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CISUC 



CISUC  

 

 

 

 

• Centre for Informatics and Systems of the 
University of Coimbra 

– https://www.cisuc.uc.pt/ 
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CISUC  

• Large Portuguese research center in the fields of 
Informatics and Communications 

• Created in 1991 
• About 200 researchers, including full-time 

university professors and under-graduate and 
post-graduate students 

• High level of  internationalization 
– High number of foreign researchers (mostly PhD 

students from Brazil, India and Europe) 
– High level of cooperation with research centers 

abroad 
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CISUC  

• Organized into 6 research groups (covering a 
substantial segment of Computer Science 
research topics) 
– Cognitive and Media Systems 
– Adaptive Computation 
– Software and Systems Engineering 
– Communications and Telematics 
– Information Systems 
– Evolutionary and Complex Systems 

• Increasing activity on multidisciplinary and 
emergent research subjects 

17 



Music Data Mining /  
Music Information Retrieval  

• MIR: What and Why? 

• Applications 



MIR: What and Why? 

• MDM / MIR 
– Music Data Mining / Music Information Retrieval: 

interdisciplinary research field devoted to the study of 
information extraction mechanisms from musical pieces, 
retrieval methodologies, as well as all the processes 
involved in those tasks in different music representation 
media. 

 
• Why MDM / MIR? 

– MDM / MIR emerges from the necessity to manage huge 
collections of digital music for “preservation, access, 
research and other uses” [Futrelle and Downie, 2003] 
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MIR: What and Why? 

• Music and Man 
– Music expresses “that which cannot be put into words and that 

which cannot remain silent” (Victor Hugo) 
 

– “We associate music with the most unique moments of our lives 
and music is part of our individual and social imaginary” [Paiva, 
2006] 
• “By listening to music, emotions and memories, thoughts and 

reactions, are awakened” [Paiva, 2006] 

 
– “Life has a soundtrack” [Gomes, 2005] (“Festivais de Verão”, 

Jornal “Público”) 
 

– “The history of a people is found in its songs” (George Jellinek) 
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MIR: What and Why? 

• Music and World economy 
– Explosion of the Electronic Music Industry (EMD) 

• Widespread access to the Internet 

• Bandwidth increasing in domestic and mobile accesses 

• Compact audio formats with near CD quality (mp3, aac) 

• Portable music devices (iPod, mp3 readers) 

• Peer-to-peer networks (Napster, Kazaa, eMule) 

• Online music stores (iTunes, Calabash Music, Sapo Music)  
resolution is the song, not the CD 

• Music identification platforms (Shazam, 411-Song, 
Gracenote MusicID / TrackID) 

• Music recommendation systems (MusicSurfer) 
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MIR: What and Why? 

• Music and World economy (cont.) 
– Music industry runs, only in the USA an amount of 

money in the order of several billion US dollars 
per year.   

– By 2005, Apple iTunes was selling  1.25 million 
songs each day [TechWhack, 2005] 
• Until January 2009, over 6 billion songs had been sold 

in total [TechCrunch, 2009] 

– By 2007, music shows in Portugal sold 30 M€ in 
tickets [RTP, 2009] 
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MIR: What and Why? 

• Music and World economy (cont.) 

– Number and dimension of digital music archives 
continuously growing 

• Database size (these days, over 2 million songs) 

• Genres covered 

– Challenges to music providers and music librarians 

• Organization, maintenance, labeling, user interaction 

• Any large music database is only really useful if users 
can find what they are looking for in an efficient 
manner! 
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MIR: What and Why? 

• Database Organization and Music Retrieval 
– Presently, music databases are manually annotated 
 search and retrieval is mostly textual (artist, title, 
album, genre) 
• Service providers 

– Difficulties regarding manual song labeling: subjective and time-
consuming,  

• Customers 
– Difficulties in performing “content-based” queries 

» “Music’s preeminent functions are social and psychological”, 
and so “the most useful retrieval indexes are those that 
facilitate searching in conformity with such social and 
psychological functions. Typically, such indexes will focus on 
stylistic, mood, and similarity information” [Huron, 2000].  
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MIR: What and Why? 

• Database Organization and Music Retrieval 

© Rui Pedro Paiva, 2002 25 
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Applications 

• Platforms for EMD 
– Similarity-based retrieval 

tools  
• Query-by-example [Welsh et al.,  

1999] 
– Music identification (Shazam,  

trackID, Tunatic) [Wang, 2003;  
Haitsma and Kalker, 2002;  
TMN, 2009] 

– Query-by-mood [Panda et al.,  
2013] 

– Music recommendation [Celma 
& Lamere, 2007] 

– Islands of music [Pampalk, 2001] 

» Metaphor of geographic 
maps: similar genres close 
together 

© Elias Pampalk, 2001 26 



• Platforms for EMD 

– Similarity-based retrieval tools  

• Query-by-melody  
(query-by-humming, QBS) [Parker, 2005; Ghias et al., 
1995] 

• Plagiarism detection [Paiva et al., 2006] 

• Music web crawlers [Huron, 2000] 

• Automatic playlist generation  
[Pauws and Wijdeven, 2005; Alghoniemy and Tewfik, 
2000] 

 

Applications 
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• Music education and training 

– Automatic music transcription [Ryynänen, 2008; 
Kashino et al., 1995] 

• Music composition, analysis, performance 
evaluation, plagiarism detection 

• Digital music libraries 

– For research issues involving music retrieval, 
training (learning activities, evaluation, etc.)  
Variations [Dunn, 2000]  

 

Applications 
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Applications 

• Audio software 
– Intelligent audio (music)  

editors  automatic indexing  
[Tzanetakis, 2002] 

 
• Multimedia databases and  

operating systems  
[Burad, 2006] 
 

• Video indexing and searching 
– Segmentation based on audio (music) content  detection 

of scene transitions [Pfeiffer, 1996] 
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Applications 

• Advertisement and cinema 
– Tools for mood-based retrieval [Cardoso et al. 

2011] 

 

• Sports 
– Music to induce a certain cardiac frequency 

[Matesic and Cromartie, 2002] 

 

• … and so forth… 
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Music Emotion Recognition 
(MER) 

• MER: What and Why? 

• Applications 

• Emotion Models 

• MER Data Mining Process 

• Other Problems Addressed 

• Current Limitations and Open 
Problems 

• Future/Ongoing Work 

 



MER: What and Why? 

• MER 
– Music Emotion Recognition 

• Branch of MIR devoted to the identification of 
emotions in musical pieces 

– Emotion vs mood 
• MIR researchers  use both terms interchangeably 

• Psychologists  clear distinction [Sloboda and Juslin, 
2001] 
– Emotion = a short experience in response to an object (e.g., 

music) 

– Mood =  longer experience without specific object connection 
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MER: What and Why? 

• MER 

– Categories of emotions [Gabrielsson, 2002)] 

• Expressed emotion: emotion the performer tries to 
communicate to the listeners 

• Perceived emotion: emotion the listener perceives as 
being expressed in a song (which may be different than 
the emotion the performer tried to communicate)  
scope of MIR researchers 

• Felt (evoked) emotion: emotion felt by the listener, in 
response to the song and performance 
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MER: What and Why? 

• Why MER? 
– “Music’s preeminent functions are social and 

psychological”, and so “the most useful retrieval 
indexes are those that facilitate searching in 
conformity with such social and psychological 
functions. Typically, such indexes will focus on 
stylistic, mood, and similarity information” 
[Huron, 2000]. 
• Studies on music information behavior  music mood 

is an important criterion for music retrieval and 
organization [Juslin and Laukka, 2004] 
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MER: What and Why? 

• Why MER? [Yang and Chen, 2012] 

– Academia 

• “More and more multimedia systems that involve 
emotion analysis of music signals have been 
developed, such as Moodtrack, LyQ, MusicSense, Mood 
Cloud, Moody and i.MTV, just to name a few.”  

– Industry 

• “Many music companies, such as AMG, Gracenote, 
MoodLogic, Musicovery, Syntonetic, and Sourcetone 

use emotion as a cue for music retrieval.” 
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MER: What and Why? 

• Difficulties [Yang and Chen, 2012] 
– Emotion perception is by nature subjective [Yang and 

Chen, 2012] 
• People can perceive different emotions for the same song 

 

–  Performance evaluation of an MER systems is difficult 
[Yang and Chen, 2012] 
• Common agreement on the recognition result is hard to obtain 

 

– Still not fully understood how music and emotion are 
related 
• Despite several studies on music psychology 
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Applications 

• Platforms for EMD 
– Emotion-based retrieval tools  

• Music recommendation, automatic playlist generation, 
classification, … 

• Game development 

• Cinema 

• Advertising 

• Health 
– Sports 

– Stress management 
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Emotion Models 

• Two main conceptualizations of emotion 

– Categorical models 

• Emotions as categories: limited number of discrete 
emotions (adjectives) 

 

– Dimensional models 

• Emotions organized along axes (2 or 3) 
– As discrete adjectives  

– As continuous values 
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Emotion Models 

• Categorical Models 

– Main ideas 

• “People experience emotions as categories that are 
distinct from each other” [Yang and Chen, 2012] 

• Existence of basic emotions 
– Limited number of universal and primary emotion classes 

(e.g., happiness, sadness, anger, fear, disgust, surprise 
[Ekman, 1992]) from which all other “secondary” emotion 
classes can be derived 
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Emotion Models 

• Categorical Models 

– Examples  

• Hevner’s 8 clusters of 
affective terms (1935) 

• Regrouped into 10 
adjective groups by 
Farnsworth [Farnsworth, 
1954] and into 9 adjective 
groups by Schubert 
[Schubert 2003]. 

 

© Yang and Chen, 2012 
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Emotion Models 

• Categorical Models 

– Examples  

• Tellegen-Watson-
Clark model (1999) 

 

 

© Tellegen, Watson and Clark, 1999 
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Emotion Models 

• Categorical Models 

– Examples  

• MIREX (2007) 
– 5 clusters, but not supported by psychological models 
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Emotion Models 

• Categorical Models 

– Limitations 

• Limited number of adjectives 

• Larger number may be impractical for psychological 
studies 

• Adjectives may be ambiguous 
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Emotion Models 

• Dimensional Models 

– Main ideas 

• Emotions organized along axes (2 or 3) 
– Each emotion is a located in a multi-dimensional plane, 

based on a reduced number of axes (2D or 3D) 

– Argument: correspond to internal human representations of 
emotions 
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Emotion Models 

• Dimensional Models 

– Main ideas 

• 3 main dimensions of emotion [Yang and chen, 2012] 
– valence (or pleasantness; positive and negative affective 

states),  

– arousal (or activation; energy and stimulation level) 

– potency (or dominance; a sense of control or freedom to act) 

• 2D used in practice 
– Valence and arousal regarded as the “core processes” of affect 

[Yang and Chen, 2002] 

– Simpler to visualize emotions 
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Emotion Models 

• Dimensional Models 

– Examples  

• James Russell’s  
circumplex model  
[Russell, 1980] 
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Emotion Models 

• Dimensional Models 

– Examples  

• Robert Thayer’s model [Thayer, 1989] 

 

 

© Meyers, 2007 
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Emotion Models 

• Dimensional Models 

– Examples 

• Continuous models  
– Emotion plane as a continuous space  

» Each point denotes a different emotional state.  

» Ambiguity related with emotion states is removed 
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Emotion Models 

• Dimensional Models 

– Limitations 

• Obscures important aspects of emotion 
– Anger and fear are placed close in the valence-arousal plane 

» Very different in terms of their implications 

–  Potency (dominant–submissive) as the third dimension 
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MER Data Mining Process   
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DM Process  Data Acquisition 

• Goals 

– Get meaningful, representatives examples of 
each concept to capture, balanced across classes 

• E.g., songs from different styles, genres, … 

– Get accurate annotations 

• Necessary to perform manual data annotation? How 
many annotators, what profiles, how many songs, song 
balance, etc.?  
– Can be tedious, subjective and error-prone 
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There can be no knowledge discovery on bad data! 



DM Process   Data Acquisition 

• How? 

– Selection of an adequate emotion model 

• Categorical or dimensional? 

• Which categories? 
– Basic emotions? MIREX? 

• Single label, multi-label or probabilistic classification? 
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DM Process   Data Acquisition 

• How? 

– Careful data annotation protocol 
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DM Process   Data Acquisition 

• How? 

– Careful data annotation protocol 

• Manual annotation process 
– Use annotation experts and/or music listeners 

» Experts: harder to acquire but annotations will likely be 
more reliable 

– Distribute the samples across annotators, guaranteeing that  

» Each annotator gets a reasonable amount of samples  

» Each sample is annotated by a sufficient number of 
people 
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DM Process   Data Acquisition 

• How? 

– Careful data annotation protocol 

• Manual annotation process 
– Evaluate sample annotation consistency 

» Remove samples for which there is not an acceptable 
level of agreement: e.g., too high standard deviation 

»  Not good representatives of the concept 

» In the other cases, keep the average, median, etc. of all 
annotations 
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DM Process   Data Acquisition 

• How? 
– Careful data annotation protocol 

• Manual annotation process 
– Evaluate annotator consistency 

» Exclude outlier annotators 

• Annotators that repeatedly disagree with the 
majority 

» Perform a test-retest reliability study [Cohen and 
Swerdlik, 1996] 

• Select a sub-sample of the annotators to repeat the 
annotations some time later 

• Measure the differences between annotations 
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DM Process   Data Acquisition 

• How? 

– Careful data annotation protocol 

• Manual annotation can be tedious and error-prone 

–  Annotation games : GWAP (Game With A Purpose) 

57 © Kim et al., 2010 



DM Process  Data Pre-Processing 

• Goals 

– Data preparation prior to analysis 

• E.g., noise filtering, data cleansing, … 

• How? 

– Standardization of song excerpts 

• Sampling frequency, e.g., 22050 kHz 

• Number of channels, e.g., monoaural 

• Number of quantization bits, e.g., 16 
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DM Process   Feature Extraction & Processing 

• Goals 

– Extract meaningful, discriminative features 
correlated to emotion from the information 
source under analysis (audio, MIDI, lyrics, …) 

 

– Evaluate the impact of different features in each 
class 
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DM Process   Feature Extraction & Processing 

• How? 

– Based on studies by music psychologists, e.g., 
[Gabrielsson and Lindström, 2001] 

• Modes   
– Major modes related to happiness or solemnity, minor modes 

associated with sadness or anger [Meyers, 2007].  

• Harmonies 
– Simple, consonant, harmonies are usually happy, pleasant or 

relaxed; complex, dissonant, harmonies relate to emotions 
such as excitement, tension or sadness, as they create 
instability in a musical piece [Meyers, 2007]. 
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DM Process   Feature Extraction & Processing 

• Relevant musical attributes [Friberg, 2008; 
Meyers, 2007] 
– Timing  

• Tempo, tempo variation, duration contrast 

– Dynamics 
• Overall level, crescendo/decrescendo, accents 

– Articulation 
• Overall (staccato/legato), variability 

– Timbre 
• Spectral richness, onset velocity, harmonic richness 
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DM Process   Feature Extraction & Processing 

• Relevant musical features 

– Pitch 

• High/low 

– Interval 

• Small/large 

– Melody 

• Range (small/large), direction (up/down) 

– Harmony 

• Consonant/complex-dissonant 
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DM Process   Feature Extraction & Processing 

• Relevant musical features 

– Tonality 

• Chromatic-atonal/key-oriented 

– Rhythm 

• Regular-smooth/firm/flowing-fluent/irregular-rough 

– Mode 

• Major/minor 
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DM Process   Feature Extraction & Processing 

• Relevant musical features 

– Loudness 

• High/low 

– Musical form 

• Complexity, repetition, new ideas, disruption) 

– Vibrato 

• Extent, speed 
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DM Process   Feature Extraction & Processing 

• Feature Extraction 
– Music platforms 

• Audio:  
– Marsyas, MIR Toolbox, PsySound, … 

• MIDI:  
– jSymbolic, MIDI Toolbox, jMusic… 

• Lyrics:  
– jLyrics, SynesSketch, ConceptNet,, … 

 

• Types of features 
– Key, tonal, timbre, pitch, rhythm 
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DM Process   Feature Extraction & Processing 

• Feature Extraction 

– Music platforms 

66 

Framework # of 
features Description 

 
 
 
Marsyas 

 
 
 
237 

 
 
Spectral centroid, rolloff, flux, zero cross rate, linear 
spectral pair, linear prediction cepstral coefficients 
(LPCCs), spectral flatness measure (SFM), spectral crest 
factor (SCF), stereo panning spectrum features, MFCCs, 
chroma, beat histograms and tempo. 

 
 
 
 
 
MIR Toolbox 

 
 
 
 
 
177 

 
 
Among others: root mean square (RMS) energy, rhythmic 
fluctuation, tempo, attack time and slope, zero crossing 
rate, rolloff, flux, high frequency energy, Mel frequency 
cepstral coefficients (MFCCs), roughness, spectral peaks 
variability (irregularity), inharmonicity, pitch, mode, 
harmonic change and key. 

 
 
PsySound 

 
 
44 

 
Loudness, sharpness, volume, spectral centroid, timbral 
width, pitch multiplicity, dissonance, tonality and chord, 
based on psycho acoustic models. 



DM Process   Feature Extraction & Processing 

• Feature Extraction 

– Music platforms 

• Rolloff: high-frequency energy 

67 
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DM Process   Feature Extraction & Processing 

• Feature Extraction 

– Music platforms 

• Attack time 

68 © MIR Toolbox, 2012 



DM Process   Feature Extraction & Processing 

• Feature Extraction 

– Programmed by our research team 

• E.g., Melodic features (vibrato, tremolo, dynamics, 
contour types, …: 98 features) 
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DM Process   Feature Extraction & Processing 

• Feature Processing 

– Process features, if needed 

• Normalize feature values 

• Discretize feature values 

• Detect and fix/remove outliers 
– Errors in feature extraction 

70 

Probable outliers: 
measurement errors 



DM Process   Feature Extraction & Processing 

• Difficulties 

– Few relevant audio features proposed so far 
[Friberg, 2008] 

• Difficult to extract from audio signals  but easier to 
extract from symbolic representations (some features 
are score-based in nature) 

– Feature inaccuracy 

• E.g., current algorithms for tempo estimation from 
audio are not 100% accurate… 
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DM Process   Feature Ranking/Selection/Reduction 

• Goals 

– Remove redundancies  eliminate irrelevant or 
redundant features 

• E.g., Bayesian models assume independence between 
features  redundant features decrease accuracy 

– Perform dimensionality reduction 

• Simpler, faster, more accurate and more interpretable 
models 
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DM Process   Feature Ranking/Selection/Reduction 

• Why? 

– Improve model performance 

– Improve interpretability 

– Reduce computational cost 
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DM Process   Feature Ranking/Selection/Reduction 

• How? 

– Determine the relative importance of the 
extracted features  feature ranking 

• E.g., Relief algorithm, input/output correlation, 
wrapper schemes, etc. 
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DM Process   Feature Ranking/Selection/Reduction 

• How? 

– Select only the relevant features 

• E.g., add one feature at a time according to the ranking, 
and select the optimum feature set based on the 
maximum achieved accuracy (see sections on Model 
Learning and Evaluation) 
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DM Process   Feature Ranking/Selection/Reduction 

• How? 

– Eliminate redundant features 

• E.g., find correlations among input features and delete 
the redundant ones 

– Map features to a less redundant feature space 

• E.g., using Principal Component Analysis 
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DM Process   Feature Ranking/Selection/Reduction 

• Results 

– Categorical (MIREX) 

• Best audio features: best result s with 11 features only 
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Feature Set Feature Name 

SA+MA 

1) Vibrato Coverage (VC) (skew) 

2) VC (kurt)  

3) VC (avg) 

4) Vibrato Extent (VE) (avg) 

5) VE (kurt) 

6) Tonal Centroid 4 (std) 

7) Harmonic Change Detection Function (avg), 

8) Vibrato Rate (VR) (std), 

9) VC (std) 

10) VR (avg) 

11) VE (std) 



DM Process  Model Learning 

• Goals 

– Tackle the respective learning problem by creating 
a good model from data according to the defined 
requirements and learning problem 

• Requirements 
– Accuracy 

– Interpretability 

– … 

• Learning problem 
– Classification, regression, association, clustering 
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DM Process  Model Learning 

• How? 

– Define the training and test sets 

• Train set: used to learn the model 

• Test set: used to evaluate the model on unseen data 
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DM Process  Model Learning 

• How? 

– Select and compare different models 

• Performance comparison 
– Naïve Bayes is often used as baseline algorithm; C4.5 or 

SVMs, for example, often perform better 

– Interpretability comparison 

» E.g., rules are interpretable, SVMs are black-box 
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It has to be shown empirically from realistic examples that a 
particular learning technique is necessarily better than the 
others.  
 
When faced with N equivalent techniques, Occam’s razor advises 
to use the simplest of them. 



DM Process  Model Learning 

• How? 

– Perform model parameter tuning 

• Number of neighbors in k-Nearest Neighbors 

• Kernel type, complexity, epsilon, gamma in SVMs 

• Confidence factor in C4.5 

• … 

 

 

81 



DM Process  Model Evaluation 

• Goals 

– Evaluate model generalization capability in a 
systematic way 

• How the model will perform on unseen, realistic, data, 

– Evaluate how one model compares to another 

– Show that the learning method leads to better 
performance than the one achieved without 
learning 

• E.g., chance with 5 classes  20% accuracy 

82 



DM Process  Model Evaluation 

• How? 

– Use a separate test set  

• Predict the behavior of the model in unseen data 

– Use an adequate evaluation strategy 

• E.g., repeated stratified 10-fold cross-validation 

– Use an adequate evaluation metric 

• Regression: RMSE and R2 are typically used 

• Classification: Precision, recall and F-measure are 
standard 
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DM Process  Model Evaluation 

• How? 

– Check which kinds of errors are more prevalent 
and why 

• What classes/variables show low accuracy? Why? 
– Valence: important features might be missing 

• Where is the root of the problem: classifier/regressor, 
extracted features, method employed for extraction, 
feature selection approach? 

• Same questions for individual songs 
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DM Process  Model Evaluation 

• Common Requirements 

– Accuracy 

– Interpretability 

– There is often a trade-off between accuracy and 
interpretability 

• E.g., decision tree: trade-off between succinctness 
(smaller trees) versus classification accuracy 

• E.g., rule induction algorithms might lead to weaker 
results than an SVM 

85 



DM Process  Model Evaluation 

• Performance Metrics 

– Regression problems  R2 statistics 

86 

Example:  
Predict temperature for next day at 12:00pm: 
 

Sample 
nr. 

Real  
Temp 

Predicted 
Temp 

1 27.2 23.4 

2 31.4 27.2 

3 12.3 15.4 

4 2.4 0.1 

5 -3.8 0.2 

6 7.2 5.3 

7 29.7 25.4 

8 34.2 33.2 

9 15.6 15.6 

10 12.3 10.1 

11 -5.2 -7.2 

12 -10.8 -8.1 

13 14.2 15.3 

14 41.2 38.4 

15 37.6 34.5 

16 19.2 17.8 

17 8.3 8.5 
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DM Process  Model Evaluation 

• Results 

– Dimensional   

• Yang dataset (R2 statistics)  Best world results! 
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Classifiers 

SA MA SA+MA 

Arousal Valence Arousal Valence Arousal Valence 

SLR 43.38 -1.22 32.87 -12.73 43.38 -1.22 

SLR (fs) 51.87 1.57 32.87 -8.59 51.87 1.57 

KNN 55.80 -2.30 28.47 -9.11 54.05 -0.64 

KNN (fs) 58.83 7.59 43.84 -3.92 58.26 5.50 

SVM 58.03 16.27 39.56 -4.10 58.03 16.27 

SVM (fs) 63.17 35.84 42.08 -0.43 65.69 40.56 



DM Process  Model Evaluation 

• Results 

– Categorical  

• Our MIREX dataset (F-Measure) 
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Classifier SA MA SA+MA 

NaïveBayes 37.0% 31.4% 38.3% 

NaïveBayes* 38.0% 34.4% 44.8% 

C4.5 31.4% 53.5% 55.9% 

C4.5* 33.4% 56.1% 57.3% 

KNN 38.9% 38.6% 41.7% 

KNN* 40.8% 56.6% 56.7% 

SVM 45.7% 52.8% 52.8% 

SVM* 46.3% 59.1% 64.0% 



DM Process  Model Evaluation 

• Results 

– Categorical  

• MIREX annual campaign 

• Best world results! 
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http://www.music-ir.org/mirex/results/2012/mirex_2012_poster.pdf 
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DM Process  Model Evaluation 

• Results 

– Playlist generation  

90 

    SA MA SA+MA 

Top1 

All 4.2 % 4.0 % 4.9 % 

FS 6.2 % 3.7 % 5.8 % 

Top5 

All 21.0 % 17.8 % 21.7 % 

FS 24.8 % 18.4 % 25.4 % 

Top20 

All 62.7 % 56.6 % 61.0 % 

FS 62.3 % 57.6 % 64.8 % 



DM Process  Model Deployment 

• Application development 
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Other Problems Addressed 

• Music Emotion Variation Detection (MEVD) 

– Emotion as a temporal variable 

• Emotions may change throughout a song  MEVD 
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Other Problems Addressed 

• Music Emotion Variation Detection (MEVD) 

– Segment-based classification [Panda and Paiva, 
2011] 

• Divide audio signal into small segments 

• Classify each of them as before 

– Ad-hoc strategies (e.g., [Lu et al., 2006])  

• Segmentation based on feature variations 
– Thresholds used and difficult to tune 
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Other Problems Addressed 

• MEVD 

– Ground Truth 

• Annotations by 2 subjects: quadrants only 

– Preliminary Results 

• Classification: SVM 

• 4 classes (quadrants) 

• Accuracy: 56% 



Limitations  and Open Problems 

• Current Limitations 
– Lack of agreement on a usable mood taxonomy 

• MIREX mood: only 5 moods, with semantic and acoustic 
overlap [Yang and Chen, 2012] 

– Lack of sizeable real-world datasets 
• Dimensional approaches  

– Yang only uses 194 songs 

• Categorical approaches 
– MIREX mood validates using 600 songs [MIREX, 2012] 

– Accuracy of current systems is too low for most real-
world applications 
• MIREX best algorithm ~ 68% accuracy in a 5-class mood 

problem [MIREXresults, 2012] 
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Limitations  and Open Problems 

• Open problems 
– Semantic gap  

• Novel, semantically-relevant features necessary, able to 
capture the relevant musical attributes 
– Most important limitation, according to [Friberg, 2008] 

• Multi-modal approaches: combination of different 
information sources (audio, midi, lyrics) 
– Use MIDI resulting from automatic music transcription 

– MEVD 
• Other techniques, e.g., self-similarity techniques [Foote, 

1999] 

• Quality datasets 

96 



Limitations  and Open Problems 

• Open problems 

– Multi-label classification (e.g., [Sanden and 
Zhang, 2011]) 

• Same song belonging to more than one mood category 

 

– Knowledge discovery from computational 
models 

• E.g., rule induction algorithms, neural-fuzzy approaches 
[Paiva and Dourado, 2004] 
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Future/Ongoing Work 

• Multi-modal approaches to MER 
– Combine audio, MIDI and lyrics 
– Preliminary results: results improve using a multi-

modal approach 

• Ground Truth 
– Basic emotions, larger dataset 
– MEVD A/V dataset 

• Feature Extraction 
– New features 

• Knowledge Extraction 
– Rule induction algorithms 
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