement”, which could be “commotion among a group of people 
(as in the phrase “public emotion”), or a physical agitation of anything at all, from the 
weather, or a tree, to the human body” (Dixon, 2012). 

According to the etymology of the word “emotion”13, it originated from the assimi-
lation of Latin words “ex-” – meaning out, and “movere” – to move, resulting in “emov-
ere”, or move out, remove, agitate. It was imported into Old French as “émouvoir” – to 
stir up, excite, and later “émotion”, finally appearing in English (Figure 2.1). 

At that time, scholars used several distinct words such as “passions”, “affections”, 
“sentiments” or “appetites” to refer to what we mean today as emotions. This need for 
distinction stemmed back from ancient debates between Stoicism and Catholicism, es-
pecially by the desire of theologians Augustine of Hippo and Thomas Aquinas to provide 
an alternative to the moral philosophy of the Greek and Roman Stoics (Dixon, 2003).  

                                                        
12 https://www.merriam-webster.com/dictionary/emotion 
13 https://www.etymonline.com/word/emotion 
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Figure 2.1: Origin of the word “emotion” in the English language. 

Historically, Stoics had famously avoided all kinds of passions, considering them as 
“diseases of the soul, from which the wise man could be cured by the application of calm 
reason” (Dixon, 2012). Thus, a Stoic aimed to maintain his composure and peace of 
mind, his apatheia, while still enjoying milder positive feelings (Sorabji, 2002). The 
Christian theologians had a mixed opinion about this. While they considered that pas-
sions were indeed evil, conflicting with reason and leading to sin, they did not support 
that apatheia was the goal. As Augustine stated “someone who no longer trembled from 
fear or suffered from sorrow would not have won true peace, but would rather have lost 
all humanity” (Augustine (426 A.D.), 1871, bk. XIV.9)14. Therefore, the need for dis-
tinction between the troubling emotions – passions, lusts, desires – which Christians 
should avoid (caused by senses), and the more virtuous affections such as love and com-
passion, which should be pursued (caused by our will). 

Up until the 18th century, all the new ideas about sentiments supported the distinc-
tion between the two categories (DeJean, 1997; Dixon, 2003). However, in the 19 th cen-
tury, the Edinburgh professor of moral philosophy Thomas Brown, in his lectures pub-
lished in 1820, resumed all the “appetites,” “passions,” and “affections” categories in a 
single theoretical category in mental science: the “emotions” (Dixon, 2003, p. 109). 
About the definition of “emotion”, Brown stated: “Perhaps, if any definition of them 
be possible, they may be defined to be vivid feelings, arising immediately from the con-
sideration of objects, perceived, or remembered, or imagined, or from other prior emo-
tions.” (Brown, 2010, pp. 145–146). 

The wide category was later explicitly defined in the first modern book of psychology 
as: “Emotion is the name here used to comprehend all that is understood by feelings, 
states of feeling, pleasures, pains, passions, sentiments, affections” (Bain, 1859, p. 3). 
Following researchers compiled hundreds of discrete feeling states that were now in-
cluded into the category (McCosh, 1880). 

Another key figure in the definition of emotion was Edinburgh physician and phi-

                                                        
14 The original work was published in Latin by Aurelius Augustine, also known as Saint Augustine of 

Hippo in 426 A.D. The citation is taken from the 1871 translation by Marcus Dods. 
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losopher Charles Bell, which was the first to give a constitutive role to bodily move-
ments. Bell considered “emotions” as movements of the mind, where organs such as the 
heart or lungs were not only the “expression” but could have a role in causing the emo-
tions, defining emotions as: “certain changes or affections of the mind, as grief, joy, or 
astonishment,” which could become visible through “outward signs” on the face or body 
(Bell, 1824, pp. 18, 20). Other notorious thinkers such as Darwin supported the idea, 
stating that: “Most of our emotions are so closely connected with their expression, that 
they hardly exist if the body remains passive” (Darwin, 1872, p. 239). 

Founded on this knowledge, it is clear that when William James famously asked 
“What is an emotion?” (James, 1884) he was not entering the centuries old discussion, 
but in search of a definition to the psychological category that was initiated only decades 
before. In his own answer, he defined emotions as “vivid mental feelings of visceral 
changes brought about directly by the perception of some object in the world” (Dixon, 
2012). 

In the following years, James’s theory was highly criticized, accused of, among other 
inconsistencies, being unable to differentiate between different emotions or between 
emotions and non-emotions, giving excessive weight to body related emotion compo-
nents and neglecting the cognitive factors in emotion generation (Dixon, 2003; 
Ellsworth, 1994; Feinstein, 1970). This led the author to write a new statement on his 
view (James, 1994)15, that basically negated his initial theory. 

Consequently, as summarized by Dixon: “by the 1890s, although the idea that “emo-
tion” as the name of a psychological category had become entrenched, the nascent psy-
chological community had neither an agreed definition of the extent of the category, 
nor a shared idea of the fundamental characteristics of the states that fell within it.” 
(Dixon, 2012). This new discipline and term, which comprised a category covering much 
of our mental life, was by this time widely adopted and, understandably, a source of 
discussion, since the connections between the mind (thought) and the body (feeling) 
were still uncertain. 

The criticism regarding the definition of “emotion” among researchers continued 
until today  (Izard, 2010b, 2010a), showing that, as Brown put it, while “every person 
understands what is meant by an emotion” (Brown, 2010, p. 145), it is very hard to 
define it consensually. 

In an attempt to achieve a unanimous description of emotion, Izard’s surveyed lead-
ing contemporary emotion scientists and experts, summarizing the most commonly cited 
features in one sentence as: 

“Emotion consists of neural circuits (that are at least partially dedicated), 
response systems, and a feeling state/process that motivates and organizes 

                                                        
15 The reference is a reprint of the original work by James in 1894, which is currently unavailable.  
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cognition and action.” (Izard, 2010b, p. 367). 

 

In addition, although not unanimous, a longer and more complete definition pro-
vided by Kleinginna et al. describes emotion as: 

“Emotion is a complex set of interactions among subjective and objective 
factors, mediated by neural/hormonal systems, which can (a) give rise to 
affective experiences such as feelings of arousal, pleasure/displeasure; (b) 
generate cognitive processes such as perceptually relevant effects, appraisals, 
labelling processes; (c) activate widespread physiological adjustments to the 
arousing conditions; and (d) lead to behavior that is often, but not always, 
expressive, goal-oriented, and adaptive.” (Kleinginna & Kleinginna, 1981). 

 

Finally, it is important to highlight that while the terms emotion and mood are close 
and have been used interchangeably in the Music Information Retrieval field, they are 
not equivalent.  

The definition of mood and its relation to emotion given by Amado-Boccara et al. 
helps understanding the differences: 

“The conception of mood in cognitive psychology is derived from the analysis 
of emotion. While emotion is an instantaneous perception of a feeling, 
mood is considered as a group of persisting feelings associated with evalua-
tive and cognitive states which influence all the future evaluations, feelings 
and actions” (Amado-Boccara, Donnet, & Olié, 1972). 

In other words, moods differ from emotions in that the former are less specific, less 
intense, and less likely to be triggered by a particular stimulus or event. To illustrate this, 
we can be sent into a mood from the happiness of seeing an old friend to the anger of 
discovering betrayal by a partner. We may also just fall into a mood. 

In this work the term “emotion” is used preferably, as from our understanding it is 
more accurate to our problem. 

2.1.1. Emotion Context and Subjectivity 

Over the last centuries researchers have tried to explain emotion by relating it to single 
specific elements of human nature (e.g., subjective experiences, psychophysiological 
changes or human behavior), as described in the previous section. Nowadays it is said 
that emotions involve five different elements, all required simultaneously (Scherer, 
2005): cognitive processes, physiological changes, subjective experiences and expressive 
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and instrumental behaviors. These components are briefly described in Table 2.1. 

 

Emotion function Organismic subsystem and 
major substrata 

Emotion component 

Evaluation of objects and 
events 

Information processing 
(CNS) 

Cognitive component (ap-
praisal) 

System regulation Support (CNS, NES, 
ANS) 

Neurophysiological com-
ponent (bodily symptoms) 

Preparation and direction 
of action 

Executive (CNS) Motivational component 
(action tendencies) 

Communication of reac-
tion and behavioral inten-
tion 

Action (SNS) Motor expression compo-
nent (facial and vocal ex-
pression) 

Monitoring of internal 
state and organism-envi-
ronment interaction 

Monitor (CNS) Subjective feeling compo-
nent (emotional experi-
ence) 

Note: CNS = central nervous system; NES = neuro-endocrine system; ANS = auto-
nomic nervous system; SNS = somatic nervous system. 

Table 2.1: Emotion components and functions according to Scherer (2005). 

While previous studies have shown that basic emotions are universal, experienced 
across different backgrounds and cultures (Ekman, 1971; Ekman et al., 1987), we also 
know that experienced emotion can be highly subjective (hence the subjective feeling 
component). For instance, while we have words to describe basic emotions such as hap-
piness or sadness, these experiences are much more multi-dimensional, since they can 
vary greatly between different persons and experiences. Are our sad experiences always 
the same? In addition, many of our emotional experiences are not pure. Instead, it is 
common to have situations where various emotions are mixed. Experiences such as hav-
ing a child might be marked by a wide spectrum of emotions from joy and happiness to 
anxiety or fear, occurring at the same time or alternately. 

Context, memory and culture also contribute to these subjective experiences, since 
these factors influence how emotions affect us. As an example, a specific song may be 
associated with distinct life events of different persons and thus elicit different, even 
opposite emotional experiences. Social factors can also enhance emotions, as is the case 
of music in many concerts or religious ceremonies, but also other events such as rallies, 
where there is a “contagious” effect rising emotions intensity. 

Regarding music, several factors from background, gender, personality and musical 
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training (Abeles & Chung, 1996), musical taste and musical memory (Hargreaves & 
North, 1997) all contribute to this issue, explaining why often it is hard to have a con-
sensus on the emotions present in specific songs.  

2.1.2. Emotion Types in Music: Expressed, Perceived and Induced 

It is known that music transmits emotions, and this is considered its primary purpose 
(Cooke, 1959). Thus, this is the main reason why we engage with it (Juslin & Laukka, 
2004). This process is typically divided into three distinct parts (Gabrielsson, 2001a; 
Pannese, Rappaz, & Grandjean, 2016): 

 Expression – pertains to the expressed emotion, as the emotion that the com-
poser or performer aimed to transmit with the musical piece. 

 Perception – concerns the emotion the listener identifies when listening to a 
song, which may be different from what the composer attempted to express and 
what the listener feels in response to it. 

 Induction – relates to the emotion that is felt (evoked in) by the listener is re-
sponse to the song. 
 

While the expressed emotion is easier to grasp, created for instance by “a composer 
adopting certain metaphoric or stylistic devices in order that the score may express cer-
tain emotional qualities that reflect the composer’s own emotional state” (Pannese et 
al., 2016), the relation between perceived and inducted emotions has been subject of 
discussion among researchers. The source of this is the rather complex relation between 
music and emotions, as demonstrated by the so-called paradox of negative emotion, 
where music generally characterized as conveying negative emotions (e.g., sadness, de-
pression, anger) is often judged as enjoyable (Pannese et al., 2016). For instance, listeners 
exposed to sad music often appear to “lack the beliefs that typically go with sadness” 
(Davies, 2003, pp. 185–186). This separation between the emotion identified by the 
listener and his emotional response has been the main reason suggesting a separation of 
music emotion into perception and induction.  The former is a “sonic-based phenome-
non, tightly linked to auditory perception, and consisting in the listener’s attribution of 
emotional quality to music” (Pannese et al., 2016). It tends to have a high inter-subjective 
agreement, where different listeners are likely to agree on the identified emotion inde-
pendently of musical training (Heinlein, 1928), intelligence (Hevner, 1935) or culture 
(Fritz et al., 2009). The later, induced emotion, is an individual rather than collective 
phenomenon, regarding the personal emotional experience by the listener while listen-
ing to the song (Scherer, 2004). It is often more related with cultural16, contextual and 

                                                        
16 This does not invalidate the fact that emotion perception may also be influenced by culture. 
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cognitive responses as well as individual preferences (Gabrielsson, 2001b; Rentfrow & 
McDonald, 2010). It is also more controversial: some authors state that “the body of 
research that purports to support direct induction of emotion by music is recent and 
unconvincing” (Konečni, 2008, p. 115). 

This suggests that the process of emotions induction by music is indirect, combining 
numerous perceptual and cognitive aspects. Several hypothesis have been proposed to 
explain it, one of the most well-known states that it is caused by six complementary (i.e., 
non-mutually exclusive) mechanisms unrelated to music (i.e., pertain to general cogni-
tion), ranging from physiological processes such as brain stem reflexes, to cognitive func-
tions such as music expectancy (Juslin & Västfjäll, 2008). Additional mechanisms have 
been proposed, such as semantic association (Fritz & Koelsch, 2008; Steinbeis & 
Koelsch, 2008) and others. These build on the conceptual metaphor (CM) theory, which 
regards metaphor as a process of mapping from a source domain to a target domain 
(Lakoff & Johnson, 1980a, 1980b), such as related with time (Epstein, 1995), space 
(Bonde, 2007) and movement (Johnson & Larson, 2003) (e.g., sonic features such as 
pitch or intervals are often conceptualized in reference to space (Parkinson, Kohler, 
Sievers, & Wheatley, 2012)). Other hypothesis in the same direction is the multilayered 
conceptualization of musical expression of emotions whereby a set of basic emotions 
(i.e., common across cultures) interacts with (context-dependent) additional layers ena-
bling the expression and perception of complex emotions (Juslin, 2013), with metaphors 
“acting as the hinge between language, emotion, and aesthetic response” (Pannese et al., 
2016), as illustrated in Figure 2.2. 

 

This work is focused on emotion perception in music since it is the part that is more 
intersubjective17 and largely driven by physical properties and physiological responses, 
depending less on personal factors. 

 

                                                        
17 Intersubjectivity has been used in social science to refer to agreement. 
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Figure 2.2: Role of conceptual metaphor (CM) in emotion response to music. In the 
upper part (interpersonal level), CM offers an interface for shared understanding of mu-
sic in terms of time, space, motion, gesture, and others between performer and listeners. 
At the intrapersonal level, it enables the transition between emotion perception and 
emotion induction (adapted from (Pannese et al., 2016)).  

2.2. Emotion Taxonomies 

Psychology researchers have discussed for long on how emotions can be represented and 
classified. Several aspects make this task difficult. First its subjective nature, where emo-
tions are regarded as diffuse reactions, that vary from person to person, from moment 
to moment and also across cultures. Furthermore, there are many different words, across 
different languages, employed to describe emotional states, some of which are direct 
synonyms, while others represent small variations. Different persons may have different 
perceptions of the same stimulus and often use some of these different words to describe 
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similar experiences. Understandably, there is not one standard, widely accepted, taxon-
omy for emotions. Therefore, correctly studying and understanding the existent emotion 
taxonomies and adequately choosing the one that best fits our needs is one important 
foundation to this work.   

Several models have been proposed over the last century by authors in the psychol-
ogy field. These models can be grouped into two major approaches: the discrete (or 
categorical) emotion models or the dimensional models of emotion. 

2.2.1. Categorical Emotion Models 

Categorical models of emotion, also known as discrete models, use words or groups of 
words to describe an emotion. Several distinct models exist in this category. Some of 
such models have a stronger psychological and physiological foundation, namely the 
basic emotions theory, while others were proposed as a more domain-specific solution 
to the music emotion field, as is the Hevner’s adjective clock. 

Basic Emotions 

In research fields such as psychiatry and neuroscience, the dominant theory of emotions 
states that humans have a discrete and limited set of basic emotions which is universal 
and innate  (Ekman, 1992; Panksepp, 1998; Tomkins, 1962, 1963). Accordingly, “each 
of these emotions is independent of the others in its behavioral, psychological, and phys-
iological manifestations, and each arises from activation within unique neural pathways 
of the central nervous system” (Posner, Russell, & Peterson, 2005). Regarding its origins, 
each of these emotions has been shaped by evolution and is connected to goal-relevant 
events (Johnson-Laird & Oatley, 1992). 

This approach of basic emotions was derived mostly from research with animals, 
using neural stimulation and subsequent behavior observation, as well as the opposite 
(i.e., neural observation after specific behavior) (Panksepp, 1998). However, such ap-
proaches have been subject to criticism since specific affective behaviors are not always 
sufficient or necessary to have specific emotional states (Kagan, 2003). For instance, it 
is possible to have anxiety without behavior changes, or in the opposite direction, smil-
ing may be attained without obvious changes in the emotional state. Furthermore, it is 
questionable whether such approach is mapping neural systems related primarily to af-
fective behaviors rather than subjective feelings. Thus, such approach should be repli-
cated with human studies, which has proved intangible (Berridge, 2003). 

Some authors have also studied the basic emotions theory in humans using facial 
expressions, assuming that facial expressions, more specifically patterns of facial inner-
vation and musculature are specific and distinct in each basic emotion (Ekman, 1992; 
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Ekman, Levenson, & Friesen, 1983). Using this view, Ekman derived a set of six basic 
emotions: happiness, sadness, fear, disgust, anger, and surprise, as illustrated in Figure 
2.3. These emotions are considered the basis from which all the others are built on. 
From a biological perspective, as abovementioned, this idea is manifested in the belief 
that there are neurophysiological and anatomical substrates corresponding to the basic 
emotions. From a psychological perspective, basic emotions are often held to be the 
primitive building blocks of other, non-basic emotions, which can all be derived from 
them.  

 

Figure 2.3: Facial expressions representing basic emotions (top, from left to right: 
anger, fear, disgust; bottom: surprise, happiness and sadness) from (Ekman & Friesen, 
2003). 

  

Even though the idea of basic emotions has received support from several studies 
over the last decades (Panksepp, 1992), other researchers have raised issues with it, stat-
ing that “there is no coherent nontrivial notion of basic emotions as the elementary 
psychological primitives in terms of which other emotions can be explained” (Ortony & 
Turner, 1990). In addition, regarding the connection between facial expressions and 
affective states, basic emotions have not been found to be associated with specific pat-
terns of autonomic activation (Cacioppo, Berntson, Larsen, Poehlmann, & Ito, 2000). 
Moreover, based on the lack of agreement on the name and number of emotion catego-
ries representing the basic emotions “suggests that these may be based on linguistic and 
cultural taxonomies, rather than on emotions themselves” (Zentner & Eerola, 2010). 
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To the point, basic emotion theory has been primarily based on studying both be-
havior and expressive manifestations of emotions. Still, a strong corpus of research has 
suggested that emotions arise from cognitive interpretations of core physiological exper-
iments, instead of being based on a direct map of discrete emotions and the central 
neural system (Cacioppo et al., 2000; Russell, 2003). Even so, the idea has been adopted 
in MER research, most likely due to the use of specific words, offering integrity across 
different studies, and their frequent use in the neuroscience field, related with physio-
logical responses. In some of these studies, part of the original emotions have been re-
placed with more musically related terms (e.g., changing disgust and surprise18 to ten-
derness and peacefulness) (Gabrielsson & Juslin, 1996; Vieillard et al., 2008). 

Domain-Specific Approaches 

Over time, researchers in the music emotion field have also proposed other categorical 
models, which were developed specifically to capture emotions in music, e.g., (Hevner, 
1936; Hu & Downie, 2007). Proponents of these ideas contested the assumption that 
emotions in music and the remaining emotions were identical, arguing that models such 
as the basic emotions theory were not devised to capture music emotions but instead 
focus on a limited and very specific set of emotions related to our species evolution and 
survival process (e.g., anger, fear, shame, guilt). On the other hand, emotions evoked by 
music are expected to be “of a more contemplative kind” (Zentner & Eerola, 2010). This 
vision has been discussed since the 19th century, where Gurney stated that “the prime 
characteristic of Music, the alpha and omega of its essential effect: namely, its perpetual 
production in us of an emotional excitement of a very intense kind, which yet cannot 
be defined under any known head of emotion” (Gurney, 1880, p. 120). 

While the domain-specific approaches typically contain descriptors that are musi-
cally more plausible, their origin is less substantiated. There, the choice of labels is de-
pendent on authors’ particular views, as opposed to more scientifically-based psycholog-
ical models of emotion. 

Hevner’s Adjective Circle 

A widely known discrete domain-specific model of music emotion is Hevner’s adjective 
circle or clock (Hevner, 1936). Kate Hevner is best known for her research in music 
psychology, being one of the first to do research on the subject of emotions in music. In 
her research, she concluded that music and emotions are intimately connected, with 
music often carrying emotional meaning in it. As a result, she proposed a grouped list 
of adjectives (emotions), instead of using single words (Figure 2.4). 

                                                        
18 Although the authors of the study removed “surprise”, it can be argued that surprise can be both 

perceived and induced by music and thus the decision is not unanimous. 
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Figure 2.4: Hevner’s adjective circle19. 

Hevner’s list is comprises 67 different adjectives, organized into eight different 
groups, with 6 to 11 emotions each, in a circular way. These groups, or clusters, contain 
adjectives with close meaning, used to describe the related emotional states. Neighboring 
clusters are emotionally close, deviating slightly until reaching contrasting emotional 
states in the opposite position (e.g., group 2 opposes group 6).  

One of the obvious problems with Hevner’s circle is the unbalanced number of 
terms in each of the eight groups, which may reduce the probability of selection for 
groups with fewer words. Additionally, it was built specifically for classical music and 
some of the terms may be infrequently associated with music nowadays (e.g., gay), hin-
dering its usage. Several authors proposed updates to Hevner’s adjectives circle, adding 
new terms and reorganizing the clusters (Campbell, 1942; Farnsworth, 1954; Schubert, 

                                                        
19 The word “melancholy” was replaced with “melancholic” to maintain consistency. 
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2003; K. B. Watson, 1942). 

MIREX Mood Classification Task Taxonomy 

A more recent domain-specific model of emotion has been proposed by Hu et al. (Hu 
& Downie, 2007) and adopted in the MIREX Mood Classification Task. MIREX20, ac-
ronym of Music Information Retrieval Evaluation eXchange, is an annual comparison 
of state-of-the-art MIR algorithms held in conjunction with the ISMIR (International 
Society for Music Information Retrieval) conference21. One of the available tasks, Audio 
Music Mood Classification, consists in a train/test challenge using a private dataset an-
notated with the abovementioned categorical model. 

The MIREX emotion taxonomy was directly derived from songs’ metadata provided 
by the AllMusic service22, “a popular music database that provides professional reviews 
and metadata for albums, songs and artists” (Hu & Downie, 2007). At the time, a total 
of 179 mood tags, “adjectives that describe the sound and feel of a song, album, or 
overall body of work” were available, “created and assigned to music works by profes-
sional editors” (Hu & Downie, 2007). 

The taxonomy was built using a three-step process. First, the mood similarity was 
measured. To this end, the mood tags associated with less than 50 songs and 50 albums 
were removed, generating a subset of 40 mood tags, related with 2748 albums and 3260 
songs. Next, these 40 moods were used to create a 40 x 40 matrix, where each cell con-
tains the number of songs related with the respective moods pair. A second matrix using 
the number of albums was also derived. The similarity between each pair of moods was 
then measured by computing the Pearson’s correlation between the two rows corre-
sponding to the selected pair. In the second step, the similarity data was clustered using 
agglomerative hierarchical clustering with Ward’s criterion (Berkhin, 2006), leading to 
two cluster sets, one regarding song moods and the other album moods. Finally, the 
clustering results were analyzed and the authors identified 29 mood tags “consistently 
grouped into 5 clusters at a similar distance level”, as presented in Table 2.2. 

Although used annually to compare advances in the MER field, this MIREX taxon-
omy (and dataset) suffers from several limitations. To begin with, it lacks support from 
any psychology studies. It is purely data-driven, based on the annotations by AllMusic 
experts, but few details are provided about the process, which does not allow for a critical 
analysis of the annotation process. Moreover, there is semantic overlap (ambiguity) be-
tween clusters 2 and 4, and acoustic overlap (based on the analysis of the MIREX dataset) 

                                                        
20 http://www.music-ir.org/mirex/ 
21 http://www.ismir.net/ 
22 https://www.allmusic.com/about 
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between clusters 1 and 5 (Laurier & Herrera, 2007). For illustration, the word fun (clus-
ter 2) and humorous (cluster 4) share the synonym amusing. As for songs from clusters 
1 and 5, there are acoustic similarities: both tend to be energetic, loud, and many use 
electric guitar (Laurier & Herrera, 2007). 

 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Rowdy Amiable / Good natured Literate Witty Volatile 

Rousing Sweet Bittersweet Whimsical Visceral 

Boisterous Fun Autumnal Wry Aggressive 

Passionate Rollicking Brooding Campy Tense / Anxious 

 Cheerful Poignant Quirky Intense 

   Silly  

Table 2.2: Emotion taxonomy used in the MIREX Audio Mood Classification task. 

In addition, according to our experiments, the updated AllMusic data seems to sug-
gest higher inter-cluster similarity than expected. To assess this, we obtained the mood 
tag data, which has been revised from 179 to 289 adjectives. Furthermore, each AllMusic 
mood tag also contains a list of similar moods. As an example, the tag fun23 is similar to 
boisterous, humorous, quirky, rollicking, rowdy, silly, whimsical, and witty. Examining 
this supplementary similarity information shows that some clusters (e.g., cluster 1 and 
2) have more extra-cluster than intra-cluster similarities, as detailed in Chapter 5. 

Geneva Emotional Music Scale 

The Geneva Emotional Music Scale (GEMS) is a domain-specific model specifically de-
signed to musically evoked emotions (Zentner, Grandjean, & Scherer, 2008). It was pro-
posed to overcome the limitations of previous models, namely the “failure to distinguish 
felt from perceived emotion, vague criteria for selection of affect terms, lack of method-
ological rigor, and the absence of contextualization of the musical emotions within the 
broader context of emotion research” (Zentner & Eerola, 2010, p. 203). 

To address this, four studies were carried out by the authors. The initial two studies 
were used to gather a compilation of music-relevant emotion terms. To this end, 92 
psychology students from Geneva participated in the first study with the objective of 
creating a “comprehensive list of words genuinely suited to describe experienced or felt 
emotion” (Zentner et al., 2008). After processing the results, a total of 146 affect terms 
were selected from the original list of 515 terms. 

                                                        
23 https://www.allmusic.com/mood/fun-xa0000001006 
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The second study aim was “to examine which of these terms would be actually rele-
vant in relation to music”. To this end, 262 undergraduate psychology students  were 
asked for their music genre preference between five possible genres: classical, jazz, 
pop/rock, Latin American, and techno. Next, they were instructed to rate the 146 affect 
terms regarding: 1) how often they felt a given emotion when listening to their favorite 
genre; 2) how often they perceived a given emotion when listening to their favorite 
genre; and finally 3) how often they experienced such emotions in their extra musical 
everyday life. The participants were instructed to consider only “pure music, without 
text or lyrics”. As a result, a total of 89 emotion descriptors were identified as musically 
relevant. This value was later reduced to 66 terms “more than just occasionally experi-
enced or perceived” in several music genres. 

One of the interesting findings of the second study was a considerable variability 
across genre and between perceived and induced emotions, with induced emotions be-
ing more positive. As a possible justification, the authors state that “as people move into 
a mental state in which self-interest and threats from the real world are no longer rele-
vant, negative emotions lose their scope.” (Zentner et al., 2008). 

The third and fourth studies’ main objective was to examine whether the 66 emo-
tions induced by music could be differentiated into several sub-units. To this end, 801 
questionnaires were filled out by listeners at a music festival comprising various musical 
genres. There, the subjects were asked to rate the affect terms according to the emotions 
experienced. Later, confirmatory factor analyses of the gathered data consisting of rat-
ings of emotions evoked by various genres of music were carried out to derive the GEMS 
model. 

The full GEMS contains 45 terms that proved to be consistently chosen, which were 
also grouped into 9 different categories. These nine emotional scales in turn condense 
into three "superfactors". In addition to the full scale (GEMS-45), two shorter Scales, the 
GEMS-25 and the GEMS-9 have also been developed. 

Recently, some researchers have disputed the conclusions of this work, where the 
authors proposed GEMS scale has a more adequate instrument to measure musical emo-
tion than previous arousal and valence (AV) and basic emotion models. Namely, Alja-
naki (2016) pointed out several issues: the small size of the original experiment (only 16 
musical pieces), the overrepresentation of one genre (only classical music) and the un-
conventionality of the questions regarding the AV model. 

  

To conclude, a major hurdle in employing categorical models in MER applications 
is the usefulness of its final result. By classifying two songs with the same adjective or 
cluster, it is impossible to discriminate between them, even though one might be slightly 
different than another (e.g., more intense). Moreover, given the very large music data-
bases nowadays available to users, employing such emotion models will typically result 
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in some (e.g., 5 to 10) still large subsets of songs (e.g., in a one hundred thousand song 
database, using 10 balanced emotion categories will result in 10 groups of ten thousand 
songs) that in many contexts may still be too large to be practical for users.  

2.2.2. Dimensional Emotion Models 

Over the years, researchers have observed that subjects have difficulties describing their 
emotions, which should not be the case according to the idea that emotions are discrete 
and isolated from each other (Saarni, 1999). Instead, emotions seem to overlap, just like 
the color spectrum, without discrete boundaries between them (Russell & Fehr, 1994). 
As an example, people typically describe as feeling not one but multiple positive emo-
tions at the same time (D. Watson & Clark, 1992). This issue has led to the proposal of 
dimensional models of emotion, which view emotional experiences as “a continuum of 
highly interrelated and often ambiguous states” (Posner et al., 2005). In these, a multi-
dimensional space is used, mapping different emotional states to locations in that space. 

The most notable dimensional approaches are two-dimensional, a number that is 
supported by extensive research of the intercorrelations between emotional experiences 
(Larsen & Diener, 1992). These two dimensions are found in a wide number of models, 
which have been conceptualized in different terms: the widely known arousal and va-
lence (Russell, 1980), but also tension and energy (Thayer, 1989), approach and with-
drawal (Lang, Bradley, & Cuthbert, 1998), or dimensions of positive and negative affect 
(D. Watson, Wiese, Vaidya, & Tellegen, 1999). Supporters of this idea suggest that emo-
tional states arise from the combination of two distinct neurophysiological systems: one 
for arousal and other for valence (Russell, 2003). 

Taking fear as an example, it arises from a combination of high arousal and negative 
valence stimuluses to the central nervous system. These patterns of neurophysiological 
activity are then interpreted by our cognitive system resulting in our personal, subjective 
experience of fear (Russell, 2003). Emotions are thus “the end product of a complex 
interaction between cognitions, likely occurring primarily in neocortical structures, and 
neurophysiological changes related to the valence and arousal systems, which presuma-
bly are subserved largely by subcortical structures” (Posner et al., 2005). 

Russell’s Circumplex Model of Emotion 

In contrast to the idea of independent neural systems to each basic emotion, Russell 
(1980) proposed that each emotional state sprouts from two independent neurophysio-
logic systems. In his study, the two proposed dimensions are valence (pleasure-displeas-
ure) and activity or arousal (aroused-not aroused). The result, illustrated in Figure 2.5, 
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is a two-dimensional plane forming four different quadrants, which can be roughly de-
fined as: 1) exuberance, referring to happy and energetic emotions (Q1); 2) anxiety, rep-
resenting frantic and energetic ones (Q2); 3) depression, referring to melancholic and 
sad emotions (Q3); and 4) contentment, representing calm and positive emotions (Q4). 
An important characteristic of this model is that emotions are placed far away from the 
center. Otherwise, cases where both arousal and valence have neutral values do not rep-
resent clear, identifiable emotions. 

 

Figure 2.5: Russell's circumplex model of emotion. 

The circumplex model has received wide support by several studies (e.g., (Barrett & 
Russell, 1999; Russell, 1983), reviewed in detail in (Posner et al., 2005)), and been 
adopted in MER research as the standard dimensional model of emotion. 

As stated, some authors proposed alternative two-dimensional models using differ-
ent labels in each axis. Two of the most recognized models rotate the Russell’s circum-
plex model by 45 degrees: the Positive and Negative Affect Schedule (PANAS) (D. 
Watson, Clark, & Tellegen, 1988; D. Watson & Tellegen, 1985) and the Thayer’s model 
of emotion (Thayer, 1989), as shown in Figure 2.6. The first uses Positive Affective (PA) 
dimension, representing high arousal and positive valence, and Negative Affective (NA) 
dimension. The second uses energetic arousal (EA) and tense arousal (TA), where Thayer 
suggests that “emotions are represented by components of two biological arousal sys-
tems, one which people find energizing, and the other which people describe as produc-
ing tension” (energetic arousal – readiness for vigorous action versus tense arousal – 
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preparatory-emergency system) (Thayer, 1989). 

 

Figure 2.6: Russell's, Watson et al. and Thayer’s two-dimensional models of emotions 
(from (Zentner & Eerola, 2010, p. 199)). 

Regarding the two-dimensional approach, researchers have noted that it fails to ac-
count for all variance in music-mediated emotions (Bigand, Vieillard, Madurell, 
Marozeau, & Dacquet, 2005; G. L. Collier, 2007; Ilie & Thompson, 2006), by placing 
distinct emotions close in the 2D space (e.g., anger and fear are both high in arousal and 
negative in valence) (Scherer, Johnstone, & Klasmeyer, 2003). Several authors proposed 
a third dimension to help reduce this problem, namely: potency, intensity, dominance 
or interest (Gabrielsson & Juslin, 2003). 

Schimmack & Grob model of emotion 

One of the most well regarded three-dimensional models of emotion was proposed by 
Schimmack and Grob (Schimmack & Grob, 2000). There, the authors combined the 
Russell’s and Thayer’s models, obtaining valence, tense arousal and energetic arousal 
dimensions (illustrated in Figure 2.7). The reasoning behind this proposal is the fact 
that the two arousal (or activation) dimensions are actually controlled by independent 
physiological systems (D. Watson et al., 1999), which can be independently stimulated, 
even in opposite directions (Gold, MacLeod, Thomson, Frier, & Deary, 1995). Although 



34 Chapter 2.   Music and Emotion 

 

this model seems better suited to reduce the two-dimensional variance problem 
(Schimmack & Reisenzein, 2002), it is yet to be adopted in MER studies.  

 

Figure 2.7: Schimmack & Grob three-dimensional model of emotion (from (Eerola & 
Vuoskoski, 2011)). 

Tellegen-Watson-Clark’s Model 

An additional taxonomy using a third variable is the Tellegen-Watson-Clark model of 
emotion (1999), depicted in  

Figure 2.8. This model extends the previous dimensional models, emphasizing the value 
of a hierarchical perspective by integrating existing models of emotional expressivity. 

In it, a three-level hierarchy incorporates at the highest level a happiness versus un-
happiness dimension, an independent positive affect (PA) versus negative affect (NA) 
dimension at the second order level below it, and discrete expressivity factors of joy, 
sadness, hostility, guilt/shame, fear emotions at the base. 

The key to this hierarchical structure is the recognition that the general bipolar fac-
tor of happiness and independent dimensions of PA and NA are better viewed as differ-
ent levels of abstraction within a hierarchical model, rather than as competing models 
at the same level of abstraction. At the highest level of this model, the general bipolar 
factor of happiness accounts for the tendency for PA and NA to be moderately negatively 
correlated. Therefore, the hierarchical model of affect accounted for both the bipolarity 
of pleasantness-unpleasantness and the independence of PA and NA, solving a debate 
that occupied the literature for decades (Trohidis, Tsoumakas, Kalliris, & Vlahavas, 
2011). 
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Figure 2.8:  Tellegen-Watson-Clark model of emotion (Trohidis et al., 2011). 

Although three-dimensional models reduce the lack of differentiation in emotions 
that are close neighbors in the valence-activation space, a problem often criticized in 
two-dimensional models, one of its major disadvantages is the high complexity, making 
it unpractical for non-academic use. 

Concluding, the benefit of dimensional models is the reduced ambiguity when com-
pared with the categorical approach, since emotions are positioned in different parts of 
an N-dimensional emotional plane. The dimensional model is sometimes further di-
vided into discrete and continuous. 

Continuous models view the emotion plane as a continuous space where each point 
denotes a different emotional state. As a result, the ambiguity related with emotion states 
is removed. Given the higher complexity introduced by continuous models to MER ap-
plications, both in terms of machine learning techniques and annotation process, some 
authors opt to use a discrete view of the dimensional models, considering parts of the 
plane as representing specific emotions. Taking the Russell’s circumplex model, a simple 
example is viewing it as four distinct emotions, defined by each of its four quadrants: 1) 
happiness or enthusiasm; 2) anxiety or anger; 3) depression or sadness; 4) contentment 
or relaxed. 

Moreover, some authors have studied both dimensional and categorical models of 
emotions simultaneously, in order to “clarify their mutual relationship and applicability 
to music and emotions” (Eerola, Lartillot, & Toiviainen, 2009). There, 360 audio ex-
cerpts were rated using both approaches: a categorical model with five of the basic emo-
tions: happiness, sadness, tenderness, anger and fear); as well as a three-dimensional 
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model with valence, activity and tension. The results show that at least two of the emo-
tion dimensions correlated highly: tension and valence (highly correlated) and activity 
and tension (moderately correlated). On the other hand, valence and activity (the two 
dimensions of Russell’s circumplex model did not present such a relation. Considering 
this, the authors applied ridge regression, a variation of linear regression better at ana-
lyzing multiple regression data that suffer from multicollinearity, to predict the dimen-
sional ratings from the categorical ratings and vice versa. The results presented by Eerola 
et al. (2009) suggest that the basic emotion model “can more accurately explain the re-
sults obtained with the three-dimensional model than contrariwise”. Moreover, it was 
also verified that the two-dimensional models can explain the results obtained with the 
basic emotion model “virtually as accurately as the three-dimensional model, with the 
exception of anger and tenderness” (which still only had minor differences). 

 

A brief summary of the previously discussed emotion models is presented in Table 
2.3. 

 

Emotion Model Type Summary 

Ekman’s Basic Emotions Categorical 6 words, considered the basic emo-
tions 

Hevner’s adjective clock Categorical 8 clusters, 67 adjectives 

MIREX Mood Taxonomy Categorical 5 clusters, 29 mood tags 

Geneva Emotional Music 
Scales 

Categorical 45 terms, 9 categories, 3 superfactors 

Russell’s circumplex 
model of emotion 

Dimensional 2D using arousal and valence, ∞ emo-
tional states (continuous view) 

Schimmack & Grob 
model 

Dimensional 3D using valence, energetic arousal 
and tense arousal, ∞ emotional states 

Tellegen-Watson-Clark 
model of emotion 

Dimensional 3-level hierarchy with happiness vs af-
fect vs discrete factors 

Table 2.3: Comparison of the reviewed emotion models. 

2.2.3. Selecting an Emotion Taxonomy for MER 

Given the lack of consensus regarding emotion taxonomies, with several models availa-
ble, each following distinct principles, an obvious question arises: which emotion taxon-
omy should be used for MER?  
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There is no simple answer to this question, as demonstrated by the numerous stud-
ies in MER using each of the approaches, from categorical, domain-specific models, to 
dimensional ones. Some studies have attempted to answer this question by asking lis-
teners to rate emotions induced by music clips using either a domain-specific model of 
emotion, the basic emotions or a dimensional model (Zentner et al., 2008). 

Generally, the results of the study demonstrated a clear preference from listeners to 
use the emotion terms of the selected domain-specific model (Geneva Emotional Music 
Scales, known as GEMS) to describe the emotions felt. Additionally, the ratings using 
the domain-specific model increased agreement across listeners and provided better dis-
crimination between the musical excerpts (Zentner et al., 2008). Still, while the domain-
specific model performed better for induced emotions, the results were not so convinc-
ing for perceived emotions. Inversely, the basic emotions model achieved better results 
for ratings for perceived emotion than for induced emotion. In brief, while the study 
suggests domain-specific models as better suited to rate induced emotions, “the kind of 
model that provides the best fit for perceived musical emotions remains unclear” 
(Zentner & Eerola, 2010). 

Selecting an emotion taxonomy for a novel MER study is thus a complex process, 
which should consider the current state-of-the-art in the field and the study objectives. 
While dimensional models reduce or eliminate the ambiguity and are better aligned 
with our biology, we humans prefer to use discrete labels reasoned by our cognitive sys-
tem when talking about emotions. Moreover, the current results from MER studies us-
ing simpler categorical models (e.g., MIREX AMC task results) are still average and di-
mensional models typically pose an even harder computational problem and are less 
understood by listeners since concepts such as valence or arousal are not intuitive for 
the average user. 

2.3. Musical Dimensions 

To better understand how music and emotion relate, we first need to have a deeper 
understanding of the fundamental musical dimensions and their organization, as de-
scribed in this section. 

Musical dimensions are usually organized into four to eight different categories (de-
pending on the author, e.g., (Meyer, 1973; Owen, 2000)), each representing a core con-
cept. In this section, based on the cited works, we use an eight category organization 
based on the literature to briefly describe the main musical features: melody, harmony, 
rhythm, dynamics, tone color (or timbre), expressive techniques, musical texture and 
musical form. 

The organization of these dimensions is not strict. Many of the musical features are 
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somehow interconnected and may interact and touch other dimensions. Thus, it can be 
argued that some of them could be placed in different musical categories. In any case, 
through this organization, we are able to better understand: i) where features related to 
emotion belong; ii) for these musical features, which of them can be extracted from 
audio signals with the existing algorithms; iii) and thus, which categories may lack com-
putational models to extract musical features relevant to emotion. 

It is important to note that this section does not offer an exhaustive review on music 
theory. Its aim is to catalog the main elements and characteristics of music in order to 
better understand which ones might be relevant to emotion recognition and not yet 
explored by existent computational algorithms and audio features. 

2.3.1. Melody 

Melody can be defined as a horizontal succession of pitches (perceptual correlate of fun-
damental frequency) or musical tones, perceived by listeners as a single musical line. 
Johann Philipp Kirnberger, a student of Bach, defined melody as “the true goal of music 
[…]. All the parts of harmony have as their ultimate purpose only beautiful melody” 
(Forte, 1979, p. 203). 

 

Name Description 

Melodic arrangement How melodies are placed in the piece, e.g., in sequence or 
counter-melodies. 

Melodic movement and 
contour 

Pitch directions in a melody (patterns of notes) and shapes 
or contours formed by them. 

Pitch The sound perception, which can be “higher” or “lower”, 
related to frequency. 

Pitch Range The pitch distance from highest to lowest (or notes extent) 
used in a melody, which can be narrow or wide. 

Register The “height” of a sound, generally classified in high, mid-
dle or low. 

Melodic features Features added to the melody in order to enrich or con-
nect it to others (e.g., melodic riffs, repetitions).  

Table 2.4: Summary of the melodic attributes of music. 

Melodies can be classified according to their motion (intervals between pitches) as 
conjunct (smooth) or disjunct (disjointedly ragged or jumpy). Their main components 
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are pitch (which can be definite or indefinite), pitch range, register, melodic contour or 
shape, melodic movement and melodic arrangement. 

 

A summary of the attributes related to melody are presented in Table 2.4. We offer 
a more detailed, yet concise, description in Appendix A. For a thorough analysis, we 
recommend (Benward & Saker, 2008; Laitz, 2007).  

2.3.2. Harmony 

If melody is said to be the horizontal part of music, harmony refers to its “vertical” 
aspect. That is, the sound produced by the combination of various pitches (notes or 
tones) in chords. The word “harmony” originates from the Greek language, meaning 
“agreement, concord of sounds” or “combination of tones pleasing to the ear”24. 

Analyzing the harmony of a song involves the study of chords, made of several notes 
played simultaneously, and of chord progressions, which are the sequences of chords 
arranged together (illustrated in Figure 2.9). 

 

Figure 2.9: A 3-note chord in red and a chord progression of 6 chords in blue. Chord 
names are displayed at the top using the Jazz notation system proposed by Klaus Igna-
tzek. 

In Western music, the key of a musical piece is the scale (i.e., group of pitches, 
featuring a tonic note and corresponding chords, which provides a sense of rest) that 
forms the basis of the composition. The key may be in the major or minor mode. Music 
lacking a tonal center or key is said to be atonal (as opposed to tonal). In addition to the 
traditional major and minor scales of tonal music (i.e., seven-note diatonic scales), more 
unusual ones exist such as the old church modes (e.g., Gregorian mode) and the chro-
matic scale, a twelve-note scale featuring all semitones. 

 

A summary of the harmonic characteristics is presented in Table 2.5. We offer a 
more detailed, yet concise, description in Appendix A. For a thorough analysis, we rec-
ommend (Benward & Saker, 2008; Laitz, 2007).  

                                                        
24 https://www.etymonline.com/word/harmony 
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Name Description 

Harmonic rhythm or 
harmonic tempo 

Rate at which the chords change in relation to the rate of 
notes. 

Harmonic progression Succession of musical chords, or chord changes, that helps 
to indicate where the melody should go. 

Modulation The process of changing the key center (tonal or tonic cen-
ter) in a musical piece. 

Harmonic perception Relative harshness of a sound. Consonant sounds are pleas-
ing, made of smooth-sounding harmonic combinations. Dis-
sonant are the opposite. 

Table 2.5: Summary of the harmonic characteristics of music. 

2.3.3. Rhythm 

Rhythm represents the element of “time” in music, the patterns of long and short sounds 
and silences found in music. In its most general sense, rhythm (originating from the 
Greek word rhythmos, derived from rhein, “to flow”) is an ordered alternation of con-
trasting elements25. 

Several important aspects are part of rhythm, namely, tempo, duration or meter. 
Some of the most relevant are briefly described in Table 2.6. We offer a more detailed, 
yet concise, description in Appendix A. For a thorough analysis, we recommend 
(Benward & Saker, 2008; Laitz, 2007).  

 

Name Description 

Rhythm types Can be simple or complex, regular or irregular. 

Note values and 
rests 

Indicates a note length or duration. Some examples: semibreve, 
quaver, semiquaver. 

Rhythmic devices Rhythmic devices give a piece of music its shape and often indi-
cate its genre (e.g., riff, repetition, syncopation are common in 
rock). 

Rhythmic layers Grouping of performing media (instruments) in a musical piece 
(e.g., instrumental groups and vocals). 

Duration How long a sound (or silence) lasts. 

                                                        
25 https://www.britannica.com/art/rhythm-music 
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Beat The underlying, regular pulse in a piece of music. Can be 
strong/definite or weak/indefinite. 

Metre The grouping of beats in a piece of music that we hear as an 
organized succession of rhythmic pulses. 

Tempo The speed of the beat, such as fast or slow or becoming faster or 
slower. 

Table 2.6: Summary of the rhythmic attributes. 

2.3.4. Dynamics 

Dynamics represents the variation in loudness or softness of notes in a musical piece. 
All musical aspects relating to the relative loudness (or quietness) of music fall under 
the general element of dynamics. Important aspects include the relative softness and 
loudness of sound, change of loudness (contrast), and the emphasis on individual 
sounds (accent). 

The dynamics markings in a musical score are always relative, e.g., indicating that a 
specific passage should be played louder, but not defining an exact level of loudness. 
Changes in dynamics are used by musicians to create interest and communicate with the 
audience. 

Several important features are part of dynamics, namely, dynamic levels, accents and 
dynamic changes. A summary of the dynamics attributes is presented in Table 2.7. We 
offer a more detailed, yet concise, description in Appendix A. For a thorough analysis, 
we recommend (Benward & Saker, 2008; Laitz, 2007).  

 

Name Description 

Dynamic levels The loudness levels in a musical piece (e.g., forte, piano). 

Accents and changes 
in dynamic levels 

Gradual changes in dynamics (e.g., crescendo for gradually get-
ting louder). Accents are an emphasis for specific notes and 
sounds (e.g., sforzando meaning playing a note with sudden 
emphasis). 

Table 2.7: Summary of the attributes related with dynamics. 

It can be argued that elements such as accents can be classified as articulation mech-
anisms and thus should be placed in the expression techniques dimension (see Section 
2.3.6). As stressed before, many of the musical attributes touch several musical dimen-
sions and thus this organization reflects our view. 
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2.3.5. Tone Color or Timbre 

Tone color, also known as timbre, refers to the perceived sound quality (properties) of 
a sound (e.g., a musical note). It is the tone color of a sound that allows the listener to 
distinguish between different sources, such as two different instruments playing similar 
notes, differentiate human voices or even distinguish instruments of the same family, 
such as a trumpet from a saxophone.  

 

Name Description 

Instrument materials Material and shape of an instrument influences its sound 
(e.g., wood, metal, vocal). 

Playing methods Method used to produce a sound from the instrument 
(e.g., pluck, hit, blow). 

Instruments’ and voices’ 
types 

Classification of the source producing the sound (e.g., 
strings or percussion for western instruments; or soprano 
or tenor for voices). 

Combinations and types 
of sounds 

Acoustic (non-electric) or electronic instruments, com-
bined in different musical groups (e.g., bands, orchestras, 
Jazz trio or choirs). 

Table 2.8: Summary of the elements influencing tone color. 

 

In an analogous way to the color used by an artist, sound can be said to have a 
spectrum of tone colors. Each instrument has a distinct tone color in this spectrum, 
which the composer uses and combines, creating contrasts and new colors (combination 
of instruments) to enhance his musical piece, just like an artist painting a scene.  

Some authors have tried to decompose tone color into distinct components (e.g., 
(Erickson, 1975)) but results are not consensual, since even tone color itself is still not 
fully agreed upon, with some researchers classifying it as “the psychoacoustician's multi-
dimensional waste-basket category for everything that cannot be labeled pitch or loud-
ness." (McAdams & Bregman, 1979). Nonetheless, two of its main components are har-
monics and the sound envelope, which are explained in Appendix A. 

A summary of the attributes contributing to tone color are presented in Table 2.8. 

2.3.6. Expressive Techniques 

Expressive techniques refer to the way a performer plays a musical piece, specifically the 
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techniques used by him/her to create the musical detail that articulates a style or inter-
pretation of a style. As stated in Section 2.3.4, expressive techniques are combined with 
dynamics to give “soul” to a piece of music. 

 

Name Description 

Tempo (changes) Tempo and its changes can also affect the expressive quality 
of music. Can get faster or slower, gradually or immediately.  

Stylistic indications Terms to indicate the style in which a piece is to be per-
formed, such as legato (smoothly, connected notes) or rubato 
(with freedom). 

Articulation The way in which specific parts or notes in a piece of music 
are played (e.g., staccato for short detached notes or slur for 
two notes played without separation). 

Ornamentation Decoration of notes with special features (such as glissando 
or trills) to add interest and expressive qualities. 

Instrumental, vocal 
and electronic tech-
niques 

Techniques to produce different sounds to express a specific 
style (e.g., vibrato, tremolo), or electronic enhancements 
(e.g., vocoders). 

Table 2.9: List of expressive techniques attributes described. 

Over the centuries, several expressive techniques have been created. These can be 
techniques related with instruments or vocals, ornamentations, changes in tempo or 
specific techniques articulating consecutive notes together. 

These expressive techniques, together with all the other musical elements, contrib-
ute greatly to define musical styles. From western classical music, to one of the main-
stream international genres (e.g., rock, pop, rap or metal) or world music such as Indian 
ragas, African zouk or Portuguese fado, specific styles have specific, typical expressive 
techniques and distinct instruments. 

 

Several important features are part of expressive techniques, namely, tempo 
changes, stylistic indications, articulation, ornamentation, as well as instrumental, vocal 
and electronic techniques. A summary of the expressive techniques attributes is pre-
sented in Table 2.9. We offer a more detailed, yet concise, description in Appendix A. 
For a thorough analysis, we recommend (Benward & Saker, 2008; Laitz, 2007).  



44 Chapter 2.   Music and Emotion 

 

2.3.7. Musical Texture 

Musical texture refers to the way the rhythmic, melodic and harmonic information pro-
duced by musical instruments and voices is combined in a musical composition. It is 
thus related to the combination and relations between the musical lines or layers (one 
or more instruments with the same role) or a song. 

Texture can be described based on its density, from thin to thick, and range, from 
narrow to wide. As an example, a song played by a solo guitar will have a single layer and 
thus a thin texture, while a musical piece for orchestra, with several melodic, harmonic 
and rhythmic lines, will have a thick texture. A single musical line or layer can have 
several performers following the same melody. The range of a texture is rated based on 
the distance between the lowest and highest tones (Benward & Saker, 2008, p. 146). 

 

Name Description 

Number of 
layers, density 
and range 

Number of musical lines (e.g., single melodic line, melodic with ac-
companiment, multiple melodic, non-melodic), their density (thin 
or think) and range (narrow to wide). 

Texture Types Different combinations of layers such as monophonic (single layer); 
homophonic (two or more layers, with one prominent melody); pol-
yphonic (two or more independent melodies). 

Table 2.10: Summary of the musical texture attributes. 

 

Additionally, the musical texture can also be classified according to its type, based 
on the number of existent layers and their relations. Some common types are mono-
phonic, homophonic and polyphonic. As with other musical dimensions, texture and 
other elements sometimes overlap. For instance, if the number of layers increases 
(thicker texture), usually a corresponding increase in dynamics is expected. 

A summary of the attributes of musical texture are presented in Table 2.10. We 
offer a more detailed, yet concise, description in Appendix A. For a thorough analysis, 
we recommend (Benward & Saker, 2008; Laitz, 2007).  

2.3.8. Musical Form 

Musical form or musical structure refers to the overall structure of a musical piece, and 
describes the layout of a composition as divided into sections (Brandt, 2011). These 
sections are usually identified by changes in rhythm and texture. If the rhythm and tex-
ture remain constant, the listener tends to perceive the excerpt as a single section. On 
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the other hand, a marked change in rhythm or texture is normally perceived as a point 
of contrast – a boundary, from which the piece passes into a new section. 

The organization of a musical piece can be scrutinized at various levels. At a lower 
level, the passages can be combined in different basic musical forms such as the strophic 
(repeating sections), binary and ternary forms, but also thirty-two-bar form, verse-chorus 
form, and others.  

 

Name Description 

Song elements Different sections composing the musical piece (e.g., introduction, 
verse, chorus or bridge). 

Organization 
levels 

Music form can be roughly divided into three levels designated as 
passage (lowest, related to musical phrases and paragraphs), piece 
(related to the entire piece) and cycle (large compositions). 

Basic musical 
forms 

The combination of different sections can be organized into several 
forms. Some examples are: through-composed (no repeated sec-
tions), strophic form (the opposite, also called verse-repeating) or bi-
nary form (repetition of two contrasting sections). 

Table 2.11: Summary of features contributing to musical form. 

 

Several distinct elements are present in a song, each with a different function and 
position. The most common two are the verse, normally containing different sets of lyr-
ics, and chorus, which usually repeats the same melodic and lyrical verses. Other common 
sections exist such as intros, in the beginning of a song, bridges, connecting verses and 
chorus or outros, at the end of a song. In specific genres such as pop/rock or blues it is 
not uncommon to also have a solo section, where a melodic line is played (sometimes 
even improvised). These song elements are further described in the Appendix A. 

A summary of the musical form attributes is presented in Table 2.11. 

2.4. Relations between Music and Emotions 

As explained earlier, music has been with us since our prehistoric times26, serving as a 
language to express our emotions. This is regarded as music’s primary purpose (Cooke, 
1959) and the “ultimate reason why humans engage with it” (Pannese et al., 2016). 

                                                        
26 Music is said to exist for at least 50,000 years, invented in Africa before our species left the continent 

for the first time, evolving to become a fundamental constituent of human life (Wallin, Merker, & 
Brown, 1999). 
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In our path to advance the music emotion recognition field, we reviewed the history 
and definitions behind emotion and explored how emotions can be classified. Next, we 
reviewed the music theory literature, in order to better understand what is music and its 
key elements. In this section we bridge the previous sections, by discussing the theoreti-
cal knowledge that connects music dimensions and emotion. 

The relations between music and emotions have been debated since millennia ago, 
with associations between modes and emotions found in ancient texts, from Indian, 
Middle Eastern (e.g., Persian), and far eastern (e.g., Japanese) traditions (Pannese et al., 
2016). Natya Shastra (Nāṭya Śāstra), an ancient Sanskrit Hindu text describing perfor-
mance arts, estimated to have been written somewhere between 500 B.C. and 500 A.D. 
(Dace, 1963, p. 249) suggests elements such as modes and musical forms as able to ex-
press particular emotions. 

A similar view of modes as suited to represent particular emotions has been sug-
gested in ancient Greece by Plato (Plato (375 B.C.), 1969, fol. 3.398b-3.398e)27, which 
also advocated that “good rhythm wait upon good disposition, […] the truly good and 
fair disposition of the character and the mind” (Plato (375 B.C.), 1969, fol. 3.400e)28. 
In addition, Plato considers harmony as capable of moving the listener, arguing that 
both “rhythm and harmony find their way to the inmost soul and take strongest hold 
upon it” (Plato (375 B.C.), 1969, fol. 3.401d)29. Aristotle, arguably Plato’s most famous 
student, supported the same ideas, stating that “rhythms and melodies contain repre-
sentations of anger and mildness, and also of courage and temperance” (Aristotle (IV c 
B.C.), 1944, fol. 8.1340a)30, while different harmonies could range from relaxing to “vi-
olently exciting and emotional” (Aristotle (IV c B.C.), 1944, fol. 8.1342a-8.1342b)31, 32. 

Scientific studies focusing on the relations between music and emotions started 
more than a century ago. One of these early examples is a study by Kate Hevner, where 
the author evaluates the influence of several musical factors such as rhythm, pitch, har-
mony, melody, tempo and mode to each of the eight emotion clusters earlier proposed 
by her (Hevner, 1937). 

Up to this day, this research problem is still far from completely solved. Still, several 
contemporary research works had already identified possible correlations or in some 
cases causal associations between specific musical elements and emotions. One of the 
most widely accepted is mode: major modes are frequently related to emotional states 

                                                        
27 http://data.perseus.org/citations/urn:cts:greekLit:tlg0059.tlg030.perseus-eng1:3.398 
28 http://data.perseus.org/citations/urn:cts:greekLit:tlg0059.tlg030.perseus -eng1:3.400e 
29 http://data.perseus.org/citations/urn:cts:greekLit:tlg0059.tlg030.perseus -eng1:3.401d 
30 http://data.perseus.org/citations/urn:cts:greekLit:tlg0086.tlg035.perseus -eng1:8.1340a 
31 http://data.perseus.org/citations/urn:cts:greekLit:tlg0086.tlg035.perseus -eng1:8.1342a 
32 http://data.perseus.org/citations/urn:cts:greekLit:tlg0086.tlg035.perseus -eng1:8.1342b 
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such as happiness or solemnity, whereas minor modes are often associated with sadness 
or anger (Gabrielsson & Lindström, 2011); simple, consonant, harmonies are usually 
happy, pleasant or relaxed. On the contrary, complex, dissonant, harmonies relate to 
emotions such as excitement, tension or sadness, as they create instability in a musical 
piece (Laurier et al., 2009). Many other musical elements have been related to emotion, 
namely: timing, dynamics, articulation, timbre, pitch, interval, melody, harmony, tonal-
ity, rhythm, mode, loudness, vibrato or musical form (Friberg, 2008; Laurier, 2011; 
Laurier et al., 2009; Meyers, 2007). 

Over the decades, several associations have been identified, linking specific emo-
tional responses to the musical elements described in Section 2.3. The next sections 
detail the most relevant findings in this area. For some musical elements, the research 
can be quite contradicting in its findings, which can be caused by many factors – from 
different research methodologies33 to differences in the scope of the studies (e.g., in-
duced or perceived emotion, significant differences in methodologies, population, and 
others). This is also caused by the complexity associated with music emotion research 
and indicates that further research is needed. 

Most of the associations described below pertain to music emotion perception or 
transmission, since most studies tackled that problem (e.g., by asking listeners which 
emotions they identified). Still, some studies do not clearly state whether their findings 
concern perceived or induced emotion. 

2.4.1. Melody and Emotion 

Given its central role in a musical piece, being (one of) the most memorable elements 
in a song, associations between melodic cues and emotions are expected and suggested 
since the Plato days, as discussed earlier. 

Some of the strongest associations found are the wider melodic ranges (pitch ranges) 
and energetic emotions such as joy (Balkwill & Thompson, 1999) or fear (Krumhansl, 
1997), while narrow ranges are associated with lower arousal emotions such as sadness, 
melancholy or tranquility (Gundlach, 1935). Other melodic elements such as ascending 
versus descending melodic contours have been studied and related to several emotions 
(Gerardi & Gerken, 1995; Hevner, 1936). However, some of these are disputed in other 
studies, arguing that the relation is more complex and involves interactions with other 
elements such as rhythm and modes (Lindström, 2006). These findings have been ob-

                                                        
33 Researchers have used several distinct methods over time. As an example, Grabrielsson et al. divides 

the existent studies in different groups: “early studies using choice among descriptive terms; based 
on multivariate analyses; and later experimental studies” (Gabrielsson & Lindström, 2011, p. 387). 
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served in cross-cultural studies, where listeners have also associated joy with simpler mel-
odies, and sadness with more complex ones (Balkwill & Thompson, 1999), even when 
exposed to unfamiliar tonal systems. 

 

The links found between melody and emotions are summarized in Table 2.1234. 

 

Musical Element Value Associated emotions 

Melodic intervals 

Large Powerful (Maher & Berlyne, 1982) 

Minor 2nd Melancholic (Maher & Berlyne, 
1982) 

Perfect 4th, major 6th, 
minor 7th 

Carefree (Maher & Berlyne, 1982) 

Perfect 5th Carefree (Maher & Berlyne, 1982), 
active (Smith & Williams, 1999) 

Octave Carefree (Maher & Berlyne, 1982), 
positive and strong (Smith & 
Williams, 1999) 

Melodic direction 
and contour 

Ascending Happy (W. G. Collier & Hubbard, 
2001; Gerardi & Gerken, 1995), 
fearful, surprised, angry (Scherer & 
Oshinsky, 1977), tense (Krumhansl, 
1996) 

Descending Sad (Gerardi & Gerken, 1995; 
Scherer & Oshinsky, 1977), bored, 
pleasant (Scherer & Oshinsky, 
1977) 

Melodic movement 

Stepwise motion Dull melodies (Thompson & 
Robitaille, 1992) 

Intervallic leaps or skips Exciting melodies (Thompson & 
Robitaille, 1992) 

Stepwise and skipwise 
leaps 

Peaceful melodies (Thompson & 
Robitaille, 1992) 

Pitch 
High Surprised, angry, fearful and others 

(Scherer & Oshinsky, 1977), happy 
                                                        

34 In this and subsequent tables, the emotions described with nouns by the original authors were con-
verted to adjectives to maintain consistence between the various works.  
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(W. G. Collier & Hubbard, 2001), 
increased tense arousal (Ilie & 
Thompson, 2006) 

Low Sad (Scherer & Oshinsky, 1977; 
Wedin, 1972), bored, pleasant 
(Scherer & Oshinsky, 1977), in-
creased valence (Ilie & Thompson, 
2006) 

Pitch variation 

Large Active, happy, pleasant, surprised 
(Scherer & Oshinsky, 1977) 

Small Angry, bored, disgusted, fearful 
(Scherer & Oshinsky, 1977) 

Pitch range 

Wide Joyful (Balkwill & Thompson, 
1999), fearful (Krumhansl, 1997), 
scary (Schimmack & Grob, 2000) 

Narrow Sad (Balkwill & Thompson, 1999) 

Table 2.12: Summary of the emotions associated with melodic elements. 

2.4.2. Harmony and Emotion 

Harmony, together with rhythm and melody, has been suggested as able to elicit emo-
tions since the ancient times. Consonant harmonies are usually associated with happi-
ness, tranquility, serenity, while dissonant complex harmonies are related with negative 
emotional states, as with tension and sadness, due to the instability they create in the 
piece (Laurier et al., 2009). 

In addition, major modes have been frequently related with positive emotions (e.g., 
happiness), while minor modes are linked to negative ones (e.g., sadness) (Gabrielsson 
& Lindström, 2011). Some authors such as Cook et al. have tried to further understand 
this affective response to major/minor chords and resolved/unresolved chords, conclud-
ing that this emotional association is “neither due to the summation of interval effects 
nor simply arbitrary, learned cultural artifacts, but rather that harmony has a psycho-
physical basis dependent on three-tone combinations” (Cook & Fujisawa, 2006). 

 

The relations between emotions and harmony are summarized in Table 2.13. 
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Musical Element Value Associated emotions 

Harmonic perception 
(harmonic intervals) 

Consonant (simple) Normally associated with positive 
emotions, such as: happy, serene and 
dignified (Hevner, 1936), pleasant 
(Costa, Bitti, & Bonfiglioli, 2000; 
Wedin, 1972), tender (Lindström, 
2006) 

Dissonant (complex) Associated mostly with negative emo-
tions: vigorous, sad (Hevner, 1936), 
unpleasant (Costa et al., 2000; 
Wedin, 1972), tense (Krumhansl, 
1996), fearful (Krumhansl, 1997), an-
gry (Lindström, 2006) 

High-pitched Happy, more active / powerful (Costa 
et al., 2000; Maher, 1980) 

Low-pitched Sad, less powerful (Costa et al., 2000; 
Maher, 1980) 

Harmony (mode) 

Major Positive emotions, e.g., happy 
(Krumhansl, 1997; Lindström, 2006; 
Scherer & Oshinsky, 1977; Wedin, 
1972), serene (Costa, Fine, & Bitti, 
2004), tender (Lindström, 2006) 

Minor Negative emotions, e.g., sad (Gagnon 
& Peretz, 2003; Krumhansl, 1997; 
Lindström, 2006; Wedin, 1972), dis-
gusted and angry (Scherer & 
Oshinsky, 1977) 

Harmony (tonality) 

Tonal Present in joyful, dull or peaceful mel-
odies (Thompson & Robitaille, 1992), 
pleasant (Costa et al., 2004) 

Atonal Present in angry melodies (Thompson 
& Robitaille, 1992) 

Using chromatic 
scales 

Present in sad and angry melodies 
(Thompson & Robitaille, 1992) 

Table 2.13: Summary of the relations between harmony and emotions. 
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2.4.3. Rhythm and Emotion 

Rhythm, together with melody and harmony, is one of the dimensions most associated 
to the emotional expression in music. In fact, some authors consider it the most im-
portant one (e.g., (Gagnon & Peretz, 2003; Hevner, 1937; Juslin, 1997)). Rhythm ele-
ments, such as the augmentation of tempo (from 90 to 150 bpms), has been shown to 
increase happiness and surprise measures (i.e., induce) (Fernández-Sotos, Fernández-
Caballero, & Latorre, 2016), while decreasing sadness, as illustrated in the Figure 2.10. 

 

Figure 2.10: Influence of different tempo values in emotional measures. Changes in (A) 
basic emotions, (B) descriptive scales. From (Fernández-Sotos et al., 2016, p. 9). 

 

In the study, the authors used two groups of words to study different emotion types: 
3 “basic emotions” where users reported what they felt (i.e., induced emotion) in a scale 
of 1 to 8; and 4 “descriptive words” (tension, expressiveness, amusement and attractive-
ness) to classify (i.e., perceived emotion) the musical piece in a scale of 1 to 5.  

In addition to tempo, the rhythmic unit of a piece have also been shown to influence 
the emotional message of a song. As an example, variations “of the rhythm of the melody 
without altering the musical line, harmonics or beat” (Fernández-Sotos et al., 2016), 
such as changes from whole and half notes (theme) to eighth or sixteenth, as well synco-
pated notes, were associated with specific emotions. A representation of these findings, 
showing how specific rhythmic elements influence emotions in the Russell’s circumplex 
plane is provided in the Figure 2.11. Similar studies have supported the idea that rhythm 
is somehow influencing the emotional information in music (e.g., (Plewa & Kostek, 
2012)). 
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Figure 2.11: Influence of different rhythmic attributes to distinct emotional states in 
the Russell’s circumplex model. From (Fernández-Sotos et al., 2016). 

 

Table 2.14 summarizes the associations between rhythm and emotion and associ-
ated studies, based on the reviews present in (Gabrielsson & Lindström, 2011; Juslin & 
Laukka, 2004; Juslin & Timmers, 2011), as well as the other mentioned papers. 

 

Musical 
Element 

Value Associated emotions 

Rests 

After tonal closure 
(a sequence which 
starts and ends in 
the same key) 

Lower tension (Margulis, 2007) 

After no tonal clo-
sure 

Higher tension than observed if after tonal closure 
(Margulis, 2007) 

Rhythm 
Types 

Regular/smooth Happy, glad, serious, dignified, peaceful, majestic 
(Gundlach, 1935; K. B. Watson, 1942) 

Irregular/rough Amusing, uneasy (Gundlach, 1935; K. B. Watson, 
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1942) 

Complex Angry (Lindström, 2006; Thompson & Robitaille, 
1992) 

Varied Joyful (Thompson & Robitaille, 1992) 

Firm Dignified, vigorous, sad, exciting35 (Hevner, 1936), 
sad (Wedin, 1972) 

Flowing/fluent Happy, dreamy, graceful, serene (Hevner, 1936), gay 
(Wedin, 1972) 

Tempo 

Fast Several, among which: happy, graceful, vigorous 
(Hevner, 1937), pleasant, happy (Rigg, 1940), pleas-
ant (Wedin, 1972), active, angry, fearful, energy 
arousal and tension arousal (Ilie & Thompson, 
2006), high arousal e.g., happy, stressful, amusing 
(Fernández-Sotos et al., 2016) 

Slow Several, among which: serene, dreamy, dignified 
(Hevner, 1937), serious, sad (Rigg, 1940), tranquil, 
sentimental, dignified (Gundlach, 1935), sad 
(Balkwill & Thompson, 1999; Gagnon & Peretz, 
2003; Hevner, 1937; Juslin, 1997; Scherer & 
Oshinsky, 1977; K. B. Watson, 1942; Wedin, 1972), 
peaceful (Balkwill & Thompson, 1999) 

Tempo 
and Note 
Values 

High tempo 
(150bpm) and six-
teenth notes 

High arousal: happy, amusing, expressive, stressful 
(Fernández-Sotos et al., 2016) 

Moderate to fast 
tempo (120 or 
150bpm)  and six-
teenth notes 

Surprised (Fernández-Sotos et al., 2016) 

Slow to moderate 
tempo (90bpms) 
and whole and 
half notes 

Sad, boring, relaxing, expressionless (Fernández-
Sotos et al., 2016) 

Table 2.14: Elements of rhythm associated with emotion. 

                                                        
35 Sometimes opposite emotions are associated to the same musical element, even in the same study, 

as found here. In this specific case, Hevner used 142 listeners to associate types of rhythm (firm or 
flowing) to 8 emotion clusters. Both “sad” and “exciting” clusters were related with firm rhythm, 
although the associated weight was lower than the remaining two clusters (dignified and vigorous). 
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2.4.4. Dynamics and Emotion 

The influence of dynamics, namely loudness and loudness variations, in music emotions 
(both induced and perceived) have been studied by some researchers, some of which 
relate them with specific emotion states. Empirically, an association of loud music (high 
intensity) with powerful and intense emotions such as joy, anger or tension seems logi-
cal. In contrast, soft music is mostly linked to calm, serene or sad music. Such associa-
tions have been verified by several researchers (Gundlach, 1935; Ilie & Thompson, 
2006; Juslin, 1997; K. B. Watson, 1942). Variations in loudness over a musical piece 
have also been studied. Namely, larger variations are usually more negative (K. B. 
Watson, 1942), while smaller variations are more positive (Scherer & Oshinsky, 1977). 

Known associations between dynamics and emotion according to the reviewed stud-
ies are summarized in Table 2.15. 

 

Musical Ele-
ment 

Value Associated emotions 

Dynamic lev-
els 

High/Loud Excited (K. B. Watson, 1942), triumphant 
(Gundlach, 1935), strong/powerful (Kleinen, 
1968), tense (Krumhansl, 1996), angry (Juslin, 
1997), energy arousal and tension arousal (Ilie & 
Thompson, 2006) 

Low/Soft Melancholic (Gundlach, 1935), peaceful (K. B. 
Watson, 1942), solemn (Wedin, 1972), fearful, 
tender, sad (Juslin, 1997), lower intensity, higher 
valence (Ilie & Thompson, 2006) 

Accents and 
changes in 
dynamic lev-
els 

Large Fearful (Scherer & Oshinsky, 1977) 

Small Happy, pleasing, active (Scherer & Oshinsky, 
1977) 

Rapid variations Playful, pleading (K. B. Watson, 1942), fearful 
(Krumhansl, 1997) 

No changes Sad, peaceful, dignified, happy (K. B. Watson, 
1942) 

Crescendo, decre-
scendo, acceler-
ando, ritardando 

Said to be useful to describe perceptual and emo-
tional processes (Langer, 1957, fig. 183) 

Table 2.15: Elements of dynamics associated with emotion. 
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2.4.5. Tone Color and Emotion 

Tone color or timbre is usually related to lower level elements and properties of the 
sound itself (such as amplitude and spectrum) essential to differentiate instruments and 
voices. Supported by this, it is sometimes incorrectly assumed that such musical dimen-
sion is too abstract and thus not relatable with a high-level concept as is emotion per-
ception.  

Several sound properties have been associated with emotional states. A rounder am-
plitude envelope is related with negative emotions such as disgust, sadness or fear (Juslin, 
1997; Scherer & Oshinsky, 1977), while a sharper one gives rise to positive emotions 
such as happiness or surprise (Scherer & Oshinsky, 1977), with some authors also link-
ing it to fear (Juslin, 1997). The number of harmonics has also been studied, where a 
lower number is associated with boredom, happiness or sadness (Scherer & Oshinsky, 
1977), while a high number of harmonics is usually related with higher stress emotions 
such as anger, disgust, fear or surprise (Scherer & Oshinsky, 1977). 

The tone color of specific instruments has also been suspected to carry emotional 
expression cues. In fact, composers and movie and marketing directors select specific 
instruments to express distinct emotions. This idea has been supported by studies such 
as (Eerola, Ferrer, & Alluri, 2012; B. Wu, Horner, & Lee, 2014b). In this respect, Hail-
stone et al. state that “timbre (instrument identity) independently affects the perception 
of emotions in music after controlling for other acoustic, cognitive, and performance 
factors” (Hailstone et al., 2009). These works highlight the importance of spectral cen-
troid (brightness) as a “significant component in music emotion”. Moreover, spectral 
centroid deviation, spectral shape, attack time and even/odd harmonic ratio were all 
considered relevant (B. Wu, Horner, et al., 2014b). 

 

A summary of the relations found in the literature linking tone color and emotions 
is presented in Table 2.16. 

 

Musical Element Value Associated emotions 

Amplitude envelope 

Round Disgusted, bored, potent (Scherer & 
Oshinsky, 1977), fear, sadness (Juslin, 
1997) 

Sharp Pleasant, happy, surprised, active 
(Scherer & Oshinsky, 1977), angry 
(Juslin, 1997). 

Spectral envelope (number 
of harmonics) 

Low Bored, happy, pleasant, sad (Scherer 
& Oshinsky, 1977) 
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High Active, angry, disgusted, fearful, po-
tent, surprised (Scherer & Oshinsky, 
1977) 

Spectral characteristics 
such as spectral centroid, 
spectral centroid deviation 
and even/odd harmonics 
ratio 

Positive correla-
tion 

Positive emotions: happy, heroic, 
comic, joyful (B. Wu, Horner, & Lee, 
2014a; B. Wu, Horner, et al., 2014b) 

Negative correla-
tion 

Negative emotions: sad, scary, shy, de-
pressed (B. Wu, Horner, et al., 2014a, 
2014b) 

Table 2.16: Summary of the relations between tone color and emotions. 

2.4.6. Expressive Techniques and Emotion 

Expressive techniques in music encompass several ornaments and features that are used 
by composers to enrich their pieces, as well as the performers, which try to express their 
emotions at that specific moment. Both parts have been studied and related with specific 
emotional states. As an example, staccato articulation is normally associated with higher 
intensity and energetic emotions (Wedin, 1972), mostly negative as with fear and anger 
(Juslin, 1997). On the other hand, legato is associated with softness (Wedin, 1972) and 
sadness (Juslin, 1997).  Similar research has been conducted regarding vibratos and emo-
tion expression, observing that “singing an emotional passage influences acoustic fea-
tures of vibrato when compared with isolated, sustained vowels” (Dromey, Holmes, 
Hopkin, & Tanner, 2015). To assess this, classical singers were asked to sing passages of 
their preference36 containing both high and low levels of emotion. The analysis of the 
recordings shows significant changes in vibrato characteristics such as frequency modu-
lation rate and extent. 

Regarding emotion expression by the performer, some studies highlighted that art-
ists typically use different ornaments, such as accentuating specific notes considered 
happy, whereas not doing the same for sadness (Lindström, 1999). In addition, Timmers 
et al. (2007) studied the usage by flute and violin performers of specific ornamentations 
such as trills, turns, mordente, arpeggio and others, when they intended to express one of 
four specific affect terms (happiness, sadness, anger and love), and how these emotions 
were perceived by listeners. The accuracy between intended versus rated emotions was 
lowest for happiness. The performers employed more complex ornamentations for angry 
and the least complex for sadness. 

                                                        
36 The authors did not set any emotion to be sang, instead singers were free to “identify a passage that 

they judged to be emotionally expressive” 
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The relations between emotions and expressive techniques are summarized in Table 
2.17. 

 

Musical Element Value Associated emotions 

Articulation 

Legato Soft (Wedin, 1972), tender, sad (Juslin, 
1997) 

Staccato Intense, energetic, active (Wedin, 1972), 
fearful, angry (Juslin, 1997) 

Ornamentation37 

Single appoggiatura [positive] Flute: lovely, sad 

[negative] Flute: happy, angry 

Double appoggiatura [negative] Violin: sad 

Trill [positive] Flute: angry 

[negative] Flute: lovely, sad 

Turn [positive] Violin: happy 

Mordent No significant correlation was observed. 

Slide No significant correlation was observed. 

Arpeggio [positive] Flute: angry; 

[negative] Flute: lovely, sad; 

Substitute [positive] Violin: sad 

Vibrato 

Higher frequency 
modulation (FM) 
rate + higher FM ex-
tent + lower modula-
tion variability  

Observed when classical singers sang 
“more emotional passages”38 (as opposed 
to neutral songs) (Dromey et al., 2015). 

Higher mean funda-
mental frequency + 
higher mean inten-
sity 

Observed in “more emotional passages” 
(Dromey et al., 2015). 

Table 2.17: Elements of expressive techniques associated with emotion. 

                                                        
37 From (Timmers & Ashley, 2007), showing only results based on listeners ratings, where significant 

correlations (p<0.05) were observed. The indicated associations can be either positive or negative 
correlated. 

38 As explained earlier, no specific emotions were selected, instead subjects were asked to sing “emo-
tional passages” of their preference and the voice signals were analyzed. 
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2.4.7. Musical Texture and Emotion 

Fewer studies have been conducted regarding musical texture and emotions and of these 
some contain contradicting results. In one of the oldest studies, the authors evaluated 
the emotional differences between monophonic (melody only) and homophonic tex-
tures (melody with block chords accompaniment) by children aged three to twelve. In 
that study, the unaccompanied version (monophonic) was rated as more positive 
(Kastner & Crowder, 1990). A similar result was observed by Webster et al., where non-
harmonized melodies were considered happier (Webster & Weir, 2005). However, fur-
ther studies trying to replicate Kastner et al.’s findings observed exactly the opposite 
result. There, not only children but also adult subjects considered monophonic sounds 
as less happy than accompanied ones (Gregory, Worrall, & Sarge, 1996; McCulloch, 
1999). A possible explanation to this contradicting results are the different versions of 
“dense textures” used in each (Broze, Paul, Allen, & Guarna, 2014), where very 
basic/simple chords and a single instrument were used in the studies observing negative 
emotions, while the others used more complex (and thus, with higher density) accompa-
niments taken from published songbooks. These differences may influence greatly other 
musical dimensions (e.g., harmony) making it harder to correctly compare the results. 

Polyphonic textures, containing several voices, have also been explored recently, 
suggesting that music with a higher number of voices is perceived as more positive. Such 
musical excerpts were rated as “sounding more happy, less sad, less lonely, and more 
proud” (Broze et al., 2014). 

Although further studies are required to better understand exactly how musical tex-
ture influences emotion, the existent ones have demonstrated that it can indeed influ-
ence emotion in music either directly or by interacting with other features such as tempo 
and mode (Broze et al., 2014). Table 2.18 summarizes the associations found between 
musical texture and emotions. 

 

Musical Element Value Associated emotions 

Texture type 

Monophonic More positive (Kastner & Crowder, 
1990) and happier (Webster & Weir, 
2005) than homophonic 

Homophonic Happier (Gregory et al., 1996; 
McCulloch, 1999) than monophonic. 

Number of layers 
and density 

Music with higher 
number of voices (pol-
yphonic) 

“more happy, less sad, less lonely, and 
more proud” (Broze et al., 2014) 

Table 2.18: Summary of the relations between musical texture and emotions. 
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2.4.8. Musical Form and Emotion 

Similarly to musical texture, few studies have investigated possible relations between 
musical form and emotion. From these, it seems that forms with lower complexity are 
associated with positive emotions (Imberty, 1979) such as relaxation, joy or peace 
(Balkwill & Thompson, 1999). On contrary, higher complexity forms usually result in 
more negative emotions such as sadness (Balkwill & Thompson, 1999), which can be 
higher in arousal (e.g., aggressive) or lower (e.g., melancholy) depending on the dyna-
mism (high or low, respectively) (Imberty, 1979). 

Some researchers have explored the relation between emotions and form by chang-
ing the order of sections (in classical music) but no relevant results were obtained 
(Konečni & Karno, 1994; Tillmann & Bigand, 1996). The few associations found be-
tween musical form and emotions are presented in Table 2.19. 

 

Musical Element Value Associated emotions 

Form complexity 

Low Positive emotions (Imberty, 
1979), Joy, peace, relaxation 
(Balkwill & Thompson, 1999) 

High Sadness (Balkwill & 
Thompson, 1999) 

High complexity and low dyna-
mism 

Depression, melancholy 
(Imberty, 1979) 

High complexity and high dy-
namism 

Aggressiveness, anxiety 
(Imberty, 1979) 

Table 2.19: Summary of the relations between musical form and emotions. 

2.4.9. Interactions between Musical Dimensions 

As described in the previous sections, each musical element may influence distinct emo-
tional expressions. Based on this, it is clear that the emotional content in music is not 
defined exclusively by a single element but is built by the merging and interaction of 
several factors. Beyond studying associations concerning musical dimensions and emo-
tions independently, these interactions between several musical dimensions and the as-
sociated emotional responses have also been studied and reviewed (e.g., (Gabrielsson & 
Juslin, 2003; Schubert, 1999)). Such works unveil interesting indirect relations and in-
teractions regarding the variation of specific elements and the corresponding emotional 
changes, as well as possible interactions between elements, resulting in different emo-
tional states. One example is the interaction between tempo and mode (Schubert, 1999), 
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illustrated in Figure 2.12 – high tempo and minor mode results in only high arousal, 
while the same high tempo, but with major mode, results in high arousal and positive 
valence. 

 

Figure 2.12: Hypothesized interaction between tempo and mode (Schubert, 1999, p. 
390). 

Several other authors have studied possible interactions, such as mode and tempo 
(Gagnon & Peretz, 2003; Rigg, 1940), the influence of pitch height, intensity and tempo 
in valence (Ilie & Thompson, 2006), the influence of rhythm, melodic contour and 
melodic progression in happy music (Lindström, 2006) or interactions between tempo, 
texture and mode (Webster & Weir, 2005). 

Emotion conveyed by music has frequently been associated with both tempo and 
mode (major-minor). Gagnon et al. examined this and their possible interaction by pre-
senting different versions of various melodies to volunteers and asking whether the mel-
odies “sounded happy or sad” (Gagnon & Peretz, 2003). In the first experiment, the 
melodies were manipulated ensuring that either mode or tempo in isolation were al-
tered. Next, both were manipulated simultaneously towards the same emotion (and the 
opposite). Results showed that both tempo and mode can indeed influence emotions in 
isolation, with fast tempo and major mode being associated with happy emotions (and 
the opposite with sad emotions). Moreover, their combination resulted in “significantly 
more extreme ratings”. Regarding the experiment with diverging tempo and mode, the 
observed emotion ratings were less pronounced, with the authors concluding that “in 
the presence of conflicting information, subjects tend to rely more on tempo infor-
mation than on mode in their judgements”. Interactions between tempo, mode and 
texture has been studied by other researchers, as discussed in (Webster & Weir, 2005). 

Ilie et al. studied the consequences of manipulating intensity, rate, and pitch height 
in music and speech, by asking participants to rate 64 music and 64 speech excerpts in 
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terms of valence, tension arousal and energy arousal (Ilie & Thompson, 2006). In addi-
tion to the results observed in isolation, the authors identified several interactions as 
being statistical significant. Namely, for music stimuli, the valence ratings suggested that 
“the effects of intensity were greater when pitch height was high than when it was low”, 
with lower valence being reported to loud-high pitched music. Moreover, fast-tempo 
music excerpts were judged as more pleasant when the pitch height was low than when 
it was high. Regarding speech, the authors reported an interaction between intensity 
and pitch height, where “soft high-pitched voices were perceived as more pleasant than 
any other pitch height and intensity combination”. In addition to valence, a three-way 
interaction was observed in energy arousal speech ratings, relating rate, pitch height, and 
intensity. 

Regarding rhythm, melodic contour and melodic progression, Lindström identified 
five two-way interactions, with the more significant being between melodic contour and 
direction (Lindström, 2006). In addition, a complex three-way interaction between 
rhythm, contour and direction was also observed in the participants’ ratings of stability 
– instability. 
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Chapter 3  
 
MUSIC EMOTION RECOGNITION 

LITERATURE REVIEW 

he creation of new knowledge requires a deep understanding about what has 
been done in a specific field and which questions remain unanswered. The pre-
vious chapter explored the basic theoretical knowledge needed to understand the 
music and emotion components of the MER field. 

This chapter delves into the technical part of the field, analyzing how the existing 
musical dimensions have been captured computationally, exploring the most relevant 
works and strategies of music emotion recognition, the existing ground truth and cur-
rent limitations. 

Section 3.1. Standard Computational Audio Features 

With that in mind, we first explore the available computational algorithms that have 
been proposed over the years in the Music Information Retrieval (MIR) field and used 
in MER. The gathered knowledge is organized by musical dimensions, as previously de-
scribed in Chapter 2, to better identify possible gaps in the area. 

Section 3.2. Music Emotion Recognition Approaches 

Next, a comprehensive review of MER history is presented. To this end, we start with a 
generic overview, explaining how the typical MER approach is organized, from ground-
truth collection and existent datasets to feature extraction and emotion recognition. 
Finally, we build on this knowledge to present the historical timeline of the MER field 
in the last three decades. 

3.1. Standard Computational Audio Features 

In general terms, a feature is a notable or characteristic part of something. Features help 
to distinguish one thing from another, by providing the essential descriptive primitives 
by which individual objects or works may be identified (Huron, 2001). 

T 
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In musical terms, features may be characteristic of a musical work, of a movement, 
of a composer, of a very specific musical dimension, of a genre, and so forth. As Huron 
states, “what constitutes a feature depends on the scope of our gaze” (Huron, 2001). For 
illustration, features can be employed to represent any aspect that is relevant to the iden-
tification of a song, from the chords, to abstract statistics regarding physical aspects of 
the sound wave, rhythm information and others. Summing it up, the goal of feature 
extraction is to reduce the information of songs to descriptors that can fully describe 
them (X. Yang et al., 2017). 

Over the last decades, several algorithms have been proposed to extract information 
from audio signals. These features have been developed to solve a myriad of problems, 
from speech recognition, to content-based retrieval, indexing, and fingerprinting. Now-
adays, most of these are implemented in state-of-the-art audio frameworks, commonly 
used by most MIR studies. Hereafter, we term such features “standard computational 
audio features”. 

3.1.1. State-of-the-Art Audio Frameworks 

Audio features represent information extracted from an audio signal and are the basis 
of diverse research fields such as music emotion recognition, digital audio effects, music 
fingerprinting and similarity measures, among others. Although different, these prob-
lems rely heavily on common audio features, such as zero crossing rate or signal energy. 

Over the years, a range of audio frameworks39 has been developed, implementing 
many of the audio features proposed in the literature. The available frameworks vary 
greatly in many aspects, from user-friendliness to computational efficiency or the num-
ber of implemented algorithms. Some are aimed to research, requiring specific environ-
ments (e.g., MATLAB), while others are designed with performance in mind, more 
suited to be used in the industry. Below we introduce some of the most commonly used 
in the MER research field, for an in-depth review see (Moffat, Ronan, & Reiss, 2015). 

Marsyas 

Marsyas40 (Tzanetakis, 2002), an acronym of Music Analysis, Retrieval and Synthesis for 
Audio Signals, is an open-source audio framework created by George Tzanetakis and 
other researchers. It was developed for audio processing with specific emphasis on MIR 
applications and used for a variety of projects in both academia and industry41. It is one 

                                                        
39  Computational tools and libraries used to extract audio features. 
40 http://marsyas.info/ 
41 http://marsyas.info/about/projects.html 
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of the most computationally efficient frameworks available, in part due to the fact of 
being written in highly optimized C++ code, as opposed to more academic alternatives 
using MATLAB or interpreted languages. 

In addition to the library, some command line tools are also provided, capable of, 
amongst other things, extracting features and training classifiers. The native integration 
with Qt, a multi-platform development framework, provides the foundations to create 
full, portable, applications with graphical user interfaces. 

Although the number of features extracted by Marsyas is high, this is in part due to 
various statistical moments used to summarize features which output time series. As 
concluded in previous works (Panda & Paiva, 2011a), the framework lacks some features 
that have been identified as relevant for MER. Other problems are related with the lack 
of detail in some of the documentation, complex application programming interface 
and syntax to build and control the audio processing networks. 

MIR Toolbox 

MIR Toolbox42 (Lartillot & Toiviainen, 2007) is a MATLAB framework implementing 
several algorithms specific to the extraction of musical features. The software is very 
modular and complex algorithms are built of smaller more elementary functions and 
mechanisms. This approach allows for the usage and combination of these minimal 
blocks independently as required.  

The framework provides several graphical representations to export and graphically 
visualize the extracted information. Alternatively, these can be omitted to use in a batch 
scripting approach. A great number of both low and high-level features is available, some 
of which proved interesting to MER problems in previous works (Panda & Paiva, 2011a; 
Y.-H. Yang & Hu, 2012). The framework has also been used by some of the best per-
forming algorithms in MIREX mood classification contests (e.g., (Panda & Paiva, 2012a; 
J.-C. Wang, Lo, Jeng, & Wang, 2010). One of its advantages is the quality of the docu-
mentation provided, especially when compared with other frameworks. Since it is built 
on top of MathWorks’ MATLAB and MathWorks’ Signal Processing Toolbox, this is its 
biggest drawback, as both are very resource intensive commercial products, hindering its 
usage on scenarios where lots of data needs to be processed. 

PsySound 

Currently in version 3, PsySound343 is a MATLAB toolbox for the analysis of sound 
recordings (Cabrera, Ferguson, & Schubert, 2007). Its aim is to provide precise analysis 

                                                        
42 https://www.jyu.fi/hytk/fi/laitokset/mutku/en/research/materials/mirtoolbox 
43 http://psysound.wikidot.com/ 
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using standard acoustical measurements, as well as implementations of psychoacoustical 
and musical models, such as loudness, sharpness, roughness, fluctuation strength, pitch, 
rhythm and Interaural Cross Correlation (IACC). Compared to the alternatives, this 
framework extracts a smaller set of features, while being slower and much more com-
puter- and memory-intensive. 

Although cited in some literature (e.g., (Y.-H. Yang, Lin, Su, et al., 2008)) as having 
several features relevant to emotion recognition, older studies used a previous release of 
PsySound (version 2), available only for Mac PowerPC architecture computers. Since 
then, the program was rewritten in MATLAB, resulting in PsySound3. The current ver-
sion, which has not been updated in the last years44, still contains several issues and lacks 
stability, which makes the most relevant features identified in older studies (Y.-H. Yang, 
Lin, Su, et al., 2008) hard or impossible to replicate. Even with the existent issues and 
lacking comprehensive documentation and usage instructions, the framework is quite 
relevant since it implements several features that might be unavailable in alternative 
frameworks. 

jMIR 

jMIR45 is an open-source Java software package for music information retrieval research 
(Mckay, 2010). Its development started in 2005 at McGill University, with the initial 
goal of providing a framework to eliminate the effort in calculating features from audio 
signals, providing a wide range of analysis algorithms suitable to MIR tasks by default. 
To complement this and decrease the slope of the learning curve, the application also 
provides an easy to use graphical user interface, making feature selection and audio pro-
cessing straightforward. Since it was written in Java, the framework is portable across 
several operating systems, although having a lower performance when compared to so-
lutions such as Marsyas. 

Nowadays, jMIR includes not only feature extractors from several sources (e.g., au-
dio, lyrics, symbolic files), but also other tools, namely, machine learning algorithms, 
heuristic error checkers and metadata mining and analysis tools. To this end, the suite 
is composed of several components, among which: 

 jAudio: extracting low and high-level features from audio 
 jLyrics: mining lyrics from the web and extracting textual features 
 jSymbolic: extracting high-level features from symbolic music encodings 
 jWebMiner: extracting cultural features from the internet 

                                                        
44 https://github.com/densilcabrera/psysound3 
45 https://sourceforge.net/projects/jmir 
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Essentia 

Essentia46 is an open-source C++ library for audio analysis and audio-based music infor-
mation retrieval (Bogdanov et al., 2013). It has been designed with a focus on robustness, 
performance and optimality of the provided algorithms both in terms of memory and 
speed, making it ideal for industrial solutions. It is also cross-platform, fully supporting 
Linux and Mac OS X, and partially supporting a longer range of platforms such as Win-
dows, mobile (iOS and Android) or web (JavaScript). In addition, the library can be used 
in Python (via python wrappers) and contains several examples, command line tools and 
extensions. As a result, it has been used in several projects, from large web platforms 
such as freesound.org47 (for large-scale indexing and content-based search), to Android 
and iOS apps such as the Freetello48 (guitar learning app). 

The library provides an extensive number of algorithms for audio input/output, 
signal processing and extraction of musical descriptors. In addition, Essentia is also able 
to estimate higher-level music descriptors such as genre, danceability, mood, dynamic 
complexity, voice or instrumental and others (for details see Section 3.1.10). To this 
end, Gaia49 (a C++ library for similarity and classification) is used to train classification 
models and output results. 

LibROSA 

LibROSA50 is an open-source python package for music and audio analysis (Mcfee et al., 
2015). It provides implementations of several functions and algorithms necessary to cre-
ate music information retrieval systems. It has been designed to be easy to use, especially 
for researchers familiar with MATLAB, with standardized interfaces and variable names 
and to achieve “backwards compatibility against existing reference implementations” as 
much as possible (Mcfee et al., 2015). As with other frameworks, the functions are mod-
ular and can be combined in new, different ways by researchers to explore new features. 

The features available from LibROSA are mostly spectral features, with a few rhyth-
mic descriptors also available. While the package is well documented and easy to use, its 
main drawback is the algorithmic efficiency, being the slowest of all the frameworks 
compared in (Moffat et al., 2015). 

 

The audio frameworks described above are able to extract a high number of features, 

                                                        
46 http://essentia.upf.edu/ 
47 https://freesound.org/ 
48 https://fretello.app/ 
49 https://github.com/MTG/gaia 
50 https://librosa.github.io/ 
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and new ones are added as they are proposed in new research. The most common fea-
tures, such as the spectral related ones, are typically available across every audio frame-
work, something that does not happen with the more complex or newer ones. Next, we 
catalog the audio features that have been proposed in the literature over the years and 
are now available in these frameworks, organizing them according to the musical dimen-
sions to which they are closer to. In thus ways, we aim to: 1) get a better picture of the 
current state-of-the-art regarding audio features extraction; 2) understand how they relate 
with the musical dimensions and attributes that are relevant to music emotion; 3) and 
identify musical dimensions that are known to be relevant to MER but might be lacking 
in terms of computational extractors available. 

Many of the features are extracted repeatedly for smaller excerpts (analysis windows) 
of the entire audio clip, returning series of data. These frame-level features are normally 
integrated using statistical moments such as mean, standard deviation, skewness and 
kurtosis, maximum and minimum before being used with machine learning techniques. 

We selected three of the abovementioned audio frameworks to use in our research: 
Marsyas, MIR Toolbox and PsySound3. Several factors contributed to this selection, 
namely, these have been consistently used in previous MER works, were part of the best 
performing algorithms in MIREX AMC task over the years and together capture a very 
high number of audio features as detailed below and in (Moffat et al., 2015). For each 
of the features described in the next sections, we also indicate audio frameworks which 
implement such algorithms. This indication is not comprehensive but rather indicates 
at least one framework where the implementation is available. 

3.1.2. Melody Features 

In this section we describe the audio features that capture information primarily related 
with melody and its components, as described in Section 2.3.1. 

Pitch 

Pitch represents the perceived fundamental frequency of a sound. It is one of the three 
major auditory attributes of sounds, along with loudness and timbre. Pitch (as an audio 
feature) typically refers to the fundamental frequency of a monophonic sound signal and 
can be calculated using various different techniques (Rabiner, Cheng, Rosenberg, & 
McGonegal, 1976). Many frameworks, such as the MIR Toolbox or Marsyas, implement 
pitch extraction algorithms, returning the results either as continuous pitch curves or as 
discretized note events. One of the most common methods to calculate pitch, employed 
in Marsyas, MIR Toolbox and Essentia is the YIN algorithm (de Cheveigné & Kawahara, 
2002). PsySound3 also implements Swipe and Swipe’ (Sawtooth Waveform Inspired 
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Pitch Estimator) algorithms proposed by Camacho (Camacho, 2007). 

Available in: MIR Toolbox, Psysound3, Marsyas and Essentia. 

Virtual Pitch Features  

Ernst Terhardt et al. proposed an algorithm to extract virtual pitch, which is concerned 
with the psychoacoustics and modeling of the perceived pitch (Terhardt, Stoll, & 
Seewann, 1982). The PsySound3 framework implements this algorithm using the pa-
rameters described by Parncutt (Parncutt, 1989, Chapter 6), extracting the following 
descriptors: 

 Virtual Pitch Pattern – strength of virtual pitches (using Terhardt's algorithm) 
 Spectral Pitch Pattern – strength of spectral pitches (using Terhardt's algorithm) 
 Chroma Pattern – Chroma salience according to Parncutt (Parncutt, 1989, p. 

146) 
 Pure Tonalness – reflects the audibility of spectral pitches 
 Complex Tonalness – reflects the audibility of virtual pitch, an estimation of 

how similar the spectrum is to a harmonic (or complex) tone 
 Multiplicity – estimation of the number of tones simultaneously noticed in a 

sound (this particular descriptor can also be related with texture) 
 ChordChangeLikelihood – although extractable, no details are provided in the 

documentation. 

Available in: Psysound3. 

Pitch Salience 

The perception of pitch, in particular its salience is a complex idea that can be roughly 
explained as how noticeable (that is, strongly marked) is the pitch in a sound, and was 
proposed as a quick measure of tone sensation. Pure tones have an average pitch salience 
value close to 0 whereas sounds containing several harmonics in the spectrum have 
higher salience values. 

Different approaches have been proposed to extract this feature. The pitch salience 
function calculates the salience of a signal frame given its spectral peaks. To this end, 
the salience of a given frequency is computed as the sum of the weighted energies found 
at integer multiples (harmonics) of that frequency (Salamon & Gómez, 2012). 

A second approach implemented in Essentia computes the pitch salience of a spec-
trum, as the ratio of the highest auto correlation value of the spectrum to the non-shifted 
auto correlation value (Ricard, 2004). MIR Toolbox also implements this strategy and is 
able to output the salience, sometimes referred as “amplitude” in the manual, as de-
scribed in (Lartillot, 2018, p. 145). 
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Available in: Essentia, MIR Toolbox. 

Predominant Melody F0 

Several authors have proposed algorithms to estimate the fundamental frequency, f0, of 
the predominant melody in both polyphonic and monophonic music audio signals. This 
is still an open research problem, and most of the audio frameworks do not include 
polyphonic audio melody F0 extractors. Still, some of the proposed algorithms are now-
adays available as separate tools. Two of these cases are the MELODIA algorithm 
(Salamon & Gómez, 2012), that is freely available online51, and the Dressler’s algorithm 
(Dressler, 2016), currently of restrict access. 

Currently, the Essentia framework implements an algorithm for Melody F0 estima-
tion based on the MELODIA algorithm. Still, the current implementation in Essentia 
is limited to monophonic signals. The approach is based on creation of time continuous 
sequences of pitch candidates grouped using auditory streaming cues, known as pitch 
contours. Other frameworks such as Marsyas also provide tools for monophonic pitch 
extraction. 

Available in: Essentia52 

Pitch content 

In his PhD thesis, Tzanetakis defines a set of simple features extracted from folded53 and 
unfolded pitch histograms to describe pitch information (Tzanetakis, 2002, p. 51): 

 FA0: Amplitude of the maximum peak of the folded histogram. This corre-
sponds to the most dominant pitch class of the song. For tonal music, this peak 
will typically correspond to the tonic or dominant chord. This peak will be 
higher for songs that do not have many harmonic changes; 

 UP0: Period of the maximum peak of the unfolded histogram. This corresponds 
to the octave range of the dominant musical pitch of the song; 

 FP0: Period of the maximum peak of the folded histogram. This corresponds 
to the main pitch class of the song; 

 IPO1: Pitch interval between the two most prominent peaks of the folded his-
togram. This corresponds to the main tonal interval relation. For pieces with 
simple harmonic structure, this feature will have a value of 1 or -1, correspond-
ing to fifth or fourth intervals (tonic-dominant); 

                                                        
51 http://www.justinsalamon.com/melody-extraction.html 
52 The implementation in Essentia is adapted / limited to monophonic signals. 
53 In the folded pitch histogram all notes are mapped to a single octave. 
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 SUM: The overall sum of the histogram. This feature is a measure of the 
strength of the pitch detection. 

Although the author described these features in his PhD thesis about the Marsyas 
framework, the current documentation seems to ignore them. Due to this we could not 
confirm that the framework is able to extract them. 

Available in: Marsyas (unconfirmed)  

3.1.3. Harmony Features 

In this section we describe the audio features that capture information primarily related 
with harmony and its components, as described in Section 2.3.2. 

Inharmonicity 

Inharmonicity measures the amount of partials that are not multiples of the fundamen-
tal frequency. Inharmonicity influences the timbric perception of a given sound. One 
approach to compute this was proposed by Peeters (Peeters, 2004, p. 17) and is imple-
mented in Essentia. MIR Toolbox framework measures the inharmonicity as the amount 
of energy outside the ideal harmonic series, which presupposes that there is only one 
fundamental frequency (Lartillot, 2018, p. 147).  

Available in: MIR Toolbox, Essentia. 

Chromagram 

The chromagram is used to estimate the energy distribution along pitch classes. It con-
sists of a 12-positions vector, one for each note, from A to G# (12 semitone pitch classes), 
with the respective intensities in each of these classes based on the spectral peaks of the 
waveform. It is also known as Harmonic Pitch Class Profile (HPCP). 

Some extractors use variations such as vectors multiple of 12, subdividing the pitch 
classes. As an example, Marsyas outputs two additional values, consisting in the mini-
mum and average intensity for the chroma A (i.e., the set of A pitches separated by N 
octaves). 

The MIR Toolbox implements an extractor to visualize the Pearson correlation val-
ues between chromas as a color map, which can be animated if frame decomposition is 
used. To this end, the chromagram is projected into a self-organizing map trained with 
the Krumhansl-Kessler profiles (Toiviainen & Krumhansl, 2003). 

Available in: MIR Toolbox, Marsyas, and Essentia. 
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Tuning Frequency 

The tuning frequency is an estimation of the exact frequency (in Hz) on which a song is 
tuned, based on the audio signal. It is used as an intermediary step for HPCP calculation 
and key estimation, but can also be applied for classification tasks such as western vs. 
non-western music (Gómez, 2005). 

Available in: Essentia, librosa. 

Key Strength 

Key strength consists in the computation of the probability of each possible key candi-
date to be the key of a given song (e.g., outputting scores between 0 and 1, or -1 to 1). 
The algorithm is based on the cross-correlation of the chromagram (Gómez, 2006a, p. 
103). 

Available in: MIR Toolbox, Essentia. 

Key and Key Clarity 

These features give a broad estimation of tonal center positions and their respective 
clarity. This is obtained by peak picking in the key strength curve. There, the best key 
(or keys) is given by the peak abscissa, while the key clarity is the key strength associated 
with the best keys, i.e., the key ordinate  (Lartillot, 2018, p. 156). 

Available in: MIR Toolbox, Essentia. 

Modality 

Several algorithms exist to estimate modality, i.e., major vs. minor, returning either a 
binary label (e.g., major / minor) or a numerical value (e.g., between -1 (minor) and 1 
(major)). Some of the common strategies use the estimated strength of each key and 
consist of: 

 The difference between the strength of the strongest major and minor keys 
 The sum of all the differences between each major key and its relative minor 

key pair 

Available in: MIR Toolbox, Essentia. 

Chord Sequence 

Extracting chords from an audio signal is a complex task, for which researchers have yet 
to propose robust solutions. The existent methods to estimate this are still experimental, 
based on pitch profile classes (Gómez, 2006b; Temperley, 1999). Essentia implements 
an algorithm based on this research, able to compute the sequence of chords in a song. 
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Such algorithm calculates the best matching major or minor triad and outputs the result 
as a string (e.g., A#, Bm, G#m, C). The existing implementation is marked as experi-
mental and requires further work before being usable. 

While MIR Toolbox cites the same works by Gómez, its documentation only men-
tions chromagram extraction and the associated chroma classes, not documenting any 
method to output the best matching triad. 

Available in: Essentia. 

Tonal Centroid Vector (6 dimensions) 

The tonal centroid is represented as a 6-dimensional feature vector. It corresponds to a 
projection of the chords along circles of fifths, of minor thirds and of major thirds 
(Harte, Sandler, & Gasser, 2006). It is based on the Harmonic Network or Tonnetz, 
which is a planar representation of pitch relations, where pitch classes having close har-
monic relations such as fifths, major/minor thirds have smaller Euclidean distances on 
the plane. By calculating the Euclidean distance between successive analysis frames of 
tonal centroid vectors, the algorithm detects harmonic changes such as chord bounda-
ries from musical audio (exemplified in Figure 3.1). 

 

Figure 3.1: Tonal Centroid for the A major triad (pitch class 9, 1 and 4) is shown at 
point A (adapted from (Harte et al., 2006)). 

Available in: MIR Toolbox. 

Harmonic Change Detection Function 

The Harmonic Change Detection Function (HCDF) is a method for detecting changes 
in the harmonic content of musical audio signals proposed by Harte et al. (Harte et al., 
2006). It can be seen as the flux of the tonal centroid, as in the distance between the 
harmonic regions of successive frames (Harte et al., 2006). 
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Available in: MIR Toolbox. 

Sharpness 

Sound can be subjectively rated on a scale from dull to sharp, and sharpness algorithms 
attempt to model this. These algorithms are essentially weighted centroids of specific 
loudness. The unit of sharpness is the acum. One acum is defined as the sharpness of a 
band of noise centered on 1000 Hz, 1 critical-bandwidth wide, with a level of 60 decibels 
(dB) (sound pressure level). A 1000 Hz pure tone at 60 dB will have a similar sharpness. 
Psysound3 implements several algorithms for this. 

Available in: Psysound3. 

3.1.4. Rhythm Features 

In this section we describe the audio features that capture information primarily related 
with rhythm and its components, as described in Section 2.3.3. 

Rhythmic Fluctuation 

This feature estimates the rhythm content of an audio signal. This estimation is based 
on spectrogram computation transformed by auditory modelling and then a spectrum 
estimation in each band (Pampalk, Rauber, & Merkl, 2002), in brief, the rhythmic peri-
odicity along auditory channels. In the MIR Toolbox implementation this process can 
be described in two steps (Lartillot, 2018): 

 First the spectrogram is computed on frames of 23 ms and half overlapping. 
Then the Terhardt outer ear modelling is computed, with Bark-band redistribu-
tion of the energy and estimation of the masking effects. Finally, the amplitudes 
are computed in deciBel (dB) scale. 

 Then, a Fast Fourier Transform (FFT) is computed on each Bark band, from 0 
to 10 Hz. The amplitude modulation coefficients are weighted based on the 
psychoacoustic model of the fluctuation strength (Fastl, 1982). The result is a 
matrix of the rhythmic periodicities for each different Bark band. 

Available in: MIR Toolbox. 

Beat Spectrum 

The beat spectrum has been proposed as a measure of acoustic self-similarity as a func-
tion of time lag. It is computed from the similarity matrix, obtained by comparing the 
similarity between all possible pairs of frames from the original audio signal (Foote, 
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Cooper, & Nam, 2002). 

Available in: MIR Toolbox. 

Beat Location 

Different beat tracking algorithms have been proposed over time. These algorithms esti-
mate the beat locations given an input signal. A popular algorithm, proposed by Degara 
et al. uses statistics to estimate “the time between consecutive beat events and exploits 
both beat and non-beat information by explicitly modeling non-beat states” (Degara et 
al., 2012). 

A newer approach, named multi-feature beat tracker, extends the idea of measuring 
the level of agreement between a committee of different beat tracking algorithms in a 
song-by-song basis, which attained higher results (Zapata, Davies, & Gómez, 2014). The 
Essentia framework implements these and other beat tracker and rhythm extractor func-
tions. In case of the multi-feature algorithm, it combines 5 different beat trackers, taking 
into account the maximum mutual agreement between them. Marsyas provides the 
INESC-Porto Beat Tracker, a real-time/off-line tempo induction and beat tracking sys-
tem based on a competing multi-agent strategy, which considers parallel hypotheses re-
garding tempo and beats (J. L. Oliveira, Gouyon, Martins, & Reis, 2010). 

Available in: Essentia, Marsyas. 

Onset Time 

Another way of determining the tempo is based on first the computation of an onset 
detection curve, showing the successive bursts of energy corresponding to the successive 
pulses. Peak picking is automatically performed on the onset detection curve, to show 
the estimated positions of the notes.  In the case of the MIR Toolbox, its onset function 
is able to return the onset times using any of the following options: peaks, valleys, attack 
phase and release phase using several algorithms as discussed in (Lartillot, 2018, p. 90) 

Available in: MIR Toolbox, Essentia. 

Event Density 

This is a feature to estimate the “speed” of a song by estimating the average frequency 
of events, i.e., the number of note onsets per second (Lartillot, 2018, p. 99). 

Available in: MIR Toolbox. 
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Average Duration of Events 

The duration of events (e.g., a note) can also be estimated from its envelope. One possi-
ble approach to estimate this was proposed by Peeters (2004). It consists in detecting 
attack and release phases and measuring the period of time (in seconds) between them 
when the amplitude is at least 40% of the maximum. 

Available in: MIR Toolbox. 

Tempo 

Several algorithms have been proposed to estimate the tempo, the speed or pace of a 
given musical piece, which is usually indicated in beats per minute (BPM). Tempo is 
typically estimated by detecting periodicities from the onset detection curve. 

In case of the Essentia toolbox, this is obtained using the abovementioned Degara 
or Multi-feature beat tracking algorithms. The MIR Toolbox offers two approaches: 1) 
classical, based on detecting periodicities in a range of BPMs, and choosing the maxi-
mum periodicity score for each frame separately (Lartillot, 2010). In more complex 
pieces, such approach creates a tempo curve with various jumps, related with shifts in 
the metrical level; 2) metre-based, which tracks tempo by building a hierarchical metrical 
structure from the periodicities found in the event detection curve (Lartillot, Cereghetti, 
Eliard, & Trost, 2013). In complex cases, this approach is typically able to find coherent 
metrical levels leading to a continuous tempo curve. 

Marsyas offers several different methods to estimate tempo using the provided 
tempo estimation tool54. According to the source code, 11 different methods are imple-
mented, with the default being the simple tempo estimation method (STEM). This 
method is based on two musical rhythm properties: 1) the music signal tends to be self -
similar at periodicities related to the underlying rhythmic structure; and 2) rhythmic 
events tend to be spaced regularly in time, as described in (Tzanetakis & Percival, 2013). 

Available in: MIR Toolbox, Essentia, and Marsyas. 

Tempo Change 

An indicator of tempo change over time is estimated by computing the difference be-
tween successive values of the tempo curve in the MIR Toolbox. This musical descriptor 
is expressed independently from the choice of a metrical level by computing the ratio of 
tempo values between successive frames and is expressed in logarithmic scale (base 2). 
Thus, a value of 0 is observed when there is no change in tempo for two consecutive 
frames; tempo increasing gives a positive value; and tempo decreasing gives negative val-
ues (Lartillot, 2018, p. 105).  

                                                        
54 https://github.com/marsyas/marsyas/blob/master/src/apps/tempo/tempo.cpp 
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Available in: MIR Toolbox. 

Metrical Structure 

This feature provides a detailed description of the hierarchical metrical structure by de-
tecting periodicities from the onset detection curve and tracking a broad set of metrical 
levels (Lartillot et al., 2013). This extractor is used to calculate the metre-based tempo 
estimation in the MIR Toolbox. 

Available in: MIR Toolbox. 

Metrical Centroid and Strength 

These functions provide two descriptors derived from the abovementioned metrical 
analysis carried out by the MIR Toolbox: 

1. Dynamic metrical centroid: estimation of the metrical activity, based on the 
computation of the centroid of the selected metrical levels. The resulting 
metrical centroid curve indicates the temporal evolution of the metrical ac-
tivity expressed in BPM, so that the values can be compared with the tempo 
values also in BPM. According to the documentation, “high BPM values 
for the metrical centroid indicate that more elementary metrical levels (i.e., 
very fast levels corresponding to very fast rhythmical values) predominate. 
On the contrary, low BPM values indicate that higher metrical levels (i.e., 
slow pulsations corresponding to whole notes, bars, etc.) predominate. If 
one particular level is particularly dominant, the value of the metrical cen-
troid naturally approaches the corresponding tempo value on that particu-
lar level” (Lartillot, 2018, p. 109). 

2. Dynamic metrical strength: an indicator of the clarity and strength of the 
pulsation. Estimates whether a “clear and strong pulsation, or even a strong 
metrical hierarchy is present”, or if the opposite is true, where “the pulsa-
tion is somewhat hidden, unclear” (Lartillot, 2018, p. 109) or a complex 
mix of pulsations. 

Available in: MIR Toolbox 

Pulse / Rhythmic Clarity 

This feature estimates the “rhythmic clarity”, an indicator of the clarity and strength 
found in the beats estimated by tempo estimation algorithms. Distinct heuristics exist 
to this estimation. The most common uses the autocorrelation curve that is computed 
during tempo estimation (Lartillot, Eerola, Toiviainen, & Fornari, 2008). 
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Essentia computes an approximate metric calling it beats loudness. This feature rep-
resents the loudness computed only on the beats, that is, the spectrum energy of beats 
in an audio signal given their positions. The energy is computed both on the whole 
frequency range and for each of the specified frequency bands. To this end, the onset of 
a specific beat given as the input segment is detected. From the window starting on this 
detected onset, the spectrum is computed and the energy estimated in several bands, as 
defined by Scheirer (Scheirer, 1998). The same model by Scheirer is also available under 
MIR Toolbox. 

Available in: MIR Toolbox, Essentia. 

Predominant Local Pulse (PLP) Novelty Curves 

Grosche and Muller (2009) introduced a novel mid-level representation for capturing 
dominant tempo and predominant local pulse even from music with weak non-percus-
sive note onsets and strongly fluctuating tempo. 

Instead of following the tradicional approach relying on the detection of note on-
sets, the authors derive a tempogram using local spectral analysis of a novelty curve. 
From it, the predominant tempo for each time instant is estimated, as well as "a sinus-
oidal kernel that best explains the local periodic nature of the novelty curve". Finally, 
the predominant local pulse is obtained by accumulating all the local kernels over 
time. The obtained curves "are robust to outliers and reveal musically meaningful peri-
odicity information even in the case of poor onset information". 

While the PLP curve does not represent high-level information such as tempo, 
beat level or location of onset positions, it serves as a tool, which may then “be used 
for tasks such as beat tracking, tempo and meter estimation”. 

Available in: Essentia. 

Harmonically Wrapped Peak Similarity (HWPS) 

In his PhD thesis, Tzanetakis described a set of rhythmic content features calculated 
with recourse to the Beat Histograms (BH) of a song (Tzanetakis, 2002, p. 48) which 
proved useful for musical genre classification: 

 A0, A1: relative amplitude (divided by the sum of amplitudes) of the first (A0), 
and second (A1) histogram peak; 

 RA: ratio of the amplitude of the second peak divided by the amplitude of the 
first peak; 

 P1, P2: Period of the first (P1) and second (P2) peak in BPM; 

 SUM: overall sum of the histogram (indication of beat strength) 

Subsequently, HWPS, a feature following similar principles has been proposed to 
calculate harmonicity by taking “into account spectral information in a global manner” 
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(Lagrange, Martins, & Tzanetakis, 2008). 

Available in: Marsyas55. 

3.1.5. Dynamics Features 

In this section we describe the audio features that capture information primarily related 
with dynamics and its components, as described in Section 2.3.4. 

Root-Mean-Square (RMS) Energy 

The RMS energy is used to measure the power of a signal over a window, or global 
energy. It roughly describes the loudness of a musical signal. The global energy of a signal 
can be computed by taking the root mean of the square of the amplitude, also known as 
root-mean-square (RMS) (Westfall, 2014). 

Available in: MIR Toolbox, Marsyas, and Essentia. 

Low Energy Rate 

Low energy rate, also known as less-than-average energy, measures the percentage of 
frames with less-than-average energy (Tzanetakis & Cook, 2002). This metric estimates 
the temporal distribution of energy, in order to understand if this energy remains con-
stant between frames or if some frames are more contrastive than others. 

Available in: MIR Toolbox. 

Sound Level 

This descriptor corresponds to the power sum of the spectrum for each time window, 
expressed in deciBel. At a higher level, when appropriately calibrated, this represents the 
unweighted sound pressure level of the signal in each analysis window (Cabrera et al., 
2007). 

Available in: Psysound3. 

Instantaneous Level, Frequency and Phase  

These features consist in applying a Hilbert transform to the audio waveform 

                                                        
55 Difficult to use since no instructions are provided in the official documentation, only a reference in 

the source code of the toolbox. 



80 Chapter 3.   Music Emotion Recognition Literature Review 

 

(Khvedelidze, 1990), resulting in three different outputs: the instantaneous level, instan-
taneous frequency and instantaneous phase. The instantaneous level can be regarded as 
the sound pressure level derived from the Hilbert transform. 

By using a Hilbert transform, the signal envelope is extracted easily without an inte-
grating function (the instantaneous amplitude). To this end, the input signal is phase-
shifted by -90 degrees and used as the imaginary part of a complex waveform, while the 
original wave forms the real part56. The instantaneous level is obtained by transforming 
the magnitude of the complex waveform into the decibel scale, while the instantaneous 
phase is the phase of the complex waveform. Differentiating this phase with an appro-
priate coefficient yields the instantaneous frequency (Cabrera et al., 2007). 

Available in: Psysound3. 

Loudness 

As described in Section 2.3.4, sound loudness is the subjective perception of the inten-
sity of a sound. This metric is measured in sones, where a doubling in sones corresponds 
to a doubling of loudness. An audio signal with silence has a loudness of 0 sones, while 
a 1 kHz tone at 40 dB presented has a loudness of 1 sone. 

Several loudness have been proposed over the years, namely: 

 Leq – Equivalent sound level (Soulodre, 2004) 
 LARM single-band loudness model (Skovenborg & Nielsen, 2004) 
 HEIMDAL multi-band loudness model  (Skovenborg & Nielsen, 2004) 
 Loudness according to Steven’s power law (Stevens, 1975) 
 Vickers's loudness (Vickers, 2001) 

An evaluation of different loudness models is available in (Skovenborg & Nielsen, 
2004). 

Available in: Psysound3, Essentia. 

Timbral Width 

The timbral width is one of six measures of timbre proposed by Malloch (1997) in a 
method called loudness distribution analysis. In this case, timbral width can be viewed 
as “a measure of the flatness of a loudness function” (Y.-H. Yang & Chen, 2011a, p. 66), 
or as the author puts it “a measure of the fraction of loudness that lies outside of the 
loudest band, relative to the total loudness” (Malloch, 1997, p. 52).  

Available in: Psysound3. 

                                                        
56 http://psysound.wikidot.com/system:hilbert 
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Volume 

Volume refers roughly to the perceived “size” of the sound, or the auditory volume of 
pure tones. This concept was first studied by Stevens (Stevens, 1934) and, later on, 
Cabrera (Cabrera, 1999) developed a computational volume model for arbitrary spectra. 
In his work, Cabrera proposes two diotic57 volume models. The first uses a weighted 
ratio between the binaural loudness and sharpness, which is the specific loudness cen-
troid on the Bark scale. A second and better performing model uses a simpler centroid 
to overcome limitations in the method of sharpness calculation selected by the authors 
(Cabrera, 1999). 

Available in: Psysound3. 

Sound Balance 

Maximum Amplitude Position to Total Envelope Length Ratio (MaxToTotal and 
MinToTotal) is a metric to understand how much the maximum amplitude (peak) in a 
sound envelop is off the center. To this end, the ratio between the index of the maxi-
mum (or minimum) value of the envelope of a signal and the total length of the envelope 
is computed. If the peak amplitude is found close to the beginning (e.g., decrescendo 
sounds), this ratio will be close to 0. A value of 0.5 means that the peak is close to the 
middle and near 1 if at the end of the sound (e.g., crescendo sounds). 

Although not implemented directly in many frameworks, these metrics are simple 
statistics that can be easily computed from the output of existent extractors. For illustra-
tion, MIR Toolbox provides all the information needed to compute MaxToTotal or 
MinToTotal under its event detection function (i.e., time stamp and amplitude of the 
onset start, attack, decay and offset phases) with a simple ratio of the amplitude to the 
difference between offset and onset times. 

Another metric to estimate how the sound is ‘balanced’ over its duration is the 
temporal centroid to total length ratio (TCToTotal). This is measured by computing the 
ratio of the temporal centroid to the total length of a signal envelope. A value near 0 is 
observed if the energy is concentrated at the beginning of a sound (e.g., decrescendo), 
close to 0.5 if the energy distribution is symmetric and closer to 1 if the energy is mostly 
at the end (e.g., crescendos). 

Available in: Essentia, MIR Toolbox58 

                                                        
57 Involving the simultaneous presentation of the same stimulus to each ear. 
58 As discussed, these features can be easily calculated with information from available extractors in 

other frameworks. 
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3.1.6. Tone Color Features 

In this section we describe the audio features that capture information primarily related 
with tone color and its components, as described in Section 2.3.5. 

Attack/Decay Time 

As described in Section 2.3.5, one of the aspects influencing tone color is the sound 
envelope, which can be divided into four parts: attack, decay, sustain and release. Several 
descriptors can be extracted from it, mostly related with the attack phase – from the 
starting point of the envelope until the amplitude peak is attained.  

One of these descriptors is the attack time, which consists in the estimation of tem-
poral duration of the various attack phases in an audio signal (e.g., for a signal to rise to 
its peak amplitude). 

Various frameworks implement extractors for this descriptor, each with slight vari-
ations. As an example, the MIR Toolbox is able to output the attack times using a linear 
scale or a log scale, as proposed by Krimphoff et al. (1994), as well as the time of the 
decay phase. 

Another variation of the attack time is the log attack time, an algorithm that com-
putes the log (base 10) of the attack time of a signal envelope. Both the MIR Toolbox 
and Essentia are able to extract such feature. Essentia defines specific parameters to ac-
count for noise presence (e.g., attack starts only when the signal envelope reaches 20% 
of its maximum value) and specificities of some instruments (e.g., attack end point is 
defined as 90% of its maximum value). MIR Toolbox follows the implementation pro-
posed by Peeters et al. (2011). 

MIR Toolbox is also able to compute the decay time, the temporal duration of the 
decay phase. 

Available in: MIR Toolbox, Essentia. 

Attack/Decay Slope 

The attack slope is another descriptor extracted from the attack phase. It consists on the 
estimation of the average slope of the entire attack phase, since its start to the peak. The 
MIR Toolbox is also able to extract the same information from the decay phase, related 
to its decrease slope. Some of the common methods to compute the slope are based on 
the amplitude difference from the start of the attack to the amplitude peak, divided by 
its duration, or the average slope weighted by a Gaussian curve as proposed by Peeters 
(2004).  

Available in: MIR Toolbox. 
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Attack/Decay Leap 

The attack leap is a simple descriptor related to the attack phase. It consists in the esti-
mation of the amplitude difference between the beginning (bottom) and the end (peak) 
of the attack phase. As with the previous features, MIR Toolbox outputs a similar de-
scriptor related with the decay phase. 

Available in: MIR Toolbox. 

Zero Crossing Rate 

The Zero Crossing Rate (ZCR) represents the number of times the waveform changes 
sign in a window (crosses the x-axis). It can be used as a simple indicator of change of 
frequency or noisiness. As an example, heavy metal music, due to guitar distortion and 
heavy percussion, will tend to have much higher zero crossing values than classical music 
(Tzanetakis, 2002, p. 42). 

Sometimes the ZCR derivative is also computed, representing the absolute value of 
the window-to-window change in zero crossing rate.  

Available in: MIR Toolbox, Marsyas, and Essentia. 

Spectral Flux 

Spectral flux is a measure of the amount of spectral change in a signal, i.e., the distance 
between the spectra of successive frames (Tzanetakis, 2002, p. 33). Spectral flux has also 
been shown by user experiments to be an important perceptual attribute in the charac-
terization of the timbre of musical instruments (Grey, 1975). 

Available in: MIR Toolbox, Marsyas, and Essentia. 

Spectral Centroid 

The spectral centroid is a measure of spectral shape. Information about the shape of a 
distribution can be obtained through the use of its (statistical) moments. The first mo-
ment, called the mean, is the geometric center (centroid) of the distribution and is a 
measure of central tendency for the random variable. It is defined as the center of gravity 
of the magnitude spectrum of the short-time Fourier Transform (STFT) (Tzanetakis, 
2002, p. 32). 

According to (Grey, 1975), the spectral centroid has been shown by user experi-
ments to be an important perceptual attribute in the characterization of the timbre of 
musical instruments. A higher centroid value can also be an indicator of the “brightness” 
or “sharpness” of the sound (Lichte, 1941). 

Available in: MIR Toolbox, Psysound3, Marsyas, and Essentia. 
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Spectral Spread 

The spectral spread represents the standard deviation of the spectrum, calculated as the 
square root of the variance. Thus, it is a measure of the dispersion or spread of the 
spectrum. 

Available in: MIR Toolbox, Essentia, and Psysound3. 

Spectral Skewness 

The third central moment of a given distribution is called the skewness and it is a meas-
ure of its symmetry. 

The coefficient of skewness is computed as the ratio of the skewness to the standard 
deviation raised to the third power. It is many times used as an alternative to skewness, 
due to its better suited range, often between -3.0 and 3.0 for data from natural systems 
(Lartillot, 2018, p. 184).  

Available in: MIR Toolbox, Essentia, and Psysound3. 

Spectral Kurtosis 

The exact meaning of the kurtosis has been disputed for long. The classic interpretation, 
which applies to symmetric and unimodal distributions (those with skewness of 0), is 
that kurtosis measures the "peakedness" of the distribution and the heaviness of its tail. 
Other interpretations, such as "lack of shoulders" (where the "shoulder" is defined loosely 
as the area between the peak and the tail, or more specifically as the area about one 
standard deviation from the mean) or "bimodality". Recently, this ambiguity has been 
settled, with Westfall noting that kurtosis “(…) only unambiguous interpretation is in 
terms of tail extremity; i.e., either existing outliers (…) or propensity to produce outliers 
(…)” (Westfall, 2014) . In simple terms, kurtosis captures information about existing 
outliers, measuring nothing about the peak. 

Available in: MIR Toolbox, Essentia, and Psysound3. 

Spectral Flatness 

The spectral flatness indicates whether the spectrum distribution is smooth or spiky, i.e., 
estimates to which degree the frequencies in a spectrum are uniformly distributed (noise-
like). It is computed as the ratio between the geometric mean and the arithmetic mean. 
Some frameworks adopt a different approach, calculating the spectral flatness in differ-
ent spectral bands. Marsyas is one of these, naming it spectral flatness measure (SFM).   

A high spectral flatness indicates that the spectrum has a similar amount of power 
in all spectral bands (flat spectrum) – this would sound similar to white noise, and the 
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graph of the spectrum would appear relatively flat and smooth. A low spectral flatness 
indicates that the spectral power is concentrated in a relatively small number of bands – 
this would typically sound like a mixture of sine waves, and the spectrum would appear 
"spiky".  

Available in: MIR Toolbox, Essentia, and Marsyas. 

Spectral Crest Factor (SCF) 

Spectral crest factor (Allamanche, Hellmuth, Fröba, Kastner, & Cremer, 2001) is a meas-
ure of the "peakiness" of a spectrum and is inversely proportional to the spectral flatness 
measure, both proposed in the context of the MPEG-7 standard (Casey, 2002). It is 
commonly used to distinguish noise-like from tone-like sounds due to their different 
spectral shapes, where noise-like sounds have lower spectral crests. Both spectral flatness 
and SCF are often used together in audio fingerprinting problems (e.g., (Doets, Gisbert, 
& Lagendijk, 2006)). 

The SCF is computed as the ratio of the maximum spectrum power and the mean 
spectrum power of a subband. 

Available in: Marsyas. 

Spectral Contrast 

The octave-based spectral contrast is a feature proposed by Jiang et al. (Jiang, Lu, Zhang, 
Tao, & Cai, 2002) to represent the spectral characteristics of an audio signal, specifically 
the relative spectral distribution. According to the authors, the feature has been tested 
in music type classification problems, demonstrating a “better discrimination among 
different music types than mel-frequency cepstral coefficients (MFCC)” (Jiang et al., 
2002), which is one of the features typically used in such problems. 

The Essentia library implements a modified version of this algorithm, which improves 
its discriminative power and robustness (Akkermans, Serrà, & Herrera, 2009). 

Available in Essentia, librosa. 

Spectral Entropy 

The spectral entropy of a signal is a measure of its spectral power distribution. It is a 
feature based on Shannon entropy (Shannon, 1948) from the information theory field.  

The spectral entropy has been widely used in fields such as speech recognition 
(Shen, Hung, & Lee, 1998; Toh, Togneri, & Nordholm, 2005) and biomedical signal 
processing (Vakkuri et al., 2004).  

Available in: MIR Toolbox, Essentia. 
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Spectral Rolloff 

Spectral rolloff is often used as an indicator of the skewness of the frequencies present 
in a window. According to the (Tzanetakis, 2002, p. 33), the spectral rolloff is defined 
as the frequency 𝑅𝑡 below which 85% of the magnitude distribution is concentrated. 
The percentage varies among authors, with 85% being the current default value for most 
frameworks following (Tzanetakis, 2002, p. 33), while (Pohle, Pampalk, & Widmer, 
2005) propose 95%. 

Available in: MIR Toolbox, Marsyas, and Essentia. 

High-frequency Energy 

Several algorithms have been proposed to estimate the high-frequency content in a sig-
nal. Brightness (also called high-frequency energy) is one of such algorithms imple-
mented in MIR Toolbox. This typically consists in fixing a minimum frequency value, 
and measuring the amount of energy above that frequency. The result is expressed as a 
number between 0 and 1. 

Distinct cut-off frequency values to brightness have been proposed over the years, 
e.g., 1500 Hz (Lartillot, 2018, p. 132), 1000 Hz (Laukka, Juslin, & Bresin, 2005) and 
3000 Hz (Juslin, 2000). 

The Essentia framework implements a different algorithm, named high-frequency 
content (HFC), to measure the amount of high-frequency energy in the audio signal 
(from the signal spectrum). HFC is computed by applying one of the several algorithms 
proposed, such as (Masri & Bateman, 1996), (Jensen & Andersen, 2003) and (Brossier, 
Bello, & Plumbley, 2004) to the short-time Fourier transform spectrum. For reference, 
Essentia library implements the three variations described above. 

As with other high-energy related features, it has no perceptual base but, still, has 
been used in applications such as onset detection. 

Available in: MIR Toolbox, Essentia.  

Cepstrum (Real / Complex) 

A cepstrum, derived by reversing the first four letters of "spectrum", is the result of taking 
the inverse Fourier transform (IFT) of the logarithm of the estimated spectrum of a 
signal. There are four distinct cepstrum definitions: power cepstrum (Bogert, Healy, & 
Tukey, 1963), complex cepstrum (Oppenheim, 1965), real cepstrum and phase 
cepstrum.  

Cepstrum can be viewed as measuring the rate of change in the different spectral 
bands and has applications in fields such as pitch analysis, echo detection and especially 
in human speech processing (especially the power spectrum), by providing a simple way 
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to separate formants (due to filtering in the vocal tract) from the vocal source (e.g., (Noll, 
1967)). 

Psysound3 contains analyzers to conduct both real and complex cepstral analysis for 
each window of an audio signal. From these, the framework is able to output various 
features: average power spectrum, cepstral moments, cepstrogram, liftered spectrogram, 
average liftered power spectrum, level and liftered spectral moments. MIR Toolbox pro-
vides only a limited set of these features. 

Available in: Psysound3. 

Energy in Mel/Bark/ERB Bands 

In audio signal processing it is often interesting to decompose the original signal into a 
series of audio signals of different frequencies (i.e., low to high-frequency channels), 
enabling the study of each channel separately. This idea is inspired by the human coch-
lea, which can be regarded as a filter bank, distributing the frequencies into critical 
bands. Several scales have been proposed, each one using a particular range of frequen-
cies. 

The Mel scale is a perceptual scale of pitches judged by listeners to be equal in dis-
tance from one another (Stevens, Volkmann, & Newman, 1937). The reference point 
between this scale and normal frequency measurement is defined by assigning a percep-
tual pitch of 1000 mels to a 1000 Hz tone, 40 dB above the listener's threshold. 

Most audio frameworks today implement some of the various existing algorithms 
(Ganchev, Fakotakis, & Kokkinakis, 2005) to compute the energy in mel bands of a 
spectrum. 

The Bark scale is a psychoacoustical scale proposed by Eberhard Zwicker in 1961 
(Zwicker, 1961). It is named after Heinrich Barkhausen who proposed the first subjective 
measurements of loudness. The scale ranges from 1 to 24 and corresponds to the first 
24 critical bands of hearing. It is related to, but somewhat less popular than, the Mel 
scale. 

MIR Toolbox and Essentia are some of the frameworks implementing algorithms to 
compute the energy in Bark bands of a spectrum, by summing the power-spectrum in 
each bark band. 

Equivalent rectangular bandwidth (ERB) is a scale from psychoacoustics, which 
gives an approximation to the bandwidths of the filters in human hearing, using the 
unrealistic but convenient simplification of modelling the filters as rectangular band-
pass filters. Some frameworks such as MIR Toolbox, Essentia or Psysound3 also com-
pute the energy in ERB bands. Other divisions have been proposed, such as (Scheirer, 
1998) and (Klapuri, 1999) and are available in the abovementioned frameworks. 

Available in: Essentia, MIR Toolbox, PsySound3. 



88 Chapter 3.   Music Emotion Recognition Literature Review 

 

Mel-Frequency Cepstral Coefficients (MFCC) 

MFCCs offer a description of the spectral shape of the sound. The frequency bands are 
positioned logarithmically (on the Mel scale), which approximates the response of the 
human auditory system more closely than the linearly-spaced frequency bands (S. Davis 
& Mermelstein, 1980). Then, cepstral coefficients are computed based on the Discrete 
Cosine Transform of the log magnitude spectrum. Typically, only the first 13 cepstral 
coefficients are usually returned by audio frameworks. These 13 coefficients are mostly 
used for speech representation but Tzanetakis states that “the first five coefficients are 
adequate for music representation” (Tzanetakis, 2002, p. 34). 

Other authors have proposed the equivalent of MFCCs but using ERB or Bark 
bands. The gammatone-frequency cepstral coefficients (GFCC) is the equivalent of 
MFCCs but using a gammatone filterbank (ERB Bands). They have been proposed has 
“an auditory-based feature for robust speech recognition” (Shao, Jin, Wang, & 
Srinivasan, 2009). The bark-frequency cepstrum coefficients (BFCC) use the bark bands 
and have shown to be useful in studies regarding percussive content (Herrera, Dehamel, 
& Gouyon, 2003). These two alternatives are available in Essentia. 

Available in: MIR Toolbox, Essentia, and Marsyas. 

Linear Predictive Coding Coefficients (LPCC) 

Linear predictive coding (LPC) and associated reflection coefficients (RC) are used in 
speech research for representing the spectral envelope of a digital speech signal in com-
pressed form, using to this end information of a linear predictive model (Deng & 
O’Shaughnessy, 2003). LPCCs represent the cepstral coefficients derived from linear 
prediction and have been used in a wide range of speech applications, such as speech 
analysis, encoding and even speech emotion recognition (Ayadi, Kamel, & Karray, 
2011). 

Available in: Essentia, Marsyas. 

LSP: Linear Spectral Pairs 

Linear Spectral Pairs (LSP) or line spectral frequencies (LSF) was first introduced by 
Itakura (1975) as an alternative representation of linear prediction coefficients for trans-
mission over a channel. LSPs have several properties (e.g., smaller sensitivity to quanti-
zation noise) that make them superior to direct quantization of LPCs. For this reason, 
LSPs are very useful in speech recognition and coding (e.g., (Zheng, Song, Li, Yu, & Wu, 
1998)).   

Available in: Marsyas. 

https://en.wikipedia.org/wiki/Linear_prediction
https://en.wikipedia.org/wiki/Predictive_modelling
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Roughness (Sensory Dissonance) 

Sensory dissonance, also known as roughness, is related to the beating phenomenon 
that occurs whenever a pair of sinusoids are close in frequency (Plomp & Levelt, 1965). 
In addition, Sethares proposes a method to estimate total roughness by averaging all 
dissonance estimates across all possible peak pairs of the spectrum (Sethares, 2005). The 
MIR Toolbox and Essentia implements such algorithms, while PsySound3 implements 
the algorithm proposed by Daniel et al. (Daniel & Weber, 1997). 

Available in: MIR Toolbox, Psysound3, and Essentia. 

Spectral and Tonal Dissonance 

Psysound3 computes spectral and tonal dissonance features. However few information 
is available in the documentation. Dissonance measures the harshness or roughness of 
the acoustic spectrum (Cabrera et al., 2007). The dissonance generally implies a combi-
nation of notes that sound harsh or are unpleasant to people when played at the same 
time. PsySound3 provides two descriptions of acoustic dissonance: “spectral dissonance” 
which uses all Fourier components, and “tonal dissonance” which uses a peak extraction 
algorithm before calculating dissonance. In addition, the framework also implements 
the Hutchinson and Knopoff’s (HK) model of acoustic dissonance (Hutchinson & 
Knopoff, 1978), resulting in a total of four dissonance metrics: tonal dissonance (HK 
and S) and spectral dissonance (HK and S). The tonal and spectral dissonance measure 
the dissonance among tonal components and models the degree deviating from the nois-
iness of the sound, respectively. 

Available in: Psysound3. 

Irregularity 

Irregularity, also known as spectral peaks variability, is, as the name indicates, the degree 
of variation of the amplitude of successive peaks of the spectrum. The MIR Toolbox 
implements two distinct approaches to spectral peaks variability calculation. 

The default approach is based on (Jensen, 1999), where the irregularity is the sum 
of the square of the difference in amplitude between adjoining partials.  

The second approach is based on (Krimphoff et al., 1994), where the irregularity is 
the sum of the amplitude minus the mean of the preceding, current and next amplitude. 

Available in: MIR Toolbox. 

Tristimulus and even/odd-harm 

Tristimulus, even-harm and odd-harm are simple spectrum features proposed in (Pollard 
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& Jansson, 1982), as a timbre equivalent to the color attributes in the vision. The tri-
stimulus feature quantifies the relative energy of partial tones by three parameters that 
measure the energy ratio of the first partial (tristimulus1), second, third and fourth par-
tials (tristimulus2) and the remaining (tristimulus3). 

The even-harm and odd-harm features correspond to the even-harmonic and odd-
harmonic energy ratio. 

Available in: Essentia. 

3.1.7. Expressive Techniques Features 

In this section we describe the audio features that capture information primarily related 
with expressive techniques and its components, as described in Section 2.3.6. 

Average Silence Ratio (ASR) 

Average Silence Ratio is a feature proposed by Feng et al. (2003), as an estimation for 
articulation. In this feature a frame is considered as silence if its energy is lower than a 
defined threshold of the average energy in the one-second time window. ASR is thus the 
ratio of silence frames for the entire time window. According to the author of the fea-
ture, the “lower ASR means fewer silence frames present in musical piece, or legato in 
articulation, and the higher ASR means more silence frames present in musical piece, 
or staccato in articulation”. 

MIR Toolbox implements this as a variation of the low energy rate, corresponding 
to a RMS without the square-root. 

Available in: MIR Toolbox. 

3.1.8. Musical Texture Features 

To the best of our knowledge, none of the features studied or found in standard audio 
frameworks are primarily related with musical texture. 

3.1.9. Musical Form Features 

Extracting musical form and structure information directly from the audio signal is 
harder when compared to other lower level features (e.g., spectral/timbral statistics), As 
a result, few computational extractors are available today. Still, some efforts have been 
made in this direction, with the proposal of specific higher-level strategies that combine 
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lower level features. One example of this is the automatic segmentation of entire songs 
in homogeneous parts based on timbral features and estimation of temporal discontinu-
ities (Foote & Cooper, 2003). In this work, the audio is first segmented based on inter-
frame spectral similarity. Next, spectral statistics of each segment are computed. These 
statistics are then used to cluster similar segments together, revealing information about 
the song overall structure. According to the authors, the automatic segmentation 
method achieved “good agreement” when compared to manual segmentation into intro, 
verse, chorus and bridge clusters. Still, only a song, manually segmented by the authors, 
was tested and the intro (appearing 4 times in the song) was automatically segmented 
into two different clusters. 

Similarity Matrix 

As described above, some approaches estimate musical structure based on the similarity 
between adjacent segments or frames. These similarities are often represented using an 
inter-frame or inter-segment similarity matrix, showing the differences between all pos-
sible pairs of frames from the input audio signal. 

The similarity matrix computation uses a specific set of frame statistics (e.g., spectral 
features) and a distance function, to calculate the proximity between each pair of frames. 
As an example, MIR Toolbox is able to use MFCCs, key strength, tonal centroid, chro-
magram and others with one of several distance functions. 

Available in: MIR Toolbox. 

Novelty Curve 

Based on the specific musical characteristics of each segment or frame, obtained for 
instance with a similarity matrix, a novelty curve can be obtained by comparing the suc-
cessive frames to estimate temporal changes in the song. In this novelty curve, the prob-
ability of transitioning to a different state over time is represented by the curve peaks. 

Different approaches exist to build the novelty curve, two of which are available in 
the MIR Toolbox. The traditional approach is to compare adjacent frames, defined as 
the diagonal of the similarity matrix, using cross-correlation, to an ideal template of a 
transition between two different states of a musical structure (ideal Gaussian checker-
board kernel) (Foote, 2000). The reasoning behind this method is that “section transi-
tions are characterized by an abrupt change from one homogeneous acoustical content 
to another homogeneous acoustical content, the assumption behind the method is that 
boundaries in an audio signal are visualized in similarity matrices as 2-dimensional 
checkerboards” (Kaiser & Peeters, 2012). This approach, known as kernel-based ap-
proach, has been used in works such as (Foote & Cooper, 2003). 
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 A newer approach has been proposed by Lartillot et al. (2013), claiming to be sim-
pler but more powerful. In this case, the novelty value is computed as a combination of 
both the temporal scale of the preceding homogeneous part, as well as the amount of 
contrast that exists just before and after the ending of that segment. 

Available in: MIR Toolbox. 

3.1.10. High-Level Features 

Finally, frameworks such as MIR Toolbox and the Essentia library have started to pro-
vide some experimental higher-level features, related with complex concepts such as 
emotion, genre, danceability, western vs non-western and others. Most, if not all, of 
these are actually predictors, combining classification algorithms and previously gath-
ered data to try to label the source audio files into a fixed set of tags. A brief summary 
of these predictors is listed below. 

Emotion 

MIR Toolbox attempts to extract (predict) an emotion descriptor based on the analysis 
of the audio and musical contents of a given recording. The output is given in two dis-
tinct paradigms: 

1. A categorical paradigm of 5 classes: happy, sad, tender, angry and fearful59, out-
putting a value of 1 to 7 for each class. 

2. A 3-dimensional space composed of activity (energetic arousal), valence (pleas-
ure-displeasure continuum) and tension (tense arousal). 

The classification process is based on previous work by Eerola et al.  (2009) and uses 
multiple linear regression with the 5 best performing predictors identified. 

These 5 predictors contributing to each of the 5 classes are: 

 Happy: Maximum value of summarized fluctuation, Spectral spread aver-
aged along frames, Standard deviation of the position of the maximum of 
the unwrapped chromagram, Key clarity (2nd output of mirkey function) av-
eraged along frames, Mode averaged along frames. 

 Sad: Spectral spread averaged along frames, Standard deviation of the posi-
tion of the maximum of the unwrapped chromagram, Mode averaged along 
frames, Averaged HCDF, Averaged novelty from wrapped chromagram. 

 Tender: Spectral centroid averaged along frames, Standard deviation of 
roughness, Key clarity (2nd output of mirkey) averaged along frames, Aver-
aged HCDF, Averaged spectral novelty. 

                                                        
59 Some of the classes were changed from nouns to adjectives to keep consistency. 
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 Angry: Roughness averaged along frames, Key clarity (2nd output of mirkey) 
averaged along frames, Entropy of the smoothed and collapsed spectro-
gram, averaged along frames, Averaged novelty from unwrapped chroma-
gram. 

 Fearful: Standard deviation of RMS along frames, Averaged attack time, 
Maximum value of summarized fluctuation, Key clarity (2nd output of 
mirkey) averaged along frames, Mode averaged along frames. 

 

These 5 predictors contributing to each of the 3 dimensions are: 

 Activity: RMS averaged along frames, Maximum value of summarized fluc-
tuation, Spectral centroid averaged along frames, Spectral spread averaged 
along frames, Entropy of the smoothed and collapsed spectrogram, aver-
aged along frames. 

 Valence: Standard deviation of RMS along frames, Maximum value of sum-
marized fluctuation, Key clarity (2nd output of mirkey) averaged along 
frames, Mode averaged along frames, Averaged spectral novelty. 

 Tension: Standard deviation of RMS along frames, Maximum value of sum-
marized fluctuation, Key clarity (2nd output of mirkey function) averaged 
along frames, Averaged HCDF, Averaged novelty from unwrapped chroma-
gram. 

 

The authors tested their models using a dataset of 110 15-sec clips extracted from 
soundtracks, reporting a dimensional prediction rate between 0.64 (valence) and 0.75 
(activity) for the machine learning algorithm included in the toolbox (multiple linear 
regression). Regarding the basic emotions, the reported prediction rate varied between 
0.38 (sad, tender) and 0.55 (fearful60) (Eerola et al., 2009). 

Given its reliance on previously established weights, this extractor is only reliable in 
the MIR Toolbox version (v1.3) where it was initially “calibrated”, with the newer ver-
sions outputting “distorted results” (Lartillot, 2018, p. 196). 

The Essentia library implements a similar feature, classifying songs in 7 classes, 4 of 
them distinct emotions: happy, sad, aggressive, relaxed, acoustic, electronic, party. To 
this end, it contains already trained models and requires the Gaia library, described 
previously in Section 3.1.1, to apply similarity measures and classifications on the results 
of the audio analysis. 

Available in: MIR Toolbox, Essentia. 

                                                        
60 The authors used “scared” in the paper, but changed it to “fearful” in MIR Toolbox. 
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Genre, Danceability and Other Classifier Based Extractors 

In a similar way to the emotion descriptor extractor (or predictor), Essentia library also 
includes Gaia trained models for: 

 musical genre (using 4 different databases) 
 ballroom music classification 
 western / non-western music 
 tonal / atonal 
 danceability 
 voice / instrumental 
 gender (male / female singer) 
 timbre classification 

These musical descriptors work as a typical classification problem, by extracting a 
particular set of features from the source audio signals and feeding them to classification 
models trained with them in other datasets. 

Available in: Essentia. 

Genre-based Emotion Classifiers 

In his PhD thesis, Laurier studied the problem of music emotion classification using 
audio signals, as well as multi-modal approaches using lyrics (Laurier, 2011). There, the 
author also studied the relations between genre and emotion in AllMusic data (i.e., 
genre-emotion pairs), and observed that some emotions were frequently associated with 
specific genres. This led to the idea of using automatic genre classification to improve 
his previous emotion classification results. 

To this end, a dataset from iTunes was divided by genre into 15 classes or genres. 
The best performing audio emotion classification models (one per emotion) were then 
used to classify all the songs of this dataset. As a result, each audio file was associated 
with a genre annotation (from iTunes) and a set of emotion tags (obtained by classifica-
tion). 

By statistically analyzing the results, i.e., how frequently an emotion appears in songs 
of a specific genre, the author confirmed “a clear association between mood and genre, 
with quite intuitive and logical results”. Building on this, a genre-based emotion classi-
fier was proposed, as illustrated in Figure 3.2. 

In brief, two classification models use the same low-level audio features, one to pre-
dict emotions based on these features, and a second approach which first predicts genre 
and then uses the genre descriptors to predict emotions. Each outputs a probability es-
timate, which are combined using a decision function. 
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Figure 3.2: Schema of the genre-based emotion classifier proposed by Laurier (2011, p. 
110). 

 

To predict genre, four genre datasets containing a total of 32 genre tags were used 
to train different binary classification models, which together resulted in 32 genre mod-
els (Laurier, 2011, p. 111). Each of these classifiers output one probability estimate that 
represents the probability (between 0 and 1) of an audio file being of that specific genre. 
These 32 values are fed as genre descriptors to emotion classification models following 
a similar strategy for four basic emotions: happy, sad, angry and relaxed. The final emo-
tion classification and probabilities are given by a simple weighted sum between the two 
probability predictions (genre-based and standard low-level based approaches). 

The experimental results show statistically significant improvements in emotion 
classification accuracy for each of the 4 classes used, ranging from 88.51% (happy) to 
99.12% (angry). Despite the very high results, it is important to note that the data is 
from binary classification (e.g., happy vs not happy). 

One of the most interesting findings is that genre information, even if automatically 
extracted was relevant to MER. More importantly, genre-features were computed from 
the same low-level features previously used on emotion. However, they “contain expert 
knowledge” adding information related to “human categorization” and thus the author 
concludes by hypothesizing that “the more high level features we add, the better we will 
be able to automatically classify music in general” (Laurier, 2011, p. 114). 

Danceability Estimation 

As opposed to the aforementioned danceability extractor built as a pre-trained classifi-
cation model, Streich et al. (2005) proposed using a low-level audio feature derived from 
Detrended Fluctuation Analysis (DFA) to characterize audio signals in terms of its dance-
ability. DFA was originally proposed to be used on biomedical data (Peng et al., 1994) 
and consists on fractal analysis techniques to reveal correlations within data series across 
different time scales. Essentia implements the algorithm described in (Streich & 
Herrera, 2005), outputting the danceability of the audio signal in a range from 0 to 3 
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(higher values meaning more danceable). 

Available in: Essentia. 

Dynamic Complexity 

In his PhD thesis, Sebastian Streich studied the automated estimation of the complexity 
of music based on the musical audio signal, proposing a set of complexity descriptors 
(Streich, 2007). The proposed algorithms focus on aspects of acoustics, rhythm, timbre, 
and tonality. 

The Essentia library implements an extractor to estimate dynamic complexity, or 
whether a song contains a high dynamic range. This descriptor consists in the “average 
absolute deviation from the global loudness level estimate on the dB scale”.61 This ex-
tractor is related to the dynamic range and to the amount of fluctuation in loudness 
present in the source audio signal. 

Available in: Essentia. 

 

To conclude this section, Table 3.1 presents the number of described features per 
musical dimension as well as the number of these features used in our baseline model 
described in Chapter 4. 

 

Musical dimension Number of features Percentage of total Features used 

Melody 5 7.9% 3 

Harmony 10 15.9% 8 

Rhythm 13 20.6% 10 

Dynamics 8 12.7% 7 

Tone Color 24 38.1% 21 

Expressive Techniques 1 1.6% 1 

Musical Texture 0 0.0% 0 

Musical Form 2 3.2% 2 

Total 63 100.0% 52 

Table 3.1: Number of audio descriptors reviewed per musical dimension. 

 

Please note that some of the abovementioned audio features output several metrics 

                                                        
61 http://essentia.upf.edu/documentation/reference/std_DynamicComplexity.html 
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or generate time series of data that are later summarized, increasing the final number of 
descriptors. This is especially true for tone color features, where some features divide 
the audio signal in bands and output time-series data (e.g., MFCCs). Based on this table, 
we conclude that the number of available audio features is very unbalanced across mu-
sical dimensions. In fact, musical texture, expressive techniques and musical form are 
especially lacking, in contrast to tone color, which is, by far, the most represented cate-
gory. 

In our experiments, detailed in Chapter 4, the baseline model used audio features 
from Marsyas, MIR Toolbox and Psysound3. These audio frameworks were selected due 
to the high number of feature extractors provided, covering most of the described fea-
tures, and because they have been extensively used in previous studies, e.g., (Aljanaki, 
2016; S.-H. Chen, Lee, Hsieh, & Wang, 2015; Eerola et al., 2009; Malheiro, Panda, 
Gomes, & Paiva, 2016a; Y.-H. Yang, Lin, Su, et al., 2008). The remaining frameworks 
do not implement additional features from the dimensions identified as lacking (expres-
sive techniques, musical texture and musical form). Of these, Essentia provides some 
features that are not available in the others, but was not considered since it was unknown 
to us at the time. We plan to extend our experiments with the few missing features in 
the future. 

As Table 3.1 shows, the majority of the features available were used in our baseline 
(standard features) experiments. The few features left out were not considered for several 
reasons, from the lack of documentation and working extractors (e.g., pitch content in 
Marsyas), unavailability in the selected frameworks (e.g., spectral contrast), because they 
were considered an intermediate or visualization step (e.g., chromagram correlation 
map), or an alternative approach to capture already extracted information (e.g., beat 
location, which output tempo or events location). 

 

A summary of the described features is provided in Table 3.2. The features used in 
our baseline experiments are marked with †.  

 

MD Feature Description 

M
el

od
y 

Pitch† Estimates the F0 of a sound. 

Virtual Pitch Features† Set of features related with psychoacoustics and 
modelation of the perceived pitch. 

Pitch Salience† A measure of how noticeable (that is, strongly 
marked) is the pitch in a sound. 

Predominant Melody 
F0 

Estimates the F0 of the predominant melody.  

Pitch Content Information about the pitch (e.g., dominant pitch 
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class, its octave range). 

H
ar

m
on

y 

Inharmonicity† Amount of partials that are not multiple of the 
fundamental frequency (F0). 

Chromagram† Energy distribution along pitches. 

Tuning Frequency Estimation of the exact frequency (in Hz) on 
which a song is tuned. 

Key Strength† Probability of each key candidate to be the key of a 
given song. 

Key and Key Clarity† Estimated tonal center positions and their respec-
tive clarity. 

Modality† Major or minor mode estimation. 

Chord Sequence Best matching major or minor triad. 

Tonal Centroid Vector† 6-D tonal centroid from chromagram. 

Harmonic Change De-
tection Function† 

Flux of the tonal centroid, the distance between 
harmonic regions of successive frames. 

Sharpness† Rates sound from dull to sharp. 

R
hy

th
m

 

Rhythmic Fluctuation† Rhythmic periodicity along auditory channels, esti-
mates rhythm content. 

Beat Spectrum† Measure of acoustic self-similarity. 

Beat Location Beat tracking, detects beat times and tempo. 

Onset Time† Estimated starting time of the notes. 

Event Density† Estimated note onsets per second. 

Average Duration of 
Events† 

Average duration from attack to release. 

Tempo† Estimated tempo of a musical piece. 

Tempo Change† Tempo variations over time. 

Metrical Structure† Hierarchical metrical structure information. 

Metrical Centroid and 
Strength† 

Assessment of metrical activity and pulsation 
strength / clarity. 

Pulse / Rhythmic Clar-
ity† 

Strength of the estimated beats. 

PLP Novelty Curves Mid-level rhythmic representation that may be 
used to estimate tempo or track beats. 

HWPS Rhythmic content information calculated from the 
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beat histograms. 

D
yn

am
ic

s 

RMS Energy† The global energy of the signal. 

Low Energy Rate† Percentage of frames showing less-than-average en-
ergy. 

Sound Level† Unweighted sound pressure level of the signal. 

Instantaneous Level, 
Frequency and Phase† 

Sound pressure estimate and others by applying 
Hilbert transform of the audio waveform. 

Loudness† Subjective impression of the intensity of a sound. 

Timbral Width† The width of the peak of the specific loudness 
spectrum. 

Volume† Refers to the “size” or intensity of the sound. 

Sound Balance How the sound is “balanced” (e.g., crescendo esti-
mation). 

T
on

e 
C

ol
or

 

Attack/Decay Time† Temporal duration of the attack/decay phases. 

Attack/Decay Slope† Gradient of the attack/decay phases. 

Attack/Decay Leap† Attack/decay phase amplitude. 

Zero Crossing Rate† Waveform sign-change rate. 

Spectral Flux† Distance between successive spectral frames. 

Spectral Centroid† 1st moment (mean): indicates brightness of the 
sound. 

Spectral Spread† 2nd moment (variance): measures the dispersion of 
the spectrum. 

Spectral Skewness† 3rd moment: symmetry of the spectrum. 

Spectral Kurtosis† 4th moment: “peakedness” of the data. 

Spectral Flatness† Smooth/spikyness of data. 

SCF† Spectral crest factor, a measure of the “peakiness” 
of the spectrum. 

Spectral Contrast The spectral contrast of a spectrum, represents the 
relative spectral distribution. 

Spectral Entropy† Shannon entropy of the signal. 

Spectral Rolloff† Measures the amount of high-frequency energy in 
the signal. 

High-frequency Energy† Other metric for the amount of high-frequency en-
ergy in the signal. 
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Cepstrum (Real/Com-
plex) † 

Inverse Fourier transform of the log of the spec-
trum. 

Energy in 
Mel/Bark/ERB Bands 

Energy in bands using Mel or other perceptual 
scales of pitches. 

MFCCs† Mel-frequency Cepstral Coefficients – measure of 
spectral shape. 

LPCCs† Linear predictive coding coefficients, represent the 
signal envelope in compressed. 

LSP† Linear spectral pairs. 

Roughness† Estimation of the sensory dissonance (using the 
peaks of the spectrum). 

Spectral and Tonal Dis-
sonance† 

Harshness among tonal components. 

Irregularity† Successive spectral peaks variability. 

Tristimulus and 
even/odd-harm 

Timbre descriptors, quantifies the relative energy 
of partial tones and even/odd harmonics. 

ET 
ASR† Average silence ratio, can be used as an assessment 

of articulation. 

MF 

Similarity Matrix† Similarity between all possible pairs of frames. 

Novelty Curve† Estimates temporal changes by the comparing suc-
cessive frames of the similarity matrix. 

H
ig

h-
Le

ve
l 

Emotion Some audio frameworks provide high-level de-
scriptors based on lower level features and previ-

ously trained machine learning models. 
Genre 

Danceability 

Genre-based emotion Emotion prediction using genre as a feature. 

Dynamic Complexity Musical complexity descriptors. 

Table 3.2: Summary of standard computational audio features (MD: Musical Dimen-
sions, ET: Expressive Techniques, MF: Musical Form). 

3.2. Music Emotion Recognition Approaches 

Music emotion recognition (MER) is a relatively recent and promising research area, 
part of the broader music information retrieval field (MIR). The origin of MIR is linked 
to the necessity to manage massive collections of digital music for “preservation, access, 
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research and other uses” (Futrelle & Downie, 2003) and the importance that emotional 
content as to this end. 

Several authors have dedicated their efforts to MER in the last decades, proposing 
different approaches to explore the emotional content of audio music. Most of these 
studies can be generally described as typical (supervised) machine learning problems. For 
this reason, before delving deeper into the specificities of particular works, we offer a 
general overview of the typical approach that ties most of these solutions together. 

The typical machine learning approach applied in MER has three distinct parts, as 
illustrated in Figure 3.3: 

1. Collection of ground truth data; 
2. Feature extraction; 
3. Classification (training and testing). 

 

In brief, the process consists in gathering a set of songs and respective labels that 
best describe their emotional content. From the audio clips, representative audio fea-
tures are extracted (e.g., estimated beats per minute, etc.). Finally, these features and the 
emotion labels are passed to supervised machine learning algorithms, creating classifica-
tion models that label new songs based on their features. 

 

Some authors have also explored unsupervised strategies, either using only audio 
data (e.g., with hierarchical clustering (Bartoszewski, Kwasnicka, Markowska-Kaczmar, 
& Myszkowski, 2008)) or only audio annotations (e.g., k-means clustering of arousal and 
valence values (J. Kim, Lee, Kim, & Yoo, 2011)) in the training process. Still, these ap-
proaches proved to be less reliable in MER and thus have not been frequently adopted. 
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Figure 3.3: Typical supervised machine learning strategy applied in MER studies. In this 
example, a dimensional model is being used.62 

3.2.1. Ground-truth Collection and Verification 

The starting point of any MER study is the collection of ground-truth data, which nor-
mally consists in the annotation and dataset creation processes. This ground-truth data 
is said to be “the main factor that affects the results of MER, and the methods of ex-
tracting and selecting ground-truth data are the key for reducing the subjectivity of the 

                                                        
62 The icons used were made by Freepik from www.flaticon.com. 

http://www.freepik.com/
http://www.flaticon.com/
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results” (X. Yang et al., 2017). 

Song Excerpt Selection 

The first step into dataset creation is to select a set of songs (digital audio files) to be 
annotated. These audio files must be preprocessed, which consists in two distinct steps: 
data format conversion and song segmentation. Data conversion is used to homogenize 
the clips, converting them into a format that normally makes feature extraction less re-
source intensive. For this reason, this step is many times carried out only during the 
feature extraction process. Song segmentation consists in extracting a small segment of 
the original full song and poses the first problem in dataset creation. The rationale be-
hind this is that, although full songs can be used, their emotional content fluctuates 
over its course and, logically, using smaller, more homogeneous clips will improve re-
sults. 

The segmentation process itself is still not agreed upon, and so various studies use 
different lengths and selection methods. MacDorman et al. (2007) stated that the seg-
ments should be as short as possible to have a more homogeneous emotion and, thus, 
more consistent annotations, also enabling a more granular analysis. However, segments 
that are too short may be detached from its surrounding environment, “resulting in a 
lack of evaluation of their ecological validity” (X. Yang et al., 2017). The typical segment 
length applied in pop music MER studies is between 25 and 30 seconds (X. Yang et al., 
2017), which is consistent with the typical duration of the chorus part of such (i.e., pop) 
songs (J.-C. Wang, Yang, Wang, & Jeng, 2012). 

The optimal length of musical segments in classical music has been further studied 
by Xiao et al. (2008). To this end, 60 musical pieces were divided into segments of dif-
ferent lengths – 4, 8, 16 and 32 seconds - and annotated by two subjects. The classifica-
tion results showed that the best performing models were based on 8 and 16-seconds 
segments. 

It can be argued that, at least empirically, having fixed length segments might create 
clips with emotion fluctuations in it and that a more flexible approach (e.g., length in-
terval) would be more reasonable. Some authors have also used segmentation methods 
based on other units such as musical structure, second (Soleymani, Caro, Schmidt, Sha, 
& Yang, 2013), lyrics (B. Wu, Zhong, Horner, & Yang, 2014) and frequency (L. Lu et 
al., 2006). 

In addition to segment length, the segment position in the original song is of major 
importance. Ideally, the segments should be extracted from a representative and homo-
geneous part of the song. Still, this process is prone to subjectivity and influenced by the 
musical experience of the one selecting it. Many authors do not provide information 
about the criteria used to select the clips in their studies. Moreover, many rely on audio 
samples of online services, such as Last.FM and AllMusic, which in many cases have 
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non-representative segments (e.g., the first n seconds, or a randomly selected section). 

Annotation Types 

Having the segmented audio clips, the next step is to collect the ground-truth, which are 
annotations given by human subjects to the content of each clip. The annotations can 
be split into three major types: 1) categorical, where subjects select adjectives; 2) dimen-
sional, where subjects use numerical values; and 3) based on musical features, a less used 
approach where emotion annotations are generated based on specific musical character-
istics (e.g., Feng et al. (2003) established emotion annotation rules based on tempo and 
articulation cues previously found in (Juslin, 2000)). 

The categorical annotations are created using a survey, where subjects select one or 
various adjectives that best describe the perceived emotion. They follow a specific cate-
gorical taxonomy of emotion, such as the ones described in Section 2.2.1. The main 
advantages are: it is easier to use by inexperienced volunteers, as the usage of adjectives 
with clear emotional significance are consistent with humans’ subjective feelings; and 
lower computational complexity in the later machine learning stage when the number 
of categories is low. On the other hand, such approach suffers from the same problems 
of categorical emotion models: strong subjectivity; no distinction between songs with 
the same adjectives; difficulties in selecting the list of adjectives; and the accuracy of such 
systems is usually restricted by the number of these adjectives (Li & Ogihara, 2003). 

Dimensional annotations require human subjects to rate audio clips using numeri-
cal values according to the selected dimensional taxonomy (e.g., select arousal and va-
lence values between -1 and 1). This process requires a much higher level of knowledge 
and time from the subjects as the models are complex and users have difficulties trans-
lating the identified emotions to a point in space. Still, dimensional annotations are of 
increased usefulness for most MER applications. 

A third type of annotations has been used sparely in MER works and consists in 
requiring subjects to annotate the perceived musical characteristics and subsequently 
generates the emotion annotations based on the correlations between musical features 
and emotions. A prime example is the work by Feng et al. (2003), which built on Juslin 
findings (2000). In it, Juslin asked performers to play specific musical pieces trying to 
express distinct emotions. Then, participants rated these recordings in terms of emo-
tions. By correlating the data, the author identified two musical characteristics (tempo 
and articulation) as responsible for the emotional transfer from performers to listeners 
and derived a set of rules. Feng used these rules, which relate tempo (high or low) and 
articulation (staccato or legato) to emotions (i.e., happy, sad, angry, fearful), to generate 
emotional annotations. 

Even though this method does not require participants to rate emotions directly, 
and thus “avoids a certain degree of subjectivity” (X. Yang et al., 2017), it introduces 
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new problems related with the annotation of musical features. Moreover, it is tied to 
fixed sets of audio features that have been preselected and identified as relevant and for 
this reason it has rarely been adopted. 

Annotation Collecting and Filtering 

After segmenting the audio files and selecting the annotation type to be used, the next 
step is to collect the annotations. As discussed, the annotation collection process is com-
plex and prone to errors that may compromise the ground-truth quality. To leverage 
this, common strategies are to: collect multiple annotations for each audio clip to de-
crease bias and assess subjectivity; remove low quality annotations, which can have many 
causes, from software errors to subjects not understanding the requested task (Raykar et 
al., 2010); reduce the number of annotations requested per subject and allow skipping 
of segments to avoid fatigue, bias and random annotations on unclear segments; increase 
the usability of the survey software, e.g., by using gamification strategies (e.g., Mood-
Swings (Y. E. Kim, Schmidt, & Emelle, 2008) and TagATune (Law, Ahn, Dannenberg, 
& Crawford, 2007)) to increase the interest of subjects. 

 Given the amount of resources needed to fulfil such a task in a controlled lab, some 
researchers have explored alternative ideas, such as using online crowdsourcing services 
as the Amazon Mechanical Turk (Speck, Schmidt, Morton, & Kim, 2011), using data 
from online services and databases providing samples and metadata (Hu, Downie, 
Laurier, Bay, & Ehmann, 2008) or data from social media platforms such as Last.FM 
(Bertin-Mahieux, Ellis, Whitman, & Lamere, 2011).  

Although these methods decrease immensely the resources needed, they generally 
increase annotations’ noise and some additional steps are needed to filter the data. Some 
of the common strategies are to: force subjects to pass a preliminary evaluation to verify 
that the problem was correctly understood or have some control test cases among the 
data to be annotated and eliminate annotations from annotators that failed these cases 
(Soleymani et al., 2013); have a lighter second annotation process, serving to validate 
the gathered online annotations (Panda, Malheiro, & Paiva, 2018); or use statistical 
noise filtering techniques to eliminate outliers, such as proposed by Speck et al. (2011). 

One last particularity with MER datasets and probably its major problem is that, 
contrary to other information retrieval fields, the music files are usually under very re-
strictive copyright laws. This issue limits the public distribution of datasets to their an-
notations and extracted features and is one of the major problems in MER research. 
Although some authors assume that audio samples under 30 seconds can be shared as 
“fair use” without copyright obligation, the subject is complex63 and many datasets re-
main private. Due to this fact, numerous studies had to invest limited resources to build 

                                                        
63 https://smallbusiness.chron.com/copyright-laws-30-seconds-music-61149.html 
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and use private datasets, making it harder to compare to their peers work. 

3.2.2. Audio Datasets for MER 

Researchers have been addressing MER for decades and, even if in many studies private 
datasets and ground-truth have been used, for reasons previously explained, there is a 
raising awareness that dataset quality and the replication and comparison of studies is 
an issue in MER. For this reason, some authors have dedicated efforts to produce public 
datasets or make available their data. In the next paragraphs we analyze these and briefly 
discuss their merits and limitations.  

MIREX Audio Music Classification (AMC) Task Dataset – 2007 

Although not being a public dataset, the MIREX AMC Task dataset is a landmark in 
MER research. Its origin is associated to the comparison and replicability problem in 
MER studies, caused by researchers being forced to build and use private datasets. To 
mitigate this, a music emotion classification task was proposed to the Music Information 
Retrieval Evaluation eXchange (MIREX) in 2007. Nowadays, the task allows researchers 
to submit music emotion classification algorithms, which are tested against the private 
dataset. 

The dataset consists of a collection of 600 30-second audio clips in 22.05 kHz mono 
WAV format and labeled by human judges. The employed taxonomy was derived from 
data, as previously described in detail in Section 2.2.1 and is divided into five clusters 
with a total of 29 adjectives (see Table 2.2). 

Being private, the dataset is only available to the MIREX task leaders, who evaluate 
the algorithms submitted during the annual contest and thus cannot be freely used by 
researchers. Moreover, several limitations have been identified, which have been exten-
sively described in Section 2.2.1. Namely:  

1. The emotion model lacks support from psychology; 
2. It contains a semantic overlap (ambiguity) between clusters 2 and 4; 
3. It contains an acoustic overlap (based on analysis of MIREX dataset) be-

tween clusters 1 and 5; 
4. Our experiments in Section 5.1.2 suggest a higher inter-cluster similarity 

than expected. 
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Computer Audition Lab 500 (CAL500) dataset – 2007 

The CAL50064 is a 500 popular music songs dataset, each of which has been labeled 
with multiple adjectives by at least 3 subjects (Turnbull, Barrington, Torres, & Lanckriet, 
2007). Each song in the collection was recorded by a different Western artist. The an-
notation process uses a categorical model, consisting of a set of 174 labels, organized 
into six categories: emotion, genre, instrument, song, usage and vocal. The tags are said 
to be “manually generated under controlled experimental conditions” (Sanden & 
Zhang, 2011) and therefore believed to be of high quality. This process was performed 
by 66 paid undergraduate students, with headphones in a laboratory.  

The annotation process started with 135 tags, 18 of which were related to emotion, 
found by Skowronek et al. (2006) to be both important and easy to identify. These emo-
tion-related concepts were rated by 66 undergraduate students on a scale from one to 
three (e.g., “happy” could be “not happy”, “neutral” and “happy”). The 135 concepts 
were later transformed in 237 binary classes by transforming all the ternary concepts 
into two individual labels (e.g., the “happy” concept rated with -1, 0 or 1, was trans-
formed into two binary classes “not happy” and “happy”, which could be true or false). 
The final annotation vector is obtained by calculating the level of agreement of subjects 
(i.e., semantic weights vector). In addition, binary labels are also created for labels with 
agreement of 80% or higher. The final dataset contains 159 words, of which 36 are 
related to emotion.  

As with other datasets, CAL500 full audio clips were not directly available at the 
authors’ website. Some other problems have been reported65, namely the fact that it 
contains 502 tracks and 503 song ids instead of the 500 described in the paper and that 
some of the audio clips are corrupt. While the original full dataset is unavailable, the 
features can be found in the Million Song additional datasets66 and GitHub67. 

Yang Arousal and Valence (YangAV) Dataset – 2008 

The YangAV dataset68 is the dataset used by Yang et al. (2008) in their work, one of the 
first to explore MER as a dimensional model using a regression approach. The dataset 
contains 25-second clips of 195 popular songs from both Western, Chinese and Japanese 
albums.  

The 195 songs were selected with two specific criteria: 1) they should be uniformly 
distributed in each quadrant of the AV emotion plane; 2) each sample should express a 

                                                        
64 http://calab1.ucsd.edu/~datasets/cal500/ 
65 https://highnoongmt.wordpress.com/2013/03/07/using_the_cal500_dataset/ 
66 https://labrosa.ee.columbia.edu/millionsong/pages/additional-datasets 
67 https://github.com/yzhaobk/CAL500 
68 http://mac.citi.sinica.edu.tw/~yang/MER/taslp08/ 
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certain dominant emotion. The clips were segmented manually, mainly with the chorus 
part, to be both representative of the song and containing a dominant emotion. 

The annotation process was conducted with 253 subjects, mostly college students, 
asked to label “the emotion based on their feelings of what the music sample is trying to 
evoke” (Y.-H. Yang, Lin, Su, et al., 2008). Ten random samples were assigned to each 
subject, who annotated them using AV values from –1.0 to 1.0 in a total of 11 uniformly 
spaced ordinal levels. The subjects were also instructed to consider melody, lyrics, and 
singing (vocal) of the song. The quality of the collected ground-truth was assessed by 
calculating the standard deviation of annotations from different subjects to the same 
clips, where values between 0.2 and 0.4 were observed. In addition, a test-retest reliability 
study was conducted by asking 22 subjects to re-label their songs after two months. Since 
more than half of new annotations had an absolute difference to the original ones below 
0.1, the authors concluded that the results were replicable and thus quality was accepta-
ble (although absolute differences between 0.2 and 0.6 were observed). The final anno-
tations were obtained by averaging individual annotations. 

Although the dataset published online contains only metadata and features, the au-
dio clips are available upon request. After analyzing the data, a few problems were ob-
served. First, from the 195 songs, only 194 clips were provided and the online metadata 
is only available for 193 clips. By matching the AV annotations provided in the audio 
clips package  with the annotations present in the provided feature data, we verified that 
the songs were in different order and five did not match, reducing our possible set to 
189 clips and features. 

Two other issues were found, related with the ground truth. First, although both 
Russell and Thayer studies place the emotions far from the center of the emotion space, 
the majority of the clips in this dataset are found close to the center. A possible expla-
nation for this is the disparity between annotations of the same song, which when aver-
aged end up close to the center. Secondly, despite the authors trying to have a balanced 
initial set, the final annotations created by the subjects originated a very unbalanced 
dataset. As an example, the second quadrant contains only 12% of the songs. For an 
extensive analysis on this see Section 5.1.1. 

MoodSwings dataset (MTurk240) – 2008 

The MoodSwings dataset69 is another collaborative dataset originally created using an 
online game with a purpose (GWAP) (Y. E. Kim et al., 2008). In this study, the authors 
used 240 15-second clips of US pop music to collect arousal and valence values in a per-
second frequency. To this end, the game paired two anonymous online players, who 
used the mouse to annotate the music segment over time in the AV space. The score of 
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the players was defined by the overlap between their cursors, encouraging consensus in 
annotations. 

Subsequently, the authors decided to redesign the experiment to address problems 
found after analyzing the obtained labels (Speck et al., 2011). Here, Amazon Mechanical 
Turk (MTurk) workers were payed to use a modification of the system where the players 
were not paired up, playing solo, and no points were awarded. The workers used the 
same 240 clips and, although they were extended to 30-seconds for listening, only 15 
seconds were considered for annotation. In this case, two of the clips were used as tests 
to eliminate low quality workers. 

Soundtrack dataset – 2011 

The soundtrack dataset70 was the byproduct of a study by Eerola et al. (2011) about the 
comparison of the two main approaches to the definition of emotion taxonomies: dis-
crete and dimensional models. To overcome the possible bias of previous studies, which 
used mainly random selected excerpts from very well-known western music, the authors 
decided to use less known clips extracted from 60 movie soundtracks from 1958 to 2006. 

A rigorous song selection and segmentation process was carefully planned and exe-
cuted by 12 expert musicologists with at least 10 years of musical study. Each expert was 
given five soundtracks and asked to find five examples of six target emotions. Half of 
the subjects focused on discrete emotions (happiness, sadness, fear, anger, surprise and 
tenderness), while the remaining half focused on continuous emotions, specifically the 
six extremes of the 3-dimensional model defined by valence, energetic arousal and tense 
arousal (positive and negative valence, high and low tension arousal, as well as high and 
low energy arousal). To help the experts, three adjectives were associated to the extremes 
of the dimensional models (valence: pleasant–unpleasant, good–bad, positive–negative; 
energy arousal: awake–sleepy, wakeful–tired alert–drowsy; tense arousal: tense–relaxed, 
clutched up–calm, jittery–at rest). Additional criteria were defined to ensure a good se-
lection of excerpts, i.e.,: each clip should have 10 to 30 seconds; it should not contain 
lyrics, dialogue or sound effects (e.g., car sounds, shootings); familiar scenes should be 
avoided; it should convey the target emotion in an optimal way. The musical features 
and devices that influenced its choice should also be annotated. 

From the segmentation process, a total of 360 audio clips were created. To evaluate 
the segments, a pilot experiment was run where each expert was asked to rate 90 clips 
in terms of perceived emotion and familiarity. This process was carried out as a class-
room experiment using high-quality equipment in laboratory conditions (Eerola & 
Vuoskoski, 2011). The authors presented a comprehensive analysis on the results. One 
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of the most relevant is the consistency between raters, measured with the Cronbach’s 
alpha (Cronbach, 1951), where the lowest score was 0.66 for surprise71, while the re-
maining obtained values between 0.89 and 0.93. For this reason, the authors decided to 
remove surprise from the second experiment. 

Based on the results of the pilot test, the authors selected a subset of 110 clips (50 
discrete + 60 dimensional). These clips were then rated in a scale of 1 to 9 by 116 uni-
versity students (later reduced to 110), aged 18 to 42 (68% females) with different musi-
cal knowledge. Before the annotation, several concepts about perceived versus induced 
emotion, the emotional models as well as related music examples and a practice session 
were given to the subjects. The experiment was conducted under very controlled condi-
tions, where each subject rated at his or her own pace, using studio quality headphones 
in a sound proof room.  

The soundtrack dataset is arguably the dataset with the most carefully planned and 
executed ground truth acquisition process. Unfortunately, such approach is extremely 
resource intensive and is the cause of its obvious weakness – its very limited size, with 
only 110 clips. Additionally, using movie soundtracks may also be considered a limita-
tion, since such clips can be seen as a unique, very specific genre. 

Million Song Dataset – 2011 

At the opposite end of the spectrum to the soundtrack dataset, lies the Million Song 
Dataset. It consists of a massive, freely-available, collection of audio features and 
metadata for a million contemporary popular music tracks (Bertin-Mahieux et al., 2011). 
The main goal behind its creation was to encourage research on MIR solutions that scale 
to commercial sized databases. The core data is provided by The Echo Nest72, a music 
intelligence and data platform for developers and media companies that is now owned 
by Spotify. 

Although no audio clips are provided with the dataset, some scripts are available73, 
which can be used to download the song preview from online services.  The data pro-
vided consists of 54 fields per song, of which 25 include metadata such as title, release, 
duration, year, the ID of the song in several online services (7digital.com, The Echo 
Nest, musicbrainz.org, playme.com) and various details about the artist. The provided 
features complete the remaining fields, and include descriptors about tempo, bars, beats, 
energy, key, loudness, mode, timbre (such as MFCCs) and others. In addition to the 

                                                        
71 There are different reports about the acceptable values of alpha, ranging from 0.70 to 0.9  (Tavakol 

& Dennick, 2011). 
72 http://the.echonest.com/ 
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base data, there are also complementary sets for subsets of the million song dataset con-
tributed by the community. These include lyrics from musiXmatch, song-level tags and 
similarities from Last.FM, and others. Some of the tags are related to emotions (e.g., 
love, happy, sad) and have been used in MER studies (Corona & O’Mahony, 2015). 

The main issues with this dataset are related with the absence of audio samples and 
the nature of the metadata. First, no audio clips are available and, although this can be 
mitigated by downloading the songs’ previews from online services, such services are 
restricted with an API key and might limit the accesses per day. In addition, there is no 
guarantee that the preview excerpts obtained can be used to replicate the provided fea-
tures and the authors’ even state that accessing the same Nest API used to create the 
dataset may even result in different data74. In addition, there is also no guarantee that 
the previews match the excerpts used by the listeners who generated the tags or match 
excerpts used in the future by other researchers. Moreover, the data that might be useful 
for MER research comes from Last.FM tags. Such tags are generated by users, which may 
tag a song with any random word under any circumstance. For illustration, the dataset 
contains 522,366 unique tags, where some of the most used are “rock”, “pop”, “favor-
ites” and “00s”75. 

DEAP120 dataset – 2012 

The DEAP120 dataset76, an abbreviation for Dataset for Emotion Analysis using Physi-
ological and Audiovisual Signals (DEAP), is a multi-modal dataset for the analysis of 
human affective states which includes video segments and the physiological signals of 
the subjects (Koelstra et al., 2012). 

The dataset contains 120 one-minute segments of music videos, segmented with an 
affective highlighting algorithm proposed by the authors. From the 120 original videos, 
60 were manually selected, while the remaining 60 were selected via Last.FM affective 
tags. The 120 segments were then rated in terms of arousal, valence and dominance 
(using a discrete scale of 1 to 9) by 14-16 volunteers each, using an online platform. 

Using the results of the online self-assessment, a subset of the 40 most appropriate 
videos was selected, based on the videos with the “clearest responses”. This subset was 
then used by 32 volunteers in an experiment where their electroencephalogram (EEG) 
and peripheral physiological signals were recorded as they watched them. The frontal 
face video of 22 participants was also recorded. In addition, they also rated the 40 videos 
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api 
75 https://labrosa.ee.columbia.edu/millionsong/lastfm 
76 http://www.eecs.qmul.ac.uk/mmv/datasets/deap/ 
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regarding their arousal, valence and dominance, as well as their like/dislike and famili-
arity with the video.  

The dataset is public and provides an extensive set of data: the individual online 
ratings from the 120 subjects; details about the videos used, including the YouTube link, 
the segment starting time, quadrant of each video according to the subjects and others; 
ratings given by the participants in the experiment; face videos of the participants; the 
original physiological data and the preprocessed version of the same data. To obtain the 
data, researchers must request access and sign an end-user license agreement. 

The main limitation of the study is the dataset’s very limited size, since 40 segments 
are very limitative and cannot be used to achieve robust results. Still, given the embry-
onic state of MER induced research and the variety of source data available, this dataset 
is surely relevant. 

Multi-modal MIREX-like emotion dataset – 2013 

The Multi-modal MIREX-like dataset77 is a dataset of perceived emotions in music pre-
viously proposed by us (Panda, Malheiro, et al., 2013). It follows the same categorical 
taxonomy of the MIREX AMC task, with five clusters and 29 adjectives, where its main 
advantages are the combination of several sources of information – audio, lyrics and 
symbolic files (MIDI). 

The proposed automatic creation method is divided in three main steps. First, the 
AllMusic API was queried with each of the 29 MIREX AMC adjectives, obtaining the 
respective metadata. Then, a script was developed to parse the metadata and download 
the 30-second audio samples available at the same service. The second step is the anno-
tation. Since each song entry in AllMusic is tagged with several emotion tags, these were 
grouped according to the MIREX clusters and the final annotation was based on the 
most significant cluster. This resulted in a total of 903 MIREX-like song entries and 
audio clips, nearly balanced across clusters: 18.8% in cluster 1, 18.2% in cluster 2, 
23.8% in cluster 3, 21.2% in cluster 4 and 18.1% in cluster 5. The third step was used 
to obtain lyrics and MIDIs for the 903 songs. This was done automatically using a set of 
tools developed by the authors. The lyrics were extracted from lyrics.com78, ChartLyrics79 
and MaxiLyrics80, while MIDI versions were obtained from freemidi.org81, free-
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midi.org82, midiworld.com83 and cool-midi.com84. After filtering invalid files, the final 
dataset contained 903 song entries, for which 903 audio clips, 764 lyrics and 196 MIDIs 
are available. 

This dataset is one of the few MER multi-modal datasets, providing audio, lyrics and 
MIDI for the same songs. Still, the number of MIDI files is very limited when compared 
to the remaining sources. Moreover, the selected taxonomy has been largely criticized 
due to the lack of scientific support, as above mentioned. Finally, the quality of the 
annotations and audio segments was not assessed since they were built from AllMusic 
without manual verification. 

Computer Audition Lab 500 Expansion (CAL500exp) dataset – 2014 

Following the CAL500 success, Wang et al. (2014) proposed CAL500exp85, an enriched 
version of its predecessor. As opposed to the original CAL500, the expansion was cre-
ated to study MER in a smaller temporal frame as approached in music emotion varia-
tion detection (MEVD) studies. In detail, the creation process can be described in three 
steps. First, the original clips were divided into 3,223 variable-length (i.e., 3 to 16 sec) 
segments based on their acoustic contents. These segments are clustered to select repre-
sentative segments for annotations. Secondly, before the annotation process, the list of 
possible labels for each segment was reduced to the tags used by CAL500 for each spe-
cific track. Finally, 11 annotators with strong music background were asked to refine the 
labels of each segment, by insertion or deletion. The final dataset uses 67 of the original 
CAL500 labels. 

As with the original CAL500, the audio clips in this study are not public. In 
CAL500exp they are available upon request to the authors. Moreover, by presenting to 
subjects the CAL500 annotations as a baseline for each segment, the authors might have 
influenced the subjects’ annotations. After all, the original labels assigned in CAL500 
could be representative of the dominant emotions (and other descriptors) of the entire 
track and may not account for fluctuations present in some of the homogeneous seg-
ment. 

LiveJournal Two-million Post (LJ2M) dataset – 2014 

The LJ2M dataset86 was created to foster research on “user-centered music information 
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retrieval” (J.-Y. Liu, Liu, & Yang, 2014). Similarly to previous datasets of a more “un-
controlled” nature, this dataset contains a great diversity of emotional content, stem-
ming from online users’ blog posts, with associated songs and emotions labels. As with 
Last.FM tags, the context where each blog post was created and what it meant is com-
pletely unknown. 

The dataset contains 1,928,868 blog posts created by 649,712 online users. A total 
of 88,164 unique song titles of 12,201 artists are associated with the blog posts. Alt-
hough no audio clips are available, the authors provide the EchoNest track ID of the 
songs, which can be used to query the EchoNest API for metadata and audio features. 
A set of co-occurrence tables describing the content of each blog post is also provided, 
as well as some linguistic (textual) features. 

Although having massive scale, this dataset does not provide audio clips. Still, the 
authors state that it is possible to gather 30-second samples from the 7digital website. 
Given its size and the triplets of text, emotion label and song, it provides an interesting 
set of information to data mining and big data research, from which interesting relations 
can be extracted. Still, given the nature of the data, contributed by users “spontaneously 
in their daily lives, instead of being collected in a controlled environment”, conclusions 
extracted from it regarding MER should be taken with caution. 

Greek Audio and Music Datasets – 2014 

The Greek Audio Dataset (GAD) is a dataset of Greek popular music inspired in the 
Million Song Dataset (Makris, Kermanidis, & Karydis, 2014). The dataset provides au-
dio features, lyrics and metadata of 1000 popular Greek tracks from the 60s up to today, 
covering 8 genres, some of which unique to Greek music (rembetiko, laiko, entexno, mod-
ern laiko, rock, hip hop/R & B, pop, enallaktiko). The provided features were extracted 
using jAudio (Mcennis, Mckay, Fujinaga, & Depalle, 2005) and an audio feature extrac-
tion web service87 provided by the Vienna University of Technology and are related with 
timbre, rhythm and pitch. The audio clips are not included due to intellectual property 
rights. Still, the authors provide the YouTube link for each song’s video. The dataset 
was manually annotated, containing genre and emotion labels. 

The Thayer model was adopted for the emotion annotations, using the AV axes. 
Five annotators were used in the process, being instructed to listen and read the lyrics 
and annotate both AV using discrete (integer) values from 1 to 4. No indication is given 
whether the values are from perceived or felt emotions. F1-Score was used to assess the 
inter-annotator agreement (Boisen, Crystal, Schwartz, Stone, & Weischedel, 2000), ob-
taining a value of “0.8 approximately”. The authors also state that for “clusters of mood 
with smaller F1-Score, a discussion between the annotators was taken part in order to 
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reduce controversy” (Makris et al., 2014). 

The authors later released the Greek Music Dataset (GMD), an extension to the 
GAD increasing the number of songs to 1400 (Makris, Karydis, & Sioutas, 2015). In 
addition to the 400 new songs, this extension added symbolic data (MIDI) for 500 files 
as well as features extracted from lyrics and MIDI files. 

Both GAD and GMD are interesting by providing data for a very specific and less 
studied type of music. Nevertheless, their major drawbacks are related with the annota-
tions, since it is not clearly stated whether the annotators used perceived or felt emotion. 
Moreover, complete songs seem to have been used, which usually contain fluctuations 
in the emotional content, as well as lyrics, which may lead to the perception or induction 
of a different emotion when compared to the audio only. 

Music Mood Rating Dataverse – 2014 

The Music Mood Rating Dataverse88 (MMRD) dataset is not a typical MER audio dataset 
as it does not include audio clips or even audio features extracted from the employed 
audio clips. MMRD is the result of an automatic technique proposed by Paasi et al. 
(2014) to represent the emotions in music tracks based on Last.FM social tags data. 

The motivation behind MMRD was the infeasibility of applying a traditional ground 
truth construction method, made of laborious survey-based annotations, to the real-life 
dimensions of today online databases. In contrast to the rigorous laboratorial procedure 
applied previously by one of the authors’ soundtrack dataset (Eerola & Vuoskoski, 
2011), this method uses the massive amount of uncontrolled tags created by online users 
to achieve the same goal. To this end, the authors first collected 1083 words related to 
emotion from several studies and the “expert-generated source” list available in AllMusic 
(Saari & Eerola, 2014), which was later reduced to 568 by merging the inflected forms 
(e.g., “depressed”, “depressing” and “depression”). Next, the Last.FM API was used to 
crawl tracks associated with these tags and their weights, based on the number of times 
the tag was assigned to the track. The resulting 1,338,463 tracks were then filtered to 
remove less represented tags and songs, resulting in a corpus of 259,593 tracks and 357 
emotion terms. To produce a semantic space of the gathered tags, the authors then ap-
plied non-metric Multidimensional Scaling (MDS) (Kruskal, 1964), a “set of mathemat-
ical techniques for exploring dissimilarity data by representing objects geometrically in 
a space of a desired dimensionality” (Saari & Eerola, 2014). To represent a track in the 
obtained MDS space, the authors then applied a projection (using center-of-mass) based 
on the terms associated to the tracks. 

The Hopkins’ index (Hopkins & Skellam, 1954) was then used to estimate the de-
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gree of “clusterability” of the obtained MDS space, with results suggesting that the opti-
mal representation of the emotions is continuous rather than categorical. To this end, 
the authors proposed a novel technique called Affective Circumplex Transformation 
(ACT) influenced by Russell’s affective circumplex model of emotions to conceptualize 
the dimensions. The first step consisted in gathering AV positions of 101 terms from 
Russell’s (Russell, 1980, p. 1167) and Scherer’s (Scherer, 1984, p. 54) studies, reducing 
them to 47 by matching against their MDS space terms. The second step transformed 
the 3D MDS space to optimal arousal, valence and tension (AVT) by “classical Procrus-
tes analysis (Gower & Dijksterhuis, 2004), using sum of squared errors as goodness-of-
fit”. A similar method can be used to position new songs in the AVT space based on its 
tags. 

The method was validated by using a test set of 600 15-second samples from Last.FM 
previews annotated by 59 subjects. The positioning of the test set in the AVT plane 
according to the subjects’ annotations is then compared to the ACT predicted position-
ing, demonstrating the efficiency and robustness of the solution. 

Although not providing audio clips, the authors made the test set data available, 
which includes track info with Last.FM and Spotify URLs, as well as mean and raw 
subjects’ annotations. Even if other researchers can crawl the samples from the given 
URLs, there is no guarantee that the tags are representative of the segments used by 
subjects to generate the annotations, after all Last.FM tags are normally 30-second clips 
and here 15-second clips were used. Additionally, the 357 emotion terms used to build 
the MDS are also provided but not the data from the 259,593 tracks which could be 
used to replicate the study and generate a larger dataset automatically annotated with 
the proposed ACT method. Finally, it is important to note that while the subjects’ an-
notations are specific to a 15-second clip, the social tags available in Last.FM can be 
related to any segment of the song, the full song or even a personal experience or 
memory from the user. As an example, a user might have tagged a song as “hate” to 
represent the perceived emotion or because he hates that specific song. 

AMG1608 Dataset for Music Emotion Recognition – 2015 

AMG160889 is a dataset for music emotion analysis of considerable size, comprising 
1608 30-second music clips (Y.-A. Chen, Yang, Wang, & Chen, 2015). The songs are 
mostly western, and were selected from the AllMusic service, while the excerpts were 
gathered from 7digital, a digital music and radio service. The dataset can be divided into 
two distinct parts. The first part is called the “campus subset”, consisting of a subset of 
240 songs annotated by 22 subjects from the National Taiwan University and Academia 
Sinica. The second part, the “Amazon Mechanical Turk (MTurk) subset”, consists of 
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annotations for all 1608 clips collected through the MTurk platform. A total of 643 
subjects collaborated in this, generating 15 annotations per audio clip. The subjects were 
asked to rate the perceived emotion in terms of arousal and valence, using Russell’s 
dimensional model. The individual annotations of each of the 665 subjects is provided. 

Some steps were taken to reduce the possible problems usually associated with 
crowdsourced annotations. Namely, the MTurk process was limited to residents of the 
United States which had completed at least 90% of their tasks on Amazon Mechanical 
Turk. Following, the inter-subject agreement on the annotations was assessed by using 
Krippendorff’s alpha. The results were considered of “fair agreement”, with 0.31 for 
valence and 0.46 for arousal (Y.-A. Chen et al., 2015).  

Although having a considerable size and providing valuable data in addition to AV 
annotations, such as individual annotations and songs’ metadata, the dataset contains a 
major limitation. Due to copyright restrictions, the data provided to researchers consists 
of a single MATLAB file, containing annotations, songs’ metadata and 72 audio features 
extracted from the original clips. This severely limits its application in new studies, since 
no additional features can be extracted from the audio. Additionally, the annotations 
were created in an online environment, i.e., MTurk and the dataset is unbalanced in 
terms of quadrants, with most songs belonging to the first quadrant. 

Emotify dataset – 2016 

The Emotify dataset90 is a MER dataset on induced emotion collected through the 
GWAP Emotify, developed by Utrecht University (Aljanaki, Wiering, & Veltkamp, 
2016). The dataset consists of 400 song excerpts with 1 minute each divided in 4 genres 
– rock, classical, pop and electronic. The annotation process used the Geneva Emotional 
Music Scales (GEMS), an emotion model specifically devised to measure musically 
evoked emotions (Zentner et al., 2008). GEMS consists of 45 emotion labels (GEMS-
45), which are organized into nine categories (GEMS-9) and these in three superfactors 
(see Section 2.2.1). In this study, each participant selected up to three of the GEMS-9 
categories (two of which were renamed by the authors), based on the emotion felt while 
listening to the clips.  

A total of 1778 people participated in the online annotation process. Since the users 
could skip songs and select the genre, the annotations are spread unevenly between 
songs. The provided dataset contains individual annotations of each user, consisting of 
the selected emotions from nine possible – amazement, solemnity, tenderness, nostalgia, 
calmness, power, joyful activation, tension and sadness. Information about the partici-
pant is also included, namely his/her age, genre, mother language, mood prior to playing 
the game and whether he/she liked or disliked the clip. The original audio clips are also 
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provided. 

Overall, the Emotify dataset provides audio clips and categorical annotations for 
400 songs. Still, it is specific to the study of emotions induced in the listeners by music. 
Such topic has been less explored in MER, given the complexity associated with induced 
emotions, as described in Section 2.1 (e.g., it is relatively personal and context / memory 
dependent, when compared to perceived emotions). Moreover, the annotations were 
collected online, in an uncontrolled environment, which although being a “cheaper and 
more efficient approach”, typically achieve this by compromising the quality of the ob-
tained annotations (Burmania, Parthasarathy, & Busso, 2016).  

Malheiro’s (audio and lyrics) emotion dataset – 2016 

Our team (Malheiro et al., 2016a) also proposed another dataset91 combining different 
sources of information – lyrics and audio. To build the dataset, an initial set of 200 song 
lyrics and 30-second audio clips of various genres was selected. The initial set was uni-
formly distributed in terms of Russell’s quadrants according to the authors’ perceived 
emotion. Next, 39 subjects assigned values (between -4 and 4 with a granularity of one 
unit) to valence and arousal according to their perceived emotion. The final annotations 
were obtained by averaging the users’ annotations, excluding songs with standard devia-
tion higher than 1.2. A substantial agreement between annotators was observed accord-
ing to Krippendorff’s alpha. 

After filtering the data, the final dataset contains 180 lyrics and 163 audio clips, 
with 133 songs containing both lyrics and audio clips. The limited size of the dataset is 
its main issue, a common characteristic shared with other datasets where a controlled 
annotation process was adopted. Still, the original paper is not very detailed on the an-
notation process. Also, the provided package92 contains only the audio clips, while lyrics, 
due to copyright reasons, are represented with links where each one can be accessed. 

MediaEval Database for Emotional Analysis in Music (DEAM) – 2016 

The DEAM93 dataset was created by Aljanaki et al. (2017) and is one of the largest public 
datasets available. It consists of 1802 royalty-free audio files (58 full-length songs and 
1744 excerpts of 45 seconds) covering several genres (e.g., rock, pop, electronic, country, 
jazz). The dataset is an aggregation of the datasets from the “Emotion in Music” task at 
MediaEval benchmarking campaign 2013-2015 and respective labels. In detail, it is com-
posed of the 2014 development set (744 songs), 2014 evaluation set (1000 songs) and 
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2015 evaluation set (58 songs). The 45 second clips have a sampling rate of 44100 Hz 
and are “extracted from random (uniformly distributed) starting point in a given song” 
(Soleymani, Aljanaki, & Yang, 2016). 

The clips are annotated with valence and arousal values both continuously and over 
the whole song. The continuous annotations were collected using “a sampling rate which 
varied by browsers and computer capabilities” (Soleymani et al., 2016) and transformed 
into average annotations at 2 Hz sampling rate, ignoring the first 15 seconds due to 
instability. Yet, the raw individual annotations are still provided, as well as the standard 
deviation. This process was conducted partially in the researchers’ lab and on the Ama-
zon Mechanical Turk crowdsourcing platform by a minimum of 10 workers for the 2013 
and 2014 songs, while 5 workers were used in the 2015 set, two of which were from the 
lab. To increase the annotations quality, these workers had to pass a filtering stage that 
excluded poor quality workers based on state-of-the-art crowdsourcing approaches 
(Soleymani & Larson, 2010), involving both multiple choice and free form questions. 

The authors also assessed the annotations’ quality by employing Cronbach’s alpha, 
a coefficient of internal consistency (Cronbach, 1951). Based on it, the static annota-
tions were considered far more consistent than the continuous ones, passing the thresh-
old of 0.7, which was considered an acceptable agreement between annotators (Aljanaki, 
2016). The continuous annotations achieved values lower than the threshold, showing 
worse consistency than “what could be achieved for static (per song) annotations” 
(Aljanaki, 2016). 

Although this is a large dataset that provides audio samples, extracted features, di-
mensional annotations and other metadata, it has important problems. First, the criteria 
used to select audio clips, with a fixed length of 45 seconds randomly selected from the 
full song, might be problematic. Namely, segments with contrasting or unclear emotions, 
or even not representative of the song might have been selected. This was confirmed by 
inspecting the clips, where we found some poor quality samples containing noise (e.g., 
claps, speak, silences) or clear variation in emotions. Furthermore, other researchers 
have found additional issues such as low agreement between the annotations from the 
original subjects when converted to quadrants (Vale, 2017, p. 18). To this end, Vale 
transformed both workers’ AV annotations and the final AV annotations of each song 
into quadrant annotations and calculated the agreement, obtaining only 47%. In addi-
tion, the same author verified that for 1133 clips (67.41%) the majority of the subjects 
did not even annotated the same AV quadrant (Vale, 2017, p. 18). Finally, the number 
of songs for each of the four quadrants defined by the AV axis is also very unbalanced, 
with 681 clips for quadrant 3 and only 200 for quadrant 2 (Vale, 2017, p. 21). 

Summary of existent Audio Datasets for MER 

Even though an extensive review was provided, some other datasets exist in addition to 
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the abovementioned ones. Most of these are less relevant and share similar characteris-
tics and issues as the described. Some examples are: 

1. Smaller datasets, as the EMusic dataset94, containing 140 clips where most 
(100) are experimental music and the remaining (40) belong to 8 distinct 
musical genres, with AV annotations generated though crowdsourcing (J. 
Fan, Tatar, Thorogood, & Pasquier, 2017). Another example is Yang’s 
MER60 dataset95 (Y.-H. Yang, Su, Lin, & Chen, 2007). 

2. Public datasets where the provided data is very limited, such as the Trohidis 
et al. (2008) dataset96, which consists of 593 songs annotated using 6 emo-
tions (multi-label) by 3 expert listeners. In this case, the only data provided 
is a matrix of 593 x 72 features and the annotation, without any infor-
mation on the employed songs. 

3. Larger datasets, such as the Magnatagatune97 (Law, West, Mandel, Bay, & 
Downie, 2009), which, although providing very interesting data (audio 
clips, metadata, annotations, audio features, similarity data), due to its size 
(approximately 21,000 clips) compromised the quality of the annotations 
using a less controlled collection process. In this case, the taxonomy con-
sists of 188 different tags and was annotated following a GWAP approach 
(TagATune), considered rather difficult to handle due to its size and skewed 
tag distribution (Seyerlehner, Widmer, Schedl, & Knees, 2010). Other ex-
ample is the CAL10k dataset98, which contains 10,870 songs tagged with 
628 labels harvested from Pandora. Unlike its predecessors, this dataset 
does not contain tags directly related with emotion. 

4. Private, as is the case of the dataset used to predict genre and emotion in 
Laurier’s PhD Thesis (2011).  

 

A brief summary of the described datasets is presented in Table 3.3. 

 

 

 

                                                        
94 http://metacreation.net/project/emusic/ 
95 http://mac.citi.sinica.edu.tw/~yang/MER/hcm07/index.html 
96 https://sites.google.com/site/hrsvmproject/emotions.rar?attredirects=0 
97 http://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset 
98 http://calab1.ucsd.edu/~datasets/ 
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Dataset 
Type of data / 

Availability 
Size Taxonomy 

Emotion 
Type 

MER problem Annotations Comment 

MIREX AMC Audio / no data 
is available. 

600 clips 
(30-sec). 

Categorical 
(data-derived) 
taxonomy of 
5 clusters. 

Perceived 
emotion. 

Single-label / 
static MER. 

Annotated by 
2-3 subjects 
(experts). 

Private, used in 
MIREX. Several is-
sues have been 
found, taxonomy 
not psychologi-
cally validated. 

CAL500 Audio / no origi-
nal data available 
but features are 
available via Mil-
lion Song da-
taset. 

500 clips 
(full songs). 

Categorical, 
159 labels 
(36 emotion 
related). 

Unknown. Multi-label (bi-
nary and nu-
merical [0, 1] / 
static MER. 

Annotated by 
66 students, at 
least 2 annota-
tors per song 
and 80% 
agreement. 

No songs are pro-
vided due to copy-
right, original data 
is offline nowa-
days. 

Yang’s AV Audio / available 
upon request. 

195 songs 
(25-sec 
clips). 

Dimensional 
using Rus-
sell’s model 
(AV). 

Induced. Regression / 
static MER. 

253 annota-
tors, at least 
10 per clip. 
Test-retest 
with 22 sub-
jects. 

Clips were seg-
mented manually. 
Issues have been 
reported with the 
annotations and 
data (see Section 
5.1.1). 

MTurk240 Audio / only fea-
tures are availa-
ble. 

240 songs 
(15-sec 
clips). 

Dimensional, 
using AV. 

Perceived. Regression / 
MEVD. 

Initially from 
GWAP, later 
via MTurk. 

Annotations re-
made with MTurk 
to mitigate initial 
issues. 
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Dataset 
Type of data / 

Availability 
Size Taxonomy 

Emotion 
Type 

MER problem Annotations Comment 

Soundtrack 
dataset 

Audio / audio 
clips, documenta-
tion and user 
preferences di-
rectly available. 

360 (pilot) / 
110 (final) 
10 to 30-sec 
clips. 

Categorical 
using 6 la-
bels. Dimen-
sional using 
AVT. 

Perceived. Single-label 
and regression 
/ static MER. 

116 subjects 
(later reduced 
to 110), using 
a very con-
trolled proce-
dure. 

Limited size, very 
rigorous ground 
truth collection. 

Million Song 
dataset 

Audio / audio 
features, 
metadata, addi-
tional data availa-
ble for smaller 
subsets (e.g., lyr-
ics). Audio sam-
ples can be down-
loaded indirectly. 

Nearly 1 
million song 
entries. 

Categorical, 
+500,000 
unique la-
bels. 

Unknown. Single-label / 
static MER. 

Extracted 
from Last.FM 
social data. 

Very large size, 
ideal for real-life 
scenarios. Audio 
samples may not 
be the same as in 
the original study. 
Annotations are 
completely uncon-
trolled.  

DEAP120 Video / excerpts 
used can be 
downloaded une-
quivocally from 
YouTube. Sub-
jects ratings and 
biosignals availa-
ble. 

Set1: 120 
music videos 
(1-minute). 
Set2: 40 
(subset of 
the 120). 

Dimensional 
using arousal 
valence and 
dominance 
(AVD). 

Induced. Regression / 
static MER. 

Set1: online, 
14-16 subjects 
per clip. 
Set2: con-
trolled, 32 par-
ticipants. 

Limited number 
of videos, but mas-
sive amount of 
data. No segments 
available due to 
copyright. Interest-
ing amount of in-
formation sources. 
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Dataset 
Type of data / 

Availability 
Size Taxonomy 

Emotion 
Type 

MER problem Annotations Comment 

Multi-modal 
MIREX-like 

Audio, lyrics, 
MIDI / original 
data directly 
available. 

903 songs 
(30-sec 
clips), 764 
lyrics and 
193 MIDI 
files. 

Categorical, 
using 
MIREX 
AMC clus-
ters (5) and 
labels (29). 

Perceived Single-label 
and multi-label 
/ static MER. 

Automatic ex-
traction from 
AllMusic emo-
tion tags. 

Limited MIDI sub-
set, unvalidated 
taxonomy, lacks 
validation of the 
audio segments 
and annotations. 

CAL500exp Audio / seg-
ments available 
upon request. 

500 tracks 
(3,223 seg-
ments of 3 
to 16 sec-
onds). 

Categorical, 
67 labels 
from CAL 
500. 

Unknown. Multi-label / 
static MER. 

CAL500 an-
notations re-
fined by 11 
subjects. 

Possible MEVD 
dataset, annota-
tions method may 
produce bias. 

LJ2M Triplets (3-tuples) 
containing: blog 
post, emotion tag 
and music title. 
Metadata, 
EchoNest fea-
tures and pre-
dicted emotion. 

1,928,868 
blog posts 
with 88,164 
unique song 
titles of 
12,201 art-
ists. 

Categorical, 
uses 132 
emotion tags 
predefined 
by LiveJour-
nal. 

Unknown. Single-label / 
static MER. 

From 649,712 
online users. 

No clips available 
but 7digital IDs 
are provided. The 
blog data was pre-
viously generated 
by online users 
without any guide-
lines. 

GAD Audio and lyrics 
/ the excerpts 
used can be 

1000 songs. Dimensional, 
using AV. 

Unknown. Regression / 
static MER. 

Five annota-
tors used. 

Provides only au-
dio features but 
YouTube links are 
available. Lacks 
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Dataset 
Type of data / 

Availability 
Size Taxonomy 

Emotion 
Type 

MER problem Annotations Comment 

downloaded une-
quivocally. 

detail on the an-
notations process.  

GMD Audio, lyrics, 
MIDI / similar to 
GAD. 

1400 songs 
(extends 
GAD). 

Dimensional, 
using AV. 

Unknown. Regression / 
static MER. 

No infor-
mation apart 
from “2421 
annotations 
for 1400 
songs” (1.7 
per song). 

Provides MIDI 
files and features 
only for 500 
songs. 

MMRD Audio / only 
metadata, ex-
cerpts can be 
downloaded but 
with no guaran-
tee that they 
match the ones 
used in the study. 

600 songs 
(15-sec 
clips). 

Dimensional, 
using AVT. 

Perceived. Regression / 
static MER. 

The method 
was validated 
by 59 subjects. 

Authors propose a 
method to auto-
matically annotate 
songs using 
Last.FM data. Pro-
vides the data 
used to validate 
the method. 

AMG1608 Audio / only fea-
tures are availa-
ble. 

1608 songs 
(30-sec 
clips). 

Dimensional, 
using AV. 

Perceived. Regression / 
static MER. 

10 MTurk 
workers per 
song, subset of 
240 was also 
annotated by 
22 volunteers. 

Unbalanced in 
terms of quad-
rants, no audio 
clips available. 
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Dataset 
Type of data / 

Availability 
Size Taxonomy 

Emotion 
Type 

MER problem Annotations Comment 

Emotify Audio / original 
clips directly 
available. 

400 songs 
(1-minute 
clips). 

Categorical, 
using GEMS-
9. 

Induced. Multi-label / 
static MER. 

Obtained 
online via a 
GWAP from a 
total of 1778 
players. 

No metadata pro-
vided, uncon-
trolled annota-
tions on induced 
emotions via 
online game. 

Malheiro’s 
(audio and 
lyrics) emo-
tion dataset 

Audio and lyrics 
/ original clips 
directly available, 
lyrics used can be 
downloaded une-
quivocally. 

200 songs 
(30-sec 
clips). 

Dimensional, 
using AV. 
Categorical, 
using AV 
quadrants. 

Perceived. Single-label 
and regression 
/ static MER. 

Annotated by 
39 subjects 
(audio and lyr-
ics annotated 
separately). 

Dataset: 180 lyr-
ics, 163 audio 
clips, and 133 au-
dio + lyrics after 
filtering. Limited 
size. 

DEAM Audio / original 
clips and features 
directly available. 

1802 songs 
(48 full 
songs, 1744 
45-sec ex-
cerpts). 

Dimensional, 
using AV. 

Perceived. Regression / 
static MER 
and MEVD. 

5-10 MTurk 
workers per 
song, continu-
ous AV sam-
pled at 2Hz. 

Segmented ran-
domly, audio clip 
issues have been 
reported. 

Table 3.3: Summary of the most well-known audio datasets used in MER research. 
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3.2.3. Feature Extraction, Selection and Reduction 

Having concluded the construction of the ground-truth, the second stage of MER stud-
ies is typically the feature extraction process. The goal is to extract musical descriptors 
that best represent and summarize the content of the selected audio clips. To this end, 
the audio signals (or other sources, such as MIDIs or lyrics text files) are processed by 
computational algorithms, extracting the selected audio features. The output of these 
audio extractors varies greatly, from points in time (e.g., when extracting onsets), to sin-
gle values (e.g., tempo estimation) or series of values (e.g., spectral features extracted for 
each frame), to grids and other representations (e.g., similarity matrix). Before being 
ready for pattern recognition, these sets of data are usually cleaned and summarized, for 
example using statistical moments. 

As described in Section 3.1, a significant number of features has been created over 
the years to capture information from audio signals. From these, several have been asso-
ciated with different emotional states, either in musicological studies, as extensively ad-
dressed in Section 2.4, or experimentally by different MER studies. As an example, in-
tensity and related measures of amplitude are usually correlated with arousal and have 
been used to predict arousal dimension (Zhang, Huang, Yang, Xu, & Sun, 2017). More-
over, timbre features such as MFCCs, spectral shape, spectral contrast and various spec-
tral moments are frequently used to describe the sound quality (Fu, Lu, Ting, & Zhang, 
2011). Other dimensions such as rhythm have been exploited, namely by extracting fea-
tures such as tempo, rhythm strength or rhythm regularity (D. Liu & Lu, 2003).  

Selecting the audio features to be extracted is a difficult task. While researchers can 
formulate hypotheses about limited sets of features that should be suitable, grounded 
on previous studies, acquired experience and knowledge, this strategy may end up limit-
ing the results. Several factors contributing to this are the possible errors in extracted 
features (due to limitations in the employed algorithms, e.g., melody detection is still an 
open research problem), lack of knowledge and experience or personal bias, as well as 
contradictions or specificities of previous studies (e.g., applying only to a specific genre) 
that may not translate into newer ones. 

Empirically, one might assume that extracting as much features as possible and using 
all of them is the solution, since it means more information describing the sets. How-
ever, this has been disproved, as using many features can, actually, lead to a decrease in 
classification results (Zhang et al., 2017). Understandably, having an excess of infor-
mation, especially descriptors that are not relevant to the problem being tackled, will 
serve as noise and increase the complexity of the classifier. To address this problem of 
excessive feature dimension problem, feature selection and reduction techniques are 
employed. 
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The problem of dimensionality reduction is typically addressed in one of two ways: 
feature projection or feature selection. In feature projection, the original data is reduced 
by transforming it from a high-dimensional to a lower-dimension space. This transfor-
mation may be linear, as is the case of principal component analysis (PCA) (Hotelling, 
1933; Pearson, 1901) or nonlinear, as with isometric feature mapping (ISOMAP) 
(Tenenbaum, Silva, & Langford, 2000) or locally linear embedding (LLE) (Roweis & 
Saul, 2000). In addition to PCA, the Karhunen-Loève (KL) expansion (Fukunaga & 
Koontz, 1970) has also been used effectively in MER to remove cross-correlative features 
(L. Lu et al., 2006). This algorithm, closely related to PCA, is applied to the extracted 
features, obtaining a new, reduced and decorrelated feature set by mapping them into 
an orthogonal space. The main issue with methods such as KL and PCA is that, although 
the dimensionality is reduced, the new set of features is transformed, making it difficult 
to understand the importance of each original descriptor. 

A different approach to the previous methods, which relies on statistical analysis of 
the feature space, is to actually evaluate the performance of features by running actual 
tests with combinations of features. Since exhaustive tests with every possible combina-
tion of features is practically impossible, several approaches have been created. Depend-
ing on the ground-truth (i.e., labeled vs unlabeled), this process can be divided into 
supervised (e.g., (L. Song, Smola, Gretton, Borgwardt, & Bedo, 2007)), unsupervised 
(e.g., (Mitra, Murthy, & Pal, 2002)) or semi-supervised (e.g., (Zhao & Liu, 2007)) feature 
selection. 

Supervised feature selection methods can be further divided into three groups: filter 
models, wrapper models and embedded models (Tang, Alelyani, & Liu, 2014). The first, 
filter model, does not relies on classifier learning to avoid bias between the machine 
learning and feature selection algorithm. Instead, the method uses statistics extracted 
from the training data (e.g., distance) and correlates it with the associated labels. Relief 
(Kira & Rendell, 1992) is one of the filter approaches found commonly on MER litera-
ture. On the other end of the spectrum, the wrapper model relies on learning algorithms, 
assessing the features’ quality based on the prediction accuracy of such models. The 
application of such model is many times prohibitively expensive due to the dataset size 
and associated computational requirements. The embedded model is a compromise be-
tween the previous two. In this case, a first step uses statistical analysis, similarly to filter 
models, to select various subsets of candidate features. Following, the subsets are evalu-
ated using learning models and the best performing one is selected. The embedded 
model has been shown to be a good compromise between the former two (e.g., (Cawley, 
Talbot, & Girolami, 2007)). 

As no labels are available, unsupervised feature selection is normally based on clus-
tering algorithms and associated quality metrics. Since such methods work with unla-
beled data, one of the drawbacks is the difficulty to evaluate the relevance of features. 
For a comprehensive review on unsupervised feature selection refer to (Aggarwal & 
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Reddy, 2013). 

A typical wrapper approach is forward feature selection (FFS), also called stepwise 
forward selection (Heinze, Wallisch, & Dunkler, 2018). This method, described in Al-
gorithm 3.1, has been used extensively in MER (Hu & Yang, 2017), including in our 
works (Panda & Paiva, 2012b). In the opposite direction, backward feature selection 
(BFS), also called stepwise backward selection (SBS) (Heinze et al., 2018), starts with the 
full set of features, and is used to greedily remove the sequence of worst performing ones 
(i.e., backward elimination) until the stop criteria is met (e.g., no features are left or the 
accuracy starts to decrease). 

Algorithm 3.1. Forward feature selection (also known as stepwise forward selection) 
algorithm. 

1. Starting with an empty set of features, S, and a set of all 

the remaining features, R. 

2. While the remaining set of features, R, is not empty: 

2.1. For each feature, Ri, in the remaining set, R: 

2.1.1 Add feature Ri and all the features in S to an 

empty set of features, T. 

2.1.2. Evaluate the prediction performance, Pi, of T us-

ing the selected machine learning strategy (e.g., 10-

fold cross-validation using Support Vector Machines). 

2.2. Select the best performing feature, Rx, where x = 

argmax(P), and move it from R to S. 

3. The generated set, S, contains all the features ordered by 

relevance, where the first is the most relevant.  

 

Although not exhaustive, such strategies are still computer-intensive, especially with 
a high number of features and large dataset. Hence, filter methods were proposed. As 
mentioned, one of these is Relief, a feature selection algorithm sensitive to feature in-
teractions (Kira & Rendell, 1992) that has been used previously in MER (Malheiro et 
al., 2018; Y.-H. Yang, Lin, Su, et al., 2008). The original version of the algorithm sup-
ports only binary classification problems (two classes), computing the weight of each 
feature as follows. 

Algorithm 3.2. Original Relief feature selection algorithm. 

1. Given a dataset of n instances (e.g., songs), from which p 
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features were extracted, Fn,p, and annotated with one of two 

possible classes. 

2. Scale each feature (normalize) to the same interval [0, 1]. 

3. Starting with an empty (zero-filled) weight vector W of 

length p, Wp, repeat for m times99: 

3.1. Select a random instance (song), i, and its feature 

vector, Fi. 

3.2. Select the two songs closer to Fi, one for each class, 

using the Euclidean distance between feature vectors. 

3.3. Compute the weight for instance (song) i, Wi, given by 

equation (3.1). 

4. Compute the final weight vector, W, by dividing each element 

of the vector, Wi, by m. 

  

 The weight for a given feature, Wi, is computed as: 

    2 2( ) ( )i i i i i iW W x nearHit x nearMiss  (3.1) 

Where nearHiti and nearMissi, represent the value of feature i of the closest same-class 
and different-class instances respectively. 

Several variations have been introduced to the original Relief algorithm. Ko-
nonenko et al. proposed ReliefF (1997), which is more reliable when noisy features are 
present and supports multi-class problems. The first issue is solved by using the K-nearest 
hits and misses, averaging their contribution to the weights of each feature. For multi-
class problems, ReliefF uses the K nearest misses from each different class and averages 
their contributions to W based on the probability of each class. Other approaches, such 
as RReliefF for regression problems, have also been proposed (Robnik-Šikonja & 
Kononenko, 1997). Relief algorithm and its variants output a value between -1 and 1 
for each attribute, with more positive weights indicating more predictive attributes. Sev-
eral variations exist, namely, ReliefFequalK, where the K nearest instances have equal 
weight, and ReliefFexpRank, where the K nearest instances have weights exponentially 
decreasing with increasing rank. 

Finally, embedded approaches are a compromise of filter and wrapper models. An 
example of this consists in the application of Relief (a filter model), obtaining a feature 

                                                        
99 The original paper defines m as the “sample size” while (Kononenko et al., 1997; Robnik-Šikonja & 

Kononenko, 1997) state that m is “a user-defined parameter” in both the original algorithm and 
their updated version. 
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rank and respective feature weights. Then, different subsets of the best features are se-
lected and tested using machine learning algorithms. This was one of the solutions 
adopted by us, as described in Chapter 4. 

In our experiments, the embedded strategy was used with Support Vector Machines 
(SVM) as the machine learning technique (Cortes & Vapnik, 1995). SVMs are super-
vised machine learning algorithms that work by building a hyperplane (or set of hyper-
planes) that maximize the margin (i.e., separation) between the classes represented in 
the training data. Originally, SVMs work as a non-probabilistic binary linear classifier 
(separator). When data is non-linear SVMs use a kernel to project the data into a high-
dimensional plane where it can be separated. This is a strength but also a weakness of 
SVMs, since its effectiveness depends on the selection of kernel and parameters and no 
single kernel is perfect for every dataset. A common choice is a radial basis function 
kernel (RBF), while a polynomial kernel performs better in a small subset of specific 
cases. In our preliminary tests RBF performed better and hence was the selected kernel 
(see Chapter 5). For multi-class classification the common strategy is to reduce the prob-
lem in multiple binary classification problems. Of the two typical approaches: “one -vs-
all” and “one-vs-one”, the selected SVM implementation – libSVM (Chang & Lin, 
2011), uses the later (“one-vs-one”), combining the results with a max-votes system. 

3.2.4. Classification and Evaluation 

Following the creation of the dataset and feature extraction and selection, the third and 
final stage in a typical MER system is the creation of a computation model able to rec-
ognize patterns in the data, in order to classify new songs. To this end, the audio features 
representing the songs and the previous obtained annotations are fed to one of the many 
existent machine learning techniques. These algorithms, which vary greatly in their op-
erating mode, aim to identify patterns in the input data – a set of statistics that correctly 
models the existent cases. Based on the identified rules, new songs can be classified 
according to their audio features. 

A music emotion classification problem, or any other classification problem, can be 
organized in three types depending on the nature of the ground-truth and of the type of 
predictions: single label, multi-label or fuzzy. 

Single label emotion classification consists in assuming that emotions in music are 
exclusive. As such, subjects annotate the songs using a single label and the model is 
trained to predict a single emotion to a given song. This method is by far the most 
frequently employed in MER also due to being simpler (e.g., (Feng et al., 2003; L. Lu et 
al., 2006; Panda & Paiva, 2012b)). It is also the classification method used in the MIREX 
AMC task. Since single-label classification regards emotions as something determinis-
tic/discrete, it ignores the possible ambiguity of emotion terms and subjectivity across 
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human annotation. 

Multi-label classification was introduced in MER to solve possible ambiguity and 
subjectivity problems. In this approach, human annotators can label audio segments 
with a variable number of discrete labels. Even though viewing emotion as multi -label 
can be considered closer to reality, fewer MER studies have used this approach (Li & 
Ogihara, 2003; Trohidis et al., 2008; Wieczorkowska, Synak, & Raś, 2006; B. Wu, 
Zhong, et al., 2014) and low results are typically reported (e.g., (Li & Ogihara, 2003; 
Wieczorkowska et al., 2006)). A possible justification is the increased complexity of the 
various steps (from ground-truth acquisition to classification).  

Fuzzy classification is an extension of the multi-label approach, where each of the 
identified emotions may have a different weight or probability, as opposed to being bi-
nary (present or not present). As with multi-label classification, fewer researchers have 
tackled MER as a multi-label fuzzy problem (e.g., (Myint & Pwint, 2010; Y.-H. Yang, Liu, 
& Chen, 2006)). 

Due to some difficulties observed in emotion classification, such as the known lim-
itations in categorical taxonomies (e.g., lack of discrimination within categories, ambi-
guity and subjectivity – for further details refer to Chapter 2), as well as the difficulties 
to further improve the state-of-the-art, shown by MIREX AMC task stagnant results over 
the last decade100, more researchers have focused on regression solutions. Tackling emo-
tion recognition as a regression approach consists in numerical-value prediction and 
requires a ground-truth with similar-type annotations, following one of the existing di-
mensional models of emotion. To the best of our knowledge, Yang et al. (2007) was one 
of the first to approach MER as a regression problem in 2007, using arousal and valence 
as dimensions. Since then, many other researchers followed the idea and addressed MER 
as a regression problem (Hu & Yang, 2014; Malheiro, Panda, Gomes, & Paiva, 2016b; 
Panda & Paiva, 2011b; Schmidt, Turnbull, & Kim, 2010). 

Over the last years, some authors have noted that, while representing emotion as a 
point in the emotional space removes the ambiguity caused by labels in categorical mod-
els, it fails to represent the subjectivity of the human annotation. This is caused by au-
thors considering the emotion of a segment to be the mean value of all annotators. To 
mitigate this, Schmidt et al. (2010a) proposed a continuous probabilistic distribution 
representation of music emotion, combining the advantages of fuzzy classification and 
numerical-value prediction. Here, emotions in music are seen as areas in the dimen-
sional space, representing the various human annotations. 

The various MER approaches described above are illustrated in Figure 3.4. 

Several model learning algorithms have been tested in MER over the decades to 
identify patterns between the extracted features and the ground-truth annotations. 

                                                        
100 http://www.music-ir.org/mirex/ 
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Among which, support vector machines (SVM) (e.g., (Panda, Rocha, & Paiva, 2015)), 
Gaussian mixture models (GMM) (e.g., (L. Lu et al., 2006)), neural networks (e.g., (Feng 
et al., 2003)), boosting (e.g., (Q. Lu, Chen, Yang, & Wang, 2010)), k-nearest neighbor 
(KNN) (e.g., (Y.-H. Yang et al., 2006)), Bayesian networks (e.g., (W. Wu & Xie, 2008)), 
decision trees (e.g., (Ma, Sethi, & Patel, 2009)) and others. Recently, deep learning tech-
niques have been gaining ground thanks to the increased performance of recent com-
puter processors (e.g., (S.-H. Chen et al., 2015; Delbouys, Hennequin, Piccoli, Royo-
Letelier, & Moussallam, 2018)). 

 

Figure 3.4: The different MER classification and regression approaches based on the 
type of ground-truth. 

 

To evaluate the performance of a new approach, the dataset is usually split into 
training and the test sets. The main motivation behind this is to optimize two key objec-
tives: select the best model and estimate its performance, since using the entire available 
data to select the model and estimate its error rate will usually result in overfitting and 
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overly optimistic error rates. This data splitting stage can be performed following differ-
ent strategies, e.g., hold-out, train-validate-test, k-fold cross-validation. The hold-out 
method consists in splitting the dataset into the two abovementioned groups (i.e., train 
and test), using one to train the classifier and the other to estimate the error rate. Such 
simple method has some drawbacks, such as being highly dependent on the quality of 
the split, which can generate very different sets. More advanced solutions exist, such as 
cross-validation, which resample the two groups and repeat the train and test process. 
One example is k-fold cross-validation, where the dataset is split in k-subsets or folds and 
k experiments are run, using k-1 folds for training and the remaining for testing 
(Refaeilzadeh, Tang, & Liu, 2009, p. 532). 

Whatever the approach is, feature selection is performed using only the training set. 
The training set of songs and their annotations is used to train the classification or re-
gression model. The test set of songs is used to evaluate the trained model’s accuracy by 
predicting their annotations. The predicted values are then compared to the original 
labels, giving an indication on how accurate the prediction was. Several metrics exist to 
measure the classification and regression performance. For classification, typical 
measures include precision, recall, accuracy and F1-Score. For regression, typical 
measures are R2 score, mean absolute error and mean squared error. 

In classification problems, there are four terms used to compare the labels output 
by the classifier to the original labels generated by the annotators. Imagining a simple 
binary problem of classifying a song as “happy” or not, these are: 1) true positive (TP) – 
a correctly classified song, e.g., a happy song correctly classified as happy; 2) true negative 
(TN) – a correct rejection, as in a song that is not happy, correctly marked as such; 3) 
false positive (FP) – a false alarm, a song wrongly classified as “happy”; 4) false negative 
(FN) – a miss, in this example a happy song which was not classified as such. From these, 
precision, recall and accuracy metrics can be defined as: 




Precision
TP

TP FP
 (3.2) 




Recall
TP

TP FN
 (3.3) 




  
Accuracy

TP TN

TP TN FP FN
 (3.4) 

 

F1-Score, also known as F-Score or F-Measure, is commonly adopted since it com-
bines both precision and recall using a harmonic mean: 
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Precision Recall
F1-Score

Precision Recall





 (3.5) 

Other variants exist, such as weighted, macro and micro versions of the F1-Score to 
be used in multi-class classification problems. 

For regression problems, where dimensional models are used, a typical metric is the 
coefficient of determination, R2. This coefficient indicates how well the data fits a statis-
tic model. The best possible score is 1.0, indicating that the model perfectly fits the data. 
A value of 0 indicates that the model does not fit the data at all. 

The coefficient of determination, R2, is given by: 
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where yi is the annotated value (from the ground-truth) of the song i in the dataset, îy  

represents the predicted value to the same song and y  represents the mean annotation 
of the observed data. 

3.2.5. Review of Core MER problems: Brief Historical Contextualization 

The previous sections described the typical MER system in a generic way, presenting 
each of the major steps and how researchers have addressed them over the years. This 
section gives an historic contextualization of the major breakthroughs in the area of 
MER, focusing on the problem of perceived emotion.  

Particularly, based on the reviewed literature, MER research is focused on three core 
problems: emotion classification, emotion regression and emotion variation. Over the 
last three decades, authors have been proposing solutions to solve these cardinal prob-
lems, which are summarized below.  

Over the decades, some researchers have published MER state-of-the-art reviews and 
books such as (Y. E. Kim et al., 2010; Wieczorkowska, 2004; X. Yang et al., 2017; Y.-H. 
Yang & Chen, 2011a, 2012). These shed light on the MER field and its evolution over 
time. Thus, they serve as a major reference to obtain a deeper understanding of the field. 

1988: Classification using symbolic files 

During almost two decades, emotion was represented in MER studies as a categorical 
problem. To the best of our knowledge, the first work in the area was published in 1988 
by Katayose et al. (1988). There, audio music files were first manually transcribed to 
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notes and the author performed sentiment analysis from the resulting symbolic files. 
Features related to melody, chords, key and rhythm were used to estimate the emotion 
with heuristic rules. Given the complexity of dealing with raw audio signals, several other 
works also used symbolic representations (Livingstone & Brown, 2005; M. Wang, 
Zhang, & Zhu, 2004; Yeh, Tseng, Tsai, & Weng, 2006). 

As an example, in 2004 Wang et al. (2004) proposed a music emotion recognition 
system using MIDI files, based on a categorical model of emotion derived from Russell’s 
dimensional model of AV101. To this end, the authors define three terms for the valence 
axis (happy, neutral and anxious) and two terms for arousal (calm, energetic). The com-
bination of these two dimensions generates the six adjectives employed in the study: 
joyous, robust, restless, lyrical, sober and gloomy. Next, 18 features were extracted from 
an unknown number of 20-sec MIDI excerpts, mostly of Western tonal music. The fea-
tures were divided in statistical features and perceptual features. Statistical features in-
clude average and standard deviation of absolute pitch, interval, tempo and loudness, as 
well as note density, instrument number (timbre) and meter. The perceptual features 
used are tonality, key, mode, a stability score, average and standard deviation of percep-
tual pitch height and of the perceptual distance between two consecutive notes. 

The extracted MIDI features were used with the emotion annotations created by 20 
listeners to train a hierarchical SVM classification system. The first level was used to 
distinguish between calm and energetic (the arousal dimension), while the second fur-
ther divided the songs in one of the three valence related classes. Although the authors 
presented very high results (between 62.97% for robust and 85.81% for restless), it is 
important to note that MIDI excerpts were used and few details are provided on their 
selection, dimension or genre. 

2003: Single-label classification using raw audio files 

In the 21st century the field started to gain more attention, linked to factors such as the 
massification of digital audio formats and Internet access. We believe the first paper on 
emotion detection in audio was published in 2003 by Feng et al. (2003). In it, the au-
thors proposed a system to classify musical pieces into 4 emotion categories (happiness, 
sadness, anger and fear). Two musical attributes, tempo and articulation are said to be 
relevant to the problem. Based on this, three audio features were used – relative tempo, 
and mean and standard deviation of the average silence ratio, which estimates articula-
tion by representing what percentage of sound in one frame is below the average level 
(see Section 3.1). The employed dataset contained 223 pieces of modern popular music 
(few details are given about the selection and duration of the clips). Of these, 200 were 
used to train a neural network, where only 23 pieces were used to test (less than 7% of 

                                                        
101 As in other studies, the authors mistakenly mention the Thayer’s two -dimensional model as the AV 

model of emotion. 
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the dataset). In terms of classification accuracy, three of the four categories (happiness, 
sadness and anger) obtained high results, between 75% and 86%, with fear reaching 
only 25%, to a total precision and recall of 66% and 67% respectively. The main limita-
tions found in this study are the very small test corpus (7%), with only 3 songs tagged as 
fear, not providing evidence of generality, and the usage of only two musical attributes. 
Additionally, the paper lacks details on how the dataset was annotated. 

In 2006, Lie Lu et al. (2006) studied the classification of audio clips into one of the 
4 quadrants formed by the AV dimensional model. To this end, the authors compiled a 
dataset of 800 20-sec music clips (200 per quadrant), from 250 musical pieces (mostly 
classical). These clips were selected and annotated by three experts, discarding any clip 
where consensus were not found among the three. Next, three feature sets were ex-
tracted: intensity (sound level related), timbre (spectrum related) and rhythm (tempo 
related). These were used to train Gaussian mixture models in both hierarchical (as in 
previous works such as (M. Wang et al., 2004), to divide songs into high or low arousal 
classes) and non-hierarchical schemes. Even though the reported accuracy is very high 
(86.3%), it should be noted that only classical songs with a strong agreement between 
all the experts were considered. 

Several other works have studied MER as a single-label classification problem. Wu 
et al. (2006) used 72 10-sec audio excerpts from 4 different (unspecified) genres anno-
tated into the same four quadrants by 60 subjects. From these, 55 low and mid-level 
musical features were extracted using Marsyas and PsySound audio frameworks and clas-
sified using SVM models. The reported accuracy is very high, up to 98.67%, which con-
sidering the very low dataset size might indicate overfitting. 

In 2008, Hu et al. (2008) published a revision of the submissions to the MIREX 
AMC 2007 edition (the first AMC edition). Being a single-label music emotion classifi-
cation problem, served as a first benchmark of the various classification strategies pro-
posed over the previous years. There, 600 30-sec audio clips spanning 27 different genres 
were used, annotated into one of five clusters by three experts, following the taxonomy 
proposed in (Hu & Downie, 2007). Several sets of features were extracted from the dis-
tinct submissions, mostly low-level descriptors (e.g., tonal, temporal, loudness related), 
but also some higher-level ones (e.g., danceability) and even symbolic ones such as pitch 
and note durations. Still, the authors noted that there were no significant differences 
among these sets and thus “the (high-level) features other than the basic spectral ones 
did not show any advantage in this evaluation”, with an average accuracy of 53% and a 
maximum of 61%. Such results were much more modest, contrasting with the very high 
accuracy reported in previous works where very limited datasets might have been used. 

Many other works have been published in MER using single-label classification, 
most following the same principles. These offer variations of the dataset size, annotation 
process or classification method (e.g., (Panda & Paiva, 2012b; Pao et al., 2008; Schmidt 
et al., 2010)), explore source separation from the audio signal (e.g., (Xu, Li, Hao, & 
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Yang, 2014)) or investigates cultural differences in MER (e.g., (Patra, Das, & 
Bandyopadhyay, 2013)). 

2003: Multi-label Classification 

In 2003, Li et al. (2003) proposed the first system on emotion detection as a multi-label 
classification system, thus acknowledging that a musical piece can be described with 
more than one emotion label. To this end, the ten emotions present in the Farnsworth 
model (Farnsworth, 1958), a refined and regrouped version of the Hevner’s adjectives 
list, plus three extra emotions added according to a test subject who indexed the test 
songs, were used. 

The musical database for this test was composed of 499 songs, 50% of which were 
used for training and the remaining 50% used for testing. These songs were selected 
from 128 music albums (at least four songs each) and the collection covered four major 
music types: ambient (120 files), classical (164 files), fusion (135 files) and jazz (100 files). 
From these, acoustic features consisting of timbral texture features, rhythm content fea-
tures (beat and tempo detection) and pitch content features were extracted and classifi-
cation was performed with Support Vector Machines (SVM). Due to the multi-label na-
ture of the problem, a binary classifier was trained for each existing category. To deter-
mine labels of a test data, the binary classifiers were run independently, selecting every 
label where the classifier’s output exceeds a given threshold. The final results were mod-
est, with an F1-Score of 44.9% (micro average) and 40.6% (macro average). One of the 
major problems with the paper is related with the dataset, which was annotated by a 
single subject, selecting various adjectives for each song. 

Building on his previous work, Li et al. proposed a new system for emotion detec-
tion and also similarity search (Li & Ogihara, 2004) – searching for music sound files 
similar to a given music sound file. Using the same multi-label classification strategy, a 
new dataset of 235 Jazz sound files was employed. This dataset was annotated inde-
pendently by two subjects. Each track was labelled using a scale ranging from -4 to 4 on 
three bipolar adjective pairs: (Cheerful, Depressing), (Relaxing, Exciting), and (Comfort-
ing, Disturbing), where 0 was viewed as neutral. From these, 35 features were extracted, 
among which Mel-frequency cepstral coefficients (MFCC) and other timbral features 
such as spectral centroid, rolloff, flux and low energy. Additionally, Daubechies wavelet 
coefficient histograms (DWCH) were also extracted, calculating the average, variance, 
skewness and energy for each sub-band.  

To solve the emotion detection problem, the multi-label classification strategy pre-
viously proposed by the same authors was used. Similarity was measured computing the 
Euclidean distances between features vectors from each song. Results identified emotion 
detection, ranging from 70% to 83% accuracy, as a harder problem than similarity meas-
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ure, with 86% of accuracy. On the positive side, both emotion detection, using the bi-
nary classifiers, and the similarity measure are interesting solutions. However, the same 
issues, related with the low number of human annotators are still present in the study. 
Also, the dataset is composed solely of jazz music, with only vocal sound files being used 
for similarity. Additionally, there is a wide gap in the accuracy for the first two categories 
between the two subjects, something attributed to cultural differences by the authors.  

Other researchers followed the multi-label classification idea, proposing new solu-
tions and testing different classification algorithms. As an example, Wieczorkowska et 
al. (2006) built on Li et al. (2003) work, approaching it as a multi-label problem, con-
cluding that, despite the low results observed (27.1% with 13 classes and 38.6% with 6 
classes), these were “comparable to the results obtained in subjective tests for human 
listeners”. Given this, the authors concluded that using a small set of emotions that can 
be graded on a scale (either continuous or discrete) might be generally better. Further 
studies proposed novel strategies, such as hierarchical Bayesian models (B. Wu, Zhong, 
et al., 2014), random k-labelsets (Trohidis et al., 2008), multi-label back-propagation 
(Trohidis et al., 2011) and others. 

Building on the existent multi-label classification studies, some authors proposed 
fuzzy approaches to further address the subjectivity in emotion perception. One of the 
first was Yi-Hsuan Yang et al. (2006), proposing a system that outputs fuzzy vectors to 
classify song emotions according to the four quadrants of Russell’s model102, e.g., (0.1, 
0.0, 0.8, 0.1) representing a song with class 3 as the strongest emotion. To this end, 243 
25-second segments from popular Western, Chinese and Japanese songs were selected 
and annotated into one of the four classes by subjects. This set was then reduced to 195 
segments by eliminating ambiguous ones. Two different classifiers were tested, fuzzy k-
nearest neighbors (FKNN) and fuzzy nearest-mean (FNM), and validated with 10-fold 
cross-validation, with FKNN achieving the best results – 78.33% accuracy. Other classi-
fiers such as fuzzy support vector machines (FSVM) have also been used in similar prob-
lems (Myint & Pwint, 2010). 

2003: Music emotion variation detection 

Still in 2003, Liu et al. (2003) published one of the first MEVD works while studying 
hierarchical versus non-hierarchical approaches to emotion detection. The study focused 
on classical music, one of the reasons being that emotion changes over a musical piece 
are empirically more frequent in such genre. Emotions were classified using Gaussian 
mixture models (GMM) into four classes based on the quadrants of Thayer’s emotion 
model, where music intensity was linked to energy and both timbre and rhythm mapped 
to the stress component.  

                                                        
102 The original paper cites the Thayer’s model but we believe Russell’s model is the correct name since 

they use arousal and valence instead of tension arousal and energy arousal. 
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The database used for evaluation consisted of 250 classical musical pieces, split into 
20-second clips, 75% of which were used for training and 25% for testing. From these, 
features such as root mean square value in each sub-band (for intensity), spectral shape 
features like centroid, rolloff and spectral flux (for timbre) and a Canny estimator, used 
to detect beat (for rhythm) were extracted. The resulting data was then used with two 
distinct approaches, hierarchical and non-hierarchical. The non-hierarchical framework 
used a single GMM combining the four emotion clusters. It received results from all 
extracted features from the three sets (intensity, timbre and rhythm), returning the cal-
culated results. On the other hand, the hierarchical framework used several GMMs. 
Each GMM was built using a set of features regarding each emotion cluster, organized 
in three layers. As an example, a song classified in GMM1 as having low intensity will 
be either contentment or depression, descending to layer two it will be classified by 
GMM2 (using timbre features) and GMM3 (using rhythm). The results are summed and 
one of the two emotions is chosen (contentment or depression). Even though more 
complex, the hierarchical framework gives better results and makes a better use of sparse 
training data, important when the available training data is limited. As for MEVD, the 
approach proposed by the authors tries to find potential emotion change boundaries in 
the entire segment, instead of using a sliding window and classifying each segment. This 
method consists of a two-step MEVD scheme. First, the goal is to find potential bound-
aries, resorting to intensity (using the intensity outline to detect possible boundaries), 
timbre and rhythm (to check for possible emotion changes in possible boundaries). 
Then, the musical clip is divided into several independent segments, each containing a 
constant emotion. 

 

In 2006, the same authors proposed an improved version of their hierarchical and 
non-hierarchical systems (L. Lu et al., 2006), increasing the feature set with additional 
features such as MFCCs, rhythm strength, rhythm regularity, and tempo. The results 
showed an average precision on emotion detection of 86.3%, with average recall of 
84.1%. In MEVD tests, the results showed that about 84.1% of the boundaries are re-
called and the precision is about 81.5%. Although the results were high, it is important 
to note that only 800 classical music clips were used and thus the results might not 
generalize to bigger datasets containing different genres. One of the most interesting 
aspects of this study is the chosen feature set. 

MEVD can also be regarded as an extension of music emotion classification, where 
the entire segment is further divided into per-second (or other unit) subsegments. 
Hence, other authors have also applied their solutions to it (e.g., (Panda & Paiva, 2011b; 
Y.-H. Yang et al., 2006)). As an example, Yang et al. (2006) tested (as a proof of feasibil-
ity) their fuzzy classification technique with MEVD in segments of 10 seconds with 1/3 
overlap, then proposing equations to translate the fuzzy vectors into arousal and valence.  



140 Chapter 3.   Music Emotion Recognition Literature Review 

 

2004: Multi-Modal Music Emotion Recognition 

A different approach to the emotion detection problem was proposed in 2004 by Dan 
Yang et al. (2004). The paper proposes a strategy for emotion rating to assist human 
annotators in the music emotion annotation process. In addition to acoustic data, used 
to extract emotion intensity information, the authors propose the use of song lyrics to 
distinguish between emotions, by assessing valence. In the acoustical experiments, 500 
songs were used to extract several audio features, namely beats per minute (BPM), 12 
low-level standard descriptors from the MPEG-7 standard, four timbral features (spectral 
centroid, rolloff, flux and kurtosis) and 12 features generated by Sony Extractor Discov-
ery System’s genetic algorithm (Pachet & Zils, 2003). The same songs were labelled by a 
human listener according to their intensity (between 0 and 9) and used to train an SVM 
regressor. The results, according to the authors, achieved almost 0.90 of correlation and 
BPM, sum of absolute values of normalized Fast Fourier Transform (FFT) and spectral 
kurtosis were the best features. Similar conclusions were previously attained by Dan Liu 
et al. (2003) where emotional intensity was highly correlated with rhythm and timbre 
features.  

Following this, lyrics were analyzed in order to differentiate between emotions. To 
this end, 152 30-second audio clips of alternative rock were labelled into emotion cate-
gories (of the PANAS-X schedule (D. Watson & Clark, 1999), authors of the Tellegen-
Watson-Clark model) by a single volunteer, of which only 145 had lyrics. Lyrics text files 
were transformed into 182 psychological features using an approach named General 
Inquirer103 (GI) (Stone, Dunphy, Smith, & Ogilvie, 1966) and SVM classifiers were used. 
Fusing together both acoustical and text approaches resulted in a small increase in accu-
racy, from 80.7 to 82.8%. Although the results were interesting, the quality of the dataset 
raises some issues since a single volunteer annotated the 182 30-sec clips which are of a 
single genre (alternative rock). Some interesting results about the lyrics, such as the sad-
ness being strongly related with positive words such as “love”, “life” and “feel” came up. 
This higher correlation of sadness to positive affect is predicted in the emotion model 
in use. While the increase in accuracy was very low, the analysis of lyrics seems interest-
ing to differentiate between negative emotions, where there is a higher ambiguity. 

In the same direction, Laurier et al. (2008) used audio and lyrics to classify emotion 
into four non-exclusive binary classes: angry, happy, sad and relaxed (i.e., a song can be 
“happy” or “not happy” but also “angry” or “not angry”). To this end, a large set of songs 
containing related tags were pre-selected from Last.FM and validated by at least one lis-
tener. Several audio features were extracted from the 1000 30-sec audio clips. Namely, 
timbral (e.g., MFCCs and spectral centroid), rhythmic (e.g., tempo, onset rate), tonal 
(e.g., HPCP) as well as temporal descriptors. As for lyrics, several strategies were tested. 

                                                        
103 “A unique set of procedures for identifying, in a useful and meaningful way, recurrent patterns 

within the rich variety of man's written and spoken communications” (Stone et al., 1966). 
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First, using the similarity between songs by reducing lyrics using bag-of-words (BOW), 
which can be briefly described as the set of words used in the lyrics as well as their 
frequency. These values are then compared using the term frequency–inverse document 
frequency (TF.IDF) statistics, which indicates how relevant a word is to a document (i.e., 
a song) in the dataset. The second method used latent semantic analysis (LSA) in com-
bination with TF.IDF, which like other reduction algorithms such as PCA works by 
projecting the input data into a space of a given dimensionality. Finally, the authors 
explored language model differences, which consists in analyzing the language models 
corresponding to the different categories (e.g., the most frequent terms of “happy” songs, 
compared to the ones in “not happy”). 

The two sources of information were first tested independently using different clas-
sification algorithms (SVM, Random Forest and Logistic Regression), with the authors 
stating that SVMs performed better than the remaining. The results for audio ranged 
from 81.5% (happy binary classifier) to 98.1% (angry), while the best models using lyrics 
achieved 77.9% (angry) to 84.4% (sad). When combining both feature sources the re-
sults improved, ranging from 86.8% (happy) and 98.3% (angry), while reducing the ob-
served standard deviation of the accuracies between folds. While the results show bene-
fits of the multi-modal approach, it should also be noted that the performance using 
audio was already extremely high (especially with the “angry” class) and that the listener 
validation might be biased towards the audio part, since it was based on 30-sec clips 
which do not contain the full lyrics. 

Three additional works on multi-modal MER were published by Hu et al. between 
2009 and 2010 (Hu & Downie, 2010a, 2010b; Hu, Downie, & Ehmann, 2009). In 
these, the authors used a larger dataset of 5585 audio clips and lyric text files represent-
ing full songs. The dataset was annotated using a categorical model of 18 classes con-
taining a total of 135 tags extracted from Last.FM tags and filtered with the WordNet-
Affect104 and “two human experts”. The dataset was later reduced in the 2010 experi-
ments to 5296 songs in order to balance the positive and negative emotion classes. From 
the audio files, the authors extract 65 spectral features (e.g., MFCCs, spectral centroid, 
spectral rolloff and spectral flux) using the Marsyas audio framework. Regarding the 
lyrical information, it was summarized using a myriad of descriptors related with BOW, 
part of speech (POS) (i.e., lexical items which have similar grammatical properties), GI 
and n-grams (sequence of n items). These features were combined and tested using multi-
label SVM classifiers. Some of the most interesting results from the study are the fact 
that lyrics were able to significantly outperform audio for specific emotions (7 of the 18 
categories): “aggressive”, “angry”, “anxious”, “cheerful”, “exciting”, “hopeful” and “ro-

                                                        
104 WordNet-Affect is a linguistic resource for the lexical representation of affective knowledge 

(Strapparava & Valitutti, 2004). 
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mantic”. Moreover, a more detailed analysis on the most significant lyrical features, pro-
vided in their last paper (Hu & Downie, 2010b), indicates a “strong and obvious seman-
tic association between extracted terms and the categories”. 

Several other researchers have investigated the combination of multiple sources of 
information for MER (Malheiro, Panda, Gomes, & Paiva, 2013; Mcvicar & Freeman, 
2011; B. Wu, Zhong, et al., 2014; Y.-H. Yang, Lin, Cheng, et al., 2008) or proposed new 
datasets with varied data sources, including symbolic versions of the songs (Panda, 
Malheiro, et al., 2013) or even biosignals (e.g., heart rate and skin conductance 
(Coutinho & Cangelosi, 2011); EEGs and facial expression videos (Koelstra et al., 
2012)). Namely, we proposed a dataset combining audio, lyrics and symbolic (MIDI) 
versions of songs, which we used to demonstrate that combining descriptors from all 
sources lead to improvements in the classification accuracy (Panda, Malheiro, et al., 
2013). The same problem was later approached using a smaller and more controlled 
dataset (annotated manually by multiple volunteers instead of relying on online sources) 
(Malheiro et al., 2016a), this time combining a myriad of audio features available from 
state-of-the-art audio frameworks (e.g., Marsyas, MIR Toolbox and PsySound3), with 
novel lyrical features proposed by Malheiro et al. (2018) and which proved to be emo-
tionally-relevant. 

2006: Dimensional approaches using regression 

To the best of our knowledge, the first work to use dimensional models in the machine 
learning stage was published in 2006 by Korhonen et al. (2006) although using only 6 
classical music segments. Before, dimensional emotion models such as the AV space had 
only been used in the annotation collection phase (T.-L. Wu & Jeng, 2006), after which 
the classification steps transformed the ground-truth into discrete categories (e.g., 4 clas-
ses).  

In 2007, Yang et al. proposed one of the first works to view MER as a regression 
problem where emotions are represented in a dimensional taxonomy (Y.-H. Yang, Lin, 
et al., 2007). An improved version of it was released the year after (Y.-H. Yang, Lin, Su, 
et al., 2008). In this work, Russell’s emotion model, consisting of continuous arousal-
valence values, was used, thus enabling the differentiation of the music clips with similar 
or close emotional states, based on their proximity. A solution for MEVD by predicting 
the arousal and valence values of each music sample over intervals of time was also the-
orized.  

As the ground-truth for this work, the authors used a dataset of 195 songs which 
was previously employed in their fuzzy classification system (Y.-H. Yang et al., 2006). As 
described, it consisted in 195 25-second clips, segmented by experts from Western, Jap-
anese and Chinese albums (mainly pop and rock). According to the previous study, the 
dataset was balanced between quadrants. The ground truth was created with recourse to 



Chapter 3.   Music Emotion Recognition Literature Review 143 

 

253 volunteers with different backgrounds, in a subjective test where each clip was la-
belled by at least 10 different subjects. The volunteers were asked to annotate the evoked 
emotion in AV values, between [-1, 1] in 11 ordinal levels, i.e., {-1.0, -0.8, -0.6, …, 1.0}, 
and to consider audio, lyrics and the singers’ voice acoustics. 

From the dataset, a total of 114 features were extracted, including spectral contrast 
(12 features), DWCH (28 features), many features available in PsySound2 (44 features), 
comprising loudness, level, pitch multiplicity and dissonance and also Marsyas features 
(30 features), including timbral texture, rhythmic content and pitch content. These were 
reduced to a subset with projection and selection algorithms such as PCA and RReliefF, 
and used with three distinct regression algorithms: Multiple Linear Regression (MLR), 
Support Vector Regression (SVR) and AdaBoost.RT (BoostR). There, SVR attained the 
best results. 

Although the paper made a significant contribute to the MER field, namely by pro-
posing regression as a solution for MER and MEVD, the obtained results were somewhat 
weak, especially for valence. The best solution, measured using R2 statistics, reached 
58.3% for arousal and 28.1% for valence and was obtained using the principal compo-
nent space (resulting from applying PCA to the feature space) and RReliefF selection of 
features (18 features for arousal and 15 for valence). Also, according to the authors, the 
five features that performed best in arousal prediction were flux (standard deviation), 
tonality, multiplicity, flux (mean) and roll off (mean). As for valence, the five best were 
spectral dissonance, tonality, sum of the beat histograms, chord and sum of the pitch 
histogram. A deeper analysis of this paper uncovered a few problems with the ground 
truth, as detailed in Section 3.2.2 (under Yang’s AV dataset) and in Section 5.1.1.  

In the following years, several other authors proposed regression solutions to MER, 
e.g., (Schmidt et al., 2010). However, such approaches still fail to fully account for the 
ambiguity and subjectivity of human annotations. After all, generally the ground-truth 
is built by averaging the subjects’ annotations for each song, condensing it in a single 
point of the continuous space. Looking back, previous categorical studies suffer from 
this when a single label is used. 

To overcome the limitations of classical regression approaches, solutions based on 
probability distribution (provided by fuzzy classification) give more realistic representa-
tions of reality. In this direction, Schmidt and Kim (2010a) noted that, instead of a 
single AV point, emotion perceived by listeners is better represented as a distribution of 
ratings, more precisely, most annotations can be “well represented by a single two -di-
mensional Gaussian distribution” (Schmidt & Kim, 2010a). To this end, the authors 
proposed a system for music classification and MEVD that models the data as a two-
dimensional Gaussian, predicting the distribution parameters from the acoustic con-
tent. Further studies built on this idea, experimenting with alternative classification 
schemes and datasets (e.g., (Y.-A. Chen, Wang, Yang, & Chen, 2014; J.-C. Wang, Yang, 
Jhuo, Lin, & Wang, 2012; J.-C. Wang, Yang, Wang, et al., 2012)). 
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A summary of the most relevant papers in the area, in chronological order, is pre-
sented in Table 3.4.
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Paper 

Dataset Emotion model MER problem 

Annotations Feature Extraction Learning Model Type of 
data 

Size Taxonomy 
Emotion 

Type 
Classifica-
tion Type 

Static 
MER vs. 
MEVD 

(Katayose et al., 
1988) 

Sym-
bolic. 

3 piano songs pre-
sented in the results 
table, 1 used in the 
example figure. 

Categorical (e.g., 
gloomy, urbane, 
pathetic, serious, 
hopeful and oth-
ers). 

Perceived. Multi-la-
bel. 

Static 
MER 
and 
MEVD. 

None. Related with melody, rhythm 
pattern, chord recognition, key 
recognition. 

Heuristic rules de-
fined by the authors 
(e.g., “Key F  Ru-
ral mood”. 

(Feng et al., 2003) Audio. 223 musical pieces. Categorical (4 clas-
ses: happy, sad, an-
gry and fearful). 

Perceived. Single-la-
bel. 

Static 
MER. 

None, used rules de-
rived by (Juslin, 
2000). 

Tempo and Articulation (mean 
and standard deviation of 
ASR). 

Back propagation 
neural network. 

 

(Li & Ogihara, 
2003) 

Audio. 499 clips from 128 al-
bums (30-sec dura-
tion). 

Categorical (13 ad-
jective groups / 6 
super-classes). 

n/d. Multi-la-
bel. 

Static 
MER. 

1 annotator. 30 features extracted using 
Marsyas. Related with timbre, 
rhythm and pitch. 

SVM. 

(Li & Ogihara, 
2004) 

Audio. 235 excerpts from 80 
Jazz instrumental al-
bums (30-sec). 

Categorical (3 bi-
polar adjective 
pairs: cheerful, de-
pressing; relaxing, 
exciting; and com-
forting, disturb-
ing). 

n/d. Multi-la-
bel. 

Static 
MER. 

2 annotators la-
belled all clips (2 an-
notations per clip). 

35 features, namely Daubechies 
wavelets coefficient histograms 
(DWCH) and timbral features, 
(e.g., MFCCs and Spectral mo-
ments, using Marsyas). 

SVM. 

(M. Wang et al., 
2004) 

MIDI. n/d number of ex-
cerpts, mainly from 
western tonal music 
(20-sec). 

Categorical (6 ad-
jectives: joyous, ro-
bust, restless, lyri-
cal, sober and 
gloomy). 

n/d. Single-la-
bel. 

Static 
MER. 

20 different annota-
tors. 

18 features (pitch, tempo, inter-
val, loudness, note density, tim-
bre, meter, tonality and other 
perceptual). 

SVM (2 levels, first 
level divides songs 
in tranquil or ener-
getic). 

(D. Yang & Lee, 
2004) 

Audio 
and lyr-
ics. 

Set 1: 500 (20-sec) al-
ternative rock clips. 

Set 2: 152 (30-sec) al-
ternative rock clips 
(145 contained lyr-
ics). 

Dimensional and 
categorical 
(PANAS-X, which 
uses 2D linked to 
discrete emotions. 

n/d. Regres-
sion. 

Static 
MER. 

1 volunteer. Several audio, e.g., beats per mi-
nute, 12 MPEG-7 low-level de-
scriptors, timbral (spectral) de-
scriptors and 12 features from 
Sony evolutionary extractor dis-
covery system. 182 features us-
ing General Inquirer. 

SVM regression 
(SVR). 

(Leman, Vermeulen, 
de Voogdt, 
Moelants, & 
Lesaffre, 2005) 

Audio. 60 excerpts (30-sec). Dimensional (15 
bipolar adjectives 
transformed to 3D 
space of AV and 

Perceived. Single-la-
bel. 

Static 
MER. 

8 subjects. 7 features (related with loud-
ness, roughness, spectral cen-
troid, onsets, bandwidth, articu-
lation and pitch). 

Linear regression 
models. 
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Interest). 

(Tolos, Tato, & 
Kemp, 2005) 

Audio. 34 segments of un-
known duration, 
later reduced to 14. 
Tested using a differ-
ent set of 616 pop 
songs. 

Categorical (3 clas-
ses: happy, aggres-
sive and melan-
cholic + calm), 
from 2D AV 
model. 

Perceived. Single-la-
bel. 

Static 
MER. 

10 subjects. 27 spectral features (e.g., cen-
troid, rolloff, flux, cepstral coef-
ficients reduced using linear dis-
criminant analysis). 

Multivariate normal 
distribution esti-
mates. 

(Wieczorkowska, 
Synak, Lewis, & 
Raś, 2005) 

Audio. 303 musical pieces. Categorical (13 
classes / 6 super-
classes). 

Perceived. Single-la-
bel. 

Static 
MER. 

1 subject. Mostly spectral metrics, e.g., tri-
stimulus, even/odd-harm, fre-
quency, brightness, irregularity. 

KNN. 

(Wieczorkowska et 
al., 2006) 

Audio. 875 excerpts (30-sec). Categorical (13 
classes / 6 super-
classes). 

Perceived. Multi-la-
bel. 

Static 
MER. 

1 subject (“database 
created by Dr. Rory 
A. Lewis”). 

29 timbral features (e.g., fre-
quency, level, tristimulus, even-
harm, oddharm, brightness, reg-
ularity). 

KNN. 

(L. Lu et al., 2006) Audio. 800 excerpts (20-sec) 
from 250 musical 
pieces. 

Categorical (4 clas-
ses from 2D AV 
model). 

Perceived. Single-la-
bel. 

Static 
MER 
and 
MEVD. 

3 experts (songs 
without consensus 
were ignored). 

Several, related with intensity 
(sound level), timbre (spec-
trum), and rhythm (tempo). Re-
duced using KL transform. 

GMM (hierarchical 
and non-hierar-
chical approaches). 

(Y.-H. Yang et al., 
2006) 

Audio. 195 excerpts (30-sec). Categorical (4 clas-
ses from 2D AV). 
Dimensional (from 
fuzzy vectors to 
AV). 

Perceived. Multi-label 
(fuzzy). 

Static 
MER 
and 
MEVD. 

n/d number of sub-
jects (excerpts with-
out consensus were 
ignored). 

15 features from PsySound2 
(spectral centroid, Loudness, 
sharpness, timbral width, vol-
ume, spectral and tonal disso-
nance, pure and complex tonal, 
multiplicity, tonality, chord). 
Reduced with SBS. 

FKNN and FMN 
(fuzzy multi-label). 

(T.-L. Wu & Jeng, 
2006) 

Audio. 75 excerpts (10-sec) of 
4 different (unspeci-
fied) genres. 

Categorical (4 clas-
ses from 2D AV). 

Perceived. Single-la-
bel. 

Static 
MER. 

60 subjects (using a 
2D AV space, 
66.2% agreement in 
4-class). 

55 low and middle-level musical 
features (using Marsyas and 
PsySound). Reduced using mul-
tivariate analysis of variance. 

SVM. 

(Korhonen et al., 
2006) 

Audio. 6 Western art musical 
pieces. 

Dimensional (2D 
AV space). 

Perceived. Regres-
sion. 

MEVD. 35 (21 male, 14 fe-
male). 

18 features (using PsySound 
and Marsyas, custom tempo al-
gorithm). 

Autoregression 
with extra inputs 
(ARX) and space-
state model. 

(Skowronek, 
McKinney, & Par, 
2007) 

Audio. 1059 excerpts from 
12 genres (n/d dura-
tion). 

Categorical (12 
classes, e.g., sad, 
peaceful, tender-
soft, angry-furi-
ous). 

Perceived. Multi-la-
bel. 

Static 
MER. 

12 subjects (6 anno-
tations per excerpt 
on a 4-point scale). 

n/d total (4 types: “signal de-
scribing features”, tempo and 
rhythm, Chroma and key, per-
cussive sound events). 

Quadratic classifier 
/ quadratic discri-
minant analysis 
(QDA). 
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(MacDorman et al., 
2007) 

Audio. 100 excerpts (6-sec). Dimensional (2D 
AV space, initially 
3D but dominance 
was discarded). 

Unclear. Regres-
sion. 

Static 
MER. 

85 participants. 5 representations from MA 
Toolbox (MFCC, sonogram, 
fluctuation, spectrum and peri-
odicity histograms). 

Linear regression, 
“such as least-
squares regression”. 

(Meyers, 2007) Audio 
and lyr-
ics. 

372 songs. Categorical (8 clas-
ses based on the 
updated Hevner’s 
adjectives list by 
Schubert, placed in 
the 2D AV model 
by Russell.) 

n/d. Single-la-
bel. 

Static 
MER. 

None, since a deci-
sion tree is used 
built using infor-
mation from 
(Gabrielsson & 
Lindström, 2001). 

Audio: 5 features related with 
mode, harmony, tempo, 
rhythm and loudness. 

Lyrics: Features provided by 
ConceptNet’s “guess_mood”. 

Decision tree and 
KNN. 

(Y.-H. Yang, Su, et 
al., 2007) 

Audio. MER60: 60 excerpts 
(25-sec). 

Dimensional (2D 
AV space). 

Perceived. Regres-
sion. 

Static 
MER. 

99 subjects, 40 an-
notations per song. 

45 features (PsySound2 and 
Marsyas): spectral centroid, 
loudness, sharpness, timbral 
width, volume, spectral and to-
nal dissonance, multiplicity, to-
nality, and chord. 

SVR (extension of 
SVM for regres-
sion). 

(Y.-H. Yang, Lin, et 
al., 2007; Y.-H. 
Yang, Lin, Su, et al., 
2008) 

Audio. YangAV: 195 ex-
cerpts (25-sec). 
MEVD tested using 6 
songs from 
(Korhonen et al., 
2006). 

Dimensional (2D 
AV space). 

Induced. Regres-
sion. 

Static 
MER 
and 
MEVD. 

253 subjects, rated 
in 11 ordinal AV 
levels, 10+ ratings 
per song. 

114 features (PsySound, 
Marsyas, DWCH and spectral 
contrast). PCA and ReliefF 
tested for reduction and selec-
tion. 

SVR (best results), 
BoostR and MLR. 

(Y.-H. Yang, Lin, 
Cheng, et al., 2008) 

Audio 
and lyr-
ics. 

1240 Chinese pop 
song excerpts (30-sec) 
and full lyrics. 

Categorical (4 clas-
ses from 2D AV). 

n/d. Single-la-
bel. 

Static 
MER. 

The only infor-
mation provided is 
that “emotions are 
labeled through a 
subjective test”. 

Audio: 106 features from 
Marsyas (MFCC) and PsySound 
(spectral centroid, moments 
and roughness). Lyrics: 8100 
features related with BOW 
(4000 uni-gram and 4000 bi-
gram) and probabilistic LSA 
(100). 

SVM. 

(Bartoszewski et al., 
2008) 

MIDI. 104 musical pieces. Unsupervised, di-
mensional model 
used to validate re-
sults (2D QA – 
quality and activa-
tion). 

n/d. n/d. n/d. 3 subjects annotated 
70 of the obtained 
segments to evaluate 
the results.  

8 features: music scale, accu-
racy, sound intensity, basic 
sound, interval, direction, ve-
locity, duration of notes. 

Unsupervised, us-
ing agglomerative 
clustering; visual-
ized with self-organ-
izing map (SOM) 
neural network. 

(Hu et al., 2008) Audio. 600 excerpts (30-sec). Categorical 
(MIREX AMC: 5 

Perceived. Single-la-
bel. 

Static 
MER. 

3 experts, 2 to 3 an-
notations per clip. 

Various tested: spectral, tem- SVM and KNN. 
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clusters with 29 ad-
jectives). 

poral, tonal, high-level (dancea-
bility) and symbolic (e.g., note 
durations). 

(Laurier et al., 2008) Audio 
and lyr-
ics. 

1000 songs (30-sec ex-
cerpts were used for 
manual validation by 
listeners). 

Categorical (4 clas-
ses from 2D AV: 
happy, sad, angry 
and relaxed). 

Perceived. Multi-la-
bel. 

Static 
MER. 

From Last.FM tags, 
manual validation 
by at least one lis-
tener. 

Audio: timbral, rhythmic, tonal 
and temporal descriptors. 

Lyrics: TF.IDF, LSA and lan-
guage model differences. 

SVM (best results), 
Logistic, RandFor-
est. 

(T.-L. Wu & Jeng, 
2008) 

Audio. 1200 (5-sec) segments 
extracted from 200 
(30-sec) soundtrack 
clips. 

Categorical (8 clas-
ses based on He-
vner updated 
model). 

n/d. Single- and 
multi-la-
bel. 

Static 
MER. 

328 subjects, 28.2 
annotations per 
song (online) 

88 features (PsySound, Marsyas, 
DWCH and spectral contrast). 

SVM. 

(Trohidis et al., 
2008) 

Audio. 593 excerpts (30-sec). Categorical (6 clas-
ses based on Tel-
legen-Watson-
Clark model). 

Perceived. Multi-la-
bel. 

Static 
MER. 

3 expert annotators, 
only songs with full 
agreement. 

72 features (8 rhythmic and 64 
timbral using Marsyas, e.g., 
MFCCs, centroid, rolloff, flux 
and beat histogram statistics) 

SVM based (binary 
relevance, label 
powerset, random 
k-labelsets) and 
KNN (multi-label). 

(Pao et al., 2008) Audio. MER60: 60 excerpts 
(25-sec). 

Categorical (4 clas-
ses from 2D-AV). 

Perceived. Single-la-
bel. 

Static 
MER. 

99 subjects, 40 an-
notations per song. 

45 features (15 from PsySound 
and 30 from Marsyas similar to 
(Y.-H. Yang, Su, et al., 2007)). 

Weighted-discrete 
KNN, KNN, SVM. 

(Y.-H. Yang, Lin, & 
Chen, 2009) 

Audio. MER60: 60 excerpts 
(25-sec). 

Dimensional (2D 
AV space). 

Perceived. Regres-
sion. 

Static 
MER. 

99 subjects, 40 an-
notations per song. 

45 features (15 from PsySound 
and 30 from Marsyas similar to 
(Y.-H. Yang, Su, et al., 2007)). 

SVR (extension of 
SVM for regres-
sion). 

(Lin, Yang, Chen, 
Liao, & Ho, 2009) 

Audio. 1535 songs from 300 
albums, across 6 gen-
res: blues, country, 
jazz, R&B, rap, and 
rock. 

Categorical (12 
classes by cluster-
ing AllMusic emo-
tion tags). 

n/d. Multi-la-
bel. 

Static 
MER. 

Extracted from 
AllMusic and clus-
tered into 12 classes. 

Genre used as feature, plus 436 
audio features (from Marsyas, 
68 timbral textual features, 48 
pitch content, 8 rhythmic, 120 
LPCCs, 192 MPEG-7). 

SVM scheme with 
two levels, 1st level 
predicts genre, 2nd 
for emotion. 

(Han, Rho, 
Dannenberg, & 
Hwang, 2009) 

Audio. 165 western pop 
songs. 

Categorical (11 
classes from 
Thayer’s model). 

n/d. Single-la-
bel and re-
gression 
(trans-
formed 
into clas-
ses). 

Static 
MER. 

15 songs per class 
were selected from 
AllMusic. 

7 features, related with scale 
(e.g., key, tonality), intensity, 
rhythm (e.g., tempo) and har-
monic distribution. 

SVM, SVR and 
GMM. 

(Hu et al., 2009) Audio 
and lyrics 
(text). 

5585 full songs from 
several collections 
(e.g., US pop, Beatles, 
metal music). 

Categorical (18 cat-
egories containing 
135 tags, obtained 
from Last.FM). 

n/d. Multi-la-
bel. 

Static 
MER. 

From Last.FM tags, 
filtered with Word-
Net-Affect and “two 
human experts”. 

Lyrics: Many related with Bag-
of-words (BOW), part-of-speech 
(POS), function words. Audio: 
63 spectral features such as 

SVM. 
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MFCCs, spectral centroid, 
rolloff and flux (Marsyas). 

(Schmidt & Kim, 
2009) 

Audio. MTurk240 subset of 
120 songs (15-sec). 

Dimensional (2D 
AV). 

Perceived. Regres-
sion. 

Static 
MER. 

From MoodSwings 
GWAP, few details 
are given. 

MFCC, spectral shape, contrast 
and chroma features. 

Least-squares regres-
sion. 

(Laurier et al., 2009) Audio. Soundtrack dataset: 
110 excerpts from 
film soundtracks 
(mean duration of 
15.3-sec). 

Categorical (5 clas-
ses – fearful, angry, 
happy, sad, ten-
der). 

Perceived. Regres-
sion. 

Static 
MER. 

116 listeners, rated 
on a 7-point scale. 

200 features (such as timbral, 
rhythmic, tonal, dissonance, 
mode, loudness). 

SVM. 

(Eerola et al., 2009) Audio. Soundtrack dataset: 
110 (mean duration 
of 15.3-sec). 

Dimensional (3D: 
activity, valence, 
tension). 

Perceived. Regres-
sion. 

Static 
MER. 

116 listeners. 29 features related with timbre, 
harmony, register, rhythm, ar-
ticulation and structure (from 
MIR Toolbox). 

Multiple linear re-
gression (MLR) and 
partial least-squares 
regression (PLS). 

(Hu & Downie, 
2010a, 2010b) 

Audio 
and lyr-
ics. 

5296 songs based on 
(Hu et al., 2009). 

Categorical (18 cat-
egories containing 
135 tags, obtained 
from Last.FM). 

n/d. Multi-la-
bel. 

Static 
MER. 

From Last.FM tags, 
as previously de-
scribed (Hu et al., 
2009). 

Audio: 65 spectral features us-
ing Marsyas (e.g., MFCC, spec-
tral centroid, rolloff, flux). Lyr-
ics: several, such as GI, BOW, 
n-grams. 

SVM. 

(Schmidt & Kim, 
2010a) 

Audio. MTurk240: 240 clips 
(15-sec). 

Dimensional (2D 
AV). 

Perceived. Regression 
(probabil-
ity distribu-
tion / 2D 
Gaussian). 

Static 
MER 
and 
MEVD. 

From MoodSwings 
GWAP, few details 
are given. 

Several related with MFCCs, 
Chroma, statistical spectrum 
descriptors (SSD) and spectral 
contrast. 

Multi-variate pa-
rameter regression 
methods such as 
MLR, PLS and 
SVR. 

(Schmidt & Kim, 
2010b) 

Audio. MTurk240: 240 clips 
(15-sec). 

Dimensional (2D 
AV). 

Perceived. Regression 
(probabil-
ity distribu-
tion / 2D 
Gaussian). 

MEVD. From MoodSwings 
GWAP, few details 
are given. 

Octave based spectral contrast 
(OBSC). 

MLR, linear dynam-
ical system (LDS) 
and Kalman/RTS 
smoothing. 

(Schmidt et al., 
2010) 

Audio. MTurk240: 240 clips 
(15-sec). 

Categorical (4 
quadrants from 2D 
AV) and dimen-
sional (2D AV). 

Perceived. Single-la-
bel and re-
gression. 

Static 
MER 
and 
MEVD. 

From MoodSwings 
GWAP, few details 
are given. 

Several related with MFCCs, 
Chroma, SSD and spectral con-
trast. 

SVM, LSR and 
SVR. 

(Y.-H. Yang & Chen, 
2011b) 

Audio. Set1: 60 English pop 
songs (30-sec). 

Set2: 1240 Chinese 
pop songs (30-sec). 

Dimensional (2D 
AV). 

Perceived. Regres-
sion. 

Static 
MER. 

Set1: 40 subjects per 
song. 

Set2: 4.3 per song. 

157 features related with mel-
ody (10), timbre (142) and 
rhythm (5), extracted with 
Marsyas, MIR Toolbox and MA 
Toolbox. 

SVM and ListNet 
(neural networks)- 
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(J. Kim et al., 2011) Audio. 446 music clips (20-
sec) of several genres 
(e.g., rock, hip-hop, 
jazz, metal, dance, 
country). 

Categorical (8 clas-
ses from 2D-AV) 
and dimensional 
(AV). 

n/d. Single-la-
bel classifi-
cation / 
clustering. 

Static 
MER. 

Emotion tags and 
AV values from 10 
subjects. 

None, based on clustering of 
AV values annotated by 10 sub-
jects. 

K-means clustering 
algorithm. 

(Panda & Paiva, 
2011b) 

Audio. Train set: Yang195 
dataset, only 189 
clips were used (25-
sec). 

Test set: 29 full songs. 

Categorical (4 clas-
ses from 2D AV). 

Perceived. Single-la-
bel and re-
gression. 

MEVD. Train set: 253 vol-
unteers, at least 10 
annotators per song. 

Test set: 2 subjects. 

172 audio features mostly spec-
tral (63 from MIR Toolbox and 
109 from Marsyas). 

SVM (SVC and 
SVR). 

(Panda & Paiva, 
2011a) 

Audio. Yang195 dataset, 
only 189 clips were 
used (25-sec). 

Dimensional (2D 
AV). 

Induced 
(since the 
Yang195 
dataset was 
used). 

Regres-
sion. 

Static 
MER. 

253 volunteers, at 
least 10 annotators 
per song. 

458 features (e.g., related with 
timbre, dynamics, rhythm and 
harmony – 44 PsySound2, 177 
MIR Toolbox, 237 Marsyas). 

SVM (SVR). 

(Schmidt & Kim, 
2011) 

Audio. 240 clips (15-sec), 
subset of MTurk240. 

Dimensional (2D 
AV). 

Perceived. Regres-
sion. 

Static 
MER. 

From MoodSwings 
GWAP, few details 
are given. 

Directly from magnitude spec-
tra. MFCCs, spectral contrast, 
chroma, SSD and EchoNest 
timbral features for compari-
son. 

Deep belief net-
works (DBN). 

(Coutinho & 
Cangelosi, 2011) 

Audio 
and bi-
osignals. 

9 musical pieces (clas-
sical), heart rate and 
skin conductance. 

Dimensional (2D 
AV) and categori-
cal (4 classes). 

Induced. Single-la-
bel and re-
gression. 

MEVD. AV annotations and 
biosignals by 39 sub-
jects (1 Hz). 

Six audio features: loudness, 
tempo, pitch level (power spec-
trum centroid), melodic con-
tour, timbre (sharpness), and 
texture (multiplicity). Two bi-
osignals: heart rate and skin 
conductance. 

Recurrent neural 
networks and linear 
discrimant analysis. 

(J.-C. Wang, Yang, 
Wang, et al., 2012) 

Audio. MER60: 60 clips (30-
sec). 

MTurk240: 240 clips 
(15-sec). 

Dimensional (2D 
AV). 

Perceived. Regres-
sion. 

Static 
MER 
and 
MEVD. 

MER60: 40 subjects 
per song. 

MTurk240: 7 to 23 
subjects per song us-
ing MTurk workers. 

MER60: 70 features (dynamic, 
spectral, timbre and tonal using 
MIR Toolbox 1.3). 

MTurk240: no audio available, 
authors used the provided fea-
tures (e.g., MFCCs, chroma, 
SSD and spectral contrast). 

GMM. 

(Panda & Paiva, 
2012b) 

Audio. Multi-modal MIREX-
like dataset: 903 clips 
(30-sec) belonging to 
29 emotion tags from 

Categorical 
(MIREX AMC tax-
onomy: 5 clusters, 
29 emotion tags). 

n/d (no in-
formation 
provided by 
AllMusic). 

Single-la-
bel. 

Static 
MER. 

Annotations ex-
tracted directly from 
AllMusic emotion 
tags. 

253 features (65 from Marsyas, 
177 from MIR Toolbox, 11 
from PsySound3). 

SVM. 
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AllMusic. 

(Y. Song, Dixon, & 
Pearce, 2012) 

Audio. 2904 audio excerpts 
(either 30 or 60-sec) 
from 7digital.com. 

Categorical (4 clas-
ses: happy, sad, an-
gry and relaxed). 

n/d. Single-la-
bel. 

Static 
MER. 

From Last.FM social 
tags. 

55 features from MIR Toolbox, 
summarized with mean and 
standard deviation (7 dynamics, 
5 rhythm, 32 spectral, 10 har-
mony). 

SVM. 

(Soleymani et al., 
2013) 

Audio. MediaEval: 1000 
clips from the 2014 
subset (45-sec, eight 
gen- res: blues, elec-
tronic, rock, classical, 
folk, jazz, country, 
and pop). 

Dimensional (2D 
AV). 

 

Perceived. Regres-
sion. 

Static 
MER. 

10+ annotators per 
song using MTurk 
workers. 

Several: MFCCs (Rastamat 
toolbox), OBSC, SSD, chroma-
gram. Additional EchoNest API 
features. 

MLR. 

(Patra et al., 2013) Audio. 250 Hindi music clips 
(30-sec). 

Categorical (5 clus-
ters, i.e., excited, 
happy, calm, sad 
and angry). 

n/d. Single-la-
bel. 

Static 
MER. 

5 human annota-
tors. 

Several, related with rhythm 
(e.g., strength, regularity, 
tempo), timbre (e.g., MFCCs) 
and intensity (e.g., RMS en-
ergy). 

Fuzzy C-means clus-
tering algorithm 
(unsupervised). 

(Imbrasaite, 
Baltrusaitis, & 
Robinson, 2013) 

Audio. MTurk240: 240 clips 
(15-sec). 

Dimensional (2D 
AV). 

Perceived. Regres-
sion. 

MEVD. MTurk240: 7 to 23 
subjects per song us-
ing MTurk workers. 

MTurk240: no audio available, 
authors used the provided fea-
tures (e.g., MFCCs, chroma, 
SSD and spectral contrast). 

SVR and continu-
ous conditional ran-
dom fields (CCRF). 

(Panda, Malheiro, et 
al., 2013) 

Audio, 
lyrics and 
MIDI. 

Multi-modal MIREX-
like dataset: 903 au-
dio clips (30-sec), 764 
full song lyric files, 
196 full song MIDI 
clips. 

Categorical 
(MIREX AMC tax-
onomy: 5 clusters, 
29 tags). 

n/d (no in-
formation 
provided by 
AllMusic). 

Single-la-
bel. 

Static 
MER. 

Annotations ex-
tracted directly from 
AllMusic emotion 
tags. 

Audio: 275 (PsySound3, MIR 
Toolbox, Marsyas, and melodic 
features). 

Lyrics: 26 (jMIR/jLyrics). 

MIDI: 320 (jMusic, jSymbolic, 
MIDI Toolbox). 

SVM, KNN, Naive 
Bayes, decision 
trees (C4.5). 

(Xu et al., 2014) Audio. 267 songs divided in 
4542 clips (15-sec). 

Categorical (4 clas-
ses – anger, calm, 
happy and sad 
from Last.FM 
tags). 

n/d (since 
Last.FM 
tags were 
used). 

Single-la-
bel. 

Static 
MER. 

Extracted directly 
from Last.FM social 
tags. 

84 audio features (58 related 
with timbre, 4 intensity, 12 mel-
ody and 10 “other”, using jAu-
dio). 

SVM. 

(B. Wu, Zhong, et 
al., 2014) 

Audio, 
lyrics. 

1493 English pop 
songs. 

Categorical (122 
classes from 
AllMusic emotion 
labels). 

n/d. Multi-la-
bel. 

Static 
and 
MEVD. 

Used 122 AllMusic 
labels, average of 
1.85 labels per song. 

Audio: used the Million Song 
Database to obtain audio fea-
tures. 

Lyrics: TF.IDF from synced lyr-
ics files (LRC format) obtained 

Hierarchical Bayes-
ian models, several 
other methods also 
tested (e.g., binary 
relevance, label 
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using Baidu search. powerset, random 
k-labelsets). 

(Hu & Yang, 2014) Set1 and 
2: audio. 

Set3: mu-
sic video 
(only the 
audio 
was 
used). 

Set1: 496 Chinese 
pop clips (30-sec). 

Set2: MER60 – 60 
English pop clips (30-
sec). 

Set3: DEAP120 – 
120 Western video 
clips (1-minute). 

Dimensional (2D 
AV). 

Perceived. Regres-
sion. 

Static 
MER. 

Set1: annotated by 3 
experts. 

Set2: 40 non-ex-
perts. 

Set3: 14 to 16 stu-
dents. 

Few details are given: “psychoa-
coustic features” which “have 
been used and reported as effec-
tive in previous studies”. 

SVR. 

(Y.-A. Chen et al., 
2015) 

Audio. AMG1608: 1608 
Western music clips 
(30-sec). 

Dimensional (2D 
AV). 

Perceived. Regres-
sion. 

Static 
MER. 

643 annotators 
from MTurk and 22 
students. 

A total of 72 audio features (40 
MFCC related, 17 tonal, 11 
spectral and 4 temporal). 

GMM and maxi-
mum a posteriori 
linear regression. 

(S.-H. Chen et al., 
2015) 

Audio. 1080 music clips (n/d 
duration) collected 
from AllMusic and 
Last.FM (120 clips 
per class). 

Categorical (9 clas-
ses: angry, sad, 
happy, bored, 
calm, relaxed, nerv-
ous, pleased, and 
peaceful). 

n/d. Single-la-
bel. 

Static 
MER. 

From AllMusic emo-
tion tags and 
Last.FM social tags. 

38 audio features (covering 
rhythm, dynamics, timbre, 
pitch and tonality extract with 
MIR Toolbox). 

Deep Gaussian pro-
cess (GP), also SVM 
and standard GP 
for comparison. 

(Madsen, Jensen, & 
Larsen, 2015) 

Audio. 20 excerpts (15-sec). Dimensional (2D 
AV). 

Perceived. Regres-
sion. 

Static 
MER. 

13 annotators. 56 audio features (12 chroma, 
24 related with loudness, and 
20 MFCCs). 

Gaussian process 
model with multi-
ple kernel learning. 

(Ahsan, Kumar, & 
Jawahar, 2015) 

Audio. 100 clips (30-sec) of 
various genres (e.g., 
classical, reggae, rock, 
pop) – subset of the 
(Trohidis et al., 2008) 
dataset. 

Categorical (6 clas-
ses as used by 
(Trohidis et al., 
2008)). 

Perceived. Multi-la-
bel. 

Static 
MER. 

3 expert annotators, 
only songs with full 
agreement. 

72 features (8 rhythmic and 64 
timbral using Marsyas, e.g., 
MFCCs, centroid, rolloff, flux 
and beat histogram statistics) as 
in (Trohidis et al., 2008). 

SVM, KNN, multi-
label KNN (ML-
KNN) and max-mar-
gin multi-label clas-
sification (M3L). 

(Malheiro et al., 
2016a) 

Audio 
and lyr-
ics. 

Bi-modal emotion da-
taset: 163 audio clips 
(30-sec), 180 lyrical 
files (full lyrics), 133 
common songs (bi-
modal tests). 

Categorical (4 clas-
ses derived from 
2D AV). 

Perceived. Single-la-
bel. 

Static 
MER. 

Annotated by a total 
of 39 subjects, 6 to 8 
annotations per 
song (average). 

1701 audio (e.g., related with 
timbre, rhythm, harmony, dy-
namics and others), 1232 lyrics 
(e.g., bag-of-words, general in-
quirer, structural analysis and 
semantic features). 

SVM. 

(Hu & Yang, 2017) Audio. Set1: MER60 – 60 
English pop excerpts 
(30-sec). 

Set2: 818 Chinese 

Dimensional (2D 
AV). 

Perceived. Regres-
sion. 

Static 
MER. 

Set1: 40 non-ex-
perts. 

Set2: 3 experts (3 
per clip). 

539 features divided in loud-
ness, pitch, rhythm, timbre and 
harmony (extracted using 
Chroma Toolbox, MIR 

SVR. 
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pop excerpts (30-sec). 

Set3: AMG1608 – 
1608 Western clips 
(30-sec). 

Set3: 15 to 32 
MTurk workers per 
clip, 665 total. 

Toolbox, PsySound and Tem-
pogram Toolbox). 

(Aljanaki et al., 
2017) 

Audio. DEAM: 1802 – 58 
full songs and 1744 
excerpts (45-sec). 

Dimensional (2D 
AV). 

Perceived. Regres-
sion. 

Static 
MER 
and 
MEVD. 

5 to 10 annotations 
per song using 
MTurk workers. 

Many from several different 
teams, using different tools 
(e.g., Marsyas, MIR Toolbox for 
MATLAB, PsySound, 
openSMILE, Essentia, jAudio). 

Many (e.g., SVR, 
Kalman, long-short 
term memory recur-
rent neural net-
works, CCRF, 
multi-level regres-
sion). 

(Malik et al., 2017) Audio. DEAM (2015 subset): 
431 excerpts (45-sec) 
+ 58 full songs. 

Dimensional (2D 
AV). 

Perceived. Regres-
sion. 

MEVD. 5 to 10 annotations 
per song using 
MTurk workers. 

260 features (by summarizing 
65 low-level time-series de-
scriptors) used as baseline, log 
Mel-band energies used as raw 
features. 

Convolutional and 
recurrent neural 
networks. 

(Thammasan, Fukui, 
& Numao, 2017) 

MIDI 
and 
EEG. 

40 MIDI songs (be-
tween 73 and 147-
sec). 

Dimensional (2D 
AV). 

Induced. Regres-
sion. 

MEVD. Each participant se-
lected 16 songs, cre-
ated continuous AV 
and recorded EEG 
signals while listen-
ing. 

EEG: 17 features related with 
fractal dimension. 

Audio: 37 features related with 
rhythm (e.g., tempo, attack time 
and slope), dynamics (e.g., 
RMS), timbre (e.g., MFCC, 
ZCR) and harmony (e.g., 
HCDF) using MIR Toolbox. 

SVM. 

(Malheiro et al., 
2018) 

Lyrics. Set1: Bi-modal emo-
tion dataset: 180 lyr-
ics (full songs). 

Set2: 771 lyrics ex-
tracted from AllMu-
sic. 

Categorical (4 clas-
ses from 2D AV). 

Perceived. Single-la-
bel. 

Static 
MER. 

Set1: 39 subjects, 8 
annotations per 
song (average). 

Set2: from AllMusic 
emotion tags. 

High number of lyrical features, 
among which: content related 
features (e.g., bag-of-words), sty-
listic based, song structure 
based and semantic based. 

SVM. 

(Panda et al., 2018) Audio. 900 excerpts (30-sec). Categorical (binary 
and 4 classes de-
rived from 2D 
AV). 

Perceived. Single-la-
bel classifi-
cation. 

Static 
MER. 

Derived from 
AllMusic tags, vali-
dated locally by two 
subjects. 

1255 features related with the 8 
musical dimensions (898 from 
Marsyas, MIR Toolbox and 
PsySound; 357 novel/manually 
extracted). 

SVM. 

Table 3.4: Summary of some the most relevant MER studies over the last three decades. 
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3.2.6. Explored Problems, Applications and Current Directions 

Building on the research on core MER problems described earlier, a variety of different 
MER approaches and possible applications have also been studied. Some examples are: 
the automatic creation of playlists and music recommendation based on emotional con-
tent and metadata (Aucouturier & Pachet, 2002; Flexer et al., 2008; Panda & Paiva, 
2011a); studies on the importance of personalization and context to MER applications 
(Y.-A. Chen, Wang, Yang, & Chen, 2017); understanding the possible cultural differ-
ences and exploring inter-cultural solutions (Hu & Yang, 2017); evaluate the relevance 
of common audio features to the field (Y. Song et al., 2012); and explore information 
from sources beyond audio or lyrics, such as video, EEGs and other physiological signals 
(in emotion induction studies) (Hsu, Zhen, Lin, & Chiu, 2017; Koelstra et al., 2012; 
Thammasan et al., 2017). 

Most, if not all, of these problems are still to be addressed before MER can be usable 
in real life scenarios. To this end, we believe that there are several research paths that 
must be explored beforehand. These are briefly presented below, ordered by their im-
portance (from the ones we consider the most urgent to address to the least ones). 

Higher-level, emotionally-relevant audio features 

A great number of audio features have been proposed over time, many of which were 
later employed in MER studies. Still, most of these have been developed for other MIR 
problems and may not directly relate with music emotion. To understand this, Song et 
al (2012) evaluated the influence of various audio features in emotion classification. 
First, 2904 clips tagged as “happy”, “sad”, “angry” or “relaxed” were obtained from 
Last.FM. Next, the MIR Toolbox was used to extract a total of 54 features, divided into 
dynamics (7), rhythm (5), spectral (32) and harmony (10). Although the quality of the 
dataset can be questioned, since it was based on Last.FM social tags and unverified clips 
from 7digital.com, the results showed that “no single dominant features have been 
found”, and that many of the tested features can be removed without significant losses 
in accuracy. Furthermore, regarding features’ groups, “the used spectral features outper-
formed those based on rhythm, dynamics, and, to a lesser extent, harmony”. However, 
fusing all features barely increased accuracy (51.9% from spectral only to 53.6%). 

Based on these results and on our literature review described earlier (Section 3.1), 
we believe that novel emotionally-relevant audio extractors are needed. Supporting this 
is the fact that some of the musical dimensions regarded as relevant to emotion (e.g., 
musical texture, musical form or expressive techniques) lack audio algorithms to capture 
this information. Moreover, many of the existent features may not be helpful for MER. 
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The proposal of novel emotionally-relevant audio features is the main contribution of 
this thesis, as is discussed in Chapter 4. 

Public standard datasets combining categorical and dimensional models 

The quality and availability of datasets to MER research has been a major issue for long. 
The problem is actually composed of two distinct parts: music files and audio annota-
tions. Regarding the audio music files, the existence of copyright restrictions limits the 
usage and sharing, especially of longer segments, forcing researchers to use private or 
inadequate datasets. 

Concerning the annotations, the difficulties are spread between the complexity of 
the process, subjectivity of human emotion perception and the resources required to 
conduct a robust procedure. Classification studies usually divide emotions into different 
classes without theoretical support. Most MER studies with acceptable results adopt few 
classes (e.g., 4 to 6), which although useful for the final user, may be of limited interest 
for massive information retrieval systems. However, using a large number of emotion 
categories leads to ambiguity problems, where users might have difficulties differentiat-
ing them. Regression approaches using dimensional models mitigate this problem. How-
ever, such models are far from how we as humans reason about and describe emotions, 
thus limiting also its application. 

Initial steps have been given to address this issue, such as attempting to establish 
relations between emotional categories and emotional points (J. Kim et al., 2011) and 
combining ground-truth with both types of data (J.-C. Wang, Yang, Chang, Wang, & 
Jeng, 2012). Besides, the annotation process is complex, very resource-intensive, and 
prone to inaccurate data and errors, due to the subjectivity associated to emotion per-
ception. Historically, this has led to one of two possible outcomes: 1) very robust /con-
trolled ground-truth procedure for a small dataset; 2) uncontrolled ground-truth, ex-
tracted from online sources (e.g., Last.FM, MTurk or GWAP approaches), but of massive 
scale. Some proposals has been made to find a compromise and increase accuracy, such 
as having baseline annotations by experts to filter outliers (Speck et al., 2011), or using 
a ranking-based emotion AV annotation (ranking pairs of songs), instead of selecting a 
real value (Y.-H. Yang & Chen, 2011b).  

Hence, another contribution of this study is the proposal of a methodology and 
dataset that we believe to the current stage of MER research, as is described in Section 
4.1. 

Source separation: audio, voice and lyrics 

We know empirically from our personal experiences that not only music but also the 
voice acoustics and the lyrics being sang have influence in the emotional response. As 
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previously noted, researchers have already demonstrated that lyrical features (extracted 
from text) can significantly outperform audio features for specific emotions (Hu & 
Downie, 2010b). Regarding the voice signal and its acoustic information, researchers 
have also noted their relevance to emotion, especially to discriminate low arousal musi-
cal pieces. As an example, Xu el al. (2014) verified that using only the singing voice can 
be effective for distinguish between “calm” and “sad” emotions. However, when music 
signals containing both voices and accompaniments are used this effectiveness is lost. 
As a result, they concluded that “source separation can effectively improve the perfor-
mance” of MER systems. Moreover, other authors have studied the emotion in speaking 
and singing voice (Scherer, Sundberg, Tamarit, & Salomão, 2015), as well as the related 
voice acoustic features (Eyben, Salomão, Sundberg, Scherer, & Schuller, 2015). 

Thus, a possible path to improve MER are better multi-modal solutions which ex-
ploit the audio content of both music and voice, as well as the lyrical message. Such 
solution is still far away, still requiring advances in areas such as source separation and 
singing voice transcription. Still, some very recent works explored the extraction and 
alignment of lyrics in music from the audio signal (Gupta, Tong, Li, & Wang, 2018), 
which is a step in this direction. 

This problem was partially approached in this thesis, where features based on the 
separated voice component (based on the work by (Z.-C. Fan et al., 2016)) were used, as 
will be described in Section 4.2. 

New machine learning techniques 

Some machine learning techniques have increased in popularity in the last years. The 
most notable example is the resurgence of neural network techniques, specifically deep 
learning, to a myriad of problems, fueled by the improvements in computer processing 
(e.g., using GPUs)). Some MER studies have already used techniques such as deep belief 
networks (DBN) (Schmidt & Kim, 2011), deep Gaussian process (deepGP) (S.-H. Chen 
et al., 2015) or convolutional (CNN) and recurrent neural networks (RNN) (Malik et 
al., 2017). 

In (Schmidt & Kim, 2011), the authors use a DBN to learn features directly from 
the magnitude spectra.  To this end, the authors use a subset of the MoodSwings dataset 
containing only 240 15-sec clips annotated using AV. Their magnitude spectra are fed 
to the network, which is said to learn emotion-based acoustic descriptors. To evaluate 
them, the DBN output is fed directly to a linear regression layer and used to predict AV 
values. The authors report good results when compared to predictions made by standard 
audio features sets such as MFCCs, spectral contrast and others. Still, the results are 
based on the average mean distance between predicted and real AV values using single 
feature sets (e.g., only MFCCs) vs. the DBN which was fed the entire magnitude spectra. 
It would be interesting to have results of state-of-the-art MER approaches to compare. 
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Moreover, the employed dataset is extremely limited in size for a deep learning based 
approach. 

Sih-Huei Chen et al. (2015) proposed a deep learning system using deepGP to clas-
sify music into 9 emotion classes. For each class 120 audio clips from AllMusic or 
Last.FM were obtained (no details are given about their duration). In contrast to the 
typical deep learning approach, where the raw data (e.g., spectrogram or even the wave-
form signal) is fed to the network, the authors extracted 15 acoustical features using 
MIR Toolbox. These features are related with rhythm (e.g., tempo, event density), dy-
namics (e.g., RMS energy), timbre (e.g., zero-crossing rate, MFCC), and harmony (e.g., 
mode). Feeding the features as input to the deepGP network achieved higher results 
(71.3%) than a similar strategy using SVM models (63.0%) and standard Gaussian pro-
cess models (67.4%). Although interesting, further research needs to be carried with a 
larger and better annotated dataset. 

Finally, a more recent work by Malik et al. (2017) used both convolutional (CNN) 
and recurrent neural networks (RNN) in a stacked setup for music emotion recognition 
using the AV space. Here, the MediaEval2015 emotion dataset was used to test the hy-
pothesis of the authors that neural networks could learn information such as first and 
second order derivatives and statistics from raw data on its own. To this end, the authors 
used the 65 features (summarized in four statistics to 260 features) of the best perform-
ing system to date in the MediaEval evaluation as the baseline, feeding it to the system. 
Alternatively, a similar system was trained with only raw features, consisting of the log 
Mel-band energy (16 feature vectors summarized in 64 statistics). The training process 
was conducted using 431 audio excerpts (30-sec), annotated every 500ms, while the eval-
uation was conducted on 58 full songs from the same set. While the system using the 
baseline features achieved the best results (RMSE of 0.202 for arousal and 0.268 for 
valence), both systems (baseline and raw features) outperformed the previously best re-
sults. Moreover, the raw features method used a “significant less amount of parameters” 
than the others effectively proving the authors hypothesis. 

 

Given the large size of some new datasets (e.g., Million Song dataset), such methods 
might become valuable to uncover new and interesting relations in MER, since “lack of 
data tends to limit the outcomes of deep learning research” (Pons et al., 2018). In this 
direction, a recent paper by Jordi Pons et al. (2018) pointed out that end-to-end learning 
stacks (in this case for music auto-tagging) benefit from larger datasets and demonstrated 
that “waveform-based models outperform spectrogram-based ones in large-scale data sce-
narios” (i.e., 1+ million songs). 

This approach was not studied in this thesis, mostly because of the dimension of 
the created dataset, which is not suited for deep learning.
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Chapter 4  
 
A NOVEL SYSTEM FOR MUSIC 

EMOTION RECOGNITION: NEW 

DATASET AND AUDIO FEATURES 

usic emotion recognition is a very promising field in MIR. Considering the 
current market directions, with ever growing online multimedia databases 
and massive adoption of streaming services, there is clearly a need to take 
MER technology from academia to real life applications. To this end, a num-

ber of open questions still present in the MER need to be addressed. 

As discussed in the previous chapters, the typical MER solutions have three distinct 
components: the ground-truth, providing data to explore the relations between music 
signals and emotional annotations; feature extraction, used to summarize musical signals 
in manageable sets of descriptors; and classification, where machine learning techniques 
are used to identify patterns between the extracted descriptors and emotional annota-
tions. Based on our in-depth review of the MER literature, we believe an unbalanced 
amount of attention has been given to the last component, neglecting the former two. 
After all, being the last step, however good it may perform, its outcome is always depend-
ent on the quality of the preceding ones. 

We believe that significant improvements in the first two steps are key to advances 
in MER. 

Section 4.1. Dataset Construction  

Under this perspective, and given the restrictions in existent public datasets, we start by 
describing our dataset and the methodology used in its construction. We propose a com-
promise between the resource intensive fully manual annotation processes, which typi-
cally leads to limited sized datasets, and fully automatic massive datasets, built from 
online data at the expense of quality. To this end we fuse both ends of the spectrum, by 
starting with online annotations from experts and thus significantly relieving the manual 
annotation process. 

M 
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Section 4.2. Novel Audio Features  

Next, we propose a set of novel higher-level audio features aimed at improving emotion 
recognition. To this end, we intersect the knowledge acquired in Chapter 2 and Chapter 
3, exploring musical dimensions that have been identified as relevant in music emotion 
but for which audio features are still lacking. 

Section 4.3. Feature Extraction and Reduction 

The dataset built by us is then used to extract standard audio features with three state-
of-the-art frameworks: Marsyas, MIR Toolbox and PsySound3. Next, the novel proposed 
features are extracted from the same audio clips. Additionally, since some studies have 
hinted on the relevance of the voice signal, we use experimental source separation algo-
rithms and extract the same features from the resulting voice-only audio signal. To con-
clude, we apply feature reduction techniques to the extracted feature set. 

Section 4.4. Feature Selection and Emotion Classification 

We then use the extracted features and gathered annotations in our classification exper-
iments to assess the importance of the various feature sets. To this end, the features 
weight is computed using ReliefF and SVMs are used to classify songs based on quad-
rants (multi-class and binary), arousal (high and low) and valence (positive or negative). 

Section 4.5. Classification Results and Discussion  

After describing the feature selection classification strategies, we present the obtained 
results in each of the addressed problems. 

Section 4.6. Feature Importance per MER Problem  

Finally, based on the obtained feature rankings and classification results, we explore the 
uncovered relations between audio features and emotional categories. 

4.1. Dataset Construction 

Several MER datasets have been created over the years and used in a myriad of studies. 
However, most suffer from at least one of the following problems, as previously debated 
in Sections 3.2.1 and 3.2.2: 

 Being private, used solely in their creators research; 
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 Missing data (e.g., audio samples), in part due to possible copyright re-
strictions; 

 Very limited in size, with few tens or hundreds of song entries; 
 Containing uncontrolled annotations (e.g., crawled from online social me-

dia); 
 Limited to a specific genre, limiting research in a real-life scenario; 
 Using unvalidated emotion taxonomies; 
 Lacking details regarding its creation, especially in ground-truth collection; 
 Containing low quality data (e.g., problems with samples and annotations) 

 

As such, we propose a methodology for semi-automatic creation of a MER dataset 
that can be used to validate our work.  

4.1.1. Dataset Requirements and Methodology 

To avoid the pitfalls present in public available datasets, the following objectives were 
pursued in the process of creating our dataset: 

1. To use a simple taxonomy, supported by psychological studies. Existent 
MER research is still unable to properly solve simpler problems with high 
accuracy. Thus, in our opinion, at this moment, there are few advantages 
to tackle problems with higher granularity; 

2. To follow a semi-automatic construction process, reducing the resources 
needed to build a sizeable dataset; 

3. To reach medium-high size, containing hundreds of songs; 
4. To be prepared to a wide scope of research works, thus providing emotion 

quadrants as well as genre, artists or emotion tags for multi-label classifica-
tion; 

5. To be of varied and balanced nature, not being limited to a single genre or 
containing a very unbalanced number of instances per emotion or genre; 

6. To have reduced ambiguity, containing songs with clear emotions during 
the manual validation, against excerpts with no agreement. 

 

With this in mind, the methodology used to build our dataset consisted of the fol-
lowing steps, as described in Algorithm 4.1: 

Algorithm 4.1. Algorithm used to build our dataset. 

1. Gather songs and emotion data from AllMusic services. Ac-
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cording to several authors, AllMusic data was curated by ex-

perts, relating music and emotions. 

1.1. Retrieve the list of 289 emotion tags, E, using the 

AllMusic API. 

1.2. For each emotion tag gathered, Ei, query the API for the 

top 10000 songs related with it, Si. 

2. Bridge the emotional data from AllMusic, based on an unvali-

dated emotional taxonomy, with Warriner’s list, which asso-

ciates adjectives to arousal, valence and dominance (AVD) 

values. 

2.1. For each emotion tag, Ei, retrieve the associated AVD 

values from the Warriner’s dictionary of English words. 

If the word is missing, remove it from the set of tags, 

E. 

3. Data processing and filtering, in order to reduce the mas-

sive amount of gathered data to a more balanced but still 

sizeable set. This process contains several sub-steps: 

3.1. Filter ambiguous songs, where a dominant emotional 

quadrant is not present. Compute the dominant emotional 

quadrant of a song: 

3.1.1. Transform each emotion tag of a song to quadrant 

using the previously gathered AV values. Tags without 

AV values are considered Q0. 

3.1.2. Set the dominant quadrant of a song as the most 

represented quadrant based on its emotion tags’ list. 

3.1.3. Compute the dominant quadrant weight of a song 

as the ratio of tags within this quadrant to the total 

number of tags. 

3.1.4. Discard any song where the dominant quadrant is 

Q0 or the dominant quadrant weight is < 0.5. 

3.2. Remove duplicated or very similar versions of the same 

songs by the same artists (e.g., different albums) by 

using approximate string matching against the combina-

tion of artist and title metadata. 

3.3. Remove songs without genre information. 

3.4. Remove songs associated with less than three emotion 
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tags. 

4. Generate a subset dataset maximizing genre variability in 

each quadrant, as described in Algorithm 4.2 (page 176). 

5. Manually validate the dataset in controlled conditions as 

described in Section 4.1.5. This follows a lighter process, 

where few resources are needed to blindly validate the audio 

clip and annotations. 

 

The dataset creation process is described in detail in the next sections. 

4.1.2. Data Collection from AllMusic 

AllMusic105 is a popular online music guide, cataloguing more than 3 million albums 
and 30 million tracks106. Originally launched as All Music Guide in 1991, its first release 
was as a 1,200-page reference book in CD-ROM format107, predating the World Wide 
Web. Nowadays AllMusic is property of TiVo Corporation, previously known as Rov 
Corporation, which provides music metadata and recommendation platforms for several 
services and applications such as Spotify, iTunes, MTV or Billboard. 

Regarding emotional information, AllMusic provides a list of 289 “mood tags”108 
that are associated with its albums and tracks. This data is said to be produced by experts 
(e.g., “annotations curated by experts” (Schmidt & Kim, 2010a), “experts at All Music 
Guide (AMG) have created a large mood taxonomy” (Pao et al., 2008), “provides profes-
sional reviews”(Hu & Downie, 2007), “mood labels that are applied to songs and albums 
by professional music editors” (Y.-H. Yang & Hu, 2012)). Additionally, AllMusic also 
supplies a list of 21 “genres”109, each with a set of sub-genres and 2nd level sub-genres. 

The AllMusic API110 served as the source of musical information for our dataset, 
providing metadata as well as 30-second audio clips. To this end, we queried the API for 
the top songs for each of the 289 distinct emotion tags in it. The query response is very 
rich, containing metadata such as the results count (total number of songs that fit the 

                                                        
105 https://www.allmusic.com/ 
106 https://motherboard.vice.com/en_us/article/53djj8/the-story-of-allmusic-the-internets-largest-

most-influential-music-database 
107 https://www.worldcat.org/title/all-music-guide-the-best-cds-albums-tapes-the-experts-guide-to-the-

best-releases-from-thousands-of-artists-in-all-types-of-music/oclc/31186749/edi-
tions?referer=di&editionsView=true 

108 https://www.allmusic.com/moods 
109 https://www.allmusic.com/genres 
110 http://developer.rovicorp.com/docs 
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query), list of artists, title, moods (representing the additional list of emotion tags that 
are associated with a specific song), genres, relevance of each entry to the query, styles 
(e.g., Singer/Song-writer, Country-rock), themes (e.g., “Romantic Evening”), audio sam-
ple, appearances (detailed information of the albums where the song appears), the text 
review and its reviewer and others. Although for this dataset only artist, title, mood and 
genre data was explored, the additional metadata is available to future studies. 

 

Figure 4.1: Data sample extracted from AllMusic API response when queried by “bright” 
songs. 
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A condensed excerpt of the response obtained when querying for “Bright” mood is 
shown in Figure 4.1. Although the results count for each queried emotion tag is in some 
cases very high (for “Bright” there are 54567 entries, as the example shows), the access 
is limited to the first 10,000 entries. In addition, some of the emotion tags are rarely 
used. In particular, 77 of them are associated with 0 to 100 songs. The most used emo-
tion tag is “Rousing”, associated with a total of 135,437 songs. 

According to the gathered data, a total of 5,558,883 songs in the AllMusic database 
are associated with the 289 emotion tags. Of these, we were able to crawl information 
on 1,731,141 songs (31.1%), an average of 5,990 songs for each emotion. These songs 
appear in a total of 18,850,162 albums, meaning that, on average, each song is included 
in 10.89 albums. Also, these entries were associated with 26,581,278 emotion tags (av-
eraging 15.35 tags per song), 2,329,140 genre tags (averaging 1.35 genre tags per song), 
7,897,847 theme tags (averaging 4.56 per song) and 5,761,312 styles tags (3.33 per song). 
Audio samples were available for a total of 1,596,082 song entries (92%). Since on aver-
age each song entry is associated with 15.35 emotion tags, it means that the same songs 
appear repeatedly in the results. After accounting for this, the number of unique songs 
drops to 370,611. This information is summarized in Table 4.1. 

 

 

AllMusic DB Song entries with emotion tags: 5,558,883 

Unique emotion tags: 289 

Collected raw data Crawled songs: 1,731,141 (31.1%) 

Emotion tags used: 26,581,278 (15.35 per song) 

Genre tags used: 2,329,140 (1.35 per song) 

Theme tags used: 7,897,847 (4.56 per song) 

Style tags used: 5,761,312 (3.33 per song) 

Audio samples (URLs): 1,596,082 (92%) 

Appearances (albums): 18,850,162 (10.89 per song) 

Unique songs set Song entries: 370,611 (21.4% of crawled) 

Distinct (unique) artists: 28,646 

Emotion tags used: 4,458,423 (12.02%) 

Songs’ with sample URL: 330,700 (89.23%) 

Songs with genre tags 363,147 (97.99%) 

Table 4.1: Summary of the initial set of data gathered using AllMusic API (in 2017). 
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Finally, the distribution of AllMusic emotion tags and genres per song for the raw 
collected data is shown in Figure 4.2. As illustrated, most songs contain a very high 
number of emotion tags, while one or two genre labels are frequently used.  

 

Figure 4.2: AllMusic mood tags and genre tags distribution in the raw collected data. 

 

Figure 4.3: Number of songs per genre in the collected data. 

 

The genre tags are highly unbalanced towards “Pop/Rock”, as Figure 4.3 shows. 
Given the remaining AllMusic genres, “Pop/Rock” is actually an umbrella term covering 
distinct areas from heavy metal to pop, dance or punk rock and hence its massive usage. 
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More details are available in the AllMusic Pop/Rock sub-genres list111. Each of the 21 
genres is further divided in sub-genres and second level sub-genres or styles. 

 

Genre 1st level sub-genres 2nd level sub-genres 

Avant-Garde 3 21 

Blues 13 57 

Children’s 10 0 

Classical 17 0 

Comedy/Spoken 3 31 

Country 7 35 

Easy Listening 2 17 

Electronic 7 60 

Folk 2 21 

Holiday 7 0 

International 22 236 

Jazz 11 67 

Latin 5 63 

New Age 24 0 

Pop/Rock 15 215 

R&B 3 34 

Reggae 18 0 

Religious 2 25 

Stage & Screen 4 18 

Vocal 17 0 

Total 192 900 

Table 4.2: AllMusic genres, sub-genres and styles. 

 

As an example to better illustrate this imbalance, “Religious” genre has two sub-
genres: “Contemporary gospel” and “Traditional gospel”, which are then divided into 
15 (e.g., “Christian rock” and “Latter-day Saints music” Latin gospel”) and 10 (e.g., “Gos-
pel choir” and “Hymns”) styles respectively. In the same direction, the “Blues” genre 

                                                        
111 https://www.allmusic.com/genre/pop-rock-ma0000002613 
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contains 13 sub-genres related with regions (e.g., “Chicago blues”, “East coast blues”, 
and “Louisiana blues”) or instruments (e.g., “Harmonica blues”, “Acoustic blues” and 
“Electric blues”). The same is true for other genres such as “Rap”, “Latin”, “Holiday”, 
“R&B” or “Reggae”, where the sub-genres are very specific divisions of the parent genre. 
However, the “Pop/Rock” genre is a much broader group, encompassing 15 sub-genres, 
among which “Alternative / Indie Rock”, “Dance”, “Folk / Country Rock”, “Hard 
Rock”, “Heavy Metal”, “Punk / New Wave”, and 215 styles (second-level sub-genres). 

A list of the 21 AllMusic genres and number of sub-genres and styles is presented in 
Table 4.2. The full list of sub-genres and styles is omitted given its size but is available at 
the website112. As shown, “Pop/Rock” has a high number of sub-genres and styles, only 
matched by “International” genre. However, the latter is caused by the large number of 
very specific world styles (e.g., “Fado”, “Flamenco” and “Carnatic”), for which less songs 
are available in the AllMusic database. 

4.1.3. From AllMusic Emotion Tags to Russell’s Quadrants 

The reasons behind the selection of the 289 emotion tags in AllMusic are undocu-
mented and, although assigned to songs by experts, lacks the scientific support that com-
monly used taxonomies such as Ekman’s basic emotions or Russell’s AV model offer. 

For this reason, and to cope our first dataset requirement (Section 4.1.1), we derived 
a method to automatically transform the emotion tags of songs in Russell’s quadrants 
based on AV values assigned to English words by previous Psychology studies. The two 
major studies in this subject were taken as source: the Affective Norms for English 
Words (ANEW) (Bradley & Lang, 1999) and the Warriner’s adjectives list (Warriner, 
Kuperman, & Brysbaert, 2013). ANEW contains the mean and standard deviation of 
arousal, valence and dominance values for 1,034 English words, rated by Psychology 
students. Warriner’s list is an improvement over ANEW and contains 13,915 English 
words with affective ratings in the same three dimensions. In addition to the more com-
prehensive list of words, it also contains a better documented annotation process. 

AllMusic Emotion Tags vs. ANEW vs. Warriner’s adjectives list  

Two key aspects contributed to the selection of Warriner’s adjectives list over ANEW. 
First, the fact that Warriner’s list is an update to ANEW, covering its 1,034 words and 
adding 12,881 new words. The second reason was the coverage of AllMusic emotion 
tags by each of the two lists. To perform this analysis, the 12 AllMusic emotion tags 
composed by two words were split (e.g., “Anxious/Tense” to “Anxious” and “Tense”), 

                                                        
112 https://www.allmusic.com/genres (at the bottom of each genre page). 

https://www.allmusic.com/genres
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leading to 301 tags. While ANEW contains only 50 of these 301 (16.6%), Warriner’s 
list contains 200 (66.4%), maximizing the amount of collected data that can be used.  

Nonetheless, the two lists were analyzed and compared to better support this deci-
sion. First, we compared the reported standard deviations in each word to understand 
if a significant difference between subjects exists. No relevant differences were found, 
namely, the mean value of the reported standard deviations was 1.679 (Warriner) vs 
1.654 (ANEW) for valence and 2.300 vs. 2.367 for arousal (in a scale of 1 to 9). The fact 
that arousal annotations had higher standard deviation is interesting, showing that sub-
jects have a harder time rating arousal for text, in contrast to what happens with music. 
This was confirmed by another study from our group (Malheiro et al., 2018). 

Regarding the distribution of words across Russell’s quadrants, Warriner’s list is 
highly skewed towards low arousal quadrants (Q3 and Q4), while ANEW is much more 
balanced, in spite of a slight underrepresentation of Q3, as illustrated in Figure 4.4. 
There, Q0 represents words that have arousal and/or valence values equal to zero and 
thus cannot be placed unequivocally in one of the four quadrants. Still, it is important 
to stress the massive difference in size between both, where only 7.7% of words in Q1 
for Warriner (1079 words, the less represented quadrant) is still more than the entire 
ANEW list (1034 words). 

 

 Figure 4.4: ANEW and Warriner’s adjectives distribution (in %) across Russell’s quad-
rants.  

 

In addition, we compared the arousal and valence values for the 1034 common 
words across the two lists to understand if major differences exist. Regarding arousal 
values, the 1034 pairs of words are, on average, at a distance of 0.74 (± 0.53), with a 
correlation of 0.76. As expected, valence values are lower, with an average distance of 
0.48 (± 0.39) and a correlation of 0.95, as illustrated in Figure 4.5. The histogram of 
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these distances is also provided in Figure 4.6. 

 

Figure 4.5: Arousal and valence correlation between pairs of common words in ANEW 
and Warriner’s adjectives list.  

 

Figure 4.6: Distance between pairs of common words in ANEW and Warriner’s adjec-
tives list.  

 

Finally, the differences between arousal, valence and dominance values for the en-
tire lists (unpaired) and only for pairs of common words (paired) were statistically signif-
icant (significance level of 0.05). Despite this, and considering the high correlation 
found between the two lists and the two key aspects stated before, we believe Warriner’s 
adjective list was the correct choice. 

The final set of filtered tags and associated AV values is illustrated in Figure 4.7. As 
shown, a higher number of tags has positive valence (Q1: 49, Q2: 35, Q3: 33, Q4: 75). 
Of the 200, 8 are ignored in the next steps due to their null arousal or valence (Q0). 
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Figure 4.7: Filtered AllMusic emotion tags in the AV space and by quadrant. 

4.1.4. Data Filtering and Mining 

Having collected the set of raw data from AllMusic and a list of emotion tags associated 
with AV values, the next step is to transform this raw data into a balanced dataset and 
quadrant annotations of manageable size that can be manually validated. 

The first step is to set the rules on how the quadrant of a song is computed and 
which emotion tags should be considered in this process. Regarding the later point, it is 
important to highlight two details of our data: 1) from the 289 emotion tags (expanded 
to 301), only 200 have AV values, thus the remaining tags cannot be assigned to a quad-
rant; 2) when querying the API for a specific emotion (e.g., “Happy”), the response con-
tains a list of songs ordered by relevance (e.g., the songs considered the most “Happy”). 
However, a list of additional emotions for each song is also provided in the response but 
no information is given regarding its relevance and thus its usefulness must be reconsid-
ered. 

Several possible choices are possible to address these points. Regarding the un-
known (no AV) emotion tags, we could either: 

Option 1: Remove any song containing unknown tags; 
Option 2: Keep the songs containing them but remove the unknown tags; 
Option 3: Keep the songs and consider the tags, even if unknown, when com-

puting the song’s quadrant. 

We chose option 3, i.e., to keep the songs where tags with no AV values are used 
and consider them in the quadrant calculation process as this was the option that would 
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better keep the original annotations given by AllMusic experts. 

As for the second point, the two possible options are: 

Option 1: Use all emotion tags available regardless of their relevance; 
Option 2: Consider only the directly queried emotions, losing some less rele-

vant emotional information (e.g., if a song is both “Happy” and 
“Bright” but did not appear in the list of the relevant songs for 
“Bright”, only “Happy” will be considered). 

In this case, we opted for the option 2, i.e., to consider only the directly queried 
emotions as they are known to be the most relevant for the song. Given the high number 
of tags used per song (15.35 on average) we believe that it is a good compromise to 
consider only the relevant emotions (e.g., the 5 relevant tags of a song) than to consider 
the full list as equally relevant (e.g., the full 15 tags, where the additional 10 are not 
considered as relevant). Although this choice eliminates some emotional information, 
it also generates a clearer vision of the prominent emotions in songs, useful to build a 
dataset with less ambiguity. 

Even though these choices were used to create the final dataset, the following steps 
were also executed with all other possible options to guarantee that the best choice was 
made. 

Considering the abovementioned decisions, to compute a single-label quadrant an-
notation of a song given its multi-label AllMusic emotion tags, we use Warriner’s AV 
values to: 

1. Convert each of the tags into quadrants; 
2. Use the most represented quadrant as the song’s quadrant. The weight of 

this single-label annotation is given by the ratio of the number of tags from 
the most represented quadrant against the total number of tags used, in-
cluding the unknown ones. 

Although only single-label quadrant annotations are used, this solution may be ex-
tended to accommodate further studies since we can generate: 

 Single-label quadrant annotations; 
 Single-label quadrant annotations and weight; 
 Multi-label quadrant annotations; 
 Multi-label quadrant annotations with weights (for fuzzy approaches); 
 Multi-label emotion annotations (using tags) for higher granularity prob-

lems. 

In addition, since emotion tags have AV values (mean and standard deviation), fur-
ther efforts can be made to generate dimensional annotations from these, which can be 
either single points or fuzzy, reconciling all the available data – emotion tags, emotion 
AV values, quadrants weight and the additional relevance coefficient from the raw data. 
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Step 1: From AllMusic emotion tags to Russell’s quadrants 

The first data processing step was to transform song labels into Russell’s quadrants, us-
ing Warriner’s AV values. We found that tags associated with positive valence are more 
frequently used in the collected data (Figure 4.8). This can be partly explained by the 
unbalanced distribution of the 200 tags, as described earlier. As expected, there is a high 
number of tags that do not belong to any quadrant (NA, in the left plot), which account 
for all the emotion tags for which AV values are not available.   

 

Figure 4.8: Emotion tags statistics in the raw data. Left: all the tags used according to 
the quadrants they belong to. Right: Number of songs containing at least one tag of a 
specific cluster. 

 

After the transformation, the major quadrant for each song was assessed and its 
weight computed using the aforementioned method. This resulted in an average weight 
of 0.53 (± 0.32), with Q4 being the most represented (Figure 4.9). The major quadrant 
weight varied greatly, from 0.0 for songs containing only non-AV tags to 1.0, for songs 
where all the tags belong to the same cluster, many of them containing a single tag. 
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Figure 4.9: Songs per major quadrant (left) and major quadrant weights’ distribution 
(right). 

Step 2: Filter songs without a strong majority quadrant 

To avoid songs where the emotional content is complex, unclear or ambiguous, we elim-
inate songs where the major quadrant weight is less than 0.5. In simple terms, we only 
consider songs with at least half of the emotion tags belonging to the same cluster. 

This step reduced the number of songs to 120,733 (32.6%) of 17,676 distinct artists 
and further emphasized the unbalanced towards quadrant 4 (60,698 Q4 songs against 
60,035 of the remaining three). This is somewhat explained by at least two reasons: given 
the higher number of Q4 emotion tags available in AllMusic it is natural to have a higher 
presence of Q4 tags in songs. For songs with a single tag, more of these will be Q4. The 
remaining, since more Q4 are available and used, have a higher chance of being Q4 and 
having a weight higher than 0.5.  

One of the most interesting aspects of the dataset at this stage is the genre distribu-
tion across quadrants (Figure 4.10). Despite the expected skewness towards “Pop/Rock”, 
we can see that different genres are more prevalent in specific quadrants (emotions). 
Namely, Q1 (happy songs) contains more Pop/Rock, Electronic, Jazz and R&B songs. 
Q2 (tense/anxious) is almost exclusively Pop/Rock (which contains sub-genres such as 
heavy-metal, punk or hard rock, as previously detailed in Table 4.2), Electronic and Rap. 
Q3 (sad) is mostly used in Blues, Jazz, R&B as well as Electronic and Pop/Rock. Finally, 
Q4 (calm/relaxed) is present in all genres but most of its songs are spread between 
Pop/Rock, Jazz, Country and Vocal. An additional interesting fact is that almost all 
songs of genre “Religious” belong to Q4. 
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Figure 4.10: Songs distribution (by major quadrant) per each genre. 

Step 3: Increase variability by removing similar songs 

Very popular songs, especially from authors with a long career appear several times in 
the data. This is due to these song hits being released with slight variations over time, in 
different albums or featuring other artists. Even though such variations might contain 
slightly different emotions, caused mostly by variations in the artist’s performance, we 
opted to keep only a single version of these. 

The main goal is to increase the variability of the dataset and is accomplished by 
comparing similarities in metadata (mostly based on artist and title). For each duplicated 
song, we select the one to keep based on the one which contains more emotion and 
genre information. If the two duplicated songs are placed (major quadrant) in different 
quadrants we keep both, as this may indicate that the specific songs contain significant 
differences. In this process 11,477 duplicated songs were removed. 

Step 4: Remove songs with no genre and few emotion tags (<3) 

AllMusic experts use 289 emotion and 21 genre labels to review and annotate albums 
and songs, providing it to major commercial services. Hence, we consider that songs 
where no genre tag or only one or two emotion tags were selected (out of 289 possibili-
ties) might indicate a not so accurate review process by the experts and thus choose to 
remove them. 

At this point, only 3,917 songs did not contain genre information and were re-
moved. Removing songs with less than three emotion tags greatly reduced the total num-
ber of candidate songs to 39,983, from which Q1 is the least represented (3,470) and 
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Q4 the most represented (24,982). 

Step 5: Quadrant and genre balanced subset 

At this point, the candidate dataset has already been reduced from 370,611 to 39,983 
(10.8%) songs that better suit our requirements. However, this set is highly unbalanced 
in terms of quadrants and genres, and still too large for a manual validation by subjects 
to be attainable within our available resources. Thus, a final processing step was carried 
out to create a random subset of songs that is balanced in terms of quadrants and that 
maximizes genre diversity within each quadrant. 

Since each song can have more than one genre tag and some genres are significantly 
more frequent, it is impossible to attain a perfect balance. Still, the following strategy 
was used to create the set: 

Algorithm 4.2. Algorithm to maximize genre variability within a set. 

1. For each quadrant, Qi: 

1.1. Extract the list of distinct genres present in Qi songs, 

G. 

1.2. Count the number of songs (belonging to Qi) for each of 

these genres, Sg. 

1.3. Define the number of songs, N, to have in Qi. 

1.4. Calculate the ideal number of songs, I, to have for 

each genre in Qi, given by I = N/length(G), where 

length(G) is the number of genres. 

1.5. Start with an empty set of songs for Qi, S. For each 

genre in G: 

1.5.1. If the number of songs of that genre, Sg, is less 

than the ideal number, I, add all of them to the quad-

rant set, S. 

1.5.2. Else (if it has more), randomly select I songs 

(the ideal number) and add them to the quadrant set, S. 

2. Eliminate duplicated songs from the quadrant set, S. (The 

generated set may have duplicated songs due to the multi-la-

bel nature of genre tags, e.g., picking a set of 10 songs 

from genre1 and 10 songs from genre2 might have common songs 

and thus result in less than 20 distinct songs). 

3. Fill the remaining slots (due to song removal) with a random 
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sample from the songs still available in Qi. (The generated 

set may be shorter than the desired size, caused by the du-

plicated removal and by genres with less songs than the 

ideal number). 

 

The following figures illustrate the genre distribution before the algorithm is run 
(Figure 4.11) and the distribution of the created sample subset for Q2 (Figure 4.12). 

 

Figure 4.11: Number of songs of each genre in Q2. 

 

Figure 4.12: Number of songs of each genre in the generated sample subset of Q2. 
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Although it can be argued that the balancing process breaks the original genres pro-
portions for the quadrant, it also increases the variability within the quadrant and, as 
both figures show, the most represented genres remain the same. Some genres are more 
prevalent in specific quadrants (e.g., “Pop/Rock in quadrant 2”), while others may be 
absent (e.g., there are no “New Age” songs in high arousal quadrants). This can be 
viewed in detail in Table 4.3, which presents the genre distribution in each quadrant. 
Since a song can have more than one genre tag the number of entries in the table exceeds 
the number of songs of our dataset. 

 

Genre Q1 Q2 Q3 Q4 Total 

Avant-Garde 0 7 10 11 28 

Blues 17 0 55 11 83 

Children’s 2 0 0 13 15 

Classical 2 0 3 10 15 

Comedy/Spoken 7 2 2 15 26 

Country 21 4 33 27 85 

Easy Listening 9 1 2 19 31 

Electronic 37 54 18 32 141 

Folk 5 4 27 14 50 

Holiday 4 0 1 20 25 

International 21 35 23 37 116 

Jazz 56 8 52 51 167 

Latin 35 4 13 12 64 

New Age 0 0 7 37 44 

Pop/Rock 86 151 72 59 368 

R&B 38 8 26 22 94 

Rap 8 41 10 9 68 

Reggae 10 9 9 17 45 

Religious 7 3 1 9 20 

Stage & Screen 11 9 7 13 40 

Vocal 23 0 35 30 88 

Table 4.3: Number of songs by genre in each quadrant. 
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4.1.5. Dataset Validation 

Not many details are known regarding the AllMusic emotion tagging process, apart from 
being made by experts (see Section 4.1.2). Still, several questions about this data have 
been raised by researchers over time. First, it is unclear whether the AllMusic experts 
evaluating music follow any guidelines regarding the analysis of the emotional content 
of songs. Namely, whether they are reporting evoked or perceived emotions and whether 
they consider only audio, only lyrics, a combination of both or if such decision is at the 
discretion of each. In addition, the segmentation process used by AllMusic to create the 
30-second clips that represent each song is not documented. Given the commercial na-
ture of the service, it would be expected that the most representative part of each song 
was selected. Yet, previous works demonstrated that some may be noisy (e.g., contain 
applauses, only speech, long silences or inadequate song segments such as the introduc-
tion), may contain clear changes in emotions or generate low agreement between anno-
tators (e.g., (Vale, 2017); for details refer to Section 3.2.2). 

To avoid the same pitfalls of previous datasets, which gathered subpar annotations 
in exchange for size, by using directly extracted data from internet sources and social 
media, a manual blind inspection of the candidate set was conducted. Two subjects from 
our lab were given sets of randomly distributed clips and asked to annotate them accord-
ingly in terms of AV quadrants. The number of subjects was low given the fact that the 
validation process started with annotations generated by AllMusic experts. Still, a higher 
number of validators would be desirable if more resources were available. Beyond select-
ing a quadrant, the annotation framework allowed subjects to mark clips as unclear (if 
the emotion was unclear to the subject) or bad (if the clip contained noise, as defined 
above), as shown in Figure 4.13. In this way, additional ambiguous songs were discarded. 

 

Figure 4.13: The annotation framework used to validate our dataset. 
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To construct the final dataset, song entries with clips considered bad or where sub-
jects’ and AllMusic’s annotations did not match were excluded. With this procedure. 
we were able to reduce the number of subjects required (usually 10+) to annotate each 
song and still guarantee that both annotations and audio clips are verified, since both 
AllMusic experts’ and our subjects’ blind annotations matched.  

Several interesting results were obtained from the validation process. First, our sub-
jects demonstrated difficulties with low arousal songs, tagging many Q4 songs (according 
to AllMusic experts) as Q3, as shown in Figure 4.14. In addition, a high number of songs 
were marked as having bad samples, which highlights the importance of manually vali-
dating the audio clips gathered from online services. 

 

Figure 4.14: AllMusic experts’ (y_true) versus our subjects’ annotations (y_pred) after 
the first validation phase. 

 

After the validation process, the amount of songs per quadrant was rebalanced to 
obtain a final set of 900 song entries, with exactly 225 for each quadrant. In our opinion, 
the dataset dimension is an acceptable compromise between having a larger dataset using 
MTurk workers as annotators or automatic but uncontrolled sources as annotations 
(e.g., Last.FM or AllMusic), and a very small and resource intensive dataset annotated 
exclusively by a high number of subjects in a controlled environment. 

The final dataset also contains other types of annotations, possibly enabling its usage 
for different classification tasks (something that will be evaluated in the near future). 
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Each song entry is tagged in terms of quadrants, arousal and valence (positive or nega-
tive), and multi-label emotion tags. The distribution of these emotion tags is shown in 
Figure 4.15. In addition, most tags have an associated AV value, which might be used 
to place songs in the AV plane. Moreover, the remaining metadata (e.g., title, artist, 
album, year, genre and theme) can also be exploited in other MIR tasks. The dataset is 
nearly balanced in terms of emotion tags. 

 

Figure 4.15: Dataset emotion tags. Words in red color are tags from Q1, Q2 in orange, 
Q3 in green and Q4 in blue. Black colored words represent the tags with no AV values. 

 

Regarding genre, although the balance was increased, it was not possible to attain a 
fully balanced distribution. In fact, Pop/Rock is still predominant, mostly because it is 
overly generic and used together with other genres, as Figure 4.16 shows.   
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Figure 4.16: Dataset genre tags, with relatively balanced genres apart from Pop/Rock. 

 

The exact number of songs labeled with each genre tag is available in column “total” 
of Table 4.3, presented previously (page 178). Given the high number of emotion tags 
available in our dataset (217), their distribution per quadrant and total is available in 
Table B.1 of Appendix B. 

 

The final dataset is publicly available online113 and can be used in other research 
studies. Moreover, it can be expanded in several ways, from the generation of new an-
notations as described in Section 4.1.2, to the increasing of its size by assigning resources 
to additional validation phases or by relaxing some of the processing steps that filtered 
out many of the candidate songs.  

4.2. Novel Audio Features 

Over the last decades, most MER studies have focused mainly on problems such as 
ground-truth collection and different machine learning approaches (e.g., regression, sin-
gle- or multi-label classification). Still, regarding feature extraction, the research has been 
generally limited to experimenting different sets of standard audio features and feature 
reduction algorithms. Many of the standard audio features (see Chapter 3) employed in 

                                                        
113 4Q audio emotion dataset (2018), available at http://mir.dei.uc.pt/downloads.html 
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MER have been previously developed to solve different MIR problems. Moreover, sev-
eral of these are low-level, extracted directly from the audio waveform or the spectrum.  

In the previous chapters we identified several music elements that have been associ-
ated with music emotion. In addition, we reviewed the existent standard audio features, 
uncovering the musical dimensions that are less represented by these. Here, we build on 
the acquired knowledge and propose novel audio features that are more relevant to 
MER. As opposed to the information captured by low-level features, we naturally rely 
on clues like melodic lines, notes, intervals and scores to assess higher-level musical di-
mensions such as harmony, melody, articulation or texture. The explicit determination 
of musical notes, frequency and intensity contours are important mechanisms to capture 
such information and, therefore, we describe this preliminary step before presenting 
actual features, as follows.  

4.2.1. From the Audio Signal to MIDI Notes 

Going from audio waveform to music score is still an unsolved problem, and automatic 
music transcription algorithms are still imperfect (Benetos, Dixon, Giannoulis, 
Kirchhoff, & Klapuri, 2013). Still, we believe that estimating things such as predomi-
nant melody lines, even if imperfect, give us relevant information that is currently un-
used in MER. 

To this end, we built on previous works by Salomon et al. (2012) and Dressler (2016) 
to estimate predominant fundamental frequencies (f0) and saliences. Typically, the pro-
cess starts by identifying which frequencies are present in the signal at each point in time 
(sinusoid extraction). Here, 46.44 msec (1024 samples) frames with 5.8 msec (128 sam-
ples) hop-size (hereafter denoted hop) were selected. 

Next, harmonic summation is used to estimate the pitches in these instants, as well 
as their respective salience. The result of this process is a representation of pitch salience 
over time (pitch salience function), as illustrated in the second panel (P2) of Figure 4.17, 
generated using the MELODIA114 vamp plug-in under Sonic Visualizer (Salamon & 
Gómez, 2012). Given this, the series of consecutive pitches which are continuous in 
frequency are used to form pitch contours (panel 3 of the figure). These represent notes 
or phrases. Finally, a set of computations is used to select the f0s that are part of the 
predominant melody (Salamon & Gómez, 2012), shown in panel 4. The resulting pitch 
trajectories are then segmented into individual MIDI notes (P5) following the work by 
Paiva et al. (2006). The output of each intermediate step of this process is exemplified 
in Figure 4.17 using an excerpt of the song “S’posing” by Frank Sinatra. 

 

                                                        
114 https://www.upf.edu/web/mtg/melodia 
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Figure 4.17: Excerpt from “S’posing” by Frank Sinatra, transformed from the audio 
signal to MIDI notes using the MELODIA plug-in (P1-P4) and Paiva et al. work (P5). 
P1: Audio waveform, P2: pitch salience function, P3: pitch contours, P4: extracted mel-
ody (in red) with the spectrogram as background, P5: MIDI notes. 
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Each of the N obtained notes, hereafter denoted as inote , is characterized by: the 
respective sequence of f0s (a total of Li frames), f0i,j,j = 1, 2, …, Li; the corresponding 
MIDI note numbers (for each f0), midij,i; the overall MIDI note value (for the entire 
note), MIDIi; the sequence of pitch saliences, salj,i; the note duration, ndi (sec); starting 
time, sti (sec); and ending time, eti (sec). This information is exploited to model higher 
level concepts such as vibrato, glissando, articulations and others, as follows. 

In addition to the predominant melody, music may be composed of several musical 
lines produced by distinct sources. Although less reliable, there are works approaching 
multiple (also known as polyphonic) F0 contour estimation from these sources. We use 
Dressler’s multi-F0 approach (2016) to obtain a frame-wise sequence of fundamental 
frequency estimates. 

4.2.2. Melodic Features 

Melody is a key dimension in music, defined as the horizontal succession of pitches. 
This set of features consists in metrics obtained from the notes of the melodic trajectory.  

 

MIDI Note Number (MNN) statistics. Based on the MIDI note number of each note, 
𝑀𝐼𝐷𝐼𝑖 (see Section 4.4.1), we compute 6 statistics: MIDImean, i.e., the average MIDI 
note number of all notes, MIDIstd (standard deviation of the MIDI note numbers), 
MIDIskew (skewness), MIDIkurt (kurtosis), MIDImax (maximum) and MIDImin (mini-
mum).  

 

Note Space Length (NSL) and Chroma NSL (CNSL). We also extract the total number 
of unique MIDI note values, NSL, used in the entire clip, based on MIDIi. In addition, 
a similar metric, chroma NSL, CNSL, is computed, this time mapping all MIDI note 
numbers to a single octave (result 1 to 12). 

 

Register Distribution. This class of features indicates how the notes of the predominant 
melody are distributed across different pitch ranges. Each instrument and voice type has 
different ranges, which in many cases overlap. In our implementation, 6 classes were 
selected, based on the vocal categories and ranges for non-classical singers (Peckham, 
Crossen, Gebhardt, & Shrewsbury, 2010). The resulting metrics are the percentage of 
MIDI note values in the melody, MIDIi, that are in each of the following registers: So-
prano (C4-C6), Mezzo-soprano (A3-A5), Contralto (F3-E5), Tenor (B2-A4), Baritone 
(G2-F4) and Bass (E2-E4). For instance, for soprano, it comes (4.1)115: 

                                                        
115 Using the Iverson bracket notation, i.e., the bracket value is 1 if the condition inside holds true.  
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Register Distribution per Second. In addition to the previous class of features, these 
are computed as the ratio of the sum of the duration of notes with a specific pitch range 
(e.g., soprano) to the total duration of all notes. The same 6 pitch range classes are used. 

 

Ratios of Pitch Transitions. Music is usually composed of sequences of notes of differ-
ent pitches. Each note is followed by either a higher, lower or equal pitch note. These 
changes are related with the concept of melody contour and movement. They are also 
important to understand if a melody is conjunct (smooth) or disjunct. To explore this, 
the extracted MIDI note values are used to build a sequence of transitions to higher, 
lower and equal notes.  

The obtained sequence marking transitions to higher, equal or lower notes is sum-
marized in several metrics, namely: Transitions to Higher Pitch Notes Ratio (THPNR), 
Transitions to Lower Pitch Notes Ratio (TLPNR) and Transitions to Equal Pitch Notes 
Ratio (TEPNR). There, the ratio of the number of specific transitions to the total number 
of transitions is computed. Illustrating for THPNR, follows (4.2): 
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Note Smoothness (NS) statistics. Also related to the characteristics of the melody con-
tour, the note smoothness feature is an indicator of how close consecutive notes are, 
i.e., how smooth is the melody contour. To this end, the difference between consecutive 
notes (MIDI values) is computed. The usual 6 statistics are calculated, i.e., NSmean 
(mean value of NS, eq. (4.3)), NSstd (standard deviation), NSskew (skewness), NSkurt (kur-
tosis), NSmax (maximum), NSmin (minimum). 
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4.2.3. Dynamics Features 

Exploring the pitch salience of each note and how it compares with neighboring notes 
in the score gives us information about their individual intensity, as well as intensity 
variation. To capture this, notes are classified as high (strong), medium and low (smooth) 
intensity based on the mean and standard deviation of all notes, as in (4.4): 
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There, SALi denotes the median intensity of notei, for all its frames and INTi stands 
for the qualitative intensity of the same note. Based on the calculations in (4.4), the 
following features are extracted. 
 

Note Intensity (NI) statistics. Based on the median pitch salience of each note, we com-
pute 6 statistics: NImean, i.e., the average pitch salience of all notes, NIstd (standard 
deviation of NI), NIskew (skewness), NIkurt (kurtosis), NImax (maximum) and NImin 
(minimum). 
 

Note Intensity Distribution. This class of features indicates how the notes of the pre-
dominant melody are distributed across the three intensity ranges defined above. Here, 
we define three ratios: Low Intensity Notes Ratio (LINR), Medium Intensity Notes Ratio 
(MINR) and High Intensity Notes Ratio (HINR). These features indicate the ratio of 
number of notes with a specific intensity (e.g., low intensity notes, as defined above) to 
the total number of notes. 
 

Note Intensity Distribution per Second. Low Intensity Notes Duration Ratio (LINDR), 
Medium Intensity Notes Duration Ratio (MINDR) and High Intensity Notes Duration 
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Ratio (HINDR) statistics. These features are computed as the ratio of the sum of the 
duration of notes with a specific intensity to the total duration of all notes. Furthermore, 
the usual 6 statistics are calculated, i.e., LINDRmean (mean value of LINDR), etc. 
 

Ratios of Note Intensity Transitions. Transitions to Higher Intensity Notes Ratio 
(THINR), Transitions to Lower Intensity Notes Ratio (TLINR) and Transitions to Equal 
Intensity Notes Ratio (TEINR). In addition to the previous metrics, these features cap-
ture information about changes in note dynamics by measuring the intensity differences 
between consecutive notes (e.g., the ratio of transitions from low to high intensity notes) 
as illustrated in Figure 4.18. 
 

Figure 4.18: Assessing changes of intensity in consecutive notes. 
 

Crescendo and Decrescendo (CD) statistics. Some instruments (e.g., flute) allow inten-
sity variations in a single note. We identify notes as having crescendo or decrescendo 
(also known as diminuendo) based on the intensity difference between the first half and 
the second half of the note. A threshold of 20% variation between the median of the 
two parts was selected after experimental tests. From these, we compute the number of 
crescendo and decrescendo notes (per note and per sec). In addition, we compute se-
quences of notes with increasing or decreasing intensity, computing the number of se-
quences for both cases (per note and per sec) and length crescendo sequences in notes 
and in seconds, using the 6 previously mentioned statistics. 
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4.2.4. Rhythmic Features 

Music is composed of sequences of notes and rests changing over time, each with a 
specific duration. Hence, statistics on note durations are obvious metrics to compute. 
Moreover, to capture the dynamics of these durations and their changes, three possible 
categories are considered: short, medium and long notes. As before, such ranges are 
defined according to the mean and standard deviation of the duration of all notes, as in 
(4.5). There, NDi denotes the qualitative duration of notei.  
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The following features are then defined. 
 

Note Duration (ND) statistics. Based on the duration of each note, 𝑛𝑑𝑖 (see Section 
4.2.1), we compute 6 statistics: NDmean, i.e., the mean of the duration of each note, 
NDstd (standard deviation of ND), NDskew (skewness), NDkurt (kurtosis), NDmax (max-
imum) and NDmin (minimum). 
 

Note Duration Distribution. Short Notes Ratio (SNR), Medium Length Notes Ratio 
(MLNR), Long Notes Ratio (LNR). These features indicate the ratio of the number of 
notes in each category (e.g., short duration notes) to the total number of notes. 

 

Note Duration Distribution per Second. Short Notes Duration Ratio (SNDR), Me-
dium Length Notes Duration Ratio (MLNDR) and Long Notes Duration Ratio (LNDR) 
statistics. These features are calculated as the ratio of the sum of duration of the notes 
in each category to the sum of the duration of all notes. Next, the 6 statistics are calcu-
lated for notes in each of the existing categories, i.e., for short notes duration: 
SNDRmean (mean value of SNDR), etc. 
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Ratios of Note Duration Transitions. Ratios of Note Duration Transitions (RNDT). 
Transitions to Longer Notes Ratio (TLNR), Transitions to Shorter Notes Ratio (TSNR) 
and Transitions to Equal Length Notes Ratio (TELNR). Besides measuring the duration 
of notes, a second extractor captures how these durations change at each note transition. 
Here, we check if the current note increased or decreased in length when compared to 
the previous. For example, regarding the TLNR metric, a note is considered longer than 
the previous if there is a difference of more than 10% in length (with a minimum of 20 
msec), as in (4.6). Similar calculations apply to the TSNR and TELNR features.  
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(4.6) 

4.2.5. Musical Texture Features 

To the best of our knowledge, musical texture is the musical dimension with less directly 
related audio features available (more precisely, zero feature, as discussed in Section 3.1). 
However, some studies have demonstrated that it can influence emotion in music either 
directly or by interacting with other features such as tempo and mode (Webster & Weir, 
2005). We propose features related with the music layers of a song. Here, we use the 
sequence of multiple fundamental frequency estimates to measure the number of sim-
ultaneous layers in each frame of the entire audio signal, as described in Section 4.2.1. 
 

Musical Layers (ML) statistics. As abovementioned, a number of multiple F0s are esti-
mated from each frame of the song clip. Here, we define the number of layers in a frame 
as the number of obtained multiple F0s in that frame. Then, we compute the 6 usual 
statistics regarding the distribution of musical layers across frames, i.e., MLmean, MLstd, 
etc. 

 

Musical Layers Distribution (MLD). Here, the number of f0 estimates in a given frame 
is divided into four classes: i) no layers; ii) a single layer; iii) two simultaneous layers; iv) 
and three or more layers. The percentage of frames in each of these four classes is com-
puted, measuring, as an example, the percentage of song frames identified as having a 
single layer (MLD1). Similarly, we compute MLD0, MLD2 and MLD3.  

 

Ratio of Musical Layers Transitions (RMLT). These features capture information about 
the changes from a specific musical layer sequence to another (e.g., ML1 to ML2). To 
this end, we use the number of different frequencies (f0s) in each frame, identifying 
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consecutive frames with distinct values as transitions and normalizing the total value by 
the length of the audio segment (in secs). Moreover, we also compute the length in sec-
onds of the longest segment for each musical layer. 

4.2.6. Expressivity Features 

Few of the studied standard audio features are primarily related with expressive tech-
niques in music. However, common characteristics such as vibrato, tremolo and articu-
lation methods are commonly used in music. Their relation to emotions has been stud-
ied in some studies, e.g., (Dromey et al., 2015; Eerola, Friberg, & Bresin, 2013; Gomez 
& Danuser, 2007). 

Articulation Features 

Articulation is a technique affecting the transition or continuity between notes or 
sounds. To compute articulation features, we start by detecting legato (i.e., connected 
notes played “smoothly”) and staccato (i.e., short and detached notes), as described in 
Algorithm 1. Using this, we classify all the transitions between notes in the song clip 
and, from them, extract several metrics such as ratio of staccato, legato and other tran-
sitions, longest sequence of each articulation type, and others. 

Algorithm 4.3. Articulation detection. 

1. For each pair of consecutive notes, 𝑛𝑜𝑡𝑒𝑖 and 𝑛𝑜𝑡𝑒𝑖+1: 

1.1. Compute the inter-onset interval (IOI, in sec), i.e., 

the interval between the onsets of the two notes, as 

follows: 𝐼𝑂𝐼 = 𝑠𝑡𝑖+1 − 𝑠𝑡𝑖. 

1.2. Compute the inter-note silence (INS, in sec), i.e., the 

duration of the silence segment between the two notes, 

as follows: 𝐼𝑁𝑆 =  𝑠𝑡𝑖+1 − 𝑒𝑡𝑖. 

1.3. Calculate the ratio of INS to IOI (INStoIOI), which in-

dicates how long the interval between notes is compared 

to the duration of 𝑛𝑜𝑡𝑒𝑖. 

1.4. Define the articulation between 𝑛𝑜𝑡𝑒𝑖 and 𝑛𝑜𝑡𝑒𝑖+1, 𝑎𝑟𝑡𝑖, 

as: 

 1.4.1. Legato, if the distance between notes is less 

than 10 msec, i.e., 𝐼𝑁𝑆 ≤ 0.01 ⇒ 𝑎𝑟𝑡𝑖 = 1. 
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 1.4.2. Staccato, if the duration of 𝑛𝑜𝑡𝑒𝑖 is short (i.e., 

less than lengthmax) and the silence between the two 

notes is relatively similar to this duration, i.e., 

𝑛𝑑𝑖 < 𝑙𝑒𝑛𝑔𝑡ℎ𝑚𝑎𝑥  ∧ 𝑡𝑙𝑜𝑤 ≤ 𝐼𝑁𝑆𝑡𝑜𝐼𝑂𝐼 ≤ 𝑡ℎ𝑖𝑔ℎ ⇒ 𝑎𝑟𝑡𝑖 = 2. 

 1.4.3. Other Transitions, if none of the abovementioned 

two conditions was met (𝑎𝑟𝑡𝑖 = 0). 

 

Since no hard rules or values were found in scientific literature regarding articula-
tion, the thresholds employed in Algorithm 4.3 were set experimentally (i.e., lengthmax = 
500 msec, tlow = 0.25 and thigh = 0.75). The tests were run with a small set of different 
sound samples containing distinct times of articulation, as depicted in Figure 4.19, and 
thus need to be optimized with a more robust dataset. 

 

Figure 4.19: Testing articulation extraction with different note durations and intervals. 

 

Based on the abovementioned algorithm, we define the following features: 

 

Staccato Ratio (SR), Legato Ratio (LR) and Other Transitions Ratio (OTR). These 
features indicate the ratio of each articulation type (e.g., staccato) to the total number of 
transitions between notes. 

 

Staccato Notes Duration Ratio (STNDR), Legato Notes Duration Ratio (LENDR) and 
Other Transition Notes Duration Ratio (OTNDR) statistics. Based on the notes dura-
tion for each articulation type, several statistics are extracted. The first is the ratio of the 
duration of notes with a specific articulation to the sum of the duration of all notes. Eq. 
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(4.7) illustrates this procedure for staccato (STNDR). Next, the usual 6 statistics are cal-
culated, i.e., STNDRmean (mean value of STNDR, STNDRstd (standard deviation), 
STNDRskew (skewness), STNDRkurt (kurtosis), STNDRmax (maximum), STNDRmin 
(minimum). 
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Glissando Features 

Glissando is another kind of expressive articulation, which consists in the glide from 
one note to another. It is used as an ornamentation, to add interest to a piece and thus 
may be related to specific emotions in music. 

We extract several glissando features such as glissando presence, extent, length, di-
rection or slope. In cases where two distinct consecutive notes are connected with a 
glissando, the segmentation method applied (mentioned in Section 4.2.1) keeps this 
transition part at the beginning of the second note (Paiva et al., 2006). The climb or 
descent, of at least 100 cents, might contain spikes and slight oscillations in frequency 
estimates, followed by a stable sequence. Given this, we apply the following algorithm: 

Algorithm 4.4. Glissando detection. 

1. For each note i: 

1.1. Get the list of unique MIDI note numbers, 𝑢𝑧,𝑖 , 𝑧 = 1, 2, ⋯ , 𝑈𝑖, 

from the corresponding sequence of MIDI note numbers 

(for each f0), 𝑚𝑖𝑑𝑖𝑗,𝑖, where 𝑧 denotes a distinct MIDI 

note number (from a total of 𝑈𝑖 unique MIDI note num-

bers). 

1.2. If there are at least two unique MIDI note numbers. 

 1.2.1. Find the start of the steady-state region, i.e., 

the index, 𝑘, of the first note in the MIDI note num-

bers sequence, 𝑚𝑖𝑑𝑖𝑗,𝑖, with the same value as the overall 

MIDI note, 𝑀𝐼𝐷𝐼𝑖, i.e.,  𝑘 = min
1≤𝑗≤𝐿𝑖, 𝑚𝑖𝑑𝑖𝑗,𝑖=𝑀𝐼𝐷𝐼𝑖

𝑗. 

 1.2.2. Identify the end of the glissando segment as the 

first index, 𝑒, before the steady-state region, i.e., 

𝑒 = 𝑘 − 1. 

1.3. Define 
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 1.3.1. 𝑔𝑑𝑖 = glissando duration (sec) in note i, i.e., 

𝑔𝑑𝑖  =  𝑒 ∙ ℎ𝑜𝑝. 

 1.3.2. 𝑔𝑝𝑖 = glissando presence in note i, i.e., 𝑔𝑝𝑖 =

1 if  𝑔𝑑𝑖 > 0; 0, otherwise. 

 1.3.3.  𝑔𝑒𝑖 = glissando extent in note i, i.e., 𝑔𝑒𝑖 =

|𝑓01,𝑖 − 𝑓0𝑒,𝑖| in cents. 

1.3.4. 𝑔𝑐𝑖 = glissando coverage of note i, i.e., 𝑔𝑐𝑖 =

 𝑔𝑑𝑖/𝑑𝑢𝑟𝑖. 

1.3.5. 𝑔𝑑𝑖𝑟𝑖 = glissando direction of note i, i.e., 𝑔𝑑𝑖𝑟𝑖 =

 𝑠𝑖𝑔𝑛(𝑓0𝑒,𝑖−𝑓01,𝑖). 

1.3.6. 𝑔𝑠𝑖 = glissando slope of note i, i.e., 𝑔𝑠𝑖 =

 𝑔𝑑𝑖𝑟𝑖 ∙ 𝑔𝑒𝑖/𝑔𝑑𝑖. 

 

Then, we define the following features: 

 

Glissando Presence (GP). A song clip contains glissando if any of its notes has glissando, 
as in (4.8). 

1, {1,2,..., } : 1

0,
iif i N gp

GP
otherwise

  



 (4.8) 

 

Glissando Extent (GE) statistics. Based on the glissando extent of each note, gei (see 
Algorithm 4.4), we compute the usual 6 statistics for notes containing glissando: GE-
mean, i.e., the mean of the glissando extent of each note with glissando, GEstd (standard 
deviation of GE), GEskew (skewness), GEkurt (kurtosis), GEmax (maximum) and 
GEmin (minimum). 

 

Glissando Duration (GD) and Glissando Slope (GS) statistics. As with GE, we also 
compute the same 6 statistics for glissando duration, based on gdi and slope, based on 
gsi (see Algorithm 4.4).  

 

Glissando Coverage (GC). For glissando coverage, we compute the global coverage, 
based on gci, using (4.9). 
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Glissando Direction (GDIR). This feature indicates the global direction of the glissandi 
in a song, (4.10), as the ratio of upward glissando notes to total glissando notes. There, 
Ngp indicates the total number of notes with glissando: 

1

N

ii

gp

gp
GDIR

N



 , when 1igdir    (4.10) 

 

Glissando to Non-Glissando Ratio (GNGR). This feature is defined as the ratio of the 
notes containing glissando to the total number of notes, as in (4.11): 

1

N

ii
gp

GNGR
N



  (4.11) 

Vibrato and Tremolo Features 

Vibrato is an expressive technique used in vocal and instrumental music that consists in 
a regular oscillation of pitch. Its main characteristics are the amount of pitch variation 
(extent) and the velocity (rate) of this pitch variation. It varies according to different 
music styles and emotional expression (Dromey et al., 2015).  

Hence, we extract several vibrato features, such as vibrato presence, rate, coverage 
and extent. To this end, we apply a vibrato detection algorithm adapted from (Salamon, 
Rocha, & Gómez, 2012), as follows: 

Algorithm 4.5. Vibrato detection. 

1. For each note i: 

1.1. Compute the STFT,|F0𝑤,𝑖|, 𝑤 = 1, 2, ⋯ , 𝑊𝑖 ,  of the sequence 𝑓0𝑖, 

where 𝑤 denotes an analysis window (from a total of 𝑊𝑖 

windows). Here, a 371.2 msec (128 samples) Blackman-

Harris window was employed, with 185.6 msec (64 sam-

ples) hop-size. 
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1.2. Look for a prominent peak, 𝑝𝑝𝑤,𝑖, in each analysis win-

dow, in the expected range for vibrato. In this work, 

we employ the typical range for vibrato in the human 

voice, i.e., [5, 8] Hz (Salamon et al., 2012)116. If a 

peak is detected, the corresponding window contains vi-

brato. 

1.3. Define: 

 1.3.1. 𝑣𝑝𝑖 = vibrato presence in note i, i.e., 𝑣𝑝𝑖 =

1 if ∃ 𝑝𝑝𝑤,𝑖 ;  𝑣𝑝𝑖 = 0, otherwise. 

1.3.2. 𝑊𝑉𝑖 = number of windows containing vibrato in 

note i. 

1.3.3. 𝑣𝑐𝑖 = vibrato coverage of note i, i.e., 𝑣𝑐𝑖 =

 𝑊𝑉𝑖 𝑊𝑖⁄  (ratio of windows with vibrato to the total num-

ber of windows). 

1.3.4. 𝑣𝑑𝑖 = vibrato duration of note i (sec), i.e., 

𝑣𝑑𝑖 =  𝑣𝑐𝑖 ∙ 𝑑𝑖. 

1.3.5. freq(𝑝𝑝𝑤,𝑖) = frequency of the prominent peak 𝑝𝑝𝑤,𝑖 

(i.e., vibrato frequency, in Hz). 

1.3.6. 𝑣𝑟𝑖 = vibrato rate of note i (in Hz), i.e., 𝑣𝑟𝑖 = 

∑ freq(𝑝𝑝𝑤,𝑖)
𝑊𝑉𝑖
𝑤=1 𝑊𝑉𝑖⁄  (average vibrato frequency). 

1.3.7. |𝑝𝑝𝑤,𝑖| = magnitude of the prominent peak 𝑝𝑝𝑤,𝑖 (in 

cents). 

1.3.8. 𝑣𝑒𝑖 = vibrato extent of note i, i.e., 𝑣𝑒𝑖 = 

∑ |𝑝𝑝𝑤,𝑖|
𝑊𝑉𝑖
𝑤=1 𝑊𝑉𝑖⁄  (average amplitude of vibrato). 

 

Then, we define the following features: 

 

Vibrato Presence (VP). A song clip contains vibrato if any of its notes have vibrato, 
similarly to (4.8). 

 

Vibrato Rate (VR) statistics. Based on the vibrato rate of each note, vri (see Algorithm 
4.5), we compute 6 statistics: i.e., the weighted mean of the vibrato rate of each note, 
according to the respective note duration, ndi, and vibrato coverage, vci, as in (4.12), 

                                                        
116 The vibrato voice range is used since few works were found on vibrato ranges for sspecific instru-

ments and those reported similar ranges (e.g., violin and erhu (L. Yang, Chew, & Rajab, 2013)) 
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VRstd (standard deviation of VR), VRskew (skewness), VRkurt (kurtosis), VRmax (maxi-
mum) and VRmin (minimum). 
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  (4.12) 

 

Vibrato Extent (VE) and Vibrato Duration (VD) statistics. As with VR, we also com-
pute the same 6 statistics for vibrato extent, based on vei and vibrato duration, based on 
vdi (see Algorithm 4.5).  

 

Vibrato Coverage (VC). Here, we compute the global coverage, based on vci, in a similar 
way to (4.9). 

 

High-Frequency Vibrato Coverage (HFVC). This feature measures vibrato coverage re-
stricted to notes over note C4 (261.6 Hz). This is the lower limit of the soprano’s vocal 
range (Peckham et al., 2010). 

 

Vibrato to Non-Vibrato Ratio (VNVR). This feature is defined as the ratio of the notes 
containing vibrato to the total number of notes, similarly to (4.11). 

 

Vibrato Notes Base Frequency (VNBF) statistics. As with the VR features, we compute 
the same 6 statistics for the “base frequency” (in cents) of all notes containing vibrato, 
that it the frequency of the notes themselves to understand if vibrato is more frequent 
in specific notes. 

 

 As for tremolo, this is a trembling effect, somewhat similar to vibrato, but regarding 
change of amplitude. Hence, a similar approach is used to calculate tremolo features. 
Here, the sequence of pitch saliences of each note is used instead of the f0 sequence, 
since tremolo represents a variation in intensity or amplitude of the note. Given the lack 
of scientific supported data regarding tremolo, we used the same range employed in 
vibrato (i.e., 5-8Hz). 
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4.2.7. Other Features 

Two existent approaches, previously used in other contexts were also tested: fractal di-
mension and a voice analysis toolkit. 
 

Fractal dimension (FD) features. FD provides a metric of complexity by comparing (cal-
culating the ratio) how a given pattern, normally a fractal, changes in detail with the 
change of scale. In this work we use Katz’s FD implementation, which although slightly 
slower, is derived directly from the waveform (Esteller, Vachtsevanos, Echauz, & Litt, 
2001). The FD of the signals was computed using a sliding window approach to promote 
stationarity, using windows of 50 ms with an overlap of 50%. The resulting FD signal 
was integrated using the 6 previously described statistical metrics. 
 

Voice Analysis Toolbox (VAT) features. Another approach, previously used in other 
contexts was also tested: a voice analysis toolkit. We used the Voice Analysis Toolkit117, 
a “set of MATLAB code for carrying out glottal source and voice quality analysis” to 
extract features directly from the audio signal. The selected features are related with 
voiced and unvoiced sections and the detection of creaky voice – “a phonation type 
involving a low frequency and often highly irregular vocal fold vibration, [which] has the 
potential […] to indicate emotion” (Cullen, Kane, Drugman, & Harte, 2013). 

Some researchers have studied emotion in speaking and singing voice (Scherer et 
al., 2015) and even studied the related acoustic features (Eyben et al., 2015). In fact, 
“using singing voices alone may be effective for separating the “calm” from the “sad” 
emotion, but this effectiveness is lost when the voices are mixed with accompanying 
music” and “source separation can effectively improve the performance” (X. Yang et al., 
2017). 

Hence, besides extracting features from the original audio signal, we also extracted 
all the previous audio features from the signal containing only the separated voice. To 
this end, we applied the singing voice separation approach proposed by Fan et al. (2016) 
(although separating the singing voice from accompaniment in an audio signal is still an 
open problem).  

4.3. Feature Extraction and Reduction 

To evaluate the relevance or our novel proposed features we used our dataset to extract 
standard and novel features. Given their high dimensionality, feature selection and re-
duction strategies were employed. 

                                                        
117 https://github.com/jckane/Voice_Analysis_Toolkit 
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This section describes the methods and tools employed in this process.  

4.3.1. Audio Feature Extraction 

We use the newly created dataset do evaluate the performance of standard audio fea-
tures, as well as to measure the influence of the novel features proposed in this work. As 
is customary in MER research, a preliminary step was used to convert the audio clips to 
a better suited format for the task – WAV PCM format, 22050 Hz sampling rate, 16 bits 
quantization and monaural. This is mainly done to reduce the load of the computer 
intensive extraction algorithms. 

Based on the knowledge built on Section 3.1, we selected three audio frameworks – 
MIR Toolbox, Marsyas and PsySound3 to extract a total of 1603 audio features, distrib-
uted as shown in Figure 4.20. This high amount is in part caused by the summarization 
of features outputting time series data into six statistical measures – mean, standard 
deviation, skewness, kurtosis, maximum and minimum. Several factors contributed to 
the selection of the three abovementioned frameworks. In particular, because they are 
considered very relevant, being selected in many of the previous MER studies, as de-
scribed in Section 3.2.5. Moreover, the three cover most of the standard audio features, 
as demonstrated in Section 3.1. Finally, our experience with these in our preliminary 
tests also contributed to this selection. In future experiments the Essentia audio frame-
work should also be considered since it has been gaining importance in the field and 
contains a vast amount of standard features. 

 

Figure 4.20: Standard audio features distribution per audio framework. 

 

Next, the same audio clips were used to extract our novel proposed features, 
amounting to a total of 558 musical descriptors. As stated, some researchers have studied 



200 Chapter 4.   A Novel System for Music Emotion Recognition: New Dataset and Audio Features 

 

emotion in speaking and singing voice and verified that using source separation to ana-
lyze the isolated voice signal may improve the performance. Therefore, in addition to 
the features extracted from the original audio signal, we also extracted a similar set of 
features from the signal containing only the separated voice by applying source separa-
tion algorithms, which although imperfect, may still bring relevant results to MER.  

4.3.2. Reducing the Feature Dimensionality 

A total of 2719 musical descriptors were obtained as the result of the feature extraction 
process. Such high feature dimensionality leads to very complex and resource intensive 
machine learning models, compromising its usage in reasonable time. Moreover, many 
features might be capturing similar information, especially within the three standard 
audio frameworks since they all offer some common features (e.g., many tone color fea-
tures such as MFCCs or spectral moments are implemented in all). While such cases 
could have been solved from the start, by extracting only one version of the features, we 
decided not to follow this idea and extract repeated features (e.g., MFCCs from Marsyas 
and MIR Toolbox) as this allowed us to compare both implementations. 

To reduce the high dimensionality and possible duplication of information across 
the feature set, we derived a two-step method based on standard deviation of the ob-
served values, detection of outliers and correlation of pairs of features. The first step 
consists in eliminating features where the standard deviation of the observed data is 
zero, possibly caused by a bugged implementation or irrelevant extractor. The second 
step uses the correlation of pairs of features to eliminate equal or very similar features 
capturing the same information. This process, described in detail in Algorithm 4.6, was 
first carried on the standard feature set comprising 1603 features. 

Algorithm 4.6. Feature dimensionality reduction. 

1. Remove features where no variation was found in all the ex-

tracted values: 

1.1. For each feature, 𝐹𝑖, exclude the 𝑛 lowest and highest 

values. Here, 𝑛 =  6 was set experimentally. 

1.2. Compute the standard deviation of 𝐹𝑖, 𝑠𝑡𝑑(𝐹𝑖). 

1.3. If 𝑠𝑡𝑑(𝐹𝑖)  ==  0, remove feature 𝑖. 

2. Remove highly correlated pairs of features: 

2.1. Order features based on their importance using ReliefF 

feature selection algorithm. 
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2.2. For each feature, 𝐹𝑖, starting from the last feature 

(the one with the lowest weight), until 𝑖 =  2: 

2.2.1. Compute outliers of 𝐹𝑖, 𝑂𝑢𝑡𝐹𝑖, by using the box-

and-whisker method and selecting as outliers the 

values lieing beyond the extremes of the whisk-

ers. These extremes were defined as 𝑟 times the 

interquartile range from the box, where 𝑟 was set 

to 15 experimentally. 

2.2.2. For each feature 𝐹𝑗, starting from 𝑗 = 𝑖 − 1 until 

𝑗 =  1: 

 2.2.2.1. Compute the outliers of 𝐹𝑗, 𝑂𝑢𝑡𝐹𝑗, simi-

larly to 2.2.1. 

 2.2.2.2. Compute the correlation between 𝐹𝑖 and 

𝐹𝑗, 𝑐𝑜𝑟𝑟(𝐹𝑖 , 𝐹𝑗), excluding values which are outliers 

to 𝐹𝑖 or 𝐹𝑗, e.g., 𝑜𝑢𝑡𝐹𝑖 ∪ 𝑜𝑢𝑡𝐹𝑗 

 2.2.2.3. If 𝑐𝑜𝑟𝑟(𝐹𝑖 , 𝐹𝑗) ≥ 𝑚𝑎𝑥𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, remove fea-

ture 𝐹𝑖. Here, 𝑚𝑎𝑥𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 was set experimen-

tally to 0.9. 

 

This strategy led to the reduction of the standard features set to 898 descriptors, 
removing several features ranging from features with no variations in the output, the 
same features extracted by different frameworks, different extractors capturing the same 
information, as illustrated in Figure 4.21. For each duplicated pair of features, the one 
with the highest weight according to the ReliefF algorithm is kept. This guarantees that 
the best features for our MER problem are not ignored. 

Next, a similar strategy was used to remove similar features within the novel pro-
posed features and also between the novel features and the standard features. This was 
performed by adapting Algorithm 4.6 to include the standard features before the or-
dered list of novel features. This strategy ensures that if a pair of features contains a 
novel and standard feature, the novel one is always removed. This decision guarantees 
that only novel features which are different than what already exists are used.  

Figure 4.22 presents the number of standard and novel audio features extracted, 
organized by musical dimension. As previously discussed, most are timbral features, for 
the reasons pointed out. The novel features derived from the Voice Audio Toolbox and 
fractal dimension are considered Tone Color. The number of novel features used during 
emotion classification tests is twice what is present in the image, as the novel features 
are extracted two times – from the original audio and from the voice-only separated 
signal.  
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Figure 4.21: Correlation between pairs of features. Left: Zero Crossing Rate extracted 
with Marsyas (feature code F0495) and MIR Toolbox (feature code F0096). Right: Sharp-
ness using two different loudness algorithms implemented in PsySound3 – Dynamic 
loudness (C & F) by Chalupper and Fastl (F1446), and Loudness (MG & B PsySound2) 
by Moore, Glasberg and Baer (F1447).  

 

Figure 4.22: Feature distribution across musical dimensions. 
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4.4. Feature Selection and Emotion Classification 

After the extraction of standard and novel features, followed by the removal of the un-
needed (e.g., features that capture very similar information), the next steps consisted in 
feature selection and emotion classification. Feature selection algorithms were used to 
remove audio features providing information that is irrelevant to our MER problem, as 
well as to understand how relevant each feature and associated musical dimension are 
according to our dataset. Following, classification algorithms were used, exploring pat-
terns in our data in order to classify music into different categories (e.g., quadrants, 
arousal or valence). 

This section describes the strategies employed in these two steps. 

4.4.1. Feature Selection 

The number of audio features was greatly reduced by the feature reduction process de-
scribed in the previous section. However, this number is still very high, making the clas-
sification experiments complex and resource-intensive. Moreover, the features removed 
pertained mostly to duplicated or invalid information, caused by redundant or bugged 
extractors. Although the current set of features contains no invalid or duplicated infor-
mation, much of its content may be irrelevant to the problem we are addressing – MER. 

The family of ReliefF feature selection algorithms (Robnik-Šikonja & Kononenko, 
2003) was employed to select the better suited features for each classification problem. 
Several pertinent facts weighted in the choice of ReliefF. First, given the high number 
of features, an exhaustive feature selection algorithm was discarded. From the statistical 
selection methods available and previously discussed in Section 3.2.3, some transformed 
the feature space (e.g., PCA) and were also discarded, since we wanted to understand 
possible relations between (novel) features and emotional content. From the remaining, 
ReliefF has been previously used in MER studies and regarded as valuable (e.g., 
(Malheiro et al., 2018; Y.-H. Yang, Lin, Su, et al., 2008)). A description of Relief and its 
variants is available in Section 3.2.3. 

 The ReliefF algorithm uses the distance between K instances of the same and dif-
ferent classes to compute the weight of features. For robustness, two algorithm variants 
were used for averaging the weights: ReliefFequalK, where K nearest instances have 
equal weight, and ReliefFexpRank, where K nearest instances have weight exponentially 
decreasing with increasing rank. 

Several feature rankings (ReliefF) were computed, measuring the influence of each 
feature in the entire set to different problems. Namely, the weight of each feature for: 

 Quadrants classification (to differentiate between Q1, Q2, Q3 or Q4) 
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 Arousal classification (positive versus negative arousal) 
 Valence classification (positive valence or negative valence) 
 Identification of a specific quadrant as a binary problem (e.g., weight of 

each feature to classify a song as Q1 or not Q1) 

 

The obtained feature ranking and weights were then used in several classification 
experiments, as detailed in the following sections. 

4.4.2. Emotion Classification 

As for classification, although new classification techniques have been gaining attention 
recently (e.g., deep learning (Delbouys et al., 2018; Pons et al., 2018)), in our experi-
ments we used Support Vector Machines (SVM) (Chang & Lin, 2011). The focus of 
these experiments is not on classification algorithms but rather on the impact of novel 
features, and based on our experiments and in previous MER studies, this technique is 
robust and “is usually more efficient than the other classifiers” (X. Yang et al., 2017). 

In addition to the default SVM model to predict quadrants, we evaluated two other 
approaches to better understand how the tested audio features relate to emotions in 
music.  

First, a hierarchical approach was followed, dividing the problem into two levels. 
The first model is used to predict between hemispheres (high or low arousal) or meridi-
ans (positive or negative valence). In a second level, two models are trained to predict 
between each of the two classes, and the one selected depends on the result of the first 
level. As an example, the first level model trained to classify either high or low arousal, 
predicts a song to be low arousal. Next, a second model trained specifically to distinguish 
positive or negative valence in low arousal songs is used. The final result is then trans-
formed into one of the four quadrants. 

A second approach, binary quadrants, uses the training set to create four binary 
SVM models. Each model is trained to identify whether a song belongs to a specific 
quadrant or not (e.g., Q1 or not Q1), outputting a probability estimate for the test cases. 
The estimates of the four models are compared and the winning quadrant is the one 
with the highest probability estimate.  

All experiments were validated with repeated stratified 10-fold cross validation 
(Duda, Hart, & Stork, 2000) (using 20 repetitions) since, according to the literature, 
“there are more performance estimates, and the training set size is closer to the full data 
size, thus increasing the possibility that any conclusion made about the learning algo-
rithm(s) under test will generalize to the case where all the data is used to train the 
learning model” (Refaeilzadeh et al., 2009, p. 536). The average obtained performance 
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is reported. The result of feature selection is the complete list of features ordered by 
weight (relevance to a given problem). 

4.5. Classification Results and Discussion 

The classification tests were divided into four distinct problems to better understand the 
importance of features, all based in the Russell’s AV taxonomy: 

1. Classification by quadrant (multi-class); 
2. Classification by arousal hemispheres (binary); 
3. Classification by valence meridians (binary); 
4. Classification by specific quadrant (one-vs-all). 

 

The following sections detail the results of each approach. 

4.5.1. Classification by Russell’s Quadrants 

A summary of the classification results of the different classification approaches is pre-
sented in Table 4.4. The model trained with standard features attained 67.5% F1-Score 
(macro weighted) using SVM and 70 standard features. The same solution achieved a 
maximum of 71.7% with a very high number of features (800). Adding the novel features 
(i.e., standard + novel features) increased the maximum result of the classifier to 76.4% 
(0.04 standard deviation), while using a considerably lower number of features (100 in-
stead of 800). This improvement is statistically significant (at p < 0.01, paired T-test).  

 

Classifier Feature set # Features F1-Score 

SVM standard 70 67.5% ± 0.05 

SVM standard 100 67.4% ± 0.05 

SVM standard 800 71.7% ± 0.05 

SVM standard + novel 70 74.7% ± 0.05 

SVM standard + novel 100 76.4% ± 0.04 

SVM standard + novel 800 74.8% ± 0.04 

SVM (HA av) standard + novel 70 75.3% ± 0.04 

SVM (HA va) standard + novel 400 74.1% ± 0.04 

SVM (BA) standard + novel 150 75.6% ± 0.04 
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Table 4.4: Results of the classification by quadrants. 

 

The remaining SVM classification strategies achieved close results. The hierarchical 
approach, using arousal in the first level, followed by valence (HA av) performed slightly 
better overall than the opposite (HA va), with the major difference being the number of 
features needed to obtain the maximum result. This is somewhat expected since, usually, 
predicting valence is a harder problem than predicting arousal (A. P. Oliveira & 
Cardoso, 2010; Y.-H. Yang, Lin, Su, et al., 2008). Thus, using valence in the second 
level, having two distinct models (one to classify Q1 vs Q2 and another to Q3 vs. Q4) 
might simplify the problem. As for the SVM binary approach (BA) using probability 
estimates, it proved to be slightly worse than the default SVM strategy, which uses “one -
vs-one” for multi-class problems (according to the libSVM implementation). The results 
of all approaches are compared in Figure 4.23. 

 

Figure 4.23: Results of the classification by quadrants.  

 

Besides showing the overall classification results, we also analyze the results obtained 
in each individual quadrant (Table 4.5), which allows us to understand which emotions 
are more difficult to classify and what is the influence of the novel features in this pro-
cess. In all our tests, a significantly higher number of songs from Q1 and Q2 were cor-
rectly classified when compared to Q3 and Q4. This seems to indicate that emotions 
with higher arousal are easier to differentiate with the selected features. Out of the two, 
Q2 obtained the highest F1-Score. This comes as no surprise to us, since several of the 
excerpts from Q2 belong to the heavy-metal and similar subgenres of pop/rock, which 
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are characterized by very distinctive, noise-like, acoustic features.  

 

 standard standard + novel 

Quads Prec. Recall F1-Score Prec. Recall F1-Score 

Q1 62.6% 73.4% 67.6% 74.6% 81.7% 78.0% 

Q2 82.3% 79.6% 80.9% 88.6% 84.7% 86.6% 

Q3 61.3% 57.5% 59.3% 71.9% 69.9% 70.9% 

Q4 62.8% 57.9% 60.2% 69.6% 68.1% 68.8% 

Table 4.5: Results per quadrant using 100 features. 

 

The lower results in Q3 and Q4 (on average 12% below the results from Q1 and 
Q3) can be a consequence of several factors. First, a higher number of songs in these 
quadrants seem to be more ambiguous, containing unclear or contrasting emotions. 
During the manual validation process, we observed low agreement (45.3%) between the 
subject’s ratings and the original AllMusic annotations. Moreover, subjects reported hav-
ing greater difficulty distinguishing valence for songs with low arousal. In addition, some 
songs from these quadrants appear to share musical characteristics, which are related to 
contrasting emotional elements (e.g., a happy accompaniment or melody and a sad voice 
or lyrical message, despite the recommendations to ignore the lyrical part in the annota-
tion validation process).  

When using a similar number of features (100), the experiment with the addition 
of novel features shows an improvement of 9% in F1-Score when compared to the one 
using only standard features (baseline). This increment is noticeable in all four quad-
rants, ranging from 5.7% in quadrant 2, where the baseline classifier performance was 
already high, to a maximum increment of 11.6% in quadrant 3, which was the least 
performing using only standard features. Overall, the novel features improved the clas-
sification in general, with a greater influence in songs from Q3.  

Regarding the misclassified songs, analyzing the confusion matrix (see Table 4.6, 
averaged for the 20 repetitions of 10-fold cross validation) shows that the classifier is 
slightly biased towards positive valence, predicting more frequently songs from quad-
rants 1 and 4 (total of 466.3, especially Q1 with 246.35) than from 2 and 3 (433.7). 
Moreover, a significant number of songs were wrongly classified between quadrants 3 
and 4, which may be related with the ambiguity described previously. Based on this, 
further MER research needs to tackle valence in low arousal songs, either by using new 
features to capture musical dimensions currently ignored or by combining other sources 
of information such as lyrics. In fact, lyrics seem to have higher predictive value for 
valence, as concluded in (Malheiro et al., 2018). 
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 predicted  
ac

tu
al

 
 Q1 Q2 Q3 Q4 Total 

Q1 183.85 14.40 8.60 18.15 225 

Q2 23.95 190.55 7.00 3.50 225 

Q3 14.20 8.40 157.25 45.15 225 

Q4 24.35 1.65 45.85 153.15 225 

 Total 246.35 215.00 218.70 219.95 900 

Table 4.6: Confusion matrix using the best performing model. 

4.5.2. Classification by Arousal and Valence 

The experimental results of classification by arousal hemispheres and valence meridians 
(positive or negative) are presented in Table 4.7 and Table 4.8. In addition, similar re-
sults split by the opposite axis are also presented, e.g., arousal classification using only 
the positive valence songs is identified as Arousal (V+). 

 

Classifier Feature set # Features F1-Score 

Arousal standard 10 84.6% 

Arousal standard 300 88.9% 

Arousal (V+) standard 10 82.8% 

Arousal (V+) standard 300 87.2% 

Arousal (V-) standard 10 90.6% 

Arousal (V-) standard 200 93.3% 

Arousal standard + novel 10 86.5% 

Arousal standard + novel 100 90.7% 

Arousal (V+) standard + novel 10 84.0% 

Arousal (V+) standard + novel 400 89.2% 

Arousal (V-) standard + novel 10 92.0% 

Arousal (V-) standard + novel 400 93.8% 

Table 4.7: Classification by arousal hemispheres (positive or negative). 
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Classifier Feature set # Features F1-Score 

Valence standard 10 70.1% 

Valence standard 300 79.1% 

Valence (A+) standard 10 81.9% 

Valence (A+) standard 600 87.1% 

Valence (A-) standard 10 67.6% 

Valence (A-) standard 300 73.2% 

Valence standard + novel 10 72.7% 

Valence standard + novel 500 81.2% 

Valence (A+) standard + novel 10 84.9% 

Valence (A+) standard + novel 40 89.0% 

Valence (A-) standard + novel 10 72.2% 

Valence (A-) standard + novel 50 76.8% 

Table 4.8: Classification by valence meridians (positive or negative). 

 

Based on the experiments, it becomes evident that arousal classification (in positive 
or negative) is an easier problem than valence classification, with an F1-Score of 86.5% 
with only 10 features and a maximum of 90.7% with 100 features. Classification of 
valence meridians resulted in 72.7% with 10 features and 81.2% with 500 features. 
Summing up, the best 500 features used in valence meridians classification are still un-
able to obtain a result close to the best 10 features for arousal hemispheres. This indi-
cates us that either: i) it is harder to discern valence (positive or negative) in music audio 
signals than arousal (high or low) and thus a higher number of audio features needs to 
be employed in the former problem; ii) or that the existent audio features (standard and 
ours) are still missing some important musical clues that we, as listeners, naturally asso-
ciate with valence.  

Moreover, our results also show that, in our dataset, differentiating between positive 
and negative arousal is harder for songs with positive valence: 84.0% and 89.2% versus 
92.0% and 93.8% using 10 and 400 features respectively. This may be in part influenced 
by the dataset and difficulties felt by human subjects to place songs with close emotions 
such as glad, pleased, content and satisfied in either Q1 or Q4. On the other hand, 
songs from Q2 and Q3 have drastic acoustic differences, which make them generally 
easier to distinguish.  

Regarding valence, and even though our novel features significantly improve its pre-
diction, we observe a considerable difference in its classification under high versus low 
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arousal song sets. For songs with low arousal, valence classification obtained substan-
tially worse results, especially with fewer features: 72.2% F1-Score, against 84.9% for 
high arousal songs using only 10 features. Moreover, the best results for both cases were 
obtained with 40 to 50 features, which may indicate that fewer of the tested features are 
as relevant to valence, when compared to the arousal problem. This indicates that to 
further improve MER algorithms, future work needs to focus on valence, specifically for 
low arousal songs. This coincides with our previous observation that distinguishing Q3 
from Q4 is often ambiguous, for the abovementioned reasons. 

4.5.3. Binary Classification 

As a complement, creating one binary classification model for each specific quadrant 
against the remaining (e.g., Q1 vs non-Q1) helps us to understand how different are 
these quadrants and which features better separate them. Results from this experiment 
are shown in Table 4.9.  

 

Classifier Feature set # Features F1-Score 

Quadrant 1 standard 20 82.8% 

Quadrant 1 standard 600 85.9% 

Quadrant 1 standard + novel 30 85.9% 

Quadrant 1 standard + novel 100 89.1% 

Quadrant 2 standard 10 88.3% 

Quadrant 2 standard 898 92.1% 

Quadrant 2 standard + novel 10 88.6% 

Quadrant 2 standard + novel 800 92.6% 

Quadrant 3 standard 20 77.9% 

Quadrant 3 standard 600 81.7% 

Quadrant 3 standard + novel 20 80.6% 

Quadrant 3 standard + novel 150 84.6% 

Quadrant 4 standard 5 78.1% 

Quadrant 4 standard 500 82.1% 

Quadrant 4 standard + novel 5 80.7% 

Quadrant 4 standard + novel 200 83.5% 

Table 4.9: Binary classification – each quadrant vs. the remaining (e.g., Q1 vs. non-Q1). 
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For each quadrant, we present two results: the maximum result obtained (e.g., 
76.6% for Q1 using 100 features) and the first result higher than 95% of this best value 
(e.g., for Q1 this value is 72.0%, obtained with 50 features). 

All the four models were able to discriminate songs with an F1-Score (macro) higher 
than 80%. Again, it is also noticeable that the high arousal quadrants (Q1 and Q2) are 
more distinctive. This is especially true for Q2, where 10 features are sufficient to sepa-
rate Q2 from non-Q2 songs with an 88.6% F1-Score, while the maximum is obtained 
with 800 features. On the other hand, low arousal quadrants obtained a slightly lower 
result and in the case of Q4, going from 5 to 200 features resulted in less than 3% 
increase. This seems to indicate that songs in these two quadrants share more musical 
characteristics, containing less distinctive features. 

4.6. Feature Importance per MER Problem 

The importance of each audio feature to the MER problems studied in this work was 
measured using ReliefF. Some of the novel features proposed here appear consistently 
in the top 10 features for each problem and many others are in the first 100, demon-
strating their relevance to MER. There are also features that, while alone may have a 
lower weight, are important to specific problems when combined with others. In this 
section we identify which audio features were the most relevant to the description and 
discrimination of specific classes. 

4.6.1. Best Features for Quadrant Classification 

The best result (76.4%, Table 4.4) was obtained with 29 novel and 71 standard features, 
which demonstrates the relevance of adding novel features to MER. In the paragraphs 
below, we conduct a more comprehensive feature analysis. 

The best 10 features to the quadrants classification problem are presented in Table 
4.10. As shown, three of these features are novel. The first two are related with musical 
texture, a dimension that was identified in Section 3.1 as lacking audio features primar-
ily associated with it, while the third captures tremolo information. The standard fea-
tures in the top 10 are related with tone color, capturing information about the spec-
trum (such as the energy distribution and symmetry of this distribution). Using only 
these first ten features results in 64.2% F1-Score. Given the complexity of the problem, 
a total of 100 features are needed to obtain 76.4%. Of these 100 features, 29 are novel, 
related to the following dimensions: expressive techniques (20), musical texture (8) and 
tone color using the Voice Analysis Toolbox (1). The 20 expressive techniques’ features 
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are divided into: vibrato (11), glissando (4), tremolo (4) and articulation (1). The remain-
ing 71 standard features are related with: tone color (51), dynamics (10), rhythm (4), 
harmony (4) and melody (2). This information is summarized in Figure 4.24, at the end 
of this section. 

 

Feature Type Dimension Weight 

MFCC1 (mean) standard Tone Color 0.1781 

FFT Spectrum - Average Power Spectrum (me-
dian) 

standard Tone Color 0.1729 

Musical Layers (mean) novel Texture 0.1666 

FFT Spectrum - Spectral 2nd Moment (median) standard Tone Color 0.1624 

Spectral Skewness (std) standard Tone Color 0.1581 

Spectral Skewness (max) standard Tone Color 0.1458 

Rolloff (mean) standard Tone Color 0.1408 

Musical Layers (std) novel Texture 0.1371 

Rolloff (MeanA/StdM) standard Tone Color 0.1371 

Tremolo Notes in Cents (mean) novel Tremolo 0.1366 

Table 4.10: Top 10 features for quadrants classification. 

 

From the novel features, the most relevant ones are related with musical texture and 
high-level expressive techniques (tremolo, glissando and vibrato) which are dimensions 
that were lacking in existent standard features. After all, if standard features were already 
extracting similar information from the audio signal, these novel features would have 
been discarded during our feature reduction phase (for details, see Section 4.4.1). The 
majority of the existent standard features are low-level tone color descriptors, which in 
part explains the higher number of these in the top 100. Nonetheless, dimensions such 
as harmony, melody and rhythm are underrepresented but have been identified as rele-
vant to MER (as reviewed in Section 2.4). This may indicate that the existent features in 
these categories are not good enough and still need to be improved. 

4.6.2. Best Features to Classify Arousal and Valence 

Despite its coarse granularity, binary classification of arousal or valence (positive or neg-
ative) gives us additional information on the importance of features, which is hidden 
when using quadrants. Table 4.11 and Table 4.12 present the five best features for each 
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case.  

 

Feature Type Dimension Weight 

FFT Spectrum - Average Power Spectrum (me-
dian) 

standard Tone Color 0.1969 

MFCC1 (mean) standard Tone Color 0.1953 

Spectral Skewness (std) standard Tone Color 0.1927 

FFT Spectrum - Spectral 2nd Moment (median) standard Tone Color 0.1910 

Musical Layers (mean) novel Texture 0.1790 

Table 4.11: Top 5 features for arousal (high vs low). 

 

For arousal, the top five features are able to achieve 84.9% F1-Score. In the top 10, 
two different standard features appear as relevant to classify arousal, when compared to 
the quadrants top. These features – Average Power Spectrum and Events Density are 
related with the speed and energy and thus expected to be related to arousal. The top 
result (90.7%) is obtained with 100 features: 24 novel and 76 standard. The novel are 
related with: expressive techniques (11), of which 6 are vibrato, 4 tremolo and 1 articu-
lation; musical texture (8); dynamics (4); and tone color/VAT (1). The 76 standard audio 
features are divided in: tone color (55); dynamics (12); rhythm (4); harmony (2); melody 
(2); and musical form (1). 

If the problem is further divided (e.g., arousal classification only for songs with pos-
itive valence), the best features differ. In terms of musical dimensions, the major differ-
ences between positive valence songs (PVS) and negative valence songs (NVS), when 
classifying arousal are (top 100): PVS rely less on novel features (20% against 27%); use 
less expressive techniques features (4 vs. 14), not relying on any vibrato features; and use 
more rhythm and melody related features (13 vs 6). NVS classification differs by using 
vibrato (9 features), but less features related with rhythm, melody and dynamics. 

 

Feature Type Dimension Weight 

Vibrato Extent (std) novel Vibrato 0.1210 

Vibrato Base Freq (kurtosis) novel Vibrato 0.1168 

Vibrato Length (kurtosis) novel Vibrato 0.1127 

Vibrato Rate (kurtosis) novel Vibrato 0.1109 

Vibrato Length (skewness) novel Vibrato 0.1076 

Table 4.12: Top 5 features for valence (high vs low). 
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For valence classification, the top five features selected were all novel features related 
with vibrato. This indicates that, at least for the tested dataset: i) vibrato features are 
highly correlated with valence. The definite reason for this is still unclear but previous 
studies have found that variations in vibrato rate and extent result in distinct emotions 
(Dromey et al., 2015; Konishi, Imaizumi, & Niimi, 2000); and ii) no standard features 
were able to capture the same information. Moreover, from the best 100 features, 43 are 
novel divided into: expressive techniques (33), of which 17 capture vibrato, 13 glissando, 
2 articulation and 1 tremolo; musical texture (6); melody (2) and rhythm (2). The re-
maining standard features are divided between tone color (38); harmony (9); dynamics 
(4); rhythm (3); and musical form (3). From the results obtained in Section 4.5.2, we 
know that valence is better classified for songs containing high (positive) arousal. Ana-
lyzing the gathered feature rankings for valence in these cases, in order to understand 
their differences (with arousal either high/positive or low/negative), shows that the vi-
brato (19) and glissando (16) features are highly relevant for valence when arousal is 
positive. In this case, 48 new features are present in the top 100, of which 39 capture 
cues related with expressive techniques. Interestingly, this value drops to 42 in 100 for 
negative arousal songs, with only two vibrato features in the first 100. Of the 42, 20 are 
expressive techniques features, mostly glissando related (17). Moreover, and contrasting 
to the previous rankings, 16 novel features directly extracted from the separated voice-
only signal are present in these 42. These are related with expressive techniques (glis-
sando, 10), melody (2), tone color (VAT, related with voice sections, 2), musical texture 
(1) and fractal dimension (1). These results are resumed in Figure 4.24, at the end of the 
section. 

Summarizing the obtained knowledge: several novel features are relevant for valence 
classification. Expressive techniques such as vibrato and glissando are related with va-
lence, with the former having higher importance to more energetic songs. When the 
energy/stress of a song is lower, besides glissando, other features such as musical texture, 
melody and voice characteristics and signal/waveform complexity (fractal dimension) 
are also relevant. Furthermore, to these songs, for the first time, several features obtained 
from the separated audio signal containing only the voice were selected. Such result 
supports the hypothesis that, in this situation (predicting valence in low arousal songs), 
the voice carries more emotional information than in the previous situations and ana-
lyzing it separately is beneficial. It also raises several questions: 

1. Given the results, is the non-voice (accompaniment) signal in this hemisphere 
(low arousal) less important and in some cases even hardening MER classifica-
tion? This idea seems to be supported by Xu et al. (2014). 

2. Could it be that we, as listeners, when faced with this type of songs, tend to 
unconsciously ignore the accompaniment in them and focus on voice/singer 
when looking for emotional cues? 
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3. Moreover, assuming that the vocal acoustic information is more relevant to dis-
criminate songs in this hemisphere than the others, what about the message in 
that voice signal? Can the lyrics improve it further to a level similar to the 
arousal classification? 

4.6.3. Best Features to Discriminate each Quadrant 

In this section we discuss the best features to discriminate each specific quadrant from 
the others, according to specific feature rankings (e.g., ranking of features to separate 
Q1 songs from non-Q1 songs). The top 5 features to discriminate each quadrant are 
presented in Table 4.13 (page 216).  

Except for quadrant 1, the top5 features for each quadrant contain a majority of 
tone color features, which are overrepresented in the complete feature set in comparison 
to the remaining. It is also relevant to highlight the higher weight given by ReliefF to 
the top5 features of both Q2 and Q4. This weight is confirmed by results in Table 4.9, 
where few features are needed to obtain 95% of the maximum score for both quadrants, 
when compared to Q1 and Q3. 

Musical texture information, namely the number of musical layers and the transi-
tions between different texture types (two extracted from voice-only signals) were also 
very relevant for quadrant 1, together with several rhythmic features. However, the Re-
liefF weight of these features to Q1 is lower when compared with the top features of 
other quadrants. Happy songs are usually energetic, associated with a “catchy” rhythm 
and high energy. The higher number of rhythmic features used, together with texture 
and tone color (mostly energy metrics) support this idea. Interestingly, creaky voice de-
tection extracted directly from voice is also highlighted (it ranked 15 th), which has pre-
viously been associated with emotion (Cullen et al., 2013). 

The best features to discriminate Q2 are related with tone color, such as: roughness 
– capturing the dissonance in the song; rolloff and MFCC – measuring the amount of 
high frequency and total energy in the signal; and spectral flatness measure – indicating 
how noise-like the sound is. Other important features are tonal dissonance (dynamics) 
and expressive techniques such as vibrato. Empirically, it makes sense that characteristics 
like sensory dissonance, high energy, and complexity are correlated to tense, aggressive 
music. Moreover, research supports the association of vibrato and negative energetic 
emotions such as anger (Scherer et al., 2015). 

In addition to the tone color features related with the spectrum, the best 20 features 
for quadrant 3 also include the number of musical layers (texture), spectral dissonance, 
inharmonicity (harmony), metrics of signal complexity (fractal dimension) and expres-
sive techniques such as tremolo. Moreover, nine features used to obtain the maximum 
score are extracted directly from the voice-only signal. Of these, four are related with 
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intensity and loudness variations (crescendos, decrescendos); two with melody (vocal 
ranges used); and three with expressive techniques such as vibratos and tremolo. Empir-
ically, the characteristics of the singing voice seem to be a key aspect influencing emotion 
in songs from quadrants 3 and 4, where negative emotions (e.g., sad, depressed, and 
miserable) usually have not so smooth voices, with variations in loudness (dynamics), 
tremolos, vibratos and other techniques that confer a degree of sadness (Scherer et al., 
2015) and unpleasantness.  

 

Q Feature Type Dimension Weight 

Q1 

FFT Spectrum - Spectral 2nd Moment (median) standard Tone Color 0.1467 

Transitions ML1 -> ML0 (Per Sec) novel Texture 0.1423 

MFCC1 (mean) standard Tone Color 0.1368 

Transitions ML0 -> ML1 (Per Sec) novel 
(voice) 

Texture 0.1344 

Fluctuation (std) standard Rhythm 0.1320 

Q2 

FFT Spectrum - Spectral 2nd Moment (median) standard Tone Color 0.2528 

Roughness (std) standard Tone Color 0.2219 

Rolloff (mean) standard Tone Color 0.2119 

MFCC1 (mean) standard Tone Color 0.2115 

FFT Spectrum - Average Power Spectrum (me-
dian) 

standard Tone Color 0.2059 

Q3 

Spectral Skewness (std) standard Tone Color 0.1775 

FFT Spectrum - Skewness (median) standard Tone Color 0.1573 

Tremolo Notes in Cents (mean) novel Tremolo 0.1526 

Linear Spectral Pairs 5 (std) standard Tone Color 0.1517 

MFCC1 (std) standard Tone Color 0.1513 

Q4 

FFT Spectrum - Skewness (median) standard Tone Color 0.1918 

Spectral Skewness (std) standard Tone Color 0.1893 

Musical Layers (mean) novel Texture 0.1697 

Spectral Entropy (std) standard Tone Color 0.1645 

Spectral Skewness (max) standard Tone Color 0.1637 

Table 4.13: Top 5 features for each quadrant discrimination. 

 

The majority of the employed features were related with tone color, where features 
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capturing vibrato, texture and dynamics and harmony were also relevant, namely spec-
tral metrics, the number of musical layers (and its variations) and measures of the spec-
tral flatness (noise-like). More features are needed to better discriminate Q3 from Q4, 
which musically share some common characteristics such as lower tempo, less musical 
layers and energy, use of glissandos and other expressive techniques. 

A visual representation of the best features in each classification problem, grouped 
by categories and separated in standard or novel (extracted from original audio or voice-
only audio), is represented in Figure 4.24 and Figure 4.25. As previously discussed, all 
quadrants use tone color features. On the other hand, some categories of features are 
more relevant to specific quadrants, such as rhythm and glissando for Q1, or fractal 
dimension and voice characteristics (VAT) to Q2. 

 

Figure 4.24: Best 100 features in each classification problem studied, organized by mu-
sical dimension. Novel (O) are extracted from the original audio signal, while Novel (V) 
are extracted from the voice-separated signal.  

 

To conclude, the weight of the entire feature set to each problem is shown in Figure 
4.26. Although complex, this illustration allows for the comparison of the weights for 
each problem. As can be seen, for some problems, especially valence prediction with low 
arousal songs – Valence (A-), the relevance of the available features is much lower than 
the others. This can be caused by lack of relevant features, higher ambiguity in the da-
taset and annotations or both.  Additional visualizations of feature weights and ranks 
are available in Appendix C. 
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Figure 4.25: The top 100 features selected by ReliefF for each emotion classification problem studied, organized by musical dimension. 
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Figure 4.26: Feature weight of the entire feature set, grouped by musical dimension and divided by problem (each point is a different 
feature). 
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Chapter 5  
 
OTHER EXPERIMENTS 

n addition to the main contributions described in previous chapters, a number of 
other experiments were also conducted at an earlier stage of the our research work. 
Although these are not major contributions, each of these studies had a specific 
purpose and, together, laid the foundations that enabled the results described in the 

previous chapters. Some of these consisted in the construction of other datasets, bi-
modal approaches exploring audio and lyrics or the analysis of existent works and da-
tasets. In these chapters, we describe some of these additional experiments as well as the 
results attained. 

Section 5.1. Evaluation of MER Strategies and Datasets 

Under this perspective, our initial work was focused on replicating state-of-the-art works, 
evaluating existing datasets and exploring both dimensional and categorical MER ap-
proaches. These experiments gave us a valuable idea of the main limitations in the field. 

Section 5.2. Emotion-based Playlist Generation 

Building on our music emotion recognition experiment using dimensional models, we 
explored the automatic generation of music playlists based on emotion. As a result, a 
computational prototype to demonstrate this functionality was built and made available 
online. 

Section 5.3. MER Multi-modal Approaches 

Additionally, a third experiment has been conducted to assess the influence of lyric con-
tent in music emotion and how combining different modalities might improve the pre-
diction accuracy. 

I 
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5.1. Evaluation of MER Strategies and Datasets 

In the beginning of this work, one of the strategies to gain a deeper understanding of 
the MER field was to study and replicate the published state-of-the-art. To this end, we 
first selected the AV-based regression approach proposed by Yang et al. (2008), later 
studying categorical approaches such as the MIREX taxonomy (Hu & Downie, 2007). 

5.1.1. Yang’s Dimensional Approach 

As discussed in detail in Section 3.2.5, the authors approached MER as a regression 
problem, using Thayer’s model118 to classify emotions in terms of arousal and valence 
(AV). To this end, the authors employed a dataset containing 195 song clips, collected 
in their previous study (Y.-H. Yang et al., 2006) and annotated by 253 subjects, with at 
least 10 subjects annotating each clip. A deeper analysis on this dataset was presented in 
Section 3.2.2. From the audio clips, a total of 114 features were extracted, mostly using 
PsySound2 and Marsyas and reduced with PCA and RReliefF, obtaining an R2 of 58.3% 
for arousal and 28.1% for valence. 

We built on Yang’s work, using the same dataset to test an extended feature set and 
gain a better knowledge of the current limitations regarding dimensional approaches.  

Feature Extraction 

In our initial series of tests (Panda & Paiva, 2011a), we selected PsySound, the MIR 
Toolbox (MIRT) and Marsyas (MAR), described in Section 3.1.1, to measure the rele-
vance of each one in MER. In their work (Y.-H. Yang, Lin, Su, et al., 2008), Yang et al. 
used PsySound2, an older version that is available only for the Mac PowerPC architec-
ture. Since then, the program was rewritten in MATLAB, resulting in PsySound3. This 
version contains inconsistencies and lacks documentation, making it very hard to repli-
cate the exact Yang’s feature set and thus compare the results between PsySound2 and 
3. For this reason, we employed the same PsySound2 features extracted and kindly pro-
vided by Yang119. A set of 15 features from PsySound2 were previously identified by the 
authors as particularly relevant to emotion analysis, hereafter denoted as Psy15, while 
the full set is denoted Psy44. 

A brief summary of the extracted features and their respective framework is given in 
Table 5.1. Regarding Marsyas and the MIR Toolbox, the analysis window size used for 

                                                        
118 Although the original article cites the Thayer’s model, the authors used an AV model which is 

closer to the circumplex model of emotion proposed by Russell. 
119 http://mac.citi.sinica.edu.tw/~yang/MER/taslp08/ 
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frame-level features is 23 ms, later transformed to song-level features using mean and 
variance, i.e., MeanVar model, (Meng, Ahrendt, Larsen, & Hansen, 2007). All extracted 
features were normalized to the [0, 1] interval. A total of 12 features extracted with 
Marsyas returned the same (zero) value for all songs and, thus, were not used in this 
experiment. 

In a later experiment (Panda, Rocha, & Paiva, 2013), we added an additional set of 
51 melodic features (MF), consisting of statistics extracted from the pitch contour of the 
melody using a transcription step, as described in (Salamon et al., 2012). Such features 
are related with the typology of the pitch contour, as described in (Adams, 1976), as well 
as vibrato, pitch and duration information of these contours. 

 

Framework 

(# of features) 

Features 

Marsyas 
(237) 

Spectral centroid, rolloff, flux, zero-crossing rate, linear spectral pair, 
linear prediction cepstral coefficients (LPCCs), spectral flatness 
measure (SFM), spectral crest factor (SCF), stereo panning spectrum 
features, Mel frequency cepstral coefficients (MFCCs), chroma, beat 
histograms and tempo. 

MIR Toolbox 
(177) 

Among others: root mean square (RMS) energy, rhythmic fluctua-
tion, tempo, attack time and slope, zero-crossing rate, rolloff, flux, 
high-frequency energy, MFCCs, roughness, spectral peak variability 
(irregularity), inharmonicity, pitch, mode, harmonic change and key. 

PsySound2 
(44) 

Loudness, sharpness, volume, spectral centroid, timbral width, pitch 
multiplicity, dissonance, tonality and chord, based on psychoacous-
tic models. 

Melodic 
(51) 

Pitch (mean pitch height, pitch deviation, pitch range and interval), 
duration (in seconds), vibrato (rate, extent, coverage), pitch contour 
typology statistics. 

Table 5.1: Frameworks used and respective features. 

Feature Selection and Emotion Regression 

A wide range of supervised learning methods are available and have been used in regres-
sion problems before. The idea behind regression is to predict a real value, based on a 
previous set of training examples. Since we are using a continuous representation of 
emotion, two distinct regression models need to be trained – one for arousal and an-
other for valence. Three different supervised machine techniques were evaluated: Simple 
Linear Regression (SLR) (Lane, 2009), K-Nearest Neighbors (KNN), and Support Vector 
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Regression (SVR). These algorithms were run using both Weka120, a suite of machine 
learning algorithms developed in Java, and the libSVM library121. 

In order to assess the importance of each feature and to improve results, while re-
ducing the feature set size at the same time, feature selection and ranking was also per-
formed. To this end, the RReliefF algorithm and Forward Feature Selection, both de-
scribed in Section 3.2.3, were used. In RReliefF, the resulting feature ranking was then 
tested to determine the number of features providing the best results. This was per-
formed following an embedded approach, by adding one feature at a time to the set and 
evaluating the corresponding results. The best top-ranked features were then selected. 

All experiments were validated using 10-fold cross validation with 20 repetitions, 
reporting the average obtained results. Moreover, parameter optimization was per-
formed, e.g., grid parameter search in the case of SVR. In order to compare our results 
with the original study, the performance of the regression models were measured using 
R2 statistics. As previously mentioned, this metric represents the coefficient of determi-
nation, “which is the standard way for measuring the goodness of fit for regression mod-
els” (Y.-H. Yang, Lin, Su, et al., 2008). 

Results and Discussion 

Our first experiments did not include the melodic features and were based only on 
SVMs for regression (Panda & Paiva, 2011a). There, the best results were 63% for 
arousal and 35.6% for valence, using a total of 53 and 80 features respectively. This 
subset of features was obtained from the combination of the features from the three 
frameworks, reduced with the FFS algorithm. Although the results obtained with the 
RReliefF feature selection method were lower, they were mostly obtained resorting to 
less features, helping us to identify the most important features for both problems (AV). 
For instance, using only the first ten features selected with RRF resulted in 31.5% for 
arousal and 15.2% for valence. On the other hand, the same number of features with 
FFS achieved only 0.8% and 2.0% for arousal and valence respectively. 

Testing individual frameworks separately highlighted MIR Toolbox as containing 
the best suited features, especially for valence with an R2 of 25.7%. PsySound followed, 
with a valence accuracy of 21% and Marsyas features set scored the lowest, only 4.6% 
using FFS and 10.4% with ReliefF, proving to be less effective for valence prediction in 
this dataset at the time. In terms of arousal, all the frameworks had a close score, ranging 
from 56% (Marsyas) to 60.3% (MIR Toolbox). A summary of the results is presented in 
Table 5.2. For unknown reasons, we were unable to replicate the exact results obtained 
in (Y.-H. Yang, Lin, Su, et al., 2008), using either the Psy15 features or the list of features 

                                                        
120 https://www.cs.waikato.ac.nz/ml/weka/ 
121 https://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
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resulting from the feature selection algorithm122. We also conducted the same tests with 
PCA, normally used to reduce correlation between variables, without any noticeable 
improvement in results but actually leading to lower R2 values. 

By adding the melodic set of features in our second experiment (Panda, Rocha, et 
al., 2013), we were able to increase the best results to 67.4% for arousal and 40.6% for 
valence (although these features alone performed poorly). Such results are a significant 
improvement over the original study 58.3/28.1 % (Y.-H. Yang, Lin, Su, et al., 2008) as 
well as our previous results of 63/35.6%. Regarding the different classification strategies 
tested, SVM was always the best performing algorithm. A summary of the results is con-
densed in Table 5.2. 

 

Machine Learning Feature Set Arousal (R2) Valence (R2) 

SVR Psy15 (all features – all) 58.7% 12.7% 

SVR Psy15 (feature selection – FS) 60.1% 21.1% 

SVR Psy44 (all) 57.3% 7.9% 

SVR Psy44 (FS) 57.3% 19.1% 

SVR MIRT (all) 58.2% 8.5% 

SVR MIRT (FS) 58.7% 25.7% 

SVR MAR (all) 52.9% 3.7% 

SVR MAR (FS) 60.0% 10.4% 

SVR Psy44+MIRT+MAR (all) 57.4% 19.4% 

SVR Psy44+MIRT+MAR (FS) 62.9% 35.6% 

SVR MF (all) 45.2% 2.7% 

SVR MF (FS) 50.0% 2.6% 

SVR Psy44+MIRT+MAR+MF (all) 58.0% 16.3% 

SVR Psy44+MIRT+MAR+MF (FS) 67.4% 40.6% 

SLR Psy44+MIRT+MAR+MF (all) 42.2% -1.3% 

SLR Psy44+MIRT+MAR+MF (FS) 54.6% 3.3% 

KNN Psy44+MIRT+MAR+MF (all) 56.8% 1.5% 

KNN Psy44+MIRT+MAR+MF (FS) 61.1% 12.0% 

Table 5.2: Regression results obtained with different machine learning algorithms and 
feature set combinations, from (Panda & Paiva, 2011a; Panda, Rocha, et al., 2013). 

                                                        
122 It is worth mention that, in order to try to replicate Yang et al. results, we employed the SVR parameters 

described at the paper web page: http://mpac.ee.ntu.edu.tw/~yihsuan/MER/taslp08/. 
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In addition to the performance improvements, we identified features related with 
tone color (e.g., MFCCs, RMS energy, and spectral skewness), rhythm (e.g., pulse clarity) 
or loudness as some of the most relevant to arousal, while valence was more influenced 
by tone color (spectral dissonance, MFCCs), rhythm (pulse clarity and fluctuation) and 
harmony (tonality, key strength and clarity) (Panda & Paiva, 2011a). 

Considerations on Dimensional Emotion Recognition 

Our MER experiments using dimensional models yielded several interesting conclu-
sions. First, although very useful and having diverse applications, the performance 
achieved with dimensional models is still weak, especially regarding valence prediction. 
To make this worse, there are no publicly available dimensional MER datasets, which 
can be said to have remarkable quality (e.g., sizeable, quality controlled annotations), as 
already noted in Section 3.2.2. 

As previously detailed in Section 3.2.1 and supported by Yang’s et al. description 
(Y.-H. Yang, Lin, Su, et al., 2008), the dimensional ground-truth acquisition is a process 
of high complexity. After all, in addition to the high number of subjects required (e.g., 
Yang et al. used 253 subjects to annotate 195 audio clips), it is also more error-prone, 
since there is an extra layer of possible confusion where subjects need to convert the 
terms usually associated with emotion (e.g., “happiness”) to numeric values of an intri-
cate dimensional model (as discussed earlier in Section 2.2). 

Regarding the dataset employed in these experiments (Y.-H. Yang, Lin, Su, et al., 
2008), one of the few that we could obtain having a well-documented and planned an-
notation gathering process, several problems were identified. First, according the au-
thors, the users were asked to annotate emotions evoked by music (instead of perceived), 
which tends to have a much lower inter-subjective agreement, being more context, cul-
ture and memory dependent, as discussed in Section 2.1.2. In addition, the subjects 
were requested to consider both audio and the actual lyrics sang by the performers, 
which as we found in Section 4.6, can greatly influence the valence of a song, especially 
for lower arousal songs. Still, the authors did not consider any lyrical information in 
their experiments. 

Other problems with this dataset were already highlighted in the review presented 
in Section 3.2.2. Namely, the unbalanced nature of the 195 songs over the four AV 
quadrants. Upon closer analysis, we now know that the 195 clips resulted from a previ-
ous study by the authors (Y.-H. Yang et al., 2006), where quadrant annotations of 243 
clips where gathered, discarding low agreements (less than 50%) clips. According to 
these annotations, the 195 were balanced, with 48 to 49 clips assigned to each quadrant. 
However, in their second study (Y.-H. Yang, Lin, Su, et al., 2008), the same clips were 
annotated in a significantly different and very unbalanced way by different subjects (e.g., 
quadrant 2 contains only 21 songs). These inconsistencies raises concerns on the quality 
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of the dataset and further highlights the difficulties in ground-truth acquisition. Moreo-
ver, most of these clips were placed very close to the origin, as illustrated in Figure 5.1, 
while such emotion models state that emotions are expected to be far from it. One pos-
sible hypothesis for this are very different annotations by subjects to the same songs, 
which when averaged end up close to the center. 

 

Figure 5.1: Yang et al.’s AV dataset annotations placed on the Russell’s emotion model 
(2008). Different colors indicate the quadrants originally assigned to the clips in the 
authors’ previous study (Y.-H. Yang et al., 2006). 

 

To conclude, given the lack of sizeable high-quality dimensional datasets and the 
abovementioned difficulties to construct one, added to the above average results of pre-
vious dimensional MER studies, especially when predicting valence, we believe it is wiser 
to first improve MER classification using simpler emotion taxonomies, before tackling 
these higher complexity problems. 
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5.1.2. MIREX Categorical Approach 

Similarly to the experiments carried out with dimensional models in MER, we also in-
vestigated categorical models by reviewing the relevant literature (see Section 3.2.5) and 
experimenting with MER as a categorical problem. In contrast to the dimensional coun-
terpart of MER, where the AV emotion model has been widely adopted as the de facto 
approach, categorical studies have been much more heterogeneous. In that sense, MER 
researchers have not agreed on a categorical model, with many studies using different 
taxonomies containing different ranges of diverse words. As summarized in Table 3.4 of 
Section 3.2.5, the solutions vary from models with few categories (e.g., selected based on 
the authors’ view, on AV quadrants or Ekman’s basic emotions) to a very high number 
(e.g., derived from dictionaries and online data). 

Taking into account the observed dispersion in categorical MER studies and the 
mentioned lack of quality categorical datasets (see Section 3.2.2), we decided to start by 
creating a new audio dataset using the MIREX AMC taxonomy. This choice was based 
on the fact that, despite the limitations highlighted previously, it is widely recognized 
and has been used in the MER field as the standard benchmark for comparing categor-
ical approaches. 

As explained in Section 2.2.1, the taxonomy used in the MIREX AMC task was 
derived from song metadata provided by AllMusic123 (Hu & Downie, 2007). At the time, 
a total of 179 emotional tags were used at the site, said to have been compiled and 
assigned by experts. This process consisted in three steps: 1) compute the similarity be-
tween emotion tags, according to the number of songs containing each of the possible 
pairs of tags; 2) next, the similarity data was clustered into groups of emotion tags using 
agglomerative hierarchical clustering; 3) finally, the obtained clusters were manually an-
alyzed, with the authors selecting the five clusters and 29 emotion tags (represented in 
Table 2.2) that nowadays form the taxonomy. The taxonomy was then used to create the 
private MIREX AMC dataset, containing 600 30-second audio clips in 22.05 kHz mon-
aural WAV format, annotated by 2 to 3 human judges, as discussed in Section 3.2.2. 

MIREX-like Dataset Construction 

Having set out to replicate the MIREX dataset organization, it was only natural to also 
select the AllMusic service as the source of our data. To this end, we built a set of scripts 
to automate the collection of 30 second audio clips that were tagged with the MIREX 
emotion tags from the AllMusic website. As a result, a total of 1335 clips belonging to 
the 29 tags described in MIREX were obtained and organized into the five clusters. Since 
AllMusic contains multiple tags per song, some of the obtained clips were related to 
various emotion tags and clusters. Such clips were, hence, removed, reducing the dataset 

                                                        
123 https://www.allmusic.com 
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to 903 clips.  

As noted, the MIREX AMC dataset clips were labeled based on the agreement be-
tween two or, in some cases, three experts (Hu et al., 2008). However, due to the re-
sources required to replicate a manual annotation process, and since the AllMusic emo-
tion tags are said to also have been assigned by music experts (Hu & Downie, 2007; Pao 
et al., 2008; Y.-H. Yang & Hu, 2012), we decided to use their data directly. 

Concerning its organization, the dataset is relatively balanced between clusters, with 
a slight advantage for clusters 3 and 4, as shown in Figure 5.2, due to the removal of the 
ambiguous songs. Another relevant aspect of the dataset is that, as previously pointed 
out in Sections 2.2.1 and 3.2.2, there is a semantic overlap (ambiguity) between clusters 
2 and 4, and an acoustic overlap between clusters 1 and 5 (Laurier & Herrera, 2007). 

 

Figure 5.2: MIREX-like dataset audio clips distribution between the five clusters. 

 

The initial version of the dataset (Panda & Paiva, 2012b) was later incremented with 
lyrics and MIDI files (Panda, Malheiro, et al., 2013). To this end, we developed tools to 
automatically search for lyrics and MIDI files of the same songs using the Google Search 
API. In this process, three sites were used for lyrical information (lyrics.com, ChartLyrics 
and MaxiLyrics), while MIDI versions were obtained from four different sites124. After 
removal of some defective files, the interception of the 903 original audio clips with the 
lyrics and MIDIs resulted in a total of 764 lyrics and 193 MIDIs. In fact, MIDI files 
proved harder to acquire automatically. As a result, we formed 3 datasets: an audio-only 
dataset with 903 clips, an audio-lyrics dataset with 764 audio clips and lyrics (not evalu-
ated here) and a combined multi-modal dataset with 193 audio clips and their corre-
sponding lyrics and MIDIs. All datasets were nearly balanced across clusters (maximum 
and minimum representativeness of 25% and 13%, respectively). 

Even though the final multi-modal dataset is smaller than desired, this approach 

                                                        
124 freemidi.org, free-midi.org, midiworld.com and cool-midi.com. 
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demonstrated that we can exploit the specialized human labor of the AllMusic annota-
tions to automatically acquire a music emotion dataset, reducing the required resources. 
Moreover, the proposed method is sufficiently generic to be employed in the creation of 
different emotion datasets, with different emotion adjectives than the ones used in the 
MIREX AMC taxonomy. This MIREX-like dataset is available at our website125 to any 
researchers willing to use it in future research. 

Although the two datasets (the original MIREX AMC dataset and the proposed 
MIREX-like one) have similarities in organization, they still differ in not negligible as-
pects such as the audio clips selection and annotation process. Thus, results obtained 
with ours must be analyzed or compared with this in mind. To have a possible point of 
comparison, we used this dataset to develop and run several MER experiments, as de-
scribed in Section 5.1.2, submitting some of our solutions to the MIREX AMC annual 
comparison task. As a result, one of our models placed first in that year126 (in a total of 
20 submissions from 10 different research groups). 

These experiments served as the learning base to the dataset construction described 
in Chapter 4. 

Music Emotion Classification Experiments 

As with our previous experiments, we used Marsyas, the MIR Toolbox and PsySound to 
extract a total of 253 audio features from the clips. Some compromises had to be done 
in feature extraction when compared to our regression experiments in order to accom-
plish our goal of creating a MER solution that could be submitted to MIREX AMC 
contest. Namely, we used a smaller set of 11 PsySound3 features, since version 2 is no 
longer usable and the framework is highly resource-intensive, exceeding the contest time 
limits. In addition, we also reduced the set of features extracted with Marsyas to 65 
(centroid, rolloff, flux, MFCCs and tempo) since the remaining were less stable and did 
not prove relevant. 

Support Vector Machines was the preferred classification algorithm, based on re-
sults from previous experiments (Panda & Paiva, 2011b; J.-C. Wang et al., 2010). The 
libSVM library (Chang & Lin, 2011) was the selected implementation, providing a fast 
and reliable implementation of SVMs. A grid parameter search was also carried out to 
retrieve the best values for parameters γ and C (cost), used by the radial basis function 
(RBF) kernel of the SVM model. Some additional tests using other algorithms such as 
KNN were conducted with lower classification results. 

In order to reduce the feature set and achieve a subset of features that are most 
suitable to our problem, ReliefF was used. For comparison with the MIREX AMC task, 

                                                        
125 http://mir.dei.uc.pt/ 
126 http://www.music-ir.org/nema_out/mirex2012/results/act/mood_report/summary.html 
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some classification tests were run using 3 and 5-fold cross validation due to the fact that 
MIREX uses a 3-folds setup. However, our analysis was done with 10-fold cross valida-
tion since, according to the literature, “there are more performance estimates, and the 
training set size is closer to the full data size, thus increasing the possibility that any 
conclusion made about the learning algorithm(s) under test will generalize to the case 
where all the data is used to train the learning model” (Refaeilzadeh et al., 2009, p. 536). 
Using fewer folds did not influence the results significantly. 

The best classification results, an F1-Score of 47.21%, were obtained with a subset 
of features from all the three frameworks, selected by the ReliefF feature selection algo-
rithm. Although the top result requires a high number of features, 39 features are 
enough to obtain a very close 47.2% F1-Score. In the same direction, only 19 features 
are needed to obtain 95% of that maximum. Of the three frameworks, the MIR Toolbox 
obtained the best result and, while PsySound3 score was lower, it is important to high-
light that only 11 features were available from it. Finally, using feature selection served 
to reduce the number of features needed but did not improve the results. A brief sum-
mary of these results is presented in Table 5.3. 

 

Feature Set F1-Score Precision Recall 

Marsyas (65) 41.52% 40.71% 42.37% 

MIR toolbox (177) 44.43% 44.05% 44.81% 

PsySound 3 (11) 36.37% 35.64% 37.13% 

All Frameworks 47.21% 46.86% 47.60% 

All Frameworks (ReliefF) 47.20% 46.82% 47.57% 

Table 5.3: Classification results with the MIREX-like audio dataset. 

 

Based on the ranking obtained using the ReliefF algorithm, the 10 most relevant 
audio features to this classification problem were related with harmony (key strength 
and clarity, mode, tonal centroid), tone color (MFCCs, rolloff, zero crossing rate, tonal 
dissonance, high-frequency energy) and rhythm (tempo). As can be noted, some of those 
were already relevant in our regression experiments. 

Finally, the confusion matrix resulting from the best classification model, using fea-
tures from the three frameworks is listed in Table 5.4. As shown, a considerable percent-
age of songs were wrongly classified between clusters 1 – 5 and 2 – 4. This seems to go 
in the direction of the previously identified semantic and acoustic overlap between these 
same clusters. In Table 5.5, a confusion matrix grouping the overlapped clusters is pre-
sented. 
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 Predicted 

  C1 C2 C3 C4 C5 

A
nn

ot
at

ed
 C1 42.36 18.27 8.01 16.66 21.84 

C2 19.79 44.03 14.63 17.33 6.80 

C3 4.08 12.43 54.62 13.98 7.39 

C4 14.13 21.01 17.20 38.99 10.97 

C5 19.64 4.26 5.54 13.04 53.00 

Table 5.4: Confusion matrix (results are in %). 

 

 Predicted 

  C1+5 C2+4 C3 

A
nn

ot
at

ed
 

C1+5 68.82 27.46 13.55 

C2+4 25.34 59.05 31.83 

C3 5.84 13.50 54.62 

Table 5.5: Confusion matrix merging the clusters with semantic and acoustic overlap 
(results are in %). 

 

Our results in this dataset were lower (47.2%) than the top results obtained in the 
previous editions of MIREX AMC task. Still, it is hard, to draw definitive conclusions 
from these results, since two different datasets were used. As a possible point of compar-
ison, we conducted tests in our dataset extracting the same feature set used in one of the 
submissions to MIREX AMC 2008 and 2010 tasks (based on Marsyas, since the code is 
available in the framework). This set of features achieved only 40.71% precision in our 
dataset, while obtaining 48.58% to 57.5% precision in MIREX AMC 2010. This fact 
suggests that our approach would have better accuracy in the MIREX dataset, possibly 
due to the higher quality of its annotations, which were created by a panel of three 
experts, while our dataset used AllMusic annotations directly, which were created by 
experts but very few details exist describing the procedure. This was confirmed by our 
MIREX 2012 AMC submission, where an accuracy of 67.83% was achieved. 

Analysis of the MIREX AMC Taxonomy 

As mentioned, the MIREX AMC taxonomy and dataset has been said to contain possi-
ble problems related to semantic and acoustic overlaps (Laurier & Herrera, 2007). More-
over, the final taxonomy of 29 adjectives organized into five clusters was built using a 
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data-driven approach using data from the AllMusic website. This raises questions about 
its scientific validity, especially since some of the adjectives used (e.g., poignant, literate, 
autumnal, campy, volatile) are not present in categorical emotion models from psychol-
ogy (e.g., basic emotions by Ekman) nor are commonly used by people when describing 
their emotions (or emotions in music). For this reason, and since it is annually used to 
compare MER progress, we decided to further analyze the taxonomy to assess its quality. 

As described in detail in Section 2.2.1, the MIREX Audio Mood Classification 
(AMC) task taxonomy was automatically derived from the relations found in the music 
tags of AllMusic service data. To this end, the authors began by gathering a list of songs 
and albums labelled with each of the 179 mood tags available at the time in AllMusic. 
Next, the data was reduced to 40 tags, by removing the less frequently used ones. The 
similarity between pairs of tags was assessed by the number of songs and albums associ-
ated with both tags. Finally, this similarity data was fed into clustering algorithms, with 
the authors selecting the 29 adjectives that were commonly clustered together. The re-
sulting taxonomy is present in Table 5.6. 

 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Rowdy Amiable / Good natured Literate Witty Volatile 

Rousing Sweet Bittersweet Whimsical Visceral 

Boisterous Fun Autumnal Wry Aggressive 

Passionate Rollicking Brooding Campy Tense / Anxious 

 Cheerful Poignant Quirky Intense 

   Silly  

Table 5.6: Emotion taxonomy used in the MIREX Audio Mood Classification task. 

As stated, some authors have pointed possible problems in the dataset. Namely, a 
semantic overlap (ambiguity) between clusters 2 and 4 (e.g., words fun (cluster 2) and 
humorous (cluster 4) are close and share the synonym amusing (Laurier & Herrera, 
2007). As for songs from clusters 1 and 5, there are acoustic similarities: both tend to 
be energetic, loud, and many use electric guitar (Laurier & Herrera, 2007). Moreover, 
the number of words per cluster is unbalanced. 

Hence, we devised a set of experiments to further assess the validity of the MIREX 
taxonomy. Our first experiment tested the hypothesis that, if the taxonomy is good we 
expect to have words closer in meaning (i.e., synonyms) in the same cluster, while anto-
nyms should be in different clusters. To this end, a list of synonyms and antonyms of 
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the 29 words and the respective synonym relevance was obtained from Thesaurus dic-
tionary127. Next, we analyzed the relations between these words, as illustrated in Figure 
5.3. The black arrows represent synonyms and red is used for antonyms, while the thick-
ness represents the relevance of the relation, according to Thesaurus.  

 

Figure 5.3: MIREX AMC taxonomy cluster similarities based on Thesaurus synonyms 
and antonyms. 

 

As shown, more synonyms are found between extra-cluster words (10) than in same 

                                                        
127 https://www.thesaurus.com/ 
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cluster words (8). This is especially visible in cluster 1, where the word passionate has 
highly relevant synonyms in cluster 5 (intense, fiery) and cluster 3 (poignant, wistful). 
Still, these results should be taken with caution since the number of synonyms and an-
tonyms found between the 29 words is low. A possible improvement to this method 
would be to assess similarity not only using direct synonyms but also considering first 
level common synonyms (i.e., synonyms directly shared by these 29 words but not di-
rectly present in the taxonomy). 

 

A second experiment was designed to test the same hypothesis using AllMusic sim-
ilarity data. Since the creation of the MIREX AMC taxonomy, the emotion tag data in 
AllMusic has been increased from 179 to 289 words. Furthermore, each AllMusic tag is 
also associated with a list of similar emotion tags. As an example, the tag fun128 is said 
to be similar to boisterous, humorous, quirky, rollicking, rowdy, silly, whimsical, and 
witty. This supplementary similarity information was used to evaluate the MIREX AMC 
taxonomy in a similar fashion to experiment 1, i.e., by assessing the number of similar 
pairs of words (tags) inside and outside each of the five clusters, as illustrated in Figure 
5.4. There, the black edges (arrows) represent two words (emotions) said to be similar in 
the same cluster (intra-cluster), while extra-cluster ones are represented in red. The three 
numbers below each word represent the number of intra-cluster connections (similar 
emotion tags), number of extra-cluster similarities and similar moods unavailable in the 
29 words of the MIREX taxonomy. 

A high-quality taxonomy is expected to have high number of similar emotions inside 
the clusters and few between different clusters, especially considering that in this case 
both the taxonomy being analyzed and the similarity data are from the same source. 
However, a high number of extra-cluster connections was observed (in red). Computing 
the ratio of intra-cluster to extra-cluster connections for each cluster shows that two of 
the clusters have a ratio lower than 1, meaning more extra-cluster connections (cluster 
1 with 0.7 and cluster 2 with 0.75). The remaining, especially cluster 3, contain a higher 
number of intra connections (cluster 3 = 10.0, cluster 4 = 2.8 and cluster 5 = 2.1).   

                                                        
128 https://www.allmusic.com/mood/fun-xa0000001006 
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Figure 5.4: Cluster similarities in MIREX Audio Mood Classification taxonomy.  

 

Finally, the third experiment assessed the quality of MIREX taxonomy using data 
from Warriner et al. (2013), a psychology study containing arousal, valence and domi-
nance (AVD) values for 13915 English words. Here, our aim was to use the AVD values 
of the 29 MIREX AMC words and cluster them into five groups with standard clustering 
algorithms based on their proximity in the 3-dimensional space. This would allow us to 
compare the five clusters of both approaches. 

Unfortunately eight of the MIREX words are missing from Warriner’s list: boister-
ous, good natured, rollicking, literate, autumnal, wry, campy and visceral, which reduces 
the validity of such approach. Still, we conducted the experiment using the k-means 
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algorithm with Euclidean distance and the five obtained clusters are described in Table 
5.7 and illustrated in Figure 5.5. In the figure, the text in each point indicates the word 
and original MIREX cluster (e.g., “fun:C2”), while the colors indicate the newly gener-
ated clusters (e.g., K2 in orange). 

 

k-means MIREX Word Arousal Valence Dominance 

K1 C2 Amiable -0.54 0.43 0.29 

K1 C2 Sweet -0.22 0.69 0.28 

K1 C4 Whimsical -0.06 0.41 0.08 

K1 C4 Quirky -0.16 0.36 0.21 

K1 C4 Silly -0.04 0.43 0.38 

K2 C1 Rousing 0.21 0.09 0.14 

K2 C5 Intense 0.40 0.16 0.14 

K3 C3 Bittersweet -0.20 0.02 -0.12 

K3 C3 Poignant -0.23 0.03 0.36 

K4 C1 Passionate 0.33 0.54 0.41 

K4 C2 Fun 0.33 0.84 0.51 

K4 C2 Cheerful 0.19 0.75 0.58 

K4 C4 Witty 0.16 0.56 0.39 

K5 C1 Rowdy -0.03 -0.21 -0.08 

K5 C3 Brooding -0.25 -0.43 -0.21 

K5 C5 Volatile 0.09 -0.39 -0.09 

K5 C5 Aggressive 0.22 -0.48 0.12 

K5 C5 Tense 0.08 -0.56 -0.07 

K5 C5 Anxious 0.30 -0.30 -0.21 

Table 5.7: Emotion taxonomy obtained by clustering the MIREX Audio Mood Classifi-
cation task words using AVD values from Warriner’s list. 

As illustrated, the clusters obtained with AVD values significantly differ from the 
original data-driven taxonomy. Words such as passionate, witty and cheerful (C2) or 
intense and rousing (C5), among others, belong to distinct clusters (MIREX) but were 
now grouped together due to their spatial proximity. As stated before, these results 
should be taken with caution since eight words were left out and their addition would 
change the clustering results. Nonetheless, this does not change the major issue found: 
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several MIREX AMC words are in different clusters but psychology studies seem to place 
them close in terms of their emotional value. 

 

Figure 5.5: The five clusters obtained by clustering MIREX AMC words with Warriner’s 
AVD values (using k-means). 

 

To conclude, our experiments, based on Thesaurus synonyms, the updated AllMu-
sic similarity data and psychology studies, seem to suggest higher than expected inter -
cluster similarity in the MIREX AMC taxonomy and, thus, a new taxonomy and dataset 
should be proposed in future editions of the evaluation exchange. 

5.1.3. Conclusions and Uncovered Paths  

The experiments described in this section gave us valuable insights, uncovering possible 
paths that were explored in Chapter 4 in our goal to improve MER. First, it showed us 
that approaching MER as a dimensional problem using regression is still quite an intri-
cate problem, especially regarding valence regression. Also, the resources needed to cre-
ate a sizeable, high-quality dataset to it are high and unavailable to many researchers. 
Considering that the best performing categorical MER systems are still struggling with 
low number of classes (as shown by the results in the MIREX AMC task), we believe that 
to improve MER we first need to focus on improving classification in these cases. 

Secondly, our analysis also demonstrated several inconsistencies with the MIREX 
taxonomy, in addition to the previously identified ones, which tells us that: 1) maybe it 
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is time to update the MIREX AMC task with a newer and higher quality dataset; and 2) 
we should pursue music emotion classification with a different, better supported cate-
gorical taxonomy. 

5.2. Emotion-based Playlist Generation 

As part of our MER experiments, we built on our work with dimensional models, dis-
cussed in Section 5.1.1, and explored the problem of emotion-based automatic playlist 
generation (APG). As part of this work we built a computational prototype to demon-
strate the concept. 

Briefly, the rationale behind the approach is to create music playlists based on the 
Euclidean distance between songs on the Russell’s AV space. Such playlists can be gen-
erated using a seed song or using an emotional track (set of points in the AR space) 
obtaining the N songs closer to it/them. This approach and results are presented below. 

5.2.1. Feature Extraction and Emotion Modeling 

Following our dimensional experiment in Section 5.1.1, our APG experiments used the 
same dataset of 195 audio samples and AV annotations (Y.-H. Yang, Lin, Su, et al., 
2008). As in Section 5.1.1, we used an equal set of features, extracted with Marsyas, the 
MIR Toolbox and PsySound2 audio frameworks.  

The regression strategy was based on Support Vector Regression (SVR), since it 
achieved the best results in Yang’s study (Y.-H. Yang, Lin, Su, et al., 2008). Again, we 
used the libSVM library (Chang & Lin, 2011). A grid parameter search was also carried 
out to discover the best SVR parameters. As with the previous experiments, Forward 
Feature Selection and RReliefF (ReliefF variant for regression) were used for feature 
selection, while the performance of the regression models was measured with the R2 
statistics.  

5.2.2. Experimental Results 

As mentioned before, a regressor-based distance strategy was employed to evaluate 
playlist quality. In this method, distances are calculated using the predicted AV values 
returned by the regression models. The predicted distances were compared to the refer-
ence distances resulting from the real AV annotations.  

To this end, the dataset was randomly divided into two groups, balanced in terms 
of quadrants. The first, representing 75% of the dataset was used to train the regressor. 
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Next, the resulting model was used to predict AV values for the remaining 25% songs129. 
From this test dataset, a song is selected and serves as the seed for automatic playlist 
generation. Using the seed’s attributes, similarity against other songs is calculated. This 
originates two playlists ordered by distance to the seed, one based on the predicted and 
another on the annotated AV values. The annotations playlist is then used to calculate 
the accuracy of the predicted list, by matching the top 1, 5 and 20 songs. Here, we only 
count how many songs in each top are the same (e.g., for top5, a match of 60% means 
that the same three songs are present in both lists). The entire process is repeated 500 
times, averaging the results. 

Results obtained for playlist generation were very similar between the three audio 
frameworks. Several tests were run using all the combinations of features referred before. 
The similarity ranking was calculated using predicted values from the regressor. From 
all the tests, a slightly higher accuracy was attained using the FFS selection of features 
from the combination of all frameworks, with 6.2%, 24.8% and 62.3% for top1, top5 
and top20 respectively. Detailed results are presented in Table 5.8 (for details on the 
regression strategy and features see Section 5.1.1). The lower results in smaller playlists 
were mostly caused by the lack of accuracy when predicting valence. As previously stated, 
while FFS performed better, the number of features used is higher when compared to 
the RReliefF algorithm. As expected, best results were obtained with longer playlists, as 
normally used in a real scenario. 

In summary, the playlist generation and similarity analysis for top1 was low, averag-
ing 5% between all frameworks, with top20 presenting some reasonable results, of 
around 60%. Still, the results are very similar between feature selection algorithms to 
classify one as better suited. The same is observed in relation to frameworks, where the 
MIR Toolbox shows a slight advantage.   

This experiment demonstrated that such APG approaches are valid. Furthermore, 
together with the experiments in Section 5.1, it gave us a better understanding of the 
limitations in MER, namely the identification of the most important problem to address 
which was the development of novel acoustic features able to capture the relevant musi-
cal attributes identified in the literature, especially features better correlated to valence. 

As stated in previous studies (Y. E. Kim et al., 2010), the lyrical part of a song can 
have a great influence in the perceived emotion. The emotional response to the lyrics, 
obtained through natural language processing and commonsense reasoning, contributes 
to both the context and emotion classification of the song (Hu & Downie, 2010b; 
Meyers, 2007). As for playlist creation, it would be interesting to add some constraints 
regarding song ordering, for example, in terms of balance and progression. 

                                                        
129 This 75-25 division was necessary so that the validation set was not too short, as we want to evaluate playlists 

containing up to 20 songs. On the other hand, the 90-10 division was employed in our previous experiment 
for the sake of comparison with Yang’s results. 
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 Psy15 Psy44 MIR MAR ALL 

T
op

1 

All 4.2 ± 20.7 4.1 ± 18.6 3.6 ± 22.0 4.0 ± 20.7 4.2 ± 20.9 

FFS 5.6 ± 21.0 3.8 ± 18.6 5.2 ± 23.6 4.4 ± 19.8 6.2 ± 20.7 

RRF 5.1 ± 22.0 4.6 ± 19.0 5.6 ± 22.0 4.6 ± 22.6 5.2 ± 20.6 

T
op

5 

All 21.1 ± 18.1 20.9 ± 17.1 22.8 ± 19.0 18.1 ± 17.6 21.0 ± 17.8 

FFS 21.5 ± 18.3 21.2 ± 17.9 22.0 ± 19.3 19.8 ± 18.5 24.8 ± 18.3 

RRF 21.9 ± 18.1 22.1 ± 17.9 23.3 ± 18.4 18.7 ± 17.8 23.3 ± 18.4 

T
op

20
 All 61.9 ± 11.6 60.5 ± 12.3 62.7 ± 14.1 58.5 ± 13.6 60.7 ± 14.1 

FFS 62.0 ± 11.9 61.9 ± 12.4 62.5 ± 13.9 60.0 ± 13.6 62.3 ± 13.6 

RRF 61.0 ± 12.2 60.8 ± 12.8 61.7 ± 13.7 57.4 ± 13.0 61.6 ± 13.8 

Table 5.8: Regression-based automatic playlist generation results (in %). 

5.2.3. MOODetector Application 

Finally, we have also built a working prototype called MOODetector to analyze music 
emotion as well as to generate playlists based on a song or an emotion trajectory. The 
MOODetector application was developed using the Qt Framework130, a C++ application 
and UI development framework. It also uses Marsyas as part of the feature extraction 
logic, as well as the supervised learning algorithms offered by the libSVM library for 
emotion prediction. 

Figure 5.6 illustrates the user interface, which has five main components: i) the main 
window (where all the other components are); ii) the Russell’s plot (region highlighted 
with red); iii) the playlist view (blue region); iv) the multimedia controls (green region); 
iv) the instantaneous search bar (yellow region). 

                                                        
130 https://www.qt.io/ 
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Figure 5.6: MOODetector interface. Red is the Russell’s plane, green the multimedia 
controls, blue the playlist view and yellow the instantaneous search bar. 

 

Regarding the Russell’s plane, songs are positioned according to the estimated AV 
values using the processes described in the previous sections of this chapter. A color 
code is employed for song presentation in the plot: red, yellow, green and blue for the 
first, second, third and fourth quadrants, respectively. Additionally, the intensity of the 
color of each point (song) varies with the distance to the origin: lower if the song is close 
to the origin and getting higher as the distance increases. 

As this application is meant to work as a typical media player, it has the basic usual 
music playback capabilities: 

 Playback control of mp3 songs (pause, stop, forward, backward, shuffle); 
 Volume control, mute, seek bar, and time label; 
 Double click to play (in Russell’s plot and playlist view). 

It also has some more advanced music player capabilities like: 

 Instantaneous music search (by music name and artist); 
 Sort by song name, artist, arousal and valence values; 
 Simple management of the library (adding and deleting songs); 
 Music library statistics (library size, count by quadrant, analyzed songs, …). 

In the realm of mood detection, among other functions, this system can: 

 Automatically estimate AV values for songs added to the library 
 Allow the visualization of all or part of the music library in the Russell’s 

plot; 
 Navigate in the mentioned visualization using zoom and panning; 
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 Locate a song in the Russell’s plot by clicking on the playlist view; 
 See the numeric value of arousal and valence for a song; 
 Automatically estimate the emotion variation of a song (an extension of 

emotion regression by predicting values of smaller song segments, e.g., 1-
sec duration); 

 Display a visualization of the mood tracking of a song; 
 Allow the user to change the AV values of a song by drag and drop in the 

Russell’s plot, besides manual edition of those values; 
 Allow the user to reset one or all the changes of AV values. 

In regard to playlists we can: 

 Generate playlists based on one seed song (or point in the plane); 
 Generate playlists based on a desired mood trajectory path drawn by the 

user, according to the distance to the seed(s) in the plane; 
 Filter playlists via instantaneous search (can be combined with the previ-

ous); 
 Export the playlist to a m3u file. 

Playlist Generation 

As mentioned, the system allows three types of playlist generation: i) based on a single 
seed song (or point in the plane); ii) based on a desired mood trajectory path drawn by 
the user, according to the distance to the seed(s) in the plane; and iii) via instantaneous 
search (and combined with the previous two). 

Single seed mode 

In order to generate a playlist based on a single seed song, the desired seed is selected in 
the Russell’s plane. Then, the N closest songs, with a distance smaller than threshold, are 
added to the playlist (using the Euclidian distance). By default, the MOODetector sys-
tem uses N=20 and threshold=0.35 (these parameters can be configured by the user). In 
Figure 5.7 we can see the seed song used in the playlist generation (black circumference 
around it) and the resulting playlist. As it can be observed, it contains only 9 songs, 
according to the defined threshold. 
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Figure 5.7: MOODetector automatic playlist generation using a seed song. 

Path mode 

In this mode, the user draws a path in the Russell’s plot and the system computes the N 
closest songs to the path that have a distance less than threshold. This is done by evenly 
dividing the path into N points (i.e., reference points) and then calculating the closest 
song to each point, with the restriction that the corresponding distance should not ex-
ceed threshold. As before, by default, the system uses N=20 and threshold=0.35. This pro-
cedure is illustrated in Figure 5.8, where the black dots represent the reference points 
marking the path drawn by the user, while the color points are the resulting playlist. 
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Figure 5.8: MOODetector automatic playlist generation using path mode (reference 
points in black). 

Instantaneous search mode 

The user can also write in the search bar, which will automatically create playlists on the 
fly, by a song filtering process. If a song contains all the written words in any position of 
its title or artist name fields, the song is kept in the playlist; otherwise, it is removed. 
This mode can also be combined with both the single seed and path modes. 

Music Emotion Variation Visualization 

For each song, it is possible to visualize its emotion variations throughout time in the 
MOODetector prototype. In Figure 5.9, the smaller emotion tracking plot illustrates 
quadrant changes in the Russell’s plane across time. The same color code employed in 
the visualization of songs in the Russell’s plane is kept. However, for simplicity, only 
quadrant information is encoded in the color code, rather than exact AV information.  
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Figure 5.9: Visualization of the emotion variation of a song. 

MOODetector Reloaded 

The original prototype is currently being rewritten in Java to include a new user interface 
and a more accurate regression model, as shown in Figure 5.10. Both prototypes are (or 
will be, in case of the MOODetector Reloaded, still in development) at our website131. 

 

Figure 5.10: Main interface of the new MOODetector Reloaded prototype. 
                                                        

131 http://mir.dei.uc.pt/downloads.html 
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5.3. MER Multi-modal Approaches 

Several researchers have studied the influence of the lyrical content in music emotion 
recognition alone (He, Jin, Xiong, Chen, & Sun, 2008; Hu & Downie, 2010b; Malheiro 
et al., 2013) and in combination with audio signals (Mcvicar & Freeman, 2011; Y.-H. 
Yang, Lin, Cheng, et al., 2008). 

As part of this work, we also investigated multi-modal approaches, by combining 
different information sources such as audio and lyrics. This section details the process, 
from multi-modal dataset construction, feature extraction and classification and experi-
mental results. 

5.3.1. Dataset Construction 

This dataset has been presented in Section 3.2.2 (referred to as the CISUC Bi-modal 
dataset). To construct it, we started by collecting 200 song lyrics and the corresponding 
audio (30-sec audio clips). The criteria for selecting the songs were the following: several 
musical genres and eras; songs distributed uniformly by the 4 quadrants of the Russell 
emotion model. 

The annotation of the dataset was performed by 39 people with different back-
grounds. Each annotator classified, for the same song, either the audio (listening) or the 
lyric (by reading the text). During the process, subjects were instructed to: select the basic 
predominant emotion expressed by the audio / lyric (if more than one emotion was 
identified, he/she was told to pick the predominant one); assign values (between -4 and 
4 with a granularity of one unit) to valence and arousal. 

For both, audio and lyrics dataset, the arousal and valence of each song were ob-
tained by the average of the annotations of all the subjects. We obtained an average of 
6 and 8 annotations respectively for audio and lyrics. To improve the consistency of the 
ground truth, the standard deviation (SD) of the annotations made by different subjects 
for the same song was evaluated. Using the same methodology as in (Y.-H. Yang, Lin, 
Su, et al., 2008), songs with an SD above 1.2 were excluded from the original set. As a 
result, the final audio dataset contains 162 audio clips (quadrant 1 (Q1) – 52 songs; 
quadrant 2 (Q2) – 45; quadrant 3 (Q3) – 31 and quadrant 4 (Q4) – 34), while the final 
lyrics dataset contains 180 lyrics (Q1 – 44 songs; Q2 – 41; Q3 – 51 and Q4 – 44). Finally, 
the consistency of the ground truth was evaluated using Krippendorff’s alpha 
(Krippendorff, 2003, Chapter 11), a measure of inter-coder agreement. This measure 
achieved, in the range -4 up to 4, 0.69 and 0.72 respectively for valence and arousal. 
This is considered a substantial agreement among the annotators. As for the lyrics the 
measure achieved 0.87 and 0.82 respectively for valence and arousal. This is considered 
a strong agreement among the annotators. 
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The size of the datasets is not too large, however we think that is acceptable for 
experiments and is similar to other datasets manually annotated (e.g., (Y.-H. Yang, Lin, 
Su, et al., 2008) has 195 songs).  

Based on the lyrics and audio datasets, we created a bimodal dataset. We considered 
that a song (audio + lyrics) is a valid song to integrate this bimodal dataset, if the song 
belongs simultaneously to the audio and lyrics datasets and in both datasets the annota-
tion belongs to the same quadrant, i.e., we can only consider songs in which the classi-
fication (quadrant) for the audio sample is equal to the classification for the lyric sample. 
So we started from a lyrics dataset containing 180 samples and an audio dataset contain-
ing 162 clips, obtaining a bimodal dataset containing 133 songs (with audio and lyrics): 
37 songs for Q1 and Q2, 30 for Q3 and 29 for Q4. 

5.3.2. Feature Extraction 

In musical theory, the basic musical elements and characteristics are commonly grouped 
under broader distinct dimensions such as rhythm, melody, tone color and others as 
described in Section 2.3. In this experiment, we extracted the same 1701 audio features 
used in Chapter 4 as standard (baseline). 

As for lyric features, we used state-of-the-art features such as: bag-of-words (BOW) – 
unigrams, bigrams and trigrams – associated or not to a set of transformations, e.g., 
stemming and stop-words removal; part-of-speech (POS) tagging132 followed by a BOW 
analysis; 36 features representing the number of occurrences of 36 different grammatical 
classes in the lyrics (e.g., number of adjectives). We also used all the features based on 
existing frameworks like Synesketch (8 features), ConceptNet (8 features), LIWC (82 
features) and General Inquirer (182 features). In addition to the previous frameworks, 
we use features based on known dictionaries such as DAL (Dictionary of Affect in Lan-
guage) (Whissell, Fournier, Pelland, Weir, & Makarec, 1986) and ANEW (Affective 
Norms for English Words) (Bradley & Lang, 1999). Finally, we used features proposed 
by our team (Malheiro et al., 2018): Slang presence, which counts the number of slang 
words from a dictionary of 17700 words; Structural analysis features, e.g., the number 
of repetitions of the title and chorus, the relative position of verses and chorus in the 
lyric; Semantic features, e.g., dictionaries personalized to the employed emotion catego-
ries. 

                                                        
132 They consist in attributing a corresponding grammatical class to each word. 
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5.3.3. Experimental Results 

We conducted one experiment which is classification by quadrants (4 categories – Q1, 
Q2, Q3 and Q4). We used Support Vector Machines (SVM), since, based on previous 
evaluations, this technique performed generally better than other methods. The classifi-
cation results were validated with repeated stratified 10-fold cross validation (with 20 
repetitions) and the average obtained performance (F1-Score) is reported.  

We constructed first, both for audio and lyrics, the best possible classifiers. We ap-
plied, for each of the dimensions, feature selection and ranking using the ReliefF algo-
rithm. Next, we combined the best features of audio and lyrics and constructed, using 
the same prior terms, the best bimodal classifier. 

We can see in Table 5.9 the performance of the best model for lyrics, audio and for 
the combination of the best lyric and audio features. The fields “# of Features”, “Selected 
Features” and “F1-Score” represent respectively the total number of features, the number 
of selected features and the F1-Score score attained after feature selection. In the last 
line, the total number of bimodal features (1065) is the sum of the selected lyrics and 
audio features (647 and 418), while the while 1057 is the number of the original 1065 
feature set, selected using ReliefF. 

 

Classification by Quadrants # of Features Selected Features F1-Score 

Audio 1232 647 79.3% 

Lyrics 1701 418 72.6% 

Bimodal 1065 1057 88.4% 

Table 5.9: Summary of the best classification results by quadrants. 

As can be seen, the best lyrics-based model achieved better performance than the 
best audio-based model (79.3% vs 72.6%). This is not the more frequent pattern in the 
state-of-the-art, where usually the best results are achieved with the audio. This happens 
for example in (Laurier et al., 2008). To the best of our knowledge, the work by Hu et 
al. (2009) is one of the only studies where lyrics performance supplants audio perfor-
mance, but only for some of the emotions. This suggests that our new lyrical features 
have an important role for these results. 

As we can see, both dimensions are important, since bimodal analysis improves sig-
nificantly (at p<0.05 Wilcoxon Test) the results of the lyrics classifier (from 79.3% to 
88.4%). Furthermore, the best bimodal classifier, after feature selection, contains al - 
most all the features from the best classifiers of lyrics and audio (1057 features in 1065 
possible features). This suggests the importance of the features from both dimensions. 
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The main conclusion of this experiment is that, unlike most of the similar works in 
the state-of-the-art, lyrics performed better than audio. This suggests the importance of 
multi-modal approaches and also exploring new lyric features. Another conclusion is 
that bimodal analysis is always better than each dimension separately. 

 

 

  

 

 
 



 

251 

Chapter 6  
 
CONCLUSIONS AND PERSPECTIVES 

fter reaching the end of this work, the most indisputable finding attained is that 
our contribution is only one more step in the long journey of music emotion 
recognition. Despite the inherent difficulties of a research topic aiming to bridge 
subjective fields such as human emotions and music with computer science, we 

confirmed yet again that the task is feasible and improvements are possible, as demon-
strated by our modest contribution. Moreover, despite distant, several possible paths to 
improve MER have been uncovered, from novel features (e.g., related with musical 
form), to the exploration of lyrics and voice acoustics in addition to audio as sources. 

In this chapter, we present a general overview of the work carried out in this thesis, 
as well as a summary of the contributions derived from it. Building on these, and con-
sidering the problems still open in the field, we draw some of the possible lines of re-
search to advance the music emotion recognition field. 

6.1. Summary and Conclusions 

Set at the beginning of this dissertation, our general goal was to tackle some of the ex-
isting limitations in emotion recognition from music audio signals. The majority of the 
research in the field has been dedicated to the creation of better datasets and proposing 
different approaches based on novel machine learning techniques. We chose to tackle 
the problem from a different vector, by looking into the audio signal, the part that has 
been somewhat neglected. Thus, our main contributions consist of a knowledge base, 
which relates musical dimensions with known emotional responses and a set of novel 
emotionally-relevant audio features, shown to improve emotion classification results; 
besides, a novel dataset and respective construction methodology were proposed so as 
to attain the mentioned main goal. 

This work began with an assessment on the concept of emotion and how psycholo-
gists have defined and classified human emotions over the years. From this, we verified 
that, despite the inherent subjectivity and lack of consensus, emotion taxonomies can 

A 
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be divided into two approaches: categorical and dimensional. In the former, emotions 
are represented by classes (e.g., words), leading to problems such as the choice of classes 
to use and how different persons may use different but close words to describe similar 
emotions (or the opposite). Dimensional models were later proposed to solve these is-
sues, by using two or three dimensions (e.g., arousal and valence) to define an emotional 
space and defining each point there as a different emotional state. Despite the reduced 
ambiguity, this model introduces additional complexity, since humans use words rather 
than points in space to describe emotions. 

Next, a broad review of the music emotion recognition field was conducted. This 
gave us a better understanding of the typical approaches, their existing limitations and 
some possible ideas to be considered. Also, while dimensional MER approaches have 
gained ground, mostly due to its practicality, the observed results are weak, as are the 
ones obtained in “simpler” problems with categorical models. Moreover, the features 
used are mostly from previous information retrieval problems (e.g., Mel-frequency 
cepstral coefficients used for speech recognition) and the datasets suffer from several 
problems, from being private, to having low-quality annotations and being small in size. 
Finally, a great amount of work has focused on different machine learning techniques, 
with support vector machines or derivatives being generally the best performing algo-
rithms. Two main issues were identified with the review: very few studies have been 
dedicated specifically to the audio features used; and simpler classification problems 
with low granularity have not been solved, thus approaching MER as a regression prob-
lem may be considered as a rather hasty decision. 

To tackle the first abovementioned issue, we reviewed relations between music, emo-
tional responses and computational audio features. This organized knowledge is one of 
our major contributions. To this end, we first reviewed musical characteristics, consoli-
dating them into one of eight musical dimensions: rhythm, harmony, melody, dynamics, 
tone color, expressive techniques, musical texture and musical form. Next, we reviewed 
musicological studies linking these to specific emotional responses. Finally, the audio 
features available in widely used audio frameworks were analyzed and catalogued into 
one of the eight dimensions. As a result, we verified that very few audio features are 
available to musical texture, expressive techniques and musical form dimensions. Still, 
these dimensions have been related to specific emotions. 

Founded on this knowledge, we proposed a set of novel audio features related with 
melody, dynamics, rhythm, musical texture and expressive techniques. These are built 
on previous transcription work, going from the audio signal to MIDI notes, capturing 
information related to articulation, vibrato, glissando, texture types, among others. To 
assess their importance, a novel dataset of 900 30-sec audio clips was created with a semi-
automatic process proposed by us. The dataset is annotated in terms of Russell’s  quad-
rants, containing a myriad of metadata (e.g., genres, artist and title, dates, and so on) 
gathered in a well-documented process. 
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The classification results demonstrated that our features were emotionally-relevant, 
being consistently selected among the best features for each of the tested problems – 
quadrants, arousal and valence classification. Moreover, we were able to extract valuable 
insights about which features are related with specific emotional states. For illustration, 
characteristics such as texture type, the signal complexity and characteristics of the voice, 
extracted without the accompaniment seem very relevant to solve the current major 
problem: distinguish calm from sad songs (low arousal). 

Besides this main research, we also performed other experiments involving the eval-
uation of different MER strategies (e.g., the dimensional approach) and datasets, the 
creation of emotion-based music playlists based on emotion regression models and 
multi-modal approaches, combining audio and lyrics sources. 

To sum up, while our proposed features and uncovered insights are interesting and 
may lead to new ideas to future research, having a good performing solution that is used 
in real life scenarios is still years ahead. 

6.2. Perspectives for Future Research 

Regarding the future work, our general goal is to propose additional solutions to im-
prove the current state of the audio music emotion recognition field. To this end, we 
will use the knowledge acquired during the last years, proposing novel features, namely 
exploring musical form, as well as other solutions. 

 Even though the development of novel features is a laborious task, we see it as one 
of the key requirements in order to improve MER and still understand the existent re-
lations (something lost in a deep learning approach). In that sense, this work already 
identified musical form as one of the remaining musical dimensions to be captured by 
computational algorithms. Exploring musical form of a song requires temporal analysis 
of the data, searching for patterns and similarity between groups of notes, looking for 
what may be a chorus, intro and outro. Therefore, as this analysis is typically performed 
in complete songs, it was not exploited at this stage of our research. To capture musical 
form, some possible solutions could use similarity matrices or autocorrelation between 
notes close together. One additional strategy that might be worth exploring is the usage 
of clustering techniques with note information, as well as additional info possibly related 
to form changes (e.g., rhythm and dynamics). Here, the resulting clusters of notes could 
indicate similar structures (e.g., a chorus), while the time information of these notes 
could help split a cluster in different occurrences of such event over time. 

Additionally, this work confirmed the importance of other information sources 
such as the singing voice to the problem and demonstrated that such information may 
be especially relevant to distinguish sad from calm music. This has been pointed out in 
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a previous study, in which the authors noted that the voice signal relevance was lost 
when mixed with the accompaniment (Xu et al., 2014). Moreover, the lyrical content 
has also been pointed as relevant to discern between negative and positive valence emo-
tions (Malheiro et al., 2018). Given this, we would like to continue exploring our idea 
of emotion prediction using source separated voice signals and additionally study the 
possibility of transcribing lyrics directly from the source-separated voice signal. Although 
being two open problems, some interesting advances have been made recently in both 
fields with the massification of deep learning strategies. First, several new papers have 
approached source separation recently. Secondly, a very recent work (Gupta et al., 2018) 
has built on automatic speech recognition services such as Google Speech-to-Text engine 
and proposed methods to transcribe and align lyrics to solo-singing vocals. 

Furthermore, we want to study the importance of our proposed system in other 
approaches such as dimensional emotion recognition, music emotion variation detec-
tion (where musical form might be particularly relevant) and the construction of linguis-
tically interpretable rule-based models (to make the relations among features more ex-
plicit). Also, the created knowledge will be added to our emotion detection prototype. 

We cannot conclude without a reference to deep learning algorithms. Over the last 
years several variations of deep neural networks have been revolutionizing the infor-
mation and communications technology world, thanks to the advances in computing 
power, especially GPUs and the amount of data captured nowadays. Such solutions are 
also improving the MIR field, as can be seen by the influence of the subject in this year’s 
ISMIR (2018) conference publications. Thus, we are also interested in exploring such 
solutions to emotion recognition. Still, such approaches raise several points that must 
be considered. First, deep learning solutions require massive amounts of data and such 
datasets are usually limited to big companies (such as Spotify, Pandora or Last.FM in 
this field). Secondly, their usage is limited to the quality of data, in other words, a model 
prediction can be only as good as the data being used. Unfortunately, large MER datasets 
have been known to be problematic due to the associated subjectivity and complexity of 
data collection. Finally, deep learning models are opaque in the sense that the extracted 
features are often difficult to interpret, which, from a music psychology point of view, is 
limiting.  
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APPENDIX A 
 
MUSICAL DIMENSIONS ANALYSIS 

A condensed version of the existing musical dimensions was presented in Section 2.3. 
This section extends it with additional details on the subject. 

A.1. Melody 

Melody can be defined as a horizontal succession of pitches (perceptual correlate of fun-
damental frequency) or musical tones, perceived by listeners as a single musical line. For 
a condensed introduction to melody see Section 2.3.1. 

Melodic Arrangement 

Melodies are usually composed of several musical phrases, which are then repeated and 
arranged to compose the musical piece. The melodic arrangement describes this organi-
zation of melodies in the song. The most basic arrangement in a musical piece is to have 
one melody followed by another after that (one after another). It is also possible to have 
multiple melodies at the same type. One of this cases is the counter-melody, where a 
secondary melody is played at the same time as the primary, without clashing musically. 

Melodic Movement and Contour 

The arranged melody contains movement – the direction followed by the patterns of 
notes that compose it, which on its core are sequences of higher, lower or the same 
pitch. This movement can be smooth, with transitions between notes close in the scale, 
or rough, with longer intervals, sequences of the same notes or ascending and descend-
ing patterns, originating a specific shape or contour. Regarding the movement (or mo-
tion), several distinct types exist. Namely, stepwise motion based on small steps (e.g., 
using major 2nd and minor 2nd intervals), intervallic leaps or skips (e.g., series of repeating 
larger intervals) or stepwise and skipwise leaps. 
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Melodic contours are the shapes created by the melody of a musical piece, as illus-
trated in Figure A.1. Achieving a specific melodic contour is not usually an objective the 
composer aims for. Nonetheless, they can be analyzed and compared when discussing 
the melody of songs. 

 

Figure A.1: Example of a melodic contour which can be described as an arch, ascending 
and then descending. 

The typology of melodic contours was studied by Charles Adams (1976). In his 
work, the author defines melodic contours “as the product of distinctive relationships 
among the minimal boundaries of a melodic segment”, where melodic segments are “any 
series of differentiated pitches”, while minimal boundaries refer to the “pitches which 
are considered necessary and sufficient to delineate a melodic segment, with respect to 
its temporal aspect (beginning-end) and its tonal aspect (tonal range)”. (Adams, 1976, p. 
196). 

As a result, Adams defines three features that are the basis to classify the 15 melodic 
contour shapes shown in Figure A.2, which are: 1) the slope of the contour (S); 2) a 
deviation (change of direction) in the slope of the contour (D); and 3) the reciprocal (or 
inverse) of deviation in the slope of the contour (R). 
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Figure A.2: The 15 melodic contour types according to Adams (Adams, 1976, p. 199). 

Pitch 

Pitch is a perceptual property of sounds which makes it possible to rate them as higher 
or lower in terms of frequency (Plack & Oxenham, 2005, p. 2). Pitch is related with 
frequency but not a direct synonym, rather a subjective psychoacoustical attribute of 
sound (Hartmann, 1997, pp. 145, 284, 287). 

An instrument or voice has a definite pitch when its sound is tuned and distinct, 
such as the singing voice. On the other hand, a sound with indefinite pitch is an un-
tuned sound such as the speaking voice; it is harder to identify and notate since it does 
not follow specific notes.   

https://en.wikipedia.org/wiki/Psychoacoustics
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Pitch Range 

The pitch range of a musical instrument is the interval of notes (or distance in terms of 
pitch), from higher to lowest, that such instrument can play. As an example, a tuba has 
a range typically from D1 to F4, while a flute (in C) from C4 to D7 and a piano from 
A0 to C8 (Read, 1953, pp. 11–28). 

When describing a musical piece and its melody, the pitch range is the distance 
between its lowest and highest note. This range can be narrow or wide, as illustrated in 
Figure A.3.  

 

Figure A.3: Examples of different pitch ranges: narrow range in the above musical score 
and wide below. 

Register 

The register is the relative “height” of a sound, note, melody or instrument (including 
the human voice). Different instruments have different registers, which can be roughly 
classified from high to low, where higher registers indicate a higher pitch. The combina-
tion of different instruments and their ranges in a musical piece enriches it by increasing 
contrast and variety. 

As for the human voice, its register can go from high, attained by whistling or sing-
ing in falsetto to vocal fry register (creaky voice), the lowest register possible. The singing 
voice is normally classified into distinct voice types, from Soprano to Bass as presented 
in Table A.1. 

Melodic Embellishments  

Several features are also used to embellish the melodies in a musical piece. This is often 
accomplished by using the ornamentation techniques previously described as part of 
expressive techniques (e.g., trills, glissandos or mordents). 

Moreover, other features are also used to connect melodies. As an example, riffs and 
ostinatos consist in repeated melodic patterns throughout the piece. Other melodic frag-
ments are sometimes used to unify different parts of the musical piece, namely motifs, 
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sequences and repetitions, each with subtle differences. Such embellishments are cre-
ated using characteristics similar (or equal) to the ones described in other dimensions 
(e.g., using ornamentations, described Sections 2.3.6 and A.6). 

 

Category Sex Classical 
(McKinney, 1994) 

Non-classical 
(Peckham, 2005) 

Soprano Female C4-C6 C4-C6 

Mezzo-soprano Female A3-A5 A3-A5 

Contralto Female F3-F5 F3-E5 

Countertenor Male E3-E5 - 

Tenor Male C3-C5 B2-A4 

Baritone Male A2-A4 G2-F4 

Bass Male E2-E4 E2-E4 

Table A.1: Different voice types for classical and non-classical singers. 

A.2. Harmony 

If melody is said to be the horizontal part of music, harmony refers to its “vertical” 
aspect. That is, the sound produced by the combination of various pitches (notes or 
tones) in chords. For a condensed introduction to harmony see Section 2.3.2. 

Harmonic Rhythm or Tempo 

Harmonic rhythm is the rate at which the chords change (how fast the harmony moves), 
in a musical composition, in relation to the rate of notes. That is, the “perception of 
rhythm that depends on changes in aspects of harmony” (Swain, 2002, p. 4). A song may 
have a slow or fast harmonic rhythm, which may not be directly related with its melodic 
rhythm. As an example, a musical piece with chords changing only every measure, but 
with several notes per measure will have a slow harmonic rhythm and fast melodic 
rhythm. 

Harmonic Progression 

Harmonic (or chord) progressions are series of musical chords, serving as the foundation 
of harmony in western music. These progressions are typically expressed using either 
roman numerals or the name of the chords (e.g., iii, IV, V, in the key of C representing 
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E minor, F major, G major).  

The most commonly used chords in western music are called triads, which contain 
three notes: 

 the root note 
 the third – a second note with an interval (the difference in pitch between 

the two notes) of a third above the root (minor third being 3 semitones and 
major third being four semitones) 

 the fifth – a third note, in this case at an interval of a third from the second 
note 

Simple chord progressions are usually based on sequences of these triads and pre-
sent in all types of music. Other progressions, using chords with other seventh and ex-
tended chords (triad chords with related notes added on top) are often used in complex 
progressions, namely in Jazz music.  

Modulation 

Modulation consists in altering the key (or key center) in a musical piece, i.e., the tonic 
key of the song. The modulation to a new key can be used to create interest in the song 
and thus is often used during the climax of a song.  

Harmonic Perception 

Harmony is based on consonance, often described in terms of its relative harshness. 
Several reasons contribute to create a consonant chord: the lack of perceptual roughness, 
which happens when the frequency components of the sound (partials) fall outside a 
specific bandwidth related to the human ear’s ability to distinguish frequencies; when 
the chord spectrum is similar to a harmonic series (the spectrum of each sound is a 
multiple of the lowest frequency), creating a perceptual fusion of the chord; and finally, 
the familiarity, with the chords heard more frequently sounding more consonant. 

While consonant sounds are pleasing, due to the abovementioned reasons, disso-
nant sounds are heard as a “clash” of notes, resultant for instance of a harsh -sounding 
harmonic combination. Such dissonant sounds are sometimes used (e.g., in contempo-
rary art music) to create "tension" in a song, which is often "released" by changing to 
consonant chords. 

The perception of dissonant sounds as unpleasant is mostly found in Western music 
and listeners, where diatonic scales, major and minor tonalities dominate. The compo-
sition of music using harmonies arranged in progressions is “one of the major differ-
ences between Western and much non-Western music” (Malm, 1995, p. 15).  
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Similarly to the previous dimensions, composers can add features related with har-
mony to enrich the musical piece, namely, the repetition of chordal patterns (e.g., har-
monic ostinatos and riffs) or sustaining a specific note (e.g., drone effect). 

A.3. Rhythm 

Rhythm represents the element of “time” in music, the patterns of long and short sounds 
and silences found in music. For a condensed introduction to rhythm see Section 2.3.3. 

Rhythm Types 

As the name implies, rhythm types describes how the rhythm “is”. Typically it can be 
characterized with words such as simple or complex, but also as regular or irregular.  

As an example, a steady beat at a constant interval is said to have a “regular rhythm”. 
Such a feature is commonly found in many of the mainstream music and helps the 
audience to anticipate and remember the song. Irregular rhythm on the other hand is 
often used for expression, breaking from the expected pattern. 

Note Values and Rests 

A note value in music indicates its length or duration. These note values are not abso-
lute, but relative to each other, either longer or shorter. The rhythm of a musical piece 
is constructed by the arrangements of the various notes and silence values. Table A.2 
shows the representation of the most common notes and silence values. 

 

 English Name (American) Value Note Rest 

Long Breve 
(double note) 

8 beats  

 

 

 

Long Semibreve 
(whole note) 

4 beats  

 

 

 

Long Minim 
(half note) 

2 beats  

 

 

 

Short Crotchet 
(quarter note) 

1 beat  

 

 

 

Short Quaver 
(eighth note) 

½ beat  
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Short Semiquaver 
(sixteenth note) 

¼ beat  

 

 

 

Short Demisemiquaver 
(thirty-second note) 

⅛ beat  

 

 

 

Short Hemidemisemiquaver 
(sixty-fourth note) 

1/16 beat  

 

 

 

Table A.2: Common notes’ and rests’ values and symbols. 

Rhythmic Devices 

In music, rhythmic devices are characteristics used in musical pieces that define their 
shape. Several distinct rhythmic devices exist, some of which are presented in Table A.3. 

 

Rhythmic device Description 

Ostinato A constantly repeated musical phrase in the same instrument or 
voice. 

Syncopation An interruption of the general flow of the rhythm by a beat that falls 
in an unexpected place. 

Accent Accentuation (or stress) of particular notes for expression. 

Polyrhythm Two or more rhythms with distinct pulses played simultaneously. 

Cross rhythms Two or more rhythmic patterns with conflicting metres played sim-
ultaneously. 

Hemiola Specific syncopation pattern with two beats played in the time of 
three (or the opposite). 

Riff A repeated (melodic or chordal) pattern that is usually a few bars in 
length and typically observed in jazz or rock genres. 

Repetition Reappearance of a specific pattern during the course of the piece of 
music, serving as a unifying feature. 

Diminution Repetition of a pattern where half duration notes are used. 

Augmentation Repetition of a pattern where double duration notes are used. 

Rock beat Typically stressed drum pattern, very common in pop rock songs. 

Table A.3: Examples of some known rhythmic devices and their descriptions. 

Some rhythmic devices are more common in specific genres and thus often help 
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defining them. As an example, rock and jazz usually contain ostinato, riff, repetition, 
syncopation, accents, rock beat and others. Composers up to the baroque commonly 
used hemiola, repetition and accents. Still, many devices such as repetition, accents, cross 
rhythms, polyrhythms, diminution and augmentation are common in most genres. 

Rhythmic Layers 

Rhythmic layers consist of groups of different “performing media” such as instrumental 
or vocals. One of the first steps in music analysis starts by identifying the number of 
rhythmic layers, followed by the differentiation of the instruments present in each one. 

Duration 

The duration, or the amount of time, a specific sound or silence lasts (e.g., how long a 
note, phrase or composition is. "Duration is the length of time a pitch, or tone, is 
sounded" (Benward & Saker, 2008, p. xiv). 

Bar 

Also known as measure, the bar is a division of music. It represents a segment of time 
corresponding to a specific number of beats, where each beat is represented by a specific 
note value. In music notation, the bar limits are indicated by bar lines and the number 
of beats is normally specified at the beginning of the score by the time signature (see 
metre definition, below). 

Beat 

The beat is the underlying steady pulse (regularly repeating event) in a piece of music. It 
is the basic unit of time of the mensural or beat level (Berry, 1976, p. 349). 

Metre 

As Benward et al. defines it, metre is "a regular, recurring pattern of strong and weak 
beats. This recurring pattern of durations is identified at the beginning of a composition 
by a meter signature (time signature).” (Benward & Saker, 2008, p. 10). The time signa-
ture is normally represented as two numbers, one above the other. The top number 
indicates the number of beats in a bar, while the bottom one is an indication of what is 
considered a beat (based on note values indicated in Table A.2). For instance, a time 
signature of 3/4, indicates a metre of three beats per bar, divided using crotchet beats 
(based on the American name – quarter note). 

The most common metre types are: duple metre, with two pulses per bar, where the 
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first beat is accented (e.g., time signatures such as 2/2 or 2/4); triple metre, with three 
pulses and accentuation on the first beat (e.g., 3/4); and quadruple metre, with four 
pulses per bar where the first and third beats are accented (e.g., 4/4). Time signatures 
can be either simple or compound, depending on the division of beats per bar. As an 
example, a time signature of 3/4 is considered a simple triple. “Triple” refers to the 
metre as having three beats (pulses) per bar, while “simple” states that each of these beats 
can be divided into two notes. On the other hand, beats in a compound meter are di-
vided into three notes, always using a dotted note as its beat. As an example, a time 
signature of 6/8 is considered compound duple, meaning it has two beats per bar, and 
each of these beats can be divided in three notes. Both cases are illustrated in Figure 
A.4. Typically, compound time signatures will have 6 (duple compound), 9 (triple com-
pound) and 12 (quadruple compound) as the top number. A musical piece may also 
have mixed meter, where different time signatures are present or no meter at all. 

 

Figure A.4:  Mixed meter showing compound versus simple time signatures133. 

Tempo 

Tempo represents the speed of the beat, and thus the speed or pace of a musical piece. 
It is described in several different ways such as with a range of words (e.g., “fast”, “ada-
gio”, “slowly” or becoming faster or slower). In classical music it is often designated by 
Italian terms such as largo, adagio, andante, moderato, allegro or presto, all relative to each 
other, indicated at the beginning of the musical piece. Tempo is usually measured in 
beats per minute (bpm). 

A.4. Dynamics 

Dynamics represents the variation in loudness or softness of notes in a musical piece. 
For a condensed introduction to dynamics see Section 2.3.4. 

                                                        
133 Image source: lesson 15 (Simple and Compound Meter) from musictheory.net 
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Dynamic levels 

The different volume levels in a musical piece are called its dynamic levels. When writing 
a song, the composer inserts dynamic markings in a music score to inform the performer 
how a specific passage should be played (e.g., louder). These markings are typically Italian 
terms that represent varying degrees from very soft to very loud. The two basic indica-
tions are forte, represented with an f, meaning “strong” and piano, p, for “soft”. Steps 
between these two levels can be signaled with the word mezzo, meaning “half” (e.g., mezzo-
forte). Extremer values are indicated by multiple f or p values, such as fff for fortississimo. 
Table A.4 summarizes some of these values. 

 

Name  Letters  Level 

fortississimo fff very very loud 

fortissimo ff very loud 

forte f loud 

mezzo-forte mf semi-loud 

mezzo-piano mp semi-soft 

piano p soft 

pianissimo pp very soft 

pianississimo ppp very very soft 

Table A.4: Scale of common dynamic markings. 

Accents and changes in dynamic levels 

In addition to changing the dynamics for a specific part using the abovementioned 
terms, it is also common to have progressive subtle changes to louder or softer levels. 
These changes are usually named crescendo, for a gradual increase in loudness and decre-
scendo, for the inverse (gradually getting softer).  

It is also possible to change the dynamic level of a single note or sound instead of a 
larger section. This is accomplished by using accents such as sforzando, meaning forced, 
played with sudden emphasis. Table A.5 presents some of the available markings, which 
are then illustrated in the musical score in Figure A.5. 

 

Name Symbol Description 

Crescendo cresc. or  Increasing in loudness 

Decrescendo decres. or  Decreasing / getting softer 

Sforzando, sforzato, forzando sfz, sf or fz Sudden emphasis 
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or forzato 

Subito sub. Suddently 

Table A.5: Most common accents and dynamic level changes. 

 

Figure A.5: Passage of String Quartet op. 3 (2nd movement of violin II) by Alban Berg, 
containing sforzatos (sfz) and sforzattissimos (sffz), as well as decrescendos and accent 
marks in specific notes. 

 

It can be argued that elements such as accents can be classified as articulation mech-
anisms and thus should be placed in the expression techniques dimension (see Section 
2.3.6). As stressed before, many of the musical attributes touch several musical categories 
and thus this organization reflects our view. 

A.5. Tone Color or Timbre 

Tone color, also known as timbre, refers to the perceived sound quality (properties) of 
a sound (e.g., a musical note). For a condensed introduction to tone color see Section 
2.3.5. 

Sound Envelope 

Sound is the result of moving air (or other medium) particles. More precisely, playing 
an instrument (such as hitting a drum) generates vibration which creates waves of air 
particles that travel from the sound source through the air to the listener’s eardrum. 

Two key components make the sound wave: 1) frequency – related to the length of 
the wave, or in other words, the number of cycles it completes in a second; and 2) am-
plitude – related to the height of the sound wave. The frequency defines the sound’s 
pitch, which can be low frequency, caused by slower vibrations, and high pitch, with 
shorter, faster vibrations. The amplitude is related to the sound’s volume, as in a sound 
being classified from quiet to loud. Volume is largely a subjective term, related with 
level, which is an objective measure of sound pressure – the difference from normal air 
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pressure caused by the sound travelling in the air. 

 

Figure A.6: Spectra of middle C played on a flute, piano and trumpet (D. Davis, 2002). 

 

Sounds are defined by their pitch. For example the A4 musical note has a frequency 
of 440Hz, or 440 oscillations per second. However, such pure sounds are synthetic, and 
are not usually found in the natural world. The same note produced by a musical instru-
ment is richer, made of a sum of distinct frequencies. The lowest frequency produced is 
normally the fundamental frequency, used to identify the note. This frequency is many 
times, but not always, the frequency heard by the listener as dominant. Above it we have 
overtones, frequencies that are greater than the fundamental, some of which are har-
monics. The harmonics are series of frequencies which have frequencies multiple of the 
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fundamental. As previously noted, this harmonic series forms a spectral envelope which 
varies across instruments and helps distinguish them, by influencing the tone color, as 
illustrated in Figure A.6. 

Waveform Envelope 

The second aspect influencing tone color is the envelope of the sound waveform, which 
can be described as the overall amplitude structure of the sound – the “envelope” in 
which the sound wave fits, as illustrated in Figure A.7 in red. The envelope comprises 
four stages: the attack, decay, sustain and release, thus named ADSR envelope. 

 

Figure A.7: Representation of the ADSR envelope, in red. 

 

The tone color of a sound is influenced by three key factors: the material of the 
instrument or voice; the techniques employed in producing the sound; and the layers of 
sound and the effects the sound has on the music. 

Instrument Materials 

The materials, shape and dimensions of a musical instrument have great implications in 
the produced sound, changing its tone color. Since the beginning of humankind, hu-
mans have used any possible material found in nature to create music, from wood or 
stones to animal parts such as shells, bones and skin (Rault, 2000, p. 9). 

Most instruments can be organized into six groups according to their built material, 
as represented in Table A.6, within which certain sound similarities are present: elec-
tronic, metal, skin, string, wood and the vocal tract (not a material in the sense of the 
remaining five). 

 

Material Description / examples 

Electronic Sound is produced using electronic circuits, such as the ones in 
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a musical keyboard and other musical controllers and synthesiz-
ers. 

Metal Instruments made of metal include (almost) all brass instruments 
such as trumpets, horns, trombones or tubas. Many other instru-
ments in different families use metal, such as bells, xylophones, 
cymbals or even the musical triangle. 

Skin Skin is mostly associated with percussion instruments such as 
drums, tympani, djembes or tambourines. 

String Sound is produced by vibrating strings. Some well-known exam-
ples are guitars, harps, pianos and violins. 

Wood Woodwind instruments are a subgroup of instruments from the 
wind instruments, which includes wood flutes, pan flutes or bag-
pipes. Wood is not exclusive to wind instruments; other examples 
are percussion instruments, such as wooden xylophones, claves, 
musical wood blocks and others. 

Vocals All the sounds generated by the vocal tract. 

Table A.6: Different materials used to produce sound and music. 

 

Many musical instruments are complex, made of multiple materials from distinct 
groups. As an example, a drum can be made of skin, wood and metal, while a violin also 
uses wood and metal in addition to strings. Still, in each of them the sound is produced 
and primarily influenced by one of the materials.  

Playing Methods 

The sound produced by a musical instrument is not only influenced by its material. 
Other factors, such as the method used to produce the sound are also important. The 
sound produced by a guitar, violin or piano is generated by the vibration of its strings, 
however, the three use distinct playing methods. While guitar strings are plucked by the 
guitar player, a violinist uses a bow, scrapping the violin’s strings. A piano player, on the 
other hand, presses a key, which drives a hammer to hit one of the piano strings.  

The methods used to produce sound from instruments can be grouped as follows: 

 hitting (e.g., drums) 
 blowing (e.g., flute) 
 shaking (e.g., maracas) 
 scraping (e.g., violin) 
 plucking (e.g., guitar) 
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Instruments and Voices’ Types 

The source of a sound can be a musical instrument, a voice and also an unconventional 
source (whistling, traffic, and so on). Regarding musical instruments, several distinct 
classification schemes have been devised over the centuries (Kartomi, 1990), based on 
their materials and more recently on the sound production methods. 

Nowadays, one of the reigning classification systems is the western classification, 
applying mostly to musical instruments of western tradition. Western musical instru-
ments can be broadly classified into three groups: 

 Percussion (e.g., drums) 
 Strings (e.g., violin) 
 Wind (e.g., flute) 

These categories are sometimes further divided into subgroups, for instance dividing 
strings according to the playing method into plucked strings or bowed strings. A com-
mon example is the differentiation made in classical music of wind instruments into 
either: woodwind instruments, for those containing a reed (mouthpiece) to produce the 
sound (e.g., flute); or brass instruments, where the air is set in motion directly by the 
lips of the performer (e.g., trumpet). 

Some instruments are hard to properly classify into these three groups (e.g., piano 
and some non-western traditional instruments). As an example, the piano contains 
strings, which are struck by hammers, thus opening the debate of whether it should be 
considered a percussion or strings instrument. 

Both instruments and voices can also be further classified by their musical ranges 
when compared to other instruments in the same family, as previously described in the 
melody/register section. As an example, saxophones can be classified into several groups 
such as soprano, alto, tenor, baritone or bass saxophones. 

Combinations and Types of Sounds 

In music, sounds can be divided into acoustic or electronic. An acoustic sound is non-
electric, a sound that is not created, modified or enhanced electronically. The sound is 
mechanical and thus vibration is needed to create it. On the other hand, electronic 
sounds are either produced or modified by electronic means. They can be created using: 
raw sounds that are modified electronically, such as an electric guitar; or from a source 
that creates the sound electronically, such as a synthetizer or MIDI. 

Most of the musical pieces are a combination of several sound sources such as dif-
ferent musical instruments and voices. These instruments are often organized in layers, 
each containing one or more instruments, which have distinct roles (e.g., melodic or 
rhythmic). These are the basis of musical texture, the dimension described in Sections 
2.3.7 and A.7. Various well known combinations of instruments and voices exist and 



Appendix A.   Musical Dimensions Analysis 309 

 

have specific names such as ensembles (group of several instruments), orchestras (large 
groups), bands, choirs and smaller specific ensembles such as Jazz trios, quartets and 
quintets. 

A.6. Expressive Techniques 

Expressive techniques refer to the way a performer plays a musical piece, specifically the 
techniques used by him to create the musical detail that articulates a style or interpreta-
tion of a style. For a condensed introduction to expressive techniques see Section 2.3.6. 

Tempo changes 

Although tempo was presented as an element related to rhythm, we know that many 
dimensions of music overlap. Here, the tempo, and especially its changes over time, may 
also affect the expressivity of music. Changes in tempo can normally be described as: 

• Gradually getting faster or slower 

• Instantly slowing down or getting faster 

• Returning to the original speed 

Stylistic indications 

Stylistic indications consist of terms used by composers to indicate how a musical piece 
should be played by the performer. These indications affect the style of music, helping 
defining its genre. 

Such indications are normally given by single words or even phrases describing how 
specific sections of a musical piece are to be played. Some common Italian terms are 
legato, meaning “smoothly”, and rubato, indicating the piece may be played “with free-
dom”, in the performer’s own time/style. Some composers may even write longer 
phrases in the musical score as stylistic indications. For example, stating “marked / with 
accent”, “slowly, with expression”, “medium funk” or “moderate jazzy beat”, which of 
them are more common in specific genres or instruments. 

Articulation 

Articulation is a performance technique affecting the way transitions (or continuity) be-
tween notes are performed. Several articulation techniques exist, each influencing dif-
ferently on how a note is played. Some of these techniques are specific to particular 
instruments and may sound different or not be possible in other instrument types. As 
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an example, techniques such as pizzicato, which are specific to string instruments, are 
obviously impossible in wind instruments (e.g., flute). 

Typical articulation styles include legato and staccato but can also include accent 
techniques (e.g., sforzando) which are also part of the dynamics element. A summary of 
the articulation methods is presented in Table A.7. 

 

Articulation Description 

Legato  Notes should be played without separation, smoothly and connected 
(indicated with a slur). 

Staccato  Short and detached note (opposite of legato). 

Portato Also called mezzo-legato or articulated legato, non-legato or portamento. 
From the Italian word portare, “to carry”, consists in a smooth but 
pulsing articulation. 

Tenuto  From the Italian word tenere, “to hold”. The meaning varies with 
context from holding the note for its full length to playing it slightly 
louder. 

Marcato  Meaning “marked”, it indicates a note or passage to be accentuated, 
played louder than the surrounding ones. 

Martellato Italian word for “hammered”, more common in bowed string instru-
ments, indicates that notes should be played explosively. 

Pizzicato Technique for string instruments (e.g., violin) where the strings are 
plucked. 

Table A.7: Listing of common articulation techniques. 

These instructions are typically indicated in the musical score by a symbol above or 
below the musical note, as exemplified in Figure A.8. 

 

Figure A.8: Example of articulation techniques indicated in a musical score: 1) legato, 
indicated with a slur (arch); 2) portato, mixing staccato markers and the slur; 3) staccato; 
4) stacattissimo; 5) martellato; 6) marcato; 7) tenuto. 
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Ornamentation 

Ornamentation is the decoration or embellishment of specific notes in a melody or har-
mony with special features to provide interest and give the performer opportunity to add 
variety expressiveness to a piece. A description of common ornaments in Western music 
is presented in Table A.8. While most of the described ornaments are more prevalent 
in western classical music, some exist that are specific to other genres (e.g., pop/rock 
hammer-ons on electric guitar) or music types. An additional example is the ornamenta-
tion in Indian music, or Gamak (meaning “ornamented note” in Sanskrit, the name 
given to ornamentations), which contains several types of slides, stresses and deflections 
(Powers, 1958). 

 

 

Ornament Description Symbol 

Trill Rapid alternation between the indicated 
note and the one above. 

tr. mark. 

Mordent Two variations exist: upper and lower 
mordent. Consists on a rapid alterna-
tion between: the note, the note above 
(upper mordent) or below (lower mor-
dent) and returning to the original note 
again. 

Indicated with a tilt, the 
lower mordent adds a ver-
tical line to it. 

 

Turn Playing the notes around a note: the in-
dicated note, then the upper note, the 
lower note, and the first note again.  

Indicated by an inverted 
and 90º rotated S. 

Glissando A slide from one note to another. The 
intermediate notes are only briefly 
heard, thus differentiating it from por-
tato.  

A wavy line connecting 
both notes. 

 

Table A.8: Ornaments used in western music. 

Instrumental, Vocal and Electronic Techniques 

Over time, creative composers and performers have explored both instruments and vo-
cals, attempting to produce new types of sounds and effects. Such efforts gave rise to 
several new expressive techniques that are nowadays used to enrich musical pieces across 
all genres. 
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Regarding musical instruments, some of the existent effects are generic, available to 
most instruments. Some of these are similar to the techniques described previously, such 
as legato, staccato, slurs (playing two notes simultaneously) or accents. Vibrato is a widely 
used technique consisting in a note rapidly changing its pitch (vibrating). Tremolo is 
somewhat similar, but with the note changing in amplitude. 

Specific techniques exist that are exclusive to families of instruments. As an exam-
ple, pizzicato (plucking the strings) is used in violin and other orchestral string instru-
ments. Guitar and bass techniques include strumming and finger picking, slapping (bass 
related) and distortion effects using pedals.  

The voice is also a very powerful instrument and composers have explored multiple 
techniques to enhance it. Some of the possible techniques are using vibrato, singing in 
falsetto (in an upper register), rapping (speaking or singing following the rhythm and beat 
of the song), improvising nonsense sounds and syllables (named scat, common in jazz 
music). 

Finally, it is also possible to use electronic manipulation to alter the sound of an 
instrument or the voice. Two very common examples of electronic manipulation nowa-
days are panning, moving the sound (stereo) from one channel to another (left to right 
or vice-versa), and the usage of effects pedals and amplifiers on guitars, distorting its 
original sound. Other techniques related with voice are the vocoder (voice encoder) and 
auto-tune, which have been widely used by pop artists in the last two decades to distort 
the voice or alter the pitch of poorly sung notes. 

A.7. Musical Texture 

Musical texture refers to the way the rhythmic, melodic and harmonic information pro-
duced by musical instruments and voices is combined in a musical composition. For a 
condensed introduction to musical texture see Section 2.3.7. 

Number of Layers, Density and Range 

The number of layers in a musical piece influences the texture density, which can be 
either thin or thick. Musical layers in a piece can be broadly categorized as: a single 
melodic layer (or line); a melodic layer with some additional accompaniment layer; mul-
tiple melodic lines; a primary melodic line with a counter-melody (an accompanying 
melody played at the same time); and others. 

In most musical pieces, the composer selects distinct instruments (or groups of in-
struments) to play different roles such as melodic, harmonic and rhythmic. A layer with 
the melody role usually draws the listener’s attention, usually containing an instrument 
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or voice leading the music (e.g., the main melody). A layer with a harmonic role is used 
to hold the harmony in the piece, for instance by using instruments such as a bass or 
electric guitar playing some chordal accompaniment. 

A layer with rhythmic role is used to hold the underlying rhythm in the piece by 
providing beat to the other layers, such as the rhythm section in a band (e.g., guitars, 
bass or drums). The human voice is sometimes used with the same purpose, as is the 
case of a beatboxer playing with a rapper. 

Furthermore, these roles are not exclusive since a single layer can have multiple 
roles. A rhythm and a bass guitar can have harmonic and rhythmic roles. The same 
guitar may play, for instance, a secondary melody (e.g., counter-melody) in a section of 
the musical piece. 

Texture Types 

The combination of musical layers in a musical piece and their relation forms different 
types of textures. Some of the most common types of texture are: monophonic, poly-
phonic, homophonic and heterophonic.  

Monophonic Texture 

A monophonic texture refers to music with only one musical (melodic) line or layer at a 
time, thus no harmony or accompaniment (Benward & Saker, 2008, p. 147) as illus-
trated in Figure A.9. This can be a single instrument or line, or a group in unison (even 
if at octaves apart). This type was common in medieval music and some mainstream pop 
music. 

 

Figure A.9: Monophonic texture from the English kids song “Pop Goes the Weasel”. 
The melodic line is drawn in red. 

Polyphonic Texture 

A polyphonic texture consists of two or more melodic lines moving independently or in 
some cases in imitation with one another (Benward & Saker, 2008, p. 148), as illustrated 
in Figure A.10. The most intricate types of polyphonic texture – canon and fugue – may 
introduce three, four, five or more independent melodies simultaneously. The poly-
phonic texture type was predominant in the Renaissance period, where each (usually 
vocal) part had a melody. The melodies of all parts were performed at the same time, yet 



314 Appendix A.   Musical Dimensions Analysis 

 

all fitted together harmonically (Benward & Saker, 2008, p. 150). Imitative (Imitation) 
texture is sometimes used to distinguish a special type of polyphonic texture where a 
musical idea is echoed from "voice" to "voice". It was especially common in Renaissance 
and Baroque periods. 

 

Figure A.10: Polyphonic texture, two independent lines (red and blue) from Bach’s “In-
vention no. 5 in E-flat Major, BWV 776, mm. 1–2”. 

Homophonic Texture 

Homophonic texture is the most common texture type heard in Western music, based 
on melody and accompaniment. It consists in two or more simultaneous musical layers 
moving in sync (as opposed to polyphonic texture), with a prominent melody (melodic 
layer) in the upper part, supported by a less intricate group of layers forming a back-
ground of harmonic accompaniment (harmonic layer) (Benward & Saker, 2008, p. 149), 
as shown in Figure A.11. 

 

Figure A.11: Homophonic texture with a melody line and separated harmonic and 
rhythmic support. From Mozart’s “Symphony no. 40 in G Minor, K. 550, I: Molto Alle-
gro, mm. 221–225”. 

 

Homophonic texture was the predominant texture type during the romantic and 
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impressionistic periods. Nowadays, nearly all pop music, as well as most Jazz are homo-
phonic (Benward & Saker, 2008, p. 151). Typical examples are a singer with instrument 
accompaniment or a performer playing a solo, accompanied by a group of other instru-
ments such as a band or orchestra. 

 

Other less common texture types exist, such as heterophonic texture, which consists 
in the two or more voices simultaneously performing variations of the same melody 
(melodic line). 

A.8. Musical Form 

Musical form or musical structure refers to the overall structure of a musical piece, and 
describes the layout of a composition as divided into sections (Brandt, 2011). For a con-
densed introduction to musical form see Section 2.3.8. 

Song Elements 

Introduction 

The initial section that appears at the beginning of a musical piece, usually containing 
only music and no lyrics. Some of the most common forms are: based on the chords of 
the verse or chorus; using only percussion parts, such as drums setting the rhythm; or a 
solo vocal or instrumental solo. 

Verse 

The verse is usually made of a group of lines of a poem (stanza), where its musical struc-
ture “nearly always recurs at least once with a different set of lyrics" (Everett, 1999, p. 
15). The lyrical part of the verse is used by the song writer to transmit the message, it is 
used together with the accompaniment to transmit “the story, the events, images and 
emotions134 that the writer wishes to express” (M. Davidson & Heartwood, 1997, p. 6). 

Regarding the musical structure of the song, the song’s verses have the primary role 
of supporting the chorus message, both in terms of its music and lyrical message. 

Chorus 

Sometimes called refrain, the chorus is composed of passages of unchanging music and 

                                                        
134 The influence of each part of a song to emotion (lyrics and audio) varies greatly between songs and 

genres. 
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lyrics that provide a periodic sense of return. It “contains the main idea, or big picture, 
of what is being expressed lyrically and musically. It is repeated throughout the song, 
and the melody and lyric rarely vary” (M. Davidson & Heartwood, 1997, p. 6). 

Musically, the chorus usually contains a thicker musical texture, caused by the addi-
tion of backing vocals or instruments (hence its name). The thicker texture, combined 
with the fact that it is repeated during the song, confers to the chorus a stronger musical 
and emotional intensity than the verse and thus becoming the most memorable element 
of the song, used to transmit the main message (Everett, 1999, p. 16). 

Bridge 

A section that many times contrasts with the verse and, as the name implies, is used to 
link the verse and chorus, used to “break up the repetitive pattern of the song and keep 
the listeners attention” (M. Davidson & Heartwood, 1997, p. 7). 

Conclusion 

The conclusion, sometimes referred as coda or outro (mainly in pop music) of a musical 
piece is the final section or ending of the song. Frequently used forms are based on a 
repeat and fade-out or instrumental part. 

Instrumental Solo 

Sometimes songs contain a solo section where a melodic line is played most of the times 
by a single performer (e.g., by a guitar player), without lyrics. This performed melody is 
often based on the chorus with added ornamentations and embellishments (described 
in expressive techniques, Section 2.3.6) such as riffs and scale runs (i.e., navigating scales 
in an upward or downward momentum). In some genres such as Jazz, the solo may be 
improvised, showcasing the performer creativity and quality. 

 

In Table A.9 we present the song “Billie Jean” by Michael Jackson to illustrate the 
abovementioned notions: 

 

She was more like a beauty queen from a movie scene 
I said, "Don't mind, but what do you mean, I am the one 
Who will dance on the floor in the round?" 
She said I am the one who will dance on the floor in the round 

1st Verse 

She told me her name was Billie Jean 
As she caused a scene 
Then every head turned with eyes that dreamed of being the one 

2nd Verse 
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Who will dance on the floor in the round 

People always told me, "Be careful of what you do 
And don't go around breaking young girls' hearts" 
And mother always told me, "Be careful of who you love 
And be careful of what you do, 'cause the lie becomes the truth" 

Bridge 

Billie Jean is not my lover 
She's just a girl who claims that I am the one 
But the kid is not my son 
She says I am the one, but the kid is not my son 

Chorus 

For forty days and for forty nights, the law was on her side 
But who can stand when she's in demand? 
Her schemes and plans 
'Cause we danced on the floor in the round 
So take my strong advice, just remember to always think twice 
(Don't think twice) Do think twice! (hoo) 

3rd Verse 

She told my baby we'd danced till three, then she looked at me 
Then showed a photo of a baby crying, his eyes were like mine (oh 
no) 
'Cause we danced on the floor in the round, baby 

4th Verse 

People always told me, "Be careful of what you do 
And don't go around breaking young girls' hearts" 
She came and stood right by me 
Then the smell of sweet perfume 
This happened much too soon 
She called me to her room 

Bridge 

Billie Jean is not my lover 
She's just a girl who claims that I am the one 
But the kid is not my son 
Billie Jean is not my lover 
She's just a girl who claims that I am the one 
But the kid is not my son 
She says I am the one, but the kid is not my son 

Chorus 

(…) Instrumental 
Solo 

She says I am the one, but the kid is not my son Chorus 
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Billie Jean is not my lover 
She's just a girl who claims that I am the one 
But the kid is not my son 
She says I am the one, but the kid is not my son 
She says I am the one 
She says she is the one 
She says I am the one 

Billie Jean is not my lover 
Billie Jean is not my lover 
Billie Jean is not my lover 
Billie Jean is not my lover 
Billie Jean is not my lover 
Billie Jean is not my lover 

Outro 

Table A.9: Song structure of “Billie Jean” by Michael Jackson. 

Organization Levels 

The structure of a musical piece may be analyzed at different levels, from simple pulses 
arranged in beats to further and more complex organizations. Music form can be roughly 
divided into three levels designated as passage, piece and cycle. In the analysis of musical 
form, any components that can be defined on the time axis (such as sections and units) 
are conventionally designated by letters (e.g., component A, B, C). 

Passage 

The passage is the lowest level of construction and concerns the way musical phrases are 
organized into musical sentences and "paragraphs" such as the verse of a song. As an 
example, the first verse of the song “Twinkle, twinkle, little star” is composed of two (A, 
B) differently-rhymed couplets, and can be described as AABB, as illustrated in the ex-
ample of the section below (“Binary Form”). 

Piece 

The level above passage is called piece and concerns the structure of an entire musical 
piece. The musical form analysis that was previously used in passage can be employed at 
each level. As an example, if the song simply repeats the same musical sections, it is said 
to be in strophic form. However, if two sections repeat with distinct changes, such as 
the verse and chorus or a fast and slow sections, it is said to be in binary form. 
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Cycle 

The higher level is concerned about the organization of pieces in larger compositions. 
This organization varies across genres related with classical music, with the pieces (some-
times called movements) originating suites, representing a set of Baroque dances, sympho-
nies, concertos and sonatas. 

Basic Musical Forms 

The different musical sections, made of the repetition of melodic material or the presen-
tation of new, contrasting material are usually identified by letters (i.e., A, B, C). The 
most common organization methods are described next. 

Through-composed 

A structure in which there is no repeat or return of any large-scale musical section. An 
example of such piece is Schubert's composition of Goethe's poem “Erlkönig”, which 
can be described as: 

 A  B C D E… 

Strophic Form 

Strophic form (also called "verse-repeating" or chorus form) is the opposite of through-
composed. In such songs, all verses or stanzas of the text are sung to the same music. It 
is interesting to note that songs with verse-chorus form are binary (ABAB), thus con-
trasting with strophic. However they may also be interpreted as strophic form at a higher 
level (AA). Many folk and popular songs are strophic in form. Some examples are the 
“Old McDonald had a farm” kids’ song and Bob Dylan’s “Blowin' in the Wind”. 

A  A A A A… 

Binary Form 

This form consists of two different albeit related sections (AB), which are often repeated 
over the course of the piece, normally as “A-A-B-B”. The basic premise of such form is 
the contrast between both sections. Examples of such form are the “Twinkle, Twinkle, 
Little Star”, or the “Minuet in G Major” by Johann Sebastian Bach. Below, we present 
an excerpt of the former to illustrate the AABB structure: 

Twinkle, twinkle, little star, (A) 

How I wonder what you are. (A) 

Up above the world so high, (B) 
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Like a diamond in the sky. (B) 

Ternary Form 

A ternary structure is, as the name implies, a three-part form usually with two sections 
(AB), featuring a return of the initial section after the contrasting section (used in the 
form ABA). This return to the initial section is used to achieve balance and symmetry. 
However, this is not always the case, since in many cases the initial section is repeated 
(as AABA). 

The ternary form was the base to the thirty-two-bar form songs. Thirty-two-bar form 
uses four sections, most often eight measures long each (4 x 8 = 32), composed of two 
verses (A sections), a contrasting section (B section, the bridge or “middle -eight”) and a 
return to one last A section (thus, AABA). One example of thirty-two-bar AABA form is 
the Christmas carol “Deck the Halls”: 

Deck the halls with boughs of holly! Fa-la-la-la-la, la-la-la-la. (A) 

'Tis the season to be jolly. Fa-la-la-la-la, la-la-la-la. (A) 

Don we now our gay apparel. Fa-la-la, la-la-la, la-la-la. (B) 

Troll the ancient Yuletide carol. Fa-la-la-la-la, la-la-la-la. (A) 

 

Other forms exist such as medley, rondo and others. Medley, similarly to thought -
composed form, is the extreme opposite of strophic form. It is an indefinite sequence of 
self-contained sections (ABCD…), often with repetitions (AABBCCDD...), normally 
composed of parts of existing pieces played sequentially sometimes with overlaps. Exam-
ples are pop mega-mixes or orchestral overtures. Rondo form can be roughly described 
as an extra-long version of the ternary form, having a recurring theme (A) alternating 
with different (usually contrasting) sections called “episodes”, such as (ABACADAE…).  
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APPENDIX B 
 
NOVEL DATASET DETAILS 

This section contains additional information about our novel dataset besides the details 
presented in Section 4.1. 

B.1. Emotion Tags per Quadrant 

The number of songs tagged with each emotion tag, both total and divided per cluster, 
is presented in Table B.1. This information is illustrated in different forms in Section 
4.1, such as the tag cloud format in Figure 4.15 

Similar information regarding genre tags is provided in Section 4.1, e.g., Table 4.3 
and Figure 4.16. 

 

Emotion tag Q1 Q2 Q3 Q4 Total 

Acerbic 0 7 6 0 13 

Aggressive 0 10 0 0 10 

Agreeable 2 0 1 18 21 

Amiable 6 0 0 22 28 

Angry 0 71 3 0 74 

Angst-Ridden 0 11 10 0 21 

Anguished 0 11 42 0 53 

Anxious 0 47 2 0 49 

Atmospheric 0 0 1 50 51 

Austere 0 0 3 6 9 

Autumnal 1 0 5 9 15 

Belligerent 0 3 0 0 3 
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Bitter 0 29 45 0 74 

Bittersweet 1 0 2 18 21 

Bleak 0 18 55 1 74 

Boisterous 18 1 0 2 21 

Brash 2 2 2 0 6 

Brassy 14 0 0 1 15 

Bravado 5 1 0 3 9 

Bright 9 0 0 16 25 

Brittle 0 0 5 0 5 

Brooding 2 2 28 2 34 

Calm 0 0 0 84 84 

Campy 8 3 0 3 14 

Carefree 20 0 0 15 35 

Cathartic 12 12 4 2 30 

Celebratory 17 0 0 0 17 

Cerebral 1 0 26 15 42 

Cheerful 52 0 0 16 68 

Circular 0 0 9 7 16 

Clinical 0 1 18 1 20 

Cold 0 4 18 0 22 

Complex 3 3 20 13 39 

Confident 12 0 0 16 28 

Confrontational 0 17 2 0 19 

Crunchy 0 2 0 1 3 

Cynical 0 17 8 0 25 

Delicate 0 0 5 51 56 

Detached 1 1 23 8 33 

Difficult 0 0 5 0 5 

Distraught 0 11 42 0 53 

Dramatic 14 0 0 6 20 

Dreamy 0 0 1 46 47 

Druggy 0 2 0 2 4 
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Earnest 2 0 0 17 19 

Earthy 4 0 1 20 25 

Eccentric 11 0 12 3 26 

Eerie 0 14 7 4 25 

Effervescent 4 0 0 3 7 

Elaborate 6 2 4 20 32 

Elegant 3 0 0 35 38 

Energetic 35 0 0 2 37 

Enigmatic 0 0 0 2 2 

Epic 0 0 1 4 5 

Erotic 3 0 0 0 3 

Ethereal 0 0 0 41 41 

Euphoric 5 0 0 0 5 

Exciting 56 6 1 0 63 

Explosive 5 11 1 1 18 

Exuberant 14 0 0 3 17 

Fierce 0 56 0 0 56 

Fiery 23 23 3 0 49 

Flowing 1 0 0 3 4 

Fractured 0 1 1 0 2 

Freewheeling 10 0 0 3 13 

Fun 34 0 0 4 38 

Gentle 1 0 0 51 52 

Giddy 18 0 0 0 18 

Gleeful 9 0 0 1 10 

Gloomy 1 2 81 0 84 

Good-Natured 6 0 0 22 28 

Greasy 0 1 61 0 62 

Gritty 6 3 10 1 20 

Gutsy 18 3 1 1 23 

Happy 54 0 0 7 61 

Harsh 0 70 5 0 75 
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Hedonistic 3 5 1 0 9 

Hostile 0 72 1 0 73 

Humorous 25 2 1 3 31 

Hungry 1 3 0 0 4 

Hypnotic 4 2 4 38 48 

Indulgent 1 1 12 2 16 

Innocent 8 0 0 29 37 

Insular 0 1 2 1 4 

Intense 20 11 4 0 35 

Intimate 3 0 0 29 32 

Ironic 0 1 0 1 2 

Irreverent 3 5 0 0 8 

Jittery 0 44 0 0 44 

Jovial 1 0 0 0 1 

Joyous 65 0 0 12 77 

Knotty 1 0 2 1 4 

Laid-Back 0 0 0 28 28 

Lazy 0 1 40 1 42 

Light 5 0 0 41 46 

Literate 1 0 4 10 15 

Lively 41 0 0 4 45 

Lonely 0 0 19 2 21 

Lush 7 0 3 32 42 

Majestic 1 0 0 2 3 

Malevolent 0 33 1 0 34 

Manic 1 6 5 0 12 

Marching 4 1 0 0 5 

Meandering 0 0 0 3 3 

Meditative 0 0 1 1 2 

Melancholy 2 0 12 14 28 

Mellow 0 0 0 28 28 

Menacing 0 35 8 0 43 



Appendix B.   Novel Dataset Details 325 

 

Messy 1 2 27 0 30 

Mighty 2 0 0 0 2 

Mystical 4 0 2 0 6 

Naive 0 0 9 3 12 

Negative 0 39 1 0 40 

Nervous 0 44 0 0 44 

Nihilistic 0 21 0 0 21 

Nocturnal 3 1 6 20 30 

Nostalgic 1 0 6 22 29 

Ominous 0 29 12 1 42 

Optimistic 5 0 0 8 13 

Organic 2 1 2 32 37 

Outraged 0 25 0 1 26 

Outrageous 3 47 0 0 50 

Paranoid 0 18 3 0 21 

Passionate 20 0 0 8 28 

Pastoral 0 0 0 14 14 

Peaceful 0 0 0 84 84 

Plaintive 0 0 1 13 14 

Playful 26 0 0 9 35 

Poignant 1 0 2 24 27 

Positive 25 0 0 9 34 

Powerful 7 0 0 1 8 

Precious 1 0 3 37 41 

Provocative 9 8 1 4 22 

Pulsing 9 0 0 8 17 

Pure 1 0 1 6 8 

Quiet 0 0 7 39 46 

Quirky 4 0 3 9 16 

Rambunctious 11 2 0 0 13 

Ramshackle 0 2 1 0 3 

Raucous 1 12 0 0 13 
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Rebellious 0 37 2 1 40 

Reckless 0 54 4 0 58 

Refined 2 0 0 36 38 

Reflective 2 0 0 16 18 

Regretful 1 0 0 0 1 

Relaxed 0 0 0 40 40 

Reserved 0 0 3 43 46 

Restrained 1 0 10 23 34 

Reverent 3 0 0 32 35 

Rollicking 12 0 0 4 16 

Romantic 12 0 0 22 34 

Rousing 26 0 0 5 31 

Rowdy 4 13 3 0 20 

Rustic 4 0 6 11 21 

Sad 0 0 76 5 81 

Sarcastic 0 17 8 0 25 

Sardonic 0 0 1 0 1 

Searching 2 0 1 7 10 

Self-Conscious 0 0 4 5 9 

Sensual 26 0 0 22 48 

Sentimental 2 0 0 23 25 

Serious 2 0 7 4 13 

Sexual 19 13 1 0 33 

Sexy 47 0 0 3 50 

Silly 7 4 0 4 15 

Sleazy 2 18 1 0 21 

Slick 9 0 0 12 21 

Smooth 4 0 0 31 35 

Snide 0 19 8 1 28 

Soft 0 0 7 39 46 

Somber 0 3 35 11 49 

Soothing 1 0 1 72 74 
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Sophisticated 7 0 0 23 30 

Spacey 0 0 1 12 13 

Sparkling 11 1 0 35 47 

Sparse 0 0 13 10 23 

Spicy 44 0 6 3 53 

Spiritual 6 0 1 44 51 

Spooky 0 10 0 0 10 

Sprawling 0 0 0 3 3 

Springlike 1 0 0 8 9 

Stately 1 1 1 10 13 

Street-Smart 4 1 1 5 11 

Striding 1 0 1 8 10 

Strong 22 0 0 1 23 

Stylish 8 0 0 15 23 

Suffocating 0 6 0 0 6 

Sugary 0 0 3 1 4 

Summery 12 0 1 15 28 

Swaggering 6 0 0 2 8 

Sweet 7 0 0 32 39 

Swinging 7 0 0 4 11 

Technical 1 0 2 0 3 

Tender 1 0 0 0 1 

Tense 0 47 2 0 49 

Theatrical 17 0 1 14 32 

Thoughtful 0 0 0 2 2 

Threatening 0 2 1 0 3 

Thrilling 10 0 0 0 10 

Thuggish 2 13 4 1 20 

Tragic 0 1 0 0 1 

Trashy 1 18 0 0 19 

Trippy 0 1 3 9 13 

Uncompromising 3 36 10 0 49 
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Unsettling 0 20 3 0 23 

Uplifting 6 0 0 5 11 

Urgent 8 14 0 0 22 

Visceral 1 12 1 0 14 

Volatile 1 41 4 0 46 

Warm 3 0 0 24 27 

Weary 0 0 46 5 51 

Whimsical 8 1 1 12 22 

Wintry 0 0 4 8 12 

Wistful 0 0 0 21 21 

Witty 13 0 1 8 22 

Wry 2 0 0 6 8 

Yearning 2 0 0 9 11 

Total135 1266 1355 1076 2143 5840 

Table B.1: Number of songs per emotion tag and quadrant. 

 

 

 

 

 

 
  

                                                        
135 The total number of songs is higher than the dataset size (900) because each song can be associated 

with more than one genre tag. 
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APPENDIX C 
 
FEATURES RELEVANCE 

VISUALIZATION  

Besides the information presented in Section 4.6, we also designed additional visualiza-
tions of the features relevance and weight. These were used to better understand how 
the existent features performed for each of the studied problems.  

In this section we present some of these illustrations containing additional infor-
mation. 

C.1. Feature Weights by Musical Dimension 

The figures in the following sections illustrate the weight of the various features for each 
musical dimension, organized by problem. 

A. Feature Weight to Arousal and Valence Classification 

Figure C.1 and Figure C.2 show the features’ weight grouped by musical dimension for 
arousal and for valence classification. As can be seen, while many features for arousal 
have weights above 0.1, for valence classification most were considered much less rele-
vant, with only some novel expressive techniques ones above the same 0.1 threshold. 
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Figure C.1. Feature weights related to arousal classification, split by musical dimension. 

 

Figure C.2. Feature weights related to valence classification, split by musical dimension. 

B. Feature Weight to Arousal Classification using Positive or Negative Valence Songs 

Figure C.3 and Figure C.4 show the features’ weight to discriminate between positive 
and negative arousal, considering only the positive valence songs or negative valence 
songs. As illustrated, the features considered discriminate arousal remarkably better for 
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negative valence songs. 

 

Figure C.3. Feature weights related to arousal classification for positive valence songs 
only, divided by musical dimension. 

 

Figure C.4. Feature weights related to arousal classification for negative valence songs 
only, divided by musical dimension. 
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C. Feature Weight to Valence Classification using Positive or Negative Arousal Songs 

Figure C.5 and Figure C.6 show the features’ weight to discriminate between positive 
and negative valence, considering only the positive or negative arousal songs. As shown, 
the features weight is much lower than the previous, especially for low arousal songs. 

 

Figure C.5. Feature weights related to valence classification for positive arousal songs 
only, divided by musical dimension. 

 

Figure C.6. Feature weights related to valence classification for negative arousal songs 
only, divided by musical dimension. 
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D. Feature Weights to Discriminate each of the Four Quadrants 

Finally, Figure C.7 to Figure C.10 show the features’ weight to discriminate between 
each specific quadrant against the remaining. 

 

Figure C.7. Feature weights related to quadrant 1 vs. other quadrants classification, di-
vided by musical dimension. 

 

Figure C.8. Feature weights related to quadrant 2 vs. other quadrants classification, di-
vided by musical dimension. 
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Figure C.9. Feature weights related to quadrant 3 vs. other quadrants classification, di-
vided by musical dimension. 

 

Figure C.10. Feature weights related to quadrant 4 vs. other quadrants classification, 
divided by musical dimension. 
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C.2. Best Features for each Emotion Problem 

The group of 10 figures from Figure C.11 to Figure C.20 complement the feature anal-
ysis presented in Section 4.6. These show the distribution of the top 10, 20, 30, 50 and 
100 features per musical dimension for each of the 11 emotion classification problems.  

A. Distribution of the Top 10 Features 

 

Figure C.11. Distribution of the top10 features per musical dimension (horizontal). 

 

Figure C.12. Distribution of the top10 features per musical dimension (vertical). 
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B. Distribution of the Top 20 Features 

 

Figure C.13. Distribution of the top20 features per musical dimension (horizontal). 

 

Figure C.14. Distribution of the top20 features per musical dimension (vertical). 
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C. Distribution of the Top 30 Features 

 

Figure C.15. Distribution of the top30 features per musical dimension (horizontal). 

  

Figure C.16. Distribution of the top30 features per musical dimension (vertical). 
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D. Distribution of the Top 50 Features 

 

Figure C.17. Distribution of the top50 features per musical dimension (horizontal). 

 

Figure C.18. Distribution of the top50 features per musical dimension (vertical). 
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E. Distribution of the Top 100 Features 

 

Figure C.19. Distribution of the top100 features per musical dimension (horizontal). 

 

Figure C.20. Distribution of the top100 features per musical dimension (vertical). 
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