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Abstract
Objective. In this paper, an automated stable tidal breathing period (STBP) identificationmethod
based onprocessing electrical impedance tomography (EIT)waveforms is proposed and the possibility
of detecting and identifying such periods using EITwaveforms is analyzed. Inwearable chest EIT,
patients breathe spontaneously, and therefore, their breathing patternmight not be stable. Sincemost
of the EIT feature extractionmethods are applied to STBPs, this renders their automatic identification
of central importance.Approach. The EIT frame sequence is reconstructed from the rawEIT
recordings and the raw global impedance waveform (GIW) is computed. Next, the respiratory
component of the rawGIW is extracted and processed for the automatic respiratory cycle (breath)
extraction and their subsequent grouping into STBPs.Main results.We suggest three criteria for the
identification of STBPs, namely, the coefficient of variation of (i) breath tidal volume, (ii) breath
duration and (iii) end-expiratory impedance. The total number of true STBPs identified by the
proposedmethodwas 294 out of 318 identified by the expert corresponding to accuracy over 90%.
Specific activities such as speaking, eating and arm elevation are identified as sources of false positives
and their discrimination is discussed. Significance. Simple and computationally efficient STBP
detection and identification is a highly desirable component in the EIT processing pipeline. Our study
implies that it is feasible, however, the determination of its limits is necessary in order to consider the
implementation ofmore advanced and computationally demanding approaches such as deep learning
and fusionwith data fromotherwearable sensors such as accelerometers andmicrophones.

1. Introduction

Electrical impedance tomography (EIT) is a non-invasive functional imagingmodality thatmakes continuous
chest examinations possible without any radiation exposure in either adults or children (Brown 2003, Pulletz
et al 2010, Frerichs et al 2017,Martins et al 2019). Compared to othermodalities, EIT is highly portable, it can
support short and long-termmonitoring and its cost is relatively low.Due to its high temporal resolution,
EIT is able to detect dynamic changes in the pulmonary air content in the examined chest plane, a necessary
precondition for ventilation distribution assessment and regional ventilation heterogeneity detection.

In a clinical setting, EIT has been usedmainly in ICUs formechanically ventilated patients (Kobylianskii et al
2016). These patients typically do notmove and their ventilator-controlled breathing pattern is stable allowing
the use of a number of well-known and established EIT analysismethods. Recently, the development of wearable
EIT systems provided the possibility ofmonitoring regional lung ventilation in other patient groups aswell
(for instance, in patients with chronic lung diseases), even outside the hospital (Chouvarda et al 2015,
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Rapin et al 2019). These patients breathe spontaneously, and thus, their breathing pattern is not stable. Effects
like bodymovement, speech, cough, sigh, exercise, change/loss in electrode contact impact the recordings and
impose great challenges in automated EIT data analysis.

Specifically, inwearable EIT devices, electrodes are integrated into belts or vests in order tominimize user
intervention concerning placement issues like electrode spacing and adjustment. Inmost EIT device
configurations 16 or 32 electrodes are used typically placed in one transverse (or slightly oblique) plane. The
main factors influencing chest EITmeasurements inwearable EIT, and consequently the identification of stable
breathing, are:

• Electrode contact—Modern electrodes can sense and continuouslymonitor the electrode-skin contact quality.
Therefore, EIT data acquisition periods corresponding to low-quality electrode contact are detected and
either rejected or processedwith specialmethods.

• Missing/faulty electrodes—EIT images of best quality are achievedwhen the EIT signal quality is good at all
electrodes (Adler 2004,Hartinger et al 2009).Modern EITwearable vests automatically record electrode
contact information during acquisition, enabling the detection of time periods ofmissing or low quality data.

• Bodymovement—Movement of patients during EIT data acquisition causes significant effects on the recorded
measurements (Vogt et al 2016). EITmeasurements recorded during bodymovement can be identified
through accelerometers.

• Posture—EIT data acquisition protocols require specific body posture.However, during various pulmonary
manoeuvres, but even during quiet tidal breathing, subjectsmove involuntarily to facilitate and improve their
ventilation (Zhao et al 2013, Becher et al 2015, Frerichs et al 2016, Lehmann et al 2016, Lasarow et al 2021). The
forwardmovement of the torso and the elevation of the arms cause a significant effect on the EITwaveforms
registered during otherwise undisturbed tidal breathing (Vogt et al 2016).

• Type of ventilation—Clinical studies have shown that the type of ventilation affects the EITfindings
(Blankman et al 2013,Mauri et al 2013, Yoshida et al 2013) and, therefore, ventilation type should be recorded
to ease the data interpretation. The factors affecting EIT acquisition presented so far (contact, posture,
movement) can be identified automatically via advanced technological solutions such as smart electrodes/
sensors and accelerometers. This is not possible for the identification of the ventilation type (tidal breathing,
deep breathing or forcedmaneuver) and, therefore, data-driven approaches are used: the ventilation type is
inferred from the analysis of the EITmeasurements as described in the following section.

In addition, it is possible that other activities such as speaking, eating or coughing take place in parallel with
otherwise stable tidal breathing. In order to detect these activities additional sensors are requiredwhich increases
complexity as well as intrusiveness, potential points of failure, and patient discomfort, and therefore, it is
desirable not only to studywhether or not they affect EIT recordings but also to investigate the feasibility of
recognizing their presence in the EIT signals. Or at least, whether it is possible to discriminate stable tidal
breathing periods (STBPs) from all other breathing patterns. Fast and simple algorithmic solutions are
preferable due to the distributed nature ofmost remotelymonitoring projects where a number of wearable vests
are continuously recording and transmitting biomedical data (EIT, ECG, PPG, lung sounds, etc).

The aimof this studywas twofold: (i) to examine the feasibility of identifying STBPs using features extracted
from the EIT global impedance waveform (GIW) or similar EIT summary representations and (ii) to develop a
method for the automated identification of such periodswithminimal number of parameters. The proposed
identificationmethod, the EIT data acquisition protocol, and the techniques for its statistical analysis are
presented in detail in section 2. In section 3, the results of the application of the proposedmethod are presented,
and our observations are discussed, analyzed and possible future directions are suggested.

2.Methods

2.1. Subjects
The studywas carried outwithin the framework of the EuropeanUnion projectsWELCOME (GrantNo.
611223) andWELMO (GrantNo. 825572) aiming to develop an integrated care approach for continuous
monitoring, early diagnosis and detection of worsening events and treatment of patients suffering from chronic
obstructive pulmonary disease. It was approved by the Institutional Ethics Committee and informedwritten
consent was obtained from each study participant.We analyzed 69 ten-minute recordings of EIT data obtained
in 10 lung-healthy adult subjects (4men, 6women)with no history of lung disease and average age of 40±9
years, body height of 176±13 cm and bodyweight of 70±15kg.
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2.2. EITmeasurements and reconstruction
TheGoe-MF II EIT system (CareFusion,Höchberg, Germany)was used for EIT data acquisition. An array of
sixteen self-adhesive electrodes (Blue Sensor L-00-S, Ambu, Ballerup, Denmark)were placed around the chest
circumference at the level of thefifth to sixth intercostal space of each studied subject (figure 1, stage 1). The
reference electrodewas placed on the right side of the abdomen. The reference electrode in theGoeMF II system
serves the same role as the driven right leg electrode inmost clinical ECG systems; it is used to reduce the
common-mode signal level in the body so that any residual non-zero commonmode gain the input amplifier
has less effect on the signal. Current injectionswith amplitude 5 mArms at a frequency of 50 kHzwere applied
through adjacent pairs of electrodes in a sequential rotating process and the resulting potential differences were
measured by the remaining electrodes (adjacent current stimulation pattern). The EIT scan ratewas 33
images s−1 and each of the 69 recording sessions had a duration of 10 min. RawEIT images/frameswere
reconstructed using theGrazConsensus ReconstructionAlgorithm (GREIT) as implemented in the EIDORS
public software (Adler and Lionheart 2005, 2006, Adler et al 2009, Gomez-Laberge et al 2012). The
reconstruction used an adult thorax shapedmodel with a single plane of 16 electrodes and the adjacent
stimulation pattern (figure 1, stage 2, Left). In each 32×32 EIT, the non-zero pixels showed the normalised
difference between the instantaneous and baseline pixel impedance (i.e. the relative impedance change). The
baseline pixel impedance was equivalent to the average pixel impedance determined during a selected STBP.

2.3. Protocol
The examined subjects were instructed to performdifferent ventilation and non-ventilationmanoeuvres during
the data acquisition at randomorder. As shown infigure 2, a typical sequence included:

Figure 1.EIT image acquisition and processing pipeline. High level analysis of EIT (stage 5) depend on stable tidal breathing detection
(stage 4, red lines). However, in wearable EIT this is challenging because breathing is not stable depending on the activities of the
subject.
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• Stable tidal breathing in upright sitting position,

• breath holding,

• elevation of arms (left, right or both) one ormore times continuously,

• forced full inspiration and expirationmanoeuvres,

• coughing,

• speaking, laughing, eating

• change in posture (seated to standing and vice versa, torso rotation).

The start and end time points of each of thementionedmanoeuvres together with their descriptionwere
manually recorded by the expert physician supervising the EIT data acquisition process.

2.4.Data analysis
The standard EIT image acquisition and processing pipeline is shown infigure 1. It is emphasized that in
wearable EIT systems, the overall EIT processing pipelinemust be automated, since there is no possibility of user
interaction of any type. The automatically reconstructed EIT image sequence is the output of stage 2where the
reconstruction algorithm is applied to the raw voltagemeasurements provided at stage 1. At stage 3, theGIW is
computed and processed by low-pass filtering for the isolation of its respiratory component. The cutoff
frequencywas determined automatically based on themagnitude of the Fourier-transformed rawGIW to
identify the frequency with the largest spectral peak fmaxand set to f2 max (Gomez-Laberge et al 2012)6. It is
reminded that theGIW represents the relative impedanceDZrel as a function of time, since for each 32×32
EIT image frame the average value is stored (Frerichs et al 2017, Khodadad et al 2018). Breath detection is
achieved by computing the localminima and localmaxima of the respiratoryGIW, since they correspond to
end-expiratory and end-inspiratory points, respectively (Hahn et al 1996). After the elimination of false positive
(orweak) breaths (see subsequent subsection), the remaining breaths constitute the output of stage 3. At stage 4,
the respiratoryGIW together with the detected breaths sequence is processed for the extraction and
identification of STBPs. Asmentioned before, stage 4 is themain focus of the current study (feasibility of
automatic detection inwearable EIT and accuracy). In the following subsections, the terminology and
computational steps of stages 3 and 4 are presented in detail.

Figure 2.Changes in global impedancewaveform (rel.ΔZ) in a lung-healthy 43 year oldman. Stable tidal breathing periods are
interrupted by bodymovements, cough, speech and different breathing pattern (bold).

6
TheMAΤΑΒ source code forfiltering can be found at the EIDORSwebsite (http://eidors3d.sourceforge.net/tutorial/lung_EIT/cg_

2012_ards_recruitment.shtml).
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2.4.1. Breath detection andweak breath elimination
Asmentioned in the previous paragraph, a frequent complication in breath detection from the respiratoryGIW
is the existence of weak localmaxima that survived the low-pass filtering depending on the relative positions of
respiratory and cardiac rate harmonics. An indicative example is shown in figure 3. The respiratory component
(figure 3, top right) of the rawGIW (figure 3, top left) is the result of the application of low-pass filtering to
eliminate the higher frequency cardiac component of the rawGIW.The indicated localmaxima (red arrows)
cannot be accepted as end-inspiration points of regular breaths since they are tooweak (low amplitude) and too
short (brief duration) based on precalculated thresholds for amplitude and duration, respectively. In other
words, they are false positives and, therefore, they are eliminated in the sense that they are considered part of the
appropriate neighboring (left or right) breath. This retrospectivemerging process is illustrated infigure 3
(bottom). The false positive weak breath i defined by localminimum mi and localmaximum Mi is considered
part of breath -i 1 resulting in relabeling the initially detected breath +i 1as breath i.

A candidate breath i with start-inspiration at time m ,i end-inspiration at Mi and end-expiration at +mi 1 is
consideredweak if the tidal gas volume exhaled or inhaled is less than a thresholdVweak (figure 4).
Mathematically, theminimum tidal volumeVi

min defined as ( )=V V Vmin , ,i i
insp

i
min exp whereV V,i

insp
i
exp are

the gas volumes corresponding to the inspiration and expiration phases of breath i must be less thanV .weak By
denoting the respiratory component ofGIWas G,we obtain (figure 4):

( ) ( ) ( ) ( )= - = - +V G M G m V G M G m, 1 .i
insp

i i i i i
exp

For the determination of thresholdV ,weak we assume thatmore than 50%of the total number of detected
candidate breaths belong in stable breathing periods. In this way, themedian value of the tidal gas volume

Figure 3.The raw global impedancewaveform (GIW) (top left) isfiltered for the extraction of its respiratory component (top right).
End-inspiration and end-expiration points are identified as localmaxima and localminima, respectively.Weak localmaxima (red
arrows) aremisleading indicators of the existence of separate breaths (false positives). In our approach, theseweak breaths are
absorbed by themost appropriate, left or right, breath (bottom).
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exhaled or inhaled for thewhole set of candidate breaths is an accurate estimate of this gas volume for tidal
breaths. It is noted that the retrospective processing of the initially detected breaths allows the computation of
the thresholdV ,weak thus eliminating theweak breaths via a second pass of the breath sequence. Also, in this way,
other types of breaths (such as forcedmanouvres)may be subsequently detected and processed. This is not
possible with ‘real time’ breath detection and eliminationwhere breaths are detected based onmaxima and
minima of the last seconds of theGIW (Dräger 2021).

2.4.2. GIW-based breath features
The identification of the STBPswas based on breath feature variation analysis using amoving (sliding)window
approach. Specifically, theGIW-derived features for breath bi were:

• the tidal volume,V ,i defined as themaximumof tidal gas volume exhaledor inhaled, that is, ( )=V V Vmax , ,i i
insp

i
exp

• the breath duration, = -+D m mi i i1 which is the sumof the durations of the inspiration and expiration
phases D D, ,i

insp
i
exp respectively (figure 4), and

• the end-expiratory impedance level, ( )= +Z G mi i
exp

1 .

The desired ventilation homogeneity of a breathing period (i.e. of a sequence of consecutive breaths) can be
characterized by the coefficient of variation (CV) of tidal volume, CV ,V duration, CVD and end-expiratory
impedance level, CV .Z It is reminded that the CVof a distribution is defined as the ratio of the standard deviation
of the distribution over itsmean. For the sequence of consecutive breaths of a STBP, ( )= ¼B b b b, , , ,n1 2 the
aboveCVs are expressed as
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whereV D Z, ,i i i are the tidal volume, duration and end-expiration impedance of breath bi for { }Î ¼i n1, 2, , .
(·) (·)Mean SD, represent the samplemean and sample standard deviation of their arguments.

2.4.3. Stable breathing period detection
The sequence of detected breaths, ( )= ¼S b b b, , , ,N1 2 is input to a slidingwindow algorithmwhere S is
scanned from left to right: at each position = ¼ - +i i N W, 1, , 1, the sequence of consecutive breaths

Figure 4.GIW-based breath features (see text).

6

Physiol.Meas. 42 (2021) 064003 KHaris et al



( )= ¼+ + -S b b b, , ,i i i i W1 1 constitutes the current windowofwidthW for which it is decided if it is a STBP of
lengthW or not, according to the following rule:

( ) ( ) ( ) ( )< < <S T T Tis STBP IF CV and CV and CV , 1i V V D D Z Z

whereT T T, ,V D Z are predetermined thresholds for theCVof tidal volume, duration and end-expiration rel.
impedance, respectively.

The output of the above scanning algorithm is an array A of size - +N W 1with the following values

⎧
⎨⎩

[ ] =A i
S1, if is STBP

0, otherwise
.i

In otherwords, [ ]A i is1 if the sequence of consecutive breaths that correspond to Si which is
( )¼+ + -b b b, , ,i i i W1 1 is STBP. It is expected that sequences of consecutive 1 s in A signify the existence of longer
stable breathing periods since neighboring 1 s indicate highly overlapping STBPs. Specifically, if both [ ]A i and

[ ]+A i 1 equal to 1, thenwe expect ( )È = ¼+ + +S S b b b, , ,i i i i i W1 1 be STBP of length +W 1.By generalizing
this heuristicmerging rule, for a sequence of m consecutive 1 s in A,we expect the breath sequence

( )È È È¼ = ¼+ + + + - +S S S b b b, , , ,i i i m i i i W m1 1 1 be STBP of length + -W m 1. For this reason, in the last
step of the STBPdetection algorithmSTBPs defined by consecutive 1 s in A are identified andmerged to longer
STBPs (figure 5).

2.4.4. Evaluation
Thefinal output of the proposed STBPdetectionmethod (i.e. the output of stage 4 in figure 1) is a set of detected
STBPswhere each STBP is defined by a sequence of consecutive breaths as presented in detail in the previous
section. To assess the performance of themethod, we applied themethod to 69 EIT recordings of duration
10 min each. In these recordings, the true STBPswere not identified as sequences of consecutive breaths.
Instead, the expertmanually described them as time intervals by their start and end time points (in seconds). For
this reason, the algorithmically detected STBPswere also represented as time intervals. Given two STBPs, P P, ,1 2

represented as time intervals, ( )=P s e, ,1 1 1 ( )=P s e,2 2 2 where s s,1 2 are their starting and e e,1 2 their end time
points, respectively, their Jaccard similarity index is defined by

( ) ( ( ) ( ) )
∣( ) ( )∣
( ) ( )È

=

=
Ç

J P P J s e s e
s e s e

s e s e

, , , ,
, ,

, ,
,

1 2 1 1 2 2

1 1 2 2

1 1 2 2

Figure 5. Stable tidal breathing period detection based on a slidingwindowofwidthW = 6 breaths. The input breath sequence
containsN = 14 breaths. The output arrayA has - + =N W 1 9 elements ( )111111000 .The first six 1 s indicate that probably the
breath sequence defined by the union of S S S, , ,1 2 6 is a STBP containing breaths ( )1, 2, ,11 .
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where |( ) ( )∣Çs e s e, ,1 1 2 2 represents the duration of the overlap in time between the two intervals (figure 6) and
∣( ) ( )∣Ès e s e, ,1 1 2 2 their total duration. Jaccard index can be values between 0 (no overlap) and 1 (time intervals
coincide). In our case, the followingmodified Jaccard similarity indexwas used

( ) ( ( ) ( ) )
∣( ) ( )∣

∣( )∣

=

=
Ç

J P P J s e s e
s e s e

s e

, , , ,
, ,

,
,

m T T D D

T T D D

T T

True Detected

where ( ) ( )= =P s e P s e, , ,T T D DTrue Detected are time intervals corresponding to a true and a detected STBP,
respectively. Positive values of Jm indicate that part of the corresponding true STBPhas been detected. The
maximumvalue of Jm is 1 indicating complete detection of the corresponding true STBP (figure 9, STBPs 1, 2, 8
and 9). On the other hand, zero values of Jm identify false positives i.e. identified STBPs that are not true (figure 9,
STBPs 3 and 4).

2.4.5. Global inhomogeneity (GI) and fraction of ventilation indices
The calculation of thewidely used ventilation heterogeneitymeasure, namely, theGI index, for each breath is
based on the corresponding tidal image, DI , a functional image each pixel of which represents the difference in
impedance between end-inspiration and end-expiration (Zhao et al 2009). Initially, themedian value,

( )med DI ,L of pixels belonging to the lung area L of this image is computed. Then, the normalized sumof the
absolute difference between the computedmedian value and every pixel value, DI ,xy is considered to indicate the
variation in the tidal volume distribution in thewhole lung region:

∣ ( )∣å
å

=
-

Î

Î

DI med DI

DI
GI ,

x y L xy L

x y L xy

,

,

where the required lung area, L, is identified according to Zhao et al (2010).
The right ventilation fraction represents the fraction of ventilation volume that corresponds to the right side

of the chest and is computed by the ratio of the sumof the values of the right half of the tidal image DI over the
total sum.

2.4.6. Statistical analysis
The proposed STBP identificationmethodwas implemented inMATLABR2019a (MathWorks, Natick,MA).
EIT reconstructionwas based onGREIT as implemented in EIDORS.Datawas tested for normality using theD
´Agostino&Pearson normality test and between-group comparisonswere performed using one-wayANOVA.
Datawas analysed usingMATLABR2019a andGraphPad Prism 9.

3. Results and discussion

The proposed stable tidal breathingmethodwas applied to 69 tenminute EIT recordings collected from10
healthy volunteers. The total number of true stable breathing periods identified by the expert was 318. Figure 7
shows the STBP identification results as distributed in the 10 healthy subjects. All programs executed offline on a
personal computer with average processing time less than one second per each 10 min EIT recording. In total,
294 STBPswere correctly identified (true positives) giving a success rate equal to 92.45%approximately
(figure 8). All correctly identified STBPs had positivemodified Jaccard similarity indexwith 84%of themhaving
value greater than 0.8. The number of false positives (not stable breathing periods that were identified as stable)
was 48. The thresholdsT T T, ,V D Z of theCVs in equation (1)were set to 0.25, 0.25, 0.2 and the size of the sliding

Figure 6. Jaccard index between time intervals.
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windowWwas set to 6. Thismeans that all detected STBPs consist ofW consecutive breaths ormore and
therefore, true STBPs containing less than 6 breaths (i.e. with duration less than 20–30 s) are not detected.
Experiments with smaller values of the slidingwindowW (4 and 5), exhibited slightly better accuracy (around
94%), however, this was achieved at the cost of a large increase of false positives,mostly during speaking and
eating. This was expected, since depending on the particular way of speaking or eating of each subject, breathing
periods of 3,4 or 5 breathsmay be projected in theGIWas STBPs. On the other hand, values ofW greater than 8
excluded STBPs of length 6, 7 and 8whichwere frequent among the true STBPs. Concerning the other
parameters, namely,T T T, , ,V D Z we experimentally observedweak sensitivity of the accuracy on the threshold
values in the range [0.2, 0.3] indicating that STBPs and non-STBPs are sufficiently separatedwith respect to
volume, duration and end-expiratory impedance level. The values used for the results reported abovewere
specified using the empirical riskminimization based on the annotated data.

Figure 9 shows an indicative STBP identification result for one of the 69 EIT recording sessions of 10 min
duration. The true STBPs identified by the expert are indicated by enclosing rectangles while the detected STBPs
are indicated by a pair of red lines connecting the end-expiration and end-inspiration points of their respiratory

Figure 7. Stable tidal breathing period identification results for the 69 tenminute EIT recordings collected from10 healthy subjects.

Figure 8.Accumulative STBP identification accuracy (Identified TrueTB periods: 294, Not Identified True TBperiods: 24, Identified
False TB periods: 48).
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cycles (breaths). In some cases, the expert considered that stable breathing can coexist with speaking depending
on the shape and formof theGIWdisplayed in real time by the acquisition device during recording. The
corresponding average TV functional EIT images for each STBP are almost identical (figure 9, bottom) implying
that such phases are also suitable for reliable assessment of ventilation distribution during tidal breathing.

Another feature of interest in automated EIT data analysis is the accuracy in identifying themost stable
STBP, in the sense ofminimum tidal volume variation. This is useful in cases where a STBPmust be
automatically selected and analyzed (figure 9, STBP 2, thicker red lines). In the results reported above, 66 out of
69 identifiedmost stable STBPswere true STBP (95.66%accuracy).

In addition to eating and speaking, another source of false positives in STBP identification is the ‘elevation of
both arms’ posture. According to our observations, the corresponding breathing patternmay fulfill the
requirements of a STBP as defined by equation (1) (figure 9, STBP 3). However, inmany cases, the average end-
expiratory impedance of STBPs at ‘elevation of both arms’ posture is considerably higher,making their
detection possible.

For the detection and elimination of weak breaths (section 2.3), the proposedmethod depends on the
thresholdVweak which is used to decide if a candidate breath i havingminimum tidal volume Vi

min isweak or
not. This parameter was determined by calculating themedian value of theminimum tidal volumeV min of the
whole set of detected breaths in the 10 min recording session under analysis. It is well-known that themedian is a
robust estimator of the average value in the presence of outliers under the condition that these outliers represent
a portion that is less than 50%of the sample size. In our case, outliers are produced by breaths belonging to
breathing patterns other than stable STBPs: all patterns described in section 2.2. Under this condition, we found
that a value ofVweak equal to the one third of the computedmedian discriminates effectively weak breaths. In
‘real time’ breath detection, less accurate weak breath detection is expected, unless the breathing pattern is highly
regular and stable. This is the case in ICUswheremechanical ventilation is used and there are no other activities
(speaking, arm /bodymovement, etc). However, when themajority of breaths in the recording session
correspond to non-STBPs such as speaking, eating,moving (arms or torso), coughing and forced ventilation
manoeuvers, the estimation of valueVweak may become highly erroneous.

Figure 10 shows two EITmeasures of ventilation distribution, the average GI index (left) and average right
ventilation fraction (right) for the identified true STBPs, the not identified true STBPs and the identified
false STBPs. Statistical analysis revealed no significant differences among the groups both forGI (ANOVA,
p-value=0.640) and theRight ventilation fraction (ANOVA, p-value=0.258). Since the examinationswere
carried out in healthy subjects with no history of lung diseases andwithout any study-related interventions
known to induce redistribution of ventilation in the chest cross-section, such as horizontal postures, thisfinding
was anticipated and confirms the plausibility of EIT-based assessment of ventilation homogeneity (Zhao et al
2009, Reifferscheid et al 2011, Lupton-Smith et al 2014).

Figure 11 shows the averageGI and right ventilation fraction per subject. It is evident that there are
statistically significant differences between different subjects. Thismeans that the value of these two indicesmay

Figure 9. Stable tidal breathing period identification result for a 10 min EIT recording session. (top): The six true STBPs identified by
the expert are indicated by enclosing rectangles (1, 2, 5, 6, 8, 9)while the nine algorithmically identified STBPs by a pair of red lines
connecting the end-expiration and end-inspiration points of their respiratory cycles (breaths). (bottom): The corresponding average
tidal variation functional EIT images for each STBP.
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be subject dependent and therefore, anymethod for establishing populationwide ‘normal’ values should take
this inter-subject distribution variability feature into account. The possible causes for the observed
interindividual differences are related to age, chest anatomy and the exact location of the EIT examination plane.
It has been shown in previous studies that even small changes in the placement of EIT electrodes in the
craniocaudal direction exert an effect on the observed ventilation distribution pattern (Reifferscheid et al 2011,
Krueger-Ziolek et al 2015, Karsten et al 2016). In view of the recent development of EIT systems, where the
electrodes are integrated intowearable garments, the possible effect of placing the electrodes at slightly different
chest locations during repeated examinations can be expected to beminimized because of the fixed electrode
positions in thewearable (Rapin et al 2019, Frerichs et al 2020).

In order to be able to obtain reliable diagnostic andmonitoring information on the lung function status from
EIT examinations conducted in spontaneously breathing subjects in the future expected remote setting,
reference EIT values are urgently needed. Thefirst attempts of creating such values have been accomplished
(Yang et al 2021), however,much larger cohorts of healthywomen andmen of different ages and body sizes will
have to be examined. The generation of such reference valueswill require examinations inmultiple body
positions because postural changes induce shifts in intrathoracic and abdominal organswhereby not strictly
identical lung tissue regions are assessed by EIT. Consequently, EIT parameters are expected to vary among
postures. Ideally, the body posture should be captured alongwith the EIT datawhichwould ease the
interpretation of the findings.

This study has a few limitations. First of all, the limited amount of data since: (i) it was based on healthy
volunteers, (ii) the breathing pattern and sequence ofmovements (arms and torso)was designed to serve asfirst

Figure 10.Values ofGI index (left) and right ventilation fraction (right) for the identified true STBPs, the not identified true STBPs
and the identified false STBPs. Box andwhisker plots show theminimum, 25%percentile,median, 75%percentile, andmaximum
values, red crossesmark the outliers.

Figure 11.Average global inhomogeneity (GI) index (left) and average right ventilation fraction (right) for the true detected STBPs in
individual subjects. Box andwhisker plots show theminimum, 25%percentile,median, 75%percentile, andmaximumvalues, red
crossesmark the outliers.
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of its kind feasibility study and (iii) the recorded EITmeasurements were performed in an upright position only.
Many other horizontal postures (supine, prone, right and left lateral) are possible and are expected to affect the
findings due to gravity-dependent redistribution of ventilation (Frerichs et al 1996, Reifferscheid et al 2011,
Lupton-Smith et al 2014). Another limitation concerns the timing procedure used by the expert during data
acquisition. As expected, themanual time recording process was not error free. The introduced inaccuracies
weremost of the time less than 3–4 s. The error assessment was based on themanual comparison of the time of
occurrence of characteristic shortmanoeuvres such as ForcedManoeuvres as recorded from the EIT device. In
our study, we used the relatively oldGoe-MF II device which certainly is outperformed by currently available
modern EIT devices. However, this imitation did not pose nay disadvantage in view of themajor goal of the
studywhichwas to develop procedures capable of identifying stable breathing periods suitable for analysis of
regional ventilation. Such procedures are universal and device-independent and could be applied to EIT
measurements accomplishedwith any EIT device.

Despite its limitations, the present study showed that the accurate automated stable STBP identification is
feasible. Also, it revealed that the breathing patterns (as projected to theGIW) caused by specificmanoeuvres
such as speaking, eating and ‘both arm elevation’may appear as stable. This constitutes valuable information for
extracting recommendation guidelines and designing themost appropriate sequence of ventilationmanoeuvres
duringwearable EIT recording sessions inwhich the presence of false STBP sources isminimised. In addition,
the observed inter-subject ventilation distribution variability in combinationwith the fact that the ultimate goal
ofmonitoring is early identification of lung disease deterioration, indicates thatmachine learning techniques
based on personalized training datasetsmay be a promising future research direction.

4. Conclusion

Our studyfindings imply that automated selection of undisturbed, STBPs, by processing the EITGIW is feasible
when spontaneously breathing subjects aremonitored by EIT. Such stable phases of EIT data can be used to
generate variousmeasures characterizing regional lung function over time such asGI index, fraction of
ventilation, center of ventilation and functional EIT images. Time-dependent changes in thesemeasuresmight
be applied to identify lung disease deterioration or to assess the therapy effects. Preliminary results indicate that a
personalized approach should be adopted since the numericalmeasures seem to be subject/patient dependent.
In addition, specific activities such as speaking and eating can also be sources of stable breathing patterns, an
information that should be taken into account.
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