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A B S T R A C T

Assessing the health status of critically ill patients with COVID-19 and predicting their outcome are highly
challenging problems and one of the reasons for poor management of ICU resources worldwide. A better
pathophysiological understanding of patients’ state evolution in the ICU can enhance effective medical
interventions. Therefore, there is a need to monitor and analyze the pulmonary function of a ICU patient
with COVID-19 and its impact on cardiovascular and other systems. To achieve this, chest X-rays (CXRs),
respiratory sounds and all the routinely monitored parameters, scores and metrics in the COVID-19 ICU
were recorded from 171 ICU patients with COVID-19 from June 2020 until December 2021. Features were
extracted from respiratory sounds, deep learning analysis was conducted on CXRs, and logistic regression
analysis was performed on routine ICU clinical variables. Deep learning pipelines were established to classify
patients’ outcomes (survival or death) at two time points (ICU mortality or 90-day mortality) using three
input configurations: (a) CXRs, (b) a fusion of CXRs and respiratory sounds features, or (c) a fusion of CXRs,
respiratory sounds features, and principal features of the ICU clinical measurements. The performance of the
latter approach was promising, achieving, for ICU mortality, an accuracy of 0.761 and an AUC of 0.759, and
for 90-day mortality, an accuracy of 0.743 and an AUC of 0.752, while the performance of approaches (a)
and (b) was worse. Therefore, using multi-source data and longitudinal COVID-19 ICU data offers a better
prediction of the outcome in the ICU, thereby optimizing medical decisions and interventions. Furthermore,
we show that adding the adventitious respiratory sounds features significantly increased AUC and accuracy
for mortality prediction of ICU patients with COVID-19.
1. Introduction

The COVID-19 pandemic has caused millions of deaths worldwide
and overloaded the healthcare systems around the world (Velavan
& Meyer, 2020). During the pandemic, and currently intensive care
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units (ICUs) have treated millions of patients with COVID-19, with a
large percentage dying after irreversible damage in the lungs and other
vital body functions and structures (Armstrong, Kane, Kursumovic,
Oglesby, & Cook, 2021). To a large extent, the evolution of life
vailable online 7 August 2023
957-4174/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.eswa.2023.121089
Received 5 March 2023; Received in revised form 27 June 2023; Accepted 29 July
 2023

https://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
https://figshare.com/s/e5af036d5ca46150eac4
mailto:yunanwu2020@u.northwestern.edu
mailto:bmrocha@dei.uc.pt
mailto:vakaimak@yahoo.gr
mailto:ncheimar@gmail.com
mailto:petmezgs@auth.gr
mailto:chatzise@auth.gr
mailto:billyk@auth.gr
mailto:lstefano@auth.gr
mailto:dpessoa@dei.uc.pt
mailto:amarques@ua.pt
mailto:carvalho@dei.uc.pt
mailto:ruipedro@dei.uc.pt
mailto:akiskotoulas@hotmail.com
mailto:bitmilly@gmail.com
mailto:a-katsaggelos@northwestern.edu
mailto:nicmag@auth.gr
https://doi.org/10.1016/j.eswa.2023.121089
https://doi.org/10.1016/j.eswa.2023.121089


Expert Systems With Applications 235 (2024) 121089Y. Wu et al.

r

0
c
t
o
u
i
o
t
C
o
c
e
s

i
c
t
t
p
F
A
f

2
s
t
m
1
s
o
h
p
p

I
a
s
t
m
m
t
a
t
t
c
d
a
t
t
p
o
d
p
+

threatening Acute Respiratory Distress Syndrome (ARDS) caused by the
associated coronavirus (SARS-CoV-2) is not well understood as
concerns its pathophysiology (Yuki, Fujiogi, & Koutsogiannaki, 2020).
Efforts have been made to predict the final outcome of the ICU stay of
critically ill patients with COVID-19 based on clinical and laboratory
findings with variable results (Serafim, Póvoa, Souza-Dantas, Kalil,
& Salluh, 2021). These efforts often failed to take into account the
complex correlations between certain clinical manifestations of severe
ARDS and the clinical course of the disease in the controlled ICU
environment. A predictive algorithm capable of discriminating between
patients at higher risk of death based on early clinical respiratory
functional parameters and findings from simple examinations using
available medical devices (like pulmonary auscultation and chest X-
rays) would likely lead to more effective management of high-risk
patients and potentially to an increase in overall survival. Ideally, this
algorithm should be easy to feed, include meaningful bio-parameters
or imaging modalities, and have adequate precision rates.

Over the past two years, deep learning (DL) has played an im-
portant role in the detection of patients with COVID-19. Trained on
large amounts of computed tomography (CT) scans or chest X-rays
(CXRs), DL models are able to diagnose COVID-19 faster and more
accurately than radiologists (Tabik et al., 2020; Wehbe et al., 2021).
For example, Ramsey et al. developed a DeepCOVID-XR algorithm
that integrates six different DL models to detect COVID-19 on CXRs,
which outperformed experienced radiologists (Wehbe et al., 2021).
However, so far, only a few studies have made an attempt to predict
the clinical course of patients with COVID-19 using DL techniques. In
particular, Sriram et al. (2021) used CXRs to propose a self-supervised
method based on the DenseNet-121 architecture (Huang, Liu, Van Der
Maaten, & Weinberger, 2017) for the prediction of COVID-19 patient
deterioration including three different tasks: namely, adverse events
(AUC = 0.742) prediction from a single chest radiograph, increased
oxygen requirements (AUC = 0.765) prediction from a single chest
adiograph, and adverse events (AUC = 0.786) and mortality (AUC =

0.848) prediction from a sequence of radiographs. On the other hand,
Shamout et al. (2021) presented a DL approach that combines a deep
CNN for CXRs feature extraction and a gradient boosting model for
routine clinical parameter learning to predict the deterioration risk of
patients with COVID-19 (AUC = 0.786). Similarly, Kwon et al. (2021)
fused chest radiographs and clinical variables into a DenseNet-121
architecture to predict the intubation (AUC = 0.88) and mortality (AUC
= 0.82) risk of patients with COVID-19, while Aljouie et al. (2021)
tested four different machine learning classifiers for the prediction
of ventilation requirement (AUC = 0.87) and mortality risk (AUC =
.83) using a fusion of CXRs, complete blood count, demographic and
linical data. Finally, Gourdeau et al. (2022) applied transfer learning
o extract meaningful features from COVID-19 CXRs and predict the
utcome of mechanical ventilation and achieved an AUC of 0.702
sing only pre-intubation CXRs and an AUC of 0.743 when combining
maging data and aggregated risk factors. However, with the exception
f the last publication (Gourdeau et al., 2022), all researchers have
ried to predict the clinical outcome of non-severely ill patients with
OVID-19 in settings outside the ICU. The inherently complex nature
f critically ill patients with COVID-19 related ARDS requires fusion of
linical physiology parameters together with imaging and other clinical
xamination data to allow for a more robust and reliable prognostic
equence.

Apart from researchers who used DL techniques to predict mortality
n severely ill patients with COVID-19, various authors have described
linical models capable of predicting the in-hospital mortality of pa-
ients with COVID-19 in the ICU. Most of these efforts have identified
he following clinical parameters that are associated with increased
robability of death in the ICU: increased age (Alser et al., 2021;
errando et al., 2020; Gallo Marin et al., 2021), presence of severe
RDS (Alser et al., 2021; Ferrando et al., 2020), high sequential organ
2

ailure assessment (SOFA) score (Alser et al., 2021; Ferrando et al.,
020; Gallo Marin et al., 2021), extensive lung involvement in CT scans,
pecific biomarkers (Gallo Marin et al., 2021) and complications during
he ICU stay (like acute kidney injury, septic shock, cardiac arrhyth-
ias, and infections) (Ferrando et al., 2020). Another study found that
8 day-mortality was associated with increased age, obesity, high SOFA
core and low ratio of partial arterial oxygen pressure and inspiratory
xygen fraction (PaO2/FiO2 ratio) (Leoni et al., 2021). These efforts
ave highlighted the importance of specific clinical parameters that
lay an important role in the mortality prediction for this pool of
atients.

The objective of this work was to make mortality predictions for
CU patients with COVID-19 by integrating CXRs, clinical variables,
nd respiratory sounds features. The contribution of this paper can be
ummarized as follows: (1) This study represents the first attempt, to
he best of our knowledge, to merge these three modalities to predict
ortality in the ICU setting for COVID-19 patients. By combining infor-
ation from CXRs, clinical variables, and respiratory sounds, we aimed

o enhance the accuracy and reliability of mortality predictions. The
nalysis of sounds from a clinical point of view can enable physicians
o determine the progression of the lung insult and in some cases,
he severity of the lung abnormalities, especially in the presence of
ertain adventitious sounds, like crackles and squawks. However, the
octors cannot tell the difference between the patients who will survive
nd those who will not base on the respiratory sounds alone despite
he important information they provide, thus an automated algorithm
aking into account the respiratory sounds, chest X-rays and clinical
arameters would be ideal for a more reliable prediction of the ICU
utcome of COVI-19 patients; (2) This study introduces a benchmark
eep learning pipeline for the outcome prediction of COVID-19 ICU
atients; (3) Importantly, we established the first multimodal (CXRs
respiratory sound + ICU parameters) open access database of ICU

COVID-19 patients, which will facilitate further research and promote
the development of new methodologies in this domain. Therefore,
the paper is structured as follows: in Section 2, the database, the
preprocessing steps, and the proposed method are first presented; in
Section 3, the obtained results are analyzed and lastly, in Section 4,
the strengths and limitations of the study are discussed.

2. Materials and methods

In this study, we developed a multi-model fusion workflow to pre-
dict mortality for ICU patients by integrating CXRs, clinical variables,
and respiratory sound features, as shown in Fig. 1. The data from these
three modalities were collected at sequential time points and under-
went a pre-processing stage to ensure optimal quality. Specifically, the
fusion model was initialized using pre-trained weights derived from a
variational auto-encoder (VAE), providing a solid starting point for the
fusion process. To capture temporal patterns and extract valuable in-
sights, we employed long short-term memory (LSTM) networks within
the fusion model, enabling the extraction of temporal features over
time.

2.1. Dataset and ethics

The dataset was collected by an ICT platform that enables the mon-
itoring and fusion of clinical information from patients with COVID-19
admitted to the ICU into an annotated database named CoCross (Kil-
intzis et al., 2022). The CoCross platform was deployed in June 2020
in the 1st ICU of ‘‘G. Papanikolaou’’ hospital in Thessaloniki, Greece,
where recordings from patients with COVID-19 receiving care in ICU
were performed. The study protocol was approved by the Ethics Com-
mittee of the hospital (Scientific Council of ‘‘G. Papanikolaou’’ Hospital,
Approval Number: 42/10/20-05-2020). Due to the absence of addi-
tional interventions during the study and the special circumstances of
the COVID-19 pandemic (prohibition of relatives’ visit to the ICU), the

Ethics Committee waived the need for written consent form for the
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Fig. 1. An overview of the entire multi-modal fusion workflow.
recordings, provided that all the current regulations regarding data
protections are followed. In total, multi-source data from 171 ICU
patients (female: male = 57: 114) have been acquired and imported
in the CoCross database using FHIR based data modeling (Kilintzis,
Chouvarda, Beredimas, Natsiavas, & Maglaveras, 2019), corresponding
to a five-day average monitoring period including a dataset with 3477
distinct auscultations. Specifically, in each ICU segment a 10′′ tablet,
a Bluetooth pulse oximeter (Medisana™ pulse oximeter PM150) and a
Bluetooth digital stethoscope (3M™ Littmann® Electronic Stethoscope
Model 3200) were provided and kept inside the ICU at all times. Follow-
ing Kilintzis et al. (2022), the protocol included pulmonary auscultation
in six locations, namely: (1) right lung-apex front, (2) right lung-
base front, (3) right lung-base back, (4) left lung-apex front, (5) left
lung-base front, and (6) left lung-base back, and cardiac auscultation
in four locations: the standard auscultations points for the (7) aortic
valve, (8) pulmonic valve, (9) mitral valve and, (10) tricuspid valve.
Measurements were conducted upon the initial phase of the ICU stay
and on occasions the intensive care doctors deemed necessary for clin-
ical decision making (for example, when the patients displayed signs
of clinical deterioration). Data were collected during all the discrete
phases of the COVID-19 pandemic in northern Greece and included
hospitalized patients affected by all the main variants of SARS-CoV2
virus, except for the Omicron strain.

In order to evaluate the effectiveness of the predictive algorithm,
two different mortality rates were considered: the mortality rate within
the ICU and the 90-day mortality, a commonly accepted period of time
ensuring all-causes mortality is taken into account. The outcome during
the ICU stay was recorded and 3 months after discharge from the ICU,
survivors were contacted by phone to receive feedback on their health
status at that point of time.

2.2. Chest X-rays pre-processing

The number of longitudinal CXRs per subject varied throughout the
ICU stay and its distribution per surviving and non-surviving subjects
is shown in Fig. 2. We chose 8 CXRs for each subject as it was the
average value of the number of scans among all patients, meaning
that if the number of CXRs was greater than 8, 8 scans would be
selected randomly by intervals from all of their scans per epoch, while
if the number of CXRs was fewer than 8, the variational autoencoder
(VAE) would reconstruct the missing scans to reach a total of 8. All
CXRs were cropped to maintain a square area around the lung field in
order to remove all irrelevant annotations. This area was segmented
by a U-net algorithm (Ronneberger, Fischer, & Brox, 2015), which had
previously been trained on images from two publicly available datasets
(Montgomery Jaeger et al., 2014 and JSRT CXRs datasets Shiraishi
et al., 2000) for semantic segmentation of the lung fields. Next, all
cropped images were resized to 512 × 512 and normalized between
0 and 1. Examples of 8 CXRs for two different outcomes (i.e., alive or
3

dead) of patients are shown in Appendix Fig. 5.
Fig. 2. Distribution of the number of longitudinal scans of chest X-rays per subject per
class in the ICU. The number of scans ranges from 1 to 21.

2.3. Respiratory sounds pre-processing

A flowchart of the audio processing pipeline is shown in Fig. 3. As
there were multiple audio files in each day of recordings and a single
feature vector was needed for each day, the process detailed below was
applied to each audio file. Two paths were followed: (i) the adventitious
respiratory sounds path, and (ii) the raw audio path.

2.3.1. Adventitious respiratory sounds path
In this path, the presence of adventitious respiratory sounds was

detected and audio features were extracted from the detected events.
The following steps were carried out:

• the signal was decomposed into intrinsic mode functions (IMFs)
using empirical mode decomposition (EMD) (Huang et al., 1998);

• the first two IMFs were extracted, as most of the adventitious
respiratory sounds’ energy is concentrated on those IMFs;

• a Bump scalogram was obtained for each IMF waveform by
computing the continuous wavelet transform (CWT) between 100
and 1600 Hz;

• the wavelet magnitude was normalized by its maximum value and
a binary image was generated by applying Otsu’s threshold (Otsu,
1979);

• all non-flat connected components (CCs) that had duration be-
tween 10 ms and 2 s, encompassing the typical duration of
crackles, squawks, and wheezes, were selected;

• 13 Mel-frequency cepstral coefficients (MFCCs) and their deltas
for each CC were computed;

• the CCs were split according to duration, i.e., those between 10–
50 ms as potential crackles, those between 50–200 ms as potential
squawks, and those between 100–2000 ms as potential wheezes;
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Fig. 3. Flowchart of the respiratory sounds pre-processing method for the audio files of a single patient on a single day. CC: connected component; CWT: continuous wavelet
transform; EMD: empirical mode decomposition; IMF: intrinsic mode frequency.
• after centering the MFCC features to have median 0, the com-
ponents were partitioned into clusters using the k-medoids algo-
rithm.

• to determine the number of clusters, tests were carried out with
𝑘 = {2, 3,… , 𝑛}, where n was the number of CCs of each duration,
and the chosen value of k was the one that maximized the median
of the silhouette, which is a measure of how similar each point
is to points in its own cluster, when compared to points in other
clusters (Rousseeuw, 1987); this process was conducted for both
IMFs;

• for each type of sound, the component with duration closest to
the median duration of the cluster was chosen as the candidate
component;

• 43 other features were extracted for the candidates, including 17
features that were previously used for squawk detection (Rocha,
Pessoa, Cheimariotis et al., 2021), and 13 gammatone cepstral
coefficients (GTCCs) and respective delta-GTCCs.

2.3.2. Raw audio path
In this path, respiratory sounds features were computed for the total

duration of each audio file. The spectrograms were computed using a
Hamming sliding window with two window lengths, 32 and 64 ms,
and 75% overlap. Then, 81 features previously used for wheeze and
crackle classification (Rocha, Pessoa, Marques, Carvalho and Paiva,
2021) were extracted from each frame of the spectrogram: 25 spectral
features, 26 MFCC features, and 30 melodic features. Most features
were extracted using the MIR Toolbox 1.7.2 (Lartillot & Toiviainen,
2007). The examples of spectrograms of respiratory sounds for alive
and dead subjects are shown in Appendix Fig. 6.

2.3.3. Summary statistics
Table 1 provides a small description of all the respiratory sounds

features from both paths. To obtain a single feature vector for each
day, we computed the following summary statistics for each feature:
minimum, median, maximum, mean, and standard deviation. There-
fore, the total number of features at the end of the respiratory sounds
pre-processing was 1440 for each window length.

2.4. Clinical features

A total of six clinical variables were selected, including age, daily
sequential organ failure assessment (SOFA) score, Charlson comor-
bidity index, the oxygenation index, the ventilation equilibrium, and
the dynamic compliance. The demographic distribution of the clinical
features is shown in Table 2. Specifically, the conditions under which
the digital auscultations took place, namely the patients’ daily SOFA
score, as well as the ventilation mode parameters and the arterial blood
gases values of the patients were recorded, whenever available. From
the ventilation mode parameters and the arterial blood gases values,
4

the lung static compliance, the oxygenation index (i.e., the product of
the Inspired Oxygen Fraction and the Mean Airway Pressure, divided by
the Partial Pressure of Oxygen in the arterial blood) and a ventilation
equilibrium parameter (i.e., the ratio of the minute ventilation to the
partial pressure of Carbon Dioxide in the arterial blood (PaCO2) in
milliliters per millimeters of mercury (ml/mmHg)) were also recorded
or calculated. These clinical parameters were found to play a significant
role in the description of the clinical status of the patients’ respiratory
system after preliminary analyses from the bulk of data obtained from
the ICU files (as shown by regression analysis among numerous clinical
parameters measured in the ICU). They are also in agreement with clin-
ical parameters shown by other researchers to correlate significantly
with the ICU mortality of patients with COVID-19 (Alser et al., 2021;
Ferrando et al., 2020; Gallo Marin et al., 2021; Leoni et al., 2021; Xie
et al., 2020).

2.5. Pre-trained variational autoencoder

Variational autoencoder (VAE) is a popular unsupervised learning
method, which contains an encoder 𝐐 and a decoder 𝐏 (Kingma &
Welling, 2013), where the encoder 𝐐𝜑(𝐙|𝐗) maps the input 𝐗 ∈
R𝐍×𝐍 to a latent representation 𝐙 ∈ R𝑘 and the decoder 𝐏𝜃(𝐗|𝐙)
reconstructs that representation back to the input �̂� ∈ R𝐍×𝐍. 𝜑 and
𝜃 are trainable model weights for the encoder and decoder. 𝐙 is the
distribution over the latent space. The model is trained to minimize
the reconstruction error between the input image and the reconstructed
image, i.e., ‖‖

‖

𝐗 − �̂�‖‖
‖

2
. VAE had two roles in the total methodology. Its

first role was to pre-train its encoder. As the number of subjects was
limited, VAE was used to extract the underlying discriminative image
features, so the encoder (i.e., the layers before the bottleneck), could
be fine-tuned in the next classification task rather than being trained
from scratch. Its second role was to generate new synthetic images by
learning the distribution of the recorded images and decoding from
that distribution. If the number of CXRs was fewer than 8, VAE would
reconstruct the last scan of that patient to generate enough scans. For
example, if a subject had 5 scans, the VAE model would generate 3
more scans based on that subject’s 5th scan. Since the distribution of
𝐙 was different each time, the new reconstructed images were slightly
different from each other. In addition, in order to make 𝐐𝜑(𝐙|𝐗) to be
as close as possible to 𝐏𝜃(𝐗|𝐙), the Kullback–Leibler (KL) divergence
was used to measure how similar the two distributions were. Therefore,
the total loss function  of VAE model was computed as:

 = 𝛾 ⋅𝐊𝐋
[

𝐐𝐙|𝐗 ∥ 𝑁(𝟎, 𝐈)
]

+ ‖

‖

‖

𝐗 − �̂�‖‖
‖

2
, (1)

where KL divergence calculates the similarity between the posterior
distribution 𝐐𝐙|𝐗 and the standard Gaussian distribution 𝑁(𝟎, 𝐈). 𝛾 is
a hyperparameter that controls the importance of these two terms.
Overall, the encoder network 𝐐𝜑(𝐙|𝐗) maps input 𝐗 to latent 𝐙, where
𝐙 is made up of two parameters, a mean vector 𝜇 ∈ R𝑘 and a standard
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Table 1
Small description of the respiratory sounds features.

Path Feature Description of each extracted feature

Adventitious
respiratory
sounds path

Duration Duration of event
Fundamental frequency Minimum frequency
Frequency range Frequency range
Zero-crossing rate Number of zero-crossings per second
IMF1 peaks Number of peaks above 1/4 of the maximum amplitude of IMF1 of each event
Graphical extent Ratio of pixels in the CC to pixels in the total bounding box
Graphical perimeter area Ratio of pixels around the boundary of the CC to pixels in the CC
Spectral centroid Center of mass of the spectral distribution
Spectral crest Ratio between the maximum spectral value and the arithmetic mean of the energy spectrum

value (Peeters, 2004)
Spectral entropy Estimation of the complexity of the spectrum
Spectral flatness Estimation of the noisiness of a spectrum
Spectral kurtosis Measure of the flatness of a distribution around its mean value
Spectral rolloff Frequency such that 95% of the total energy is contained below it
Spectral skewness Measure of the asymmetry of a distribution around its mean value
Spectral slope Linear regression of the magnitude spectrum
Spectral spread Variance of the spectral distribution (Lerch, 2012)
Harmonic ratio Maximum of the normalized autocorrelation
MFCC 13 Mel-frequency cepstral coefficients
Delta-MFCC 1st-order temporal differentiation of the MFCCs
GTCC 13 Gammatone cepstral coefficients
Delta-GTCC 1st-order temporal differentiation of the GTCCs

Raw audio path

Spectral centroid Center of mass of the spectral distribution
Spectral spread Variance of the spectral distribution
Spectral skewness Skewness of the spectral distribution
Spectral kurtosis Excess kurtosis of the spectral distribution
Zero-crossing rate Waveform sign-change rate
Spectral entropy Estimation of the complexity of the spectrum
Spectral flatness Estimation of the noisiness of a spectrum
Spectral roughness Estimation of the sensory dissonance
Spectral irregularity Estimation of the spectral peaks’ variability
Spectral flux Euclidean distance between the spectrum of successive frames
Spectral flux Inc Spectral flux with focus on increasing energy solely
Spectral flux halfwave Halfwave rectified spectral flux
Spectral flux median Median filtered spectral flux
Spectral brightness Amount of energy above 100, 200, 400, and 800 Hz
Brightness 400 ratio Ratio between spectral brightness at 400 and 100 Hz
Brightness 800 ratio Ratio between spectral brightness at 800 and 100 Hz
Spectral rolloff Frequency such that 95, 75, 25, and 5% of the total energy is contained below it
Rolloff outlier ratio Ratio between spectral rolloff at 5 and 95%
Rolloff interquartile ratio Ratio between spectral rolloff at 25 and 75%
MFCC 13 Mel-frequency cepstral coefficients
Delta-MFCC 1st-order temporal differentiation of the MFCCs
Pitch Fundamental frequency estimation
Pitch smoothing Moving average of the pitch curve with lengths of 100, 250, 500, and 1000 ms
Inharmonicity Partials non-multiple of fundamental frequency
Inharmonicity smoothing Moving average of the inharmonicity curve with lengths of 100, 250, 500, and 1000 ms
Voicing Presence of fundamental frequency
Voicing smoothing Moving average of the voicing curve with lengths of 100, 250, 500, and 1000 ms
Table 2
Demographic distribution of the clinical variables.

Features Mean (±std)

Number of subjects 171
Age 65.40 ± 10.16
Sequential organ failure assessment 6.01 ± 2.65
Charlson comorbidity index 3.60 ± 2.00
Oxygenation index 0.90 ± 0.27
Ventilation equilibrium 0.47 ± 0.50
Dynamic compliance 44.64 ± 45.03

deviation vector 𝜎 ∈ R𝑘, so the decoder can sample from these two
istributions to reconstruct 𝐙 back to �̂�. 𝐙 = 𝜇 + 𝑒𝜎 ⋅ 𝜖, where 𝜖 is

a random normal tensor. In this work, the parameter values were the
following: 𝐍 = 512, 𝑘 = 128 and 𝛾 = 0.01, which were selected from
ablation studies.

Specifically, as shown in Fig. 4A, the architecture of VAE model
is non-symmetric (He et al., 2021). ResNet-50 (He, Zhang, Ren, &
Sun, 2016) was selected as the encoder of VAE to extract highly
discriminative image features. Previous studies focusing on Covid-19
5

detection using CXRs have demonstrated superior performance with
ResNet-50 compared to other architectures (Narin, Kaya, & Pamuk,
2021). Its deep architecture, complemented by residual connections,
addresses the challenges of training deep neural networks and mitigates
the problem of vanishing gradients. In addition, the global average
pooling layer (GAP) was added to reduce the dimensionality of the
feature maps and to better represent the latent vectors. As the goal
was to use the pre-trained encoder to produce image representations
for the subsequent classification task, the decoder was designed to
be lightweight and shallow, which significantly reduced the training
computation and time (He et al., 2021). Next, a fully-connected (FC)
layer was used to change the dimension of latent vectors to be the
same as the GAP layer and reshape it to 16 × 16 × 32, followed by five
convolutional transpose layers (Conv2DT) that upsampled the feature
maps to the shape of original images. Each Conv2DT layer (except the
last layer) had 64 kernels with size of 3 × 3 and stripes of 2, followed
by the exponential linear unit (ELU) activation function. ELU (Clevert,
Unterthiner, & Hochreiter, 2015) was chosen because it is continuous
and differentiable at all points and avoids the ‘‘dying ReLU’’ problem.
The last Conv2DT layer had only 1 kernel with the same size and stripes
as before. Other implementation details included that the batch size

was 4, the Adam was chosen as the optimizer with an initial learning
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Fig. 4. The pipeline of the model to make mortality predictions on patients with COVID-19 in the ICU. A: the variational autoencoder (VAE) reconstructs each CXR to pre-train
the encoder (i.e., ResNet-50). B: the model architecture that uses only longitudinal CXRs as the input. C: the model architecture that fuses CXRs and respiratory sounds features
as the input. D: the proposed model architecture that fuses CXRs, respiratory sounds features and selected clinical features as the input.
rate of 0.0001 and the early stopping with a patience of 8 was applied
to prevent overfitting. All real and synthetic CXRs were involved and
were split into training (80%) and validation sets (20%) based on
the number of subjects. As a result, after the VAE was fully trained,
the pre-trained encoder was applied to the fusion model in the later
classification task and the decoder was used to generate reconstructed
images.

2.6. The sequential fusion model

The proposed fusion model has three branches, i.e., the CXRs
branch, the respiratory sounds branch and the clinical features branch.
The features from each branch are fused together to predict the mor-
tality of patients with COVID-19 in the ICU or 90 days after discharge
from the ICU, as shown in Fig. 4.

The CXRs branch took 8 longitudinal images (8 × 512 × 512) as the
input to ResNet-50, which had been pre-trained in the previous stage.
Similarly, the GAP layer reduced the dimensionality of the feature map
to a 2048-dimensional feature vector for each CXR, i.e., in 8 × 2048,
which was then fed into the Long Short Term Memory (LSTM) network.
LSTM is a unique type of recurrent neural networks capable of handling
long-term dependencies. It has memorial cells to maintain its cell status
over time and different types of gates to optionally add or remove
the information from cells. Therefore, these two components controlled
how much information of the CXR at this timestamp could be passed to
the CXR at the next timestamp. LSTM was used to extract the sequential
features of CXRs over time for each subject. The size of all the gates was
128, so the output feature size of LSTM was 8 × 128. After the flattening
layer, the feature size from the CXRs branch was 1024.

The respiratory sounds branch took the pre-processed respiratory
sounds features (8 × 1440) as input, which were fed into two fully
connected layers with 128 and 64 neurons. After the flattening layer,
the feature size from the respiratory sounds branch was 512.
6

The clinical features branch took the selected clinical features as
input. In order to extract useful features from such small feature size,
the clinical features were not directly fed into the model but were
repeated ten times for each input (8 × 60). One fully connected layer
with 32 neurons was added to the model and after the flattening layer,
the feature size from the clinical features was 256.

Furthermore, the features from these three branches were concate-
nated together in size of 1792 and were fed into two fully connected
layers with 128 neurons and 1 output neuron, followed by a sigmoid
activation function to output a mortality probability ranging from 0 to
1.

The loss function of the fusion model, 𝑓 , is the weighted binary
cross-entropy, which was defined as:

𝑓 = − 1
𝑁

𝑁
∑

𝑖=1

{

𝜆 ⋅ 𝑦𝑖 ⋅ 𝑙𝑜𝑔(𝑦𝑖) + (1 − 𝜆) ⋅ (1 − 𝑦𝑖) ⋅ 𝑙𝑜𝑔(1 − 𝑦𝑖)
}

, (2)

where 𝑦𝑖 is the ground truth label for the mortality prediction, where
0 stands for the subject is survival while 1 stands for the subject
is not survival. 𝑦𝑖 is the predicted probability from the model and
𝑁 is the batch size. 𝜆 is a hyper-parameter that weights the loss
function to overcome the imbalanced dataset, which is represented by
calculating the frequency of two classes and then inverting them so that
the underrepresented class has a much higher error than the majority
class. Other implementation details were that models were trained with
Adam optimizer with an initial learning of 0.0005, the batch size was
4 per step and the early stopping was with patience of 8.

3. Results

3.1. Experimental design

A collection of 1271 CXRs acquired from 171 subjects (114 men,
57 women, 65.4 ± 10.16 years-old) were included in this study. The
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Table 3
Comparisons of model performances using different inputs for ICU mortality prediction and 90 days mortality prediction.

Results for 90 days mortality (Mean ± Std)

Model Accuracy Precision Recall F1 AUC

CXRs only 0.703 ± 0.008 0.723 ± 0.017 0.728 ± 0.034 0.721 ± 0.020 0.709 ± 0.019
CXRs + Respiratory sounds 0.738 ± 0.010 0.752 ± 0.018 0.743 ± 0.028 0.743 ± 0.017 0.742 ± 0.011
Fusion all 0.743 ± 0.012* 0.755 ± 0.025* 0.750 ± 0.029* 0.750 ± 0.022* 0.752 ± 0.012*

Results for ICU mortality (Mean ± Std)

Model Accuracy Precision Recall F1 AUC

CXRs only 0.715 ± 0.006 0.724 ± 0.020 0.732 ± 0.022 0.724 ± 0.018 0.718 ± 0.014
CXRs + Respiratory sounds 0.754 ± 0.014 0.760 ± 0.023* 0.751 ± 0.019 0.752 ± 0.022 0.751 ± 0.009
Fusion all 0.761 ± 0.011* 0.758 ± 0.027 0.782 ± 0.024* 0.766 ± 0.019* 0.759 ± 0.008*

*Denotes the comparison is statistically significant (𝑝 < 0.05) between this result with any of the other results.
The best results are highlighted in bold.
distribution of the number of CXRs per subject is shown in Fig. 2.
Two binary outcomes of the mortality of patients with COVID-19 were
predicted, i.e., the ICU mortality and the 90 days mortality. For the
ICU mortality prediction, there were 63 positive subjects (i.e., dead)
and 108 negative subjects (i.e., alive), and for the 90 days mortality,
there were 80 positive subjects and 91 negative subjects. We used
four-fold cross-validation for each experiment, and the model ran five
independent times for each fold to avoid overfitting. Specifically, the
subjects were split into 75% as training and validation sets, and 25%
as the separate testing set. In order to justify the effectiveness of the
fusion model, we ran additional experiments on the CXRs dataset only
and CXRs with respiratory sounds features. Overall, six models were
evaluated: (1) 90 days mortality on CXRs only; (2) 90 days mortality on
CXRs and respiratory sounds features; (3) 90 days mortality on CXRs,
respiratory sounds features and clinical features; (4) ICU mortality on
CXRs only; (5) ICU mortality on CXRs and respiratory sounds features;
(6) ICU mortality on CXRs, respiratory sounds features and clinical
features. In addition, we ran several more experiments to compare the
model performances among the choices of longitudinal days and the
window lengths used to extract respiratory sounds features (i.e., 32
ms or 64 ms). Regarding evaluation measures, accuracy, precision,
recall, and F1 score were used to evaluate model performances and the
threshold was set as 0.5. The AUC score was calculated for this binary
classification task at various threshold settings. The overall mean and
standard deviation values were calculated for each metric. In addition,
the paired t-test was performed to compare different model results.
The comparison was considered as statistically significant if 𝑝 < 0.05.
All experiments and statistical analyses were performed using two
GPUs (Nvidia Quadro RTX 8000) with Tensorflow 2.7 and Scikit-learn
packages in Python 3.7.

3.2. Evaluation of VAE

In this paper, the VAE was employed to pre-train the encoder for
subsequent use as a feature extractor in the classification task, as
well as to generate synthetic images. To assess the performance of
the VAE, we calculated several metrics on the test set, including the
mean squared error (MSE), the structural similarity index (SSIM), and
the peak signal-to-noise ratio (PSNR). These metrics were utilized to
evaluate the similarity between the generated CXRs and the ground
truth CXRs. Specifically, the overall MSE score is 0.090±0.007, the SSIM
score is 0.697±0.052 and the PSNR score is 21.683±3.317. The generated
missing CXRs are shown in Appendix Fig. 7.

3.3. Model comparisons

The main results are shown in Table 3 for ICU mortality prediction
and 90-day mortality prediction. For each prediction, three models
were compared using different input modalities, including CXRs, CXRs
and respiratory sounds features, and CXRs, respiratory sounds features,
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and clinical features. Overall, the models’ performance on the ICU
mortality prediction task outperformed the performance on the 90-day
mortality prediction task for all metrics. For ICU mortality prediction,
the model fusing all features achieved an AUC of 0.759, an accuracy of
0.761, a precision of 0.758, a recall of 0.782 and a F1 score of 0.766.
Although the precision score (0.758) was slightly worse than that of the
model with CXRs and respiratory sounds (0.760) as the input, fusing
all three types of features significantly improved the model’s perfor-
mance among other metrics (𝑝 < 0.05). Moreover, the model fusing
respiratory sounds features and CXRs achieved a better performance
than the one containing only CXRs, improving the accuracy from 0.715
to 0.754 and the AUC from 0.718 to 0.751. Furthermore, in order to
validate our findings, we employed t-distributed stochastic neighbor
embedding (t-SNE) plots to reduce the dimensionality of the feature
vectors at the Fully Connected layers to two, as illustrated in Fig. 4. By
visualizing their distributions, as shown in Appendix Fig. 8, it is evident
that the feature distributions achieved through the fusion of all three
modalities exhibit superior separation compared to the fusion of only
two modalities (CXR and respiratory sounds) or utilizing CXRs alone.
Similarly, for the 90-day mortality prediction, the model fusing all
features outperformed the other two models (𝑝 < 0.05) and the model
with respiratory sounds and CXRs achieved better performance than
the CXRs only model. Also, compared to simpler single-point severity
metrics, like SOFA and APACHE scores, the proposed fusion model
yielded better results, especially at the long-term prognosis field, since
it was able to provide reliable predictions for the 90-day survival.

Additionally, further analysis was performed on specific cases that
were misclassified by the proposed algorithm (either as false survival
or false death in the ICU) in order to detect possible common clinical
patterns in these cases. The post-hoc analysis revealed that, in 4 cases
where patients were misclassified as survivors in the ICU, only one
auscultation session was performed (in 3 cases) and the radiologic
findings were characterized as limited compared to more severe cases,
which was likely to lead to the misclassifications. In two occasions, the
patients perished after acute complications during their stay in the ICU
(mainly barotrauma cases). On the other hand, the falsely classified
death cases were five, and three of those patients eventually died within
90 days after the discharge from the ICU. Also, in four cases, radiologic
findings were indicative of very severe ARDS bilaterally, whereas the
quality of the obtained auscultation files was poor, hampering the
validity of the feedback for our algorithmic solution.

3.4. Model fine-tuning

In order to achieve the optimal performance of the model, several
ablation studies were conducted, including the number of longitudinal
CXRs each subject required and the window lengths for pre-processing
respiratory sounds features. All details are included in Tables 4 and 5.

The number of longitudinal CXRs and other features that the model
needed to predict the mortality were examined. The effects of using
recordings of 3 days, 8 days, and 13 days were compared. In terms

of mortality predictions, especially for the urgent cases, such as the
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Table 4
Ablation studies on the choice of the longitudinal days.

Predictions for the 90 days mortality using different longitudinal days (Mean ± Std)

Longitudinal days Accuracy Precision Recall AUC

3 days 0.551 ± 0.031 0.559 ± 0.033 0.547 ± 0.040 0.593 ± 0.025
8 days 0.743 ± 0.012* 0.755 ± 0.025* 0.750 ± 0.029* 0.752 ± 0.012*
13 days 0.701 ± 0.018 0.723 ± 0.020 0.712 ± 0.033 0.721 ± 0.017

Predictions for the ICU mortality using different longitudinal days (Mean ± Std)

Longitudinal days Accuracy Precision Recall AUC

3 days 0.593±0.025 0.602 ± 0.016 0.591 ± 0.019 0.609 ± 0.011
8 days 0.761 ± 0.011* 0.758 ± 0.027* 0.782 ± 0.024* 0.759 ± 0.008*
13 days 0.709 ± 0.020 0.731 ± 0.015 0.725 ± 0.020 0.730 ± 0.012

*Denotes the comparison is statistically significant (𝑝 < 0.05) between this result with any of the other results. The best results are highlighted
in bold.
Table 5
Ablation studies on different window lengths of lung sounds (32 ms and 64 ms).

Predictions for the ICU mortality using different window lengths of respiratory sounds (Mean ± Std)

Window length Accuracy Precision Recall AUC

CXRs + Respiratory sounds (32 ms) 0.748 ± 0.012 0.753 ± 0.021 0.743 ± 0.020 0.744 ± 0.011
CXRs + Respiratory sounds (64 ms) 0.754 ± 0.014 0.760 ± 0.023* 0.751 ± 0.019 0.751 ± 0.009
Fusion all (32 ms) 0.758 ± 0.008 0.751 ± 0.020 0.774 ± 0.019 0.753 ± 0.007
Fusion all (64 ms) 0.761 ± 0.011* 0.758 ± 0.027 0.782 ± 0.024* 0.759 ± 0.008*

*Denotes the comparison is statistically significant (𝑝 < 0.05) between this result with any of the other results.
The best results are highlighted in bold.
subjects in the ICU, it is important to use the least time to make the
correct prognosis and treatment for them. Therefore, it was examined
if the model could achieve a comparable result by only using the first
three-days features from CXRs, respiratory sounds, and clinical features.
All pre-processing steps remained the same, but only the first three
scans were chosen for each subject. The results were underwhelming,
i.e., for ICU mortality prediction, the model only achieved an accuracy
of 0.593, a precision of 0.602, a recall of 0.591 and an AUC of 0.609.
The performance of the 90-day mortality prediction was worse than
the ICU mortality prediction, which was consistent with our previous
findings, with the model achieving an accuracy of 0.551, a precision of
0.559. a recall of 0.547 and an AUC of 0.593. Next, it was examined
if more longitudinal CXRs could achieve a better mortality prediction,
so we conducted another experiment on 13 days. However, the results
showed that more CXRs and features did not guarantee a better model
performance. For the ICU mortality prediction, the model achieved an
accuracy of 0.709, a precision of 0.731, a recall of 0.725 and an AUC of
0.730, and for the 90-day prediction, the model achieved an accuracy
of 0.701, a precision of 0.723, a recall of 0.712 and an AUC of 0.721.
They were both worse than the best models on 8 days.

Furthermore, another ablation study was performed to understand
the impact on ICU mortality prediction of the window lengths (i.e., 32
ms or 64 ms) that were used to process respiratory sounds. The results
showed that models trained with respiratory sounds features extracted
using a 64 ms window length achieved a slightly better performance
than those that used a window length of 32 ms. For models trained on
the fusion of CXRs and respiratory sounds features, the 64 ms window
length improved the AUC from 0.744 to 0.751 and for models trained
on all three types of features, the 64 ms window length improved the
AUC from 0.753 to 0.759.

4. Discussion

In this study, we proposed a deep fusion model that utilized longitu-
dinal CXRs, respiratory sounds features and clinical features to predict
the mortality of patients with COVID-19 in the ICU. By comparing
results with the CXRs only model, it was observed that the addition of
respiratory sound features and clinical features significantly improved
the mortality prediction, achieving an accuracy of 0.761, a precision
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of 0.758, a recall of 0.782, a F1 score of 0.766 and an AUC of 0.759.
Moreover, the significant improvement in the performance of the fusion
model compared to the other models suggests that the fusion model has
the potential to better predict the mortality of critically ill ICU patients
with COVID-19, which may facilitate the decision-making process and
improve clinical triage systems.

Another interesting finding of this paper is that the fusion model has
the potential for longer-term mortality prediction. We used the same
dataset for two predictions, i.e., ICU mortality prediction and 90-day
mortality prediction. As expected, we see that the model performances
were better in the former task than in the latter in Table 3, because
all the input data were collected during their ICU period. There were
several patients that survived the ICU but died in the following 90 days,
so their ground truth was different in the two tasks. We found that
the fusion model for ICU mortality predictions incorrectly classified
most of these cases as non-surviving. Although these patients were
still alive during their stay in the ICU, their status changed after 90
days as predicted by our model. This indicates that our fusion model
was able to use the data collected during the ICU stay for a long-term
mortality prediction. Moreover, as shown in Table 4, we tried to see if
the model could make a prediction using the data collected in the first
three days. However, the results were disappointing. Possible reasons
are the complexity of the severely ill COVID-19 cases, with multiple
clinical parameters and organ failures occurring and interacting with
each other over the course of several days during the ICU stay. Previous
studies have consistently supported this finding, demonstrating signif-
icant associations between progressive imaging patterns indicative of
lung abnormality and mortality (Putman et al., 2019). By capturing the
evolving nature of lung abnormalities over time, the variation between
CXR slices can offer additional insights into the patient’s condition. This
could also explain the apparently lower accuracy of the model in cases
where only single measurements were obtained. Likewise, the models
in Table 3 show some misclassifications, possibly due to the patients not
having a relatively long sequential dataset. These observations show
that a limitation of this study is that the model requires a longer
sequence data to guarantee better model performance.

This study has a number of strengths that need to be acknowledged.
First, the encoder was pre-trained with a VAE model at the initial stage,
which had a dual positive effect. On the one hand, due to the limited
cases in this study, training a deep neural network on such a limited
dataset can lead to the problem of overfitting. Therefore, as an unsu-

pervised learning algorithm, VAE was able to extract underlying image
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Table 6
Comparisons between the proposed model and state of the art algorithms.

Paper Task Data Method Performance

Bae et al. (2021) Mortality risk prediction CXRs + clinical variables ResNet50 + RF/LDA AUC = 0.83

Shamout et al. (2021) Deterioration risk prediction CXRs + clinical variables Deep CNNs AUC = 0.786

Kwon et al. (2021) Mortality risk prediction CXRs + clinical variables DenseNet-121 AUC = 0.82, Acc = 0.42,
Pre = 0.27, Rec = 0.78, F1 =
0.41

Aljouie et al. (2021) Mortality risk prediction CXRs + demographic and clinical variables SVM, RF, LR, XGB AUC = 0.83, Rec = 1, Spe =
0.61

Gourdeau et al.
(2022)

Mechanical ventilation in ICU Pre-intubation CXRs + risk factors DenseNet-121 AUC = 0.743, Acc = 0.755,
Rec = 0.487, Spe = 0.828

Cheng et al. (2022) Mortality risk prediction in ICU CXRs + clinical variables Transformer-based CNNs AUC = 0.727, Acc = 0.732,
Rec = 0.714, Spe = 0.746, F1
= 0.707

Our work Mortality risk prediction in ICU CXRs + respiratory sounds + clinical variables VAE + fusion model AUC = 0.759, Acc = 0.761,
Pre = 0.758, Rec = 0.782, F1
= 0.770

CXR: chest X-ray; RF: random forest; LDA: linear discriminant analysis; CNN: convolutional neural network
SVM: support vector machines; LR: logistic regression; XGB: extreme gradient boosting;
VAE: variational autoencoder; Acc: accuracy; Pre: precision; Rec: recall; Spe: specificity.
features in the latent space by trying to reconstruct the original images
without additional labels. Then, the pre-trained weights of the encoder
could be further initialized in the next fusion model, eliminating the
need to train the deep model from scratch. Some other studies have
demonstrated the effectiveness of VAE in limited datasets similar to
ours. For example, Akrami et al. developed a robust VAE to detect
brain lesions on a small MRI dataset and they found that the accuracy
of lesion detection could be improved by first pre-training parts of the
network within the VAE (Akrami, Joshi, Li, Aydore, & Leahy, 2020). On
the other hand, VAE was used to generate missing CXRs. As shown in
Fig. 2, the number of CXRs for subjects is quite imbalanced. To ensure
that each subject had 8 CXRs as input, VAE compensated for the lack of
scans by generating new images decoded from the feature distributions
in the latent space. Therefore, VAE was considered a prerequisite for
successfully training the fusion model.

Additionally, this is the first study that incorporated longitudinal
CXRs, respiratory sounds features, and clinical features into one deep
fusion model to predict the mortality of patients with COVID-19 in
the ICU. The results in Table 3 demonstrate that respiratory sounds
and clinical variables were effective in improving mortality prediction
in severe patients with COVID-19. Longitudinal CXRs were chosen
instead of a single scan because a previous study has shown that longer
time-series information is able to track progressive lung severity over
time, thereby improving model performances (Cheng et al., 2022). In
addition, LSTM networks are able to learn long-term dependencies
to extract longitudinal features of CXRs over time. Using CXRs alone
to predict mortality is challenging, but several previous studies have
used CXRs to predict severity in patients with COVID-19. For example,
Aboutalebi et al. proposed CXR-S, a deep network for predicting the
airspace severity in patients with COVID-19 on a single CXR im-
age (Aboutalebi et al., 2021). Cohen et al. first pre-trained DenseNet
on a non-COVID19 dataset, and then fine-tuned the network on their
COVID-19 CXRs to predict lung opacity scores, achieving a correlation
of 0.78 (Cohen et al., 2020). Recent studies have demonstrated that
respiratory sounds are a reliable marker of COVID-19, as respiratory
sounds (e.g., crackles) vary continuously from mild to severe patients
with COVID-19 (Noda et al., 2020; Wang et al., 2020). However, only
a few works collected respiratory sounds data acquired from patients
with COVID-19. Pancaldi et al. detected patients with COVID-19 from
velcro-like respiratory sounds by processing and extracting the char-
acteristics of respiratory sounds using the software VECTOR (Pancaldi
et al., 2022). In addition, Sait et al. developed a multi-model system
that used both respiratory sounds and CXRs to diagnose patients with
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COVID-19, reaching an accuracy of 0.8 for respiratory sounds analysis
and 0.99 for the CXRs dataset (Sait et al., 2021). Importantly, we col-
lected longitudinal respiratory sounds in this study, and the results from
Table 3 show a significant improvement in mortality predictions after
fusing respiratory sounds features. Furthermore, clinical variables were
proved to be effective in mortality prediction of patients with COVID-
19 (Aljouie et al., 2021; Kwon et al., 2021). Based on our preliminary
study, as well as on previous works on clinical features correlating
with ICU mortality, we selected six clinical variables and the results
show the model fusing all those features outperforms other models.
The importance of the selected clinical variables is the comprehensive
description of the clinical status of the lungs (both anatomically and
functionally), as they include vital information on the lungs’ compli-
ance, the gas exchange status, the aeration of the lung parenchyma, and
the intensity of the mechanical ventilation. Moreover, they include data
concerning the presence of comorbidities and the vital organs’ failure
that may co-exist. The selected bio-parameters are in conjunction with
reported clinical parameters that other researchers have found to be
associated with ICU mortality in patients with COVID-19 (Alser et al.,
2021; Ferrando et al., 2020; Gallo Marin et al., 2021; Leoni et al.,
2021), strengthening the validity of their selection for inclusion in our
model.

We further compared our method with other papers using different
datasets in COVID-19 mortality prediction, as shown in Table 6. Dif-
ferent models were evaluated with different metrics, so we chose the
AUC to compare the performance of all models. Although all previous
methods used CXRs and clinical variables as the input, since we are
the first to incorporate respiratory sounds features into the model, it is
challenging to train their models on our dataset for a direct comparison
here. However, from the results, we can still see that the AUCs for this
mortality prediction range from 0.72 to 0.83. In addition, it is interest-
ing to find that the overall performances on subjects in the ICU (Cheng
et al., 2022; Gourdeau et al., 2022) are worse than those in the general
population because patients in the ICU are by default critically ill, so
it is more difficult for models to predict their outcome. We found only
two papers that collected data from patients with COVID-19 in the ICU
similar to our approach. Cheng et al. who used a transformer-based
CNN to extract additional features from longitudinal CXRs and normal
fully-connected layers on clinical variables, achieved an accuracy of
0.732 and an AUC of 0.727 (Cheng et al., 2022). Gourdeau et al. fine-
tuned a pre-trained Densenet-121 network on their dataset combining
single-day CXRs and selected risk factors, reaching an accuracy of 0.75
and an AUC of 0.74. However, these studies only had single-day clinical
variables, whereas we had clinical variables at different time points
to track informative changes during the patients’ ICU stay. Moreover,

most of their datasets were collected in 2020 and Cheng et al. (2022)
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Fig. 5. Examples of 8 sequential CXRs from two different outcomes of patients. TP: time point. (a) The CXRs from a patient alive in the ICU; (b) The CXRs from a patient dead
in the ICU.
Fig. 6. Spectrograms of respiratory sounds for alive and dead samples.
mentioned that their cohort was entirely unvaccinated, so there is the
possibility that these models would not be equally effective on fully
vaccinated patients, or have altered accuracy in the subsequent SARS-
CoV2 variants. The fact that our sample included patients from all the
major viral variants is one of the strengths of this study, especially
when one considers the inclusion of respiratory sounds from critically
ill COVID-19 patients for the first time in literature.

The added value of this model to the clinical practice in critically
ill patients with COVID-19 lies in the early identification of patients
at risk of severe complications and subsequent adverse outcome, based
on reliable and meaningful clinical data, and data derived from aus-
cultation and radiology images from the thorax. These measurements
provide continuous feedback on the underlying pathophysiology of the
severely ill patients with ARDS and cover various areas of interest
including the functional imaging and clinical information on the status
10
of the affected lungs. Early identification of patients at risk in the
ICU environment could facilitate automatic generation of alerts for
this pool of patients enabling targeted interventions in an effort to
reverse the predicted outcome. To the best of our knowledge, this is
the first reported creation of a reliable prediction model that takes
into consideration clinical, sound, and imaging data from severely ill
patients with COVID-19.

This study has several limitations. First, the scale of the dataset in
the experiment is still relatively small although we are not aware of
the existence of analogous databases to date. Despite the practical diffi-
culties to collect sequential datasets, they are expected to improve the
performance of the proposed model. However, a sufficient sequential
dataset is required for better classification results. As shown in Table 4,
using only three days of data did not yield the expected results. In
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Fig. 7. Examples of the generated missing CXRs for three subjects.
Fig. 8. Feature distribution of ICU mortality predictions using different modalities: (i) Fusion All, (ii) CXRs + Respiratory Sounds, and (iii) CXRs Only. The feature vectors are
reduced from 128 to 2 dimensions using t-distributed stochastic neighbor embedding (t-SNE).
addition, new variants of the virus continue to emerge through muta-
tions, making prognosis more challenging. It is our intention to collect
more data from different centers in the future to further improve the
generalization ability of the model. Second, the clinical features were
manually selected from our preliminary experiments, so it would be
interesting to figure out how the model automatically extracts features
if all collected clinical information is actually available. Finally, the fu-
sion model can be optimized. Recently, transformer-based models have
been proposed to better address the time series prognosis task, which
extract useful correlations in long sequences by using self-attention
modules. Therefore, a future step is to incorporate transformers into
our fusion model.

In conclusion, we propose a deep fusion model that predicts the
mortality of patients with COVID-19 in the ICU by using sequential data
from chest X-rays, respiratory sounds features, and clinical variables.
The results show that the addition of respiratory sounds and clinical
variables significantly improves the mortality prediction of critically
ill patients in the ICU. In addition, comparisons between ICU survival
predictions and 90-day survival predictions suggest that the fusion
model has the potential to make successful longer mortality predictions.
It provides an empowered tool to speed up clinical decision processes
and save more patients’ lives.
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