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A B S T R A C T   

Background and Objective: Respiratory diseases are among the most significant causes of morbidity and mor
tality worldwide, causing substantial strain on society and health systems. Over the last few decades, there has 
been increasing interest in the automatic analysis of respiratory sounds and electrical impedance tomography 
(EIT). Nevertheless, no publicly available databases with both respiratory sound and EIT data are available. 
Methods: In this work, we have assembled the first open-access bimodal database focusing on the differential 
diagnosis of respiratory diseases (BRACETS: Bimodal Repository of Auscultation Coupled with Electrical 
Impedance Thoracic Signals). It includes simultaneous recordings of single and multi-channel respiratory sounds 
and EIT. Furthermore, we have proposed several machine learning-based baseline systems for automatically 
classifying respiratory diseases in six distinct evaluation tasks using respiratory sound and EIT (A1, A2, A3, B1, 
B2, B3). These tasks included classifying respiratory diseases at sample and subject levels. The performance of the 
classification models was evaluated using a 5-fold cross-validation scheme (with subject isolation between folds). 
Results: The resulting database consists of 1097 respiratory sounds and 795 EIT recordings acquired from 78 
adult subjects in two countries (Portugal and Greece). In the task of automatically classifying respiratory dis
eases, the baseline classification models have achieved the following average balanced accuracy: Task A1 - 
77.9±13.1%; Task A2 - 51.6±9.7%; Task A3 - 38.6±13.1%; Task B1 - 90.0±22.4%; Task B2 - 61.4±11.8%; Task 
B3 - 50.8±10.6%. Conclusion: The creation of this database and its public release will aid the research com
munity in developing automated methodologies to assess and monitor respiratory function, and it might serve as 
a benchmark in the field of digital medicine for managing respiratory diseases. Moreover, it could pave the way 
for creating multi-modal robust approaches for that same purpose.   

1. Introduction 

Respiratory diseases are among the most significant causes of 
morbidity and mortality worldwide and are responsible for a substantial 
strain on individuals, healthcare systems, and society [1,2]. Early 
diagnosis and frequent monitoring are essential for the management of 
these patients. Currently, chronic respiratory diseases are not curable; 

however, various pharmacological (e.g., bronchodilators) and 
non-pharmacological (e.g., physical activity, pulmonary rehabilitation) 
treatments contribute to improve the symptoms (e.g., shortness of 
breath, fatigue), physical and emotional status, and quality of life of 
patients with such diseases. Nevertheless, early diagnosis, detection of 
acute exacerbation (defined as an acute worsening of respiratory 
symptoms that result in additional therapy [3]), and long-term 
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management remain highly challenging and have led to significant 
research efforts to improve the prognosis of these conditions. 

Respiratory medicine diagnosis relies on clinical information and 
complementary laboratory test results [4]. Two of the most commonly 
used examination procedures in standard clinical practice for the diag
nosis of respiratory diseases are respiratory sound auscultation and 
spirometry [5]. The auscultation of the respiratory system is one of the 
oldest techniques to diagnose various pulmonary diseases [6]. It is an 
inexpensive, noninvasive, safe, and easy-to-perform technique. Even 
though auscultation is a versatile and easy-to-deploy examination 
technique, it has intrinsic limitations, such as inter-listener variability 
and subjectivity [7]. Moreover, the examination must be performed 
face-to-face. 

On the other hand, spirometry is a physiological test that measures 
how an individual inhales or exhales volumes of air as a function of time 
[8]. One of the significant advantages of this test is that it has 
well-established normality values. It is well-validated in diagnosing and 
monitoring airway and lung parenchyma abnormalities [5]. However, it 
highly depends on the cooperation between the technician and the pa
tient, with results greatly influenced by technical factors and patient 
effort [5]. 

Respiratory medicine also relies heavily on diagnostic techniques, 
such as chest radiography, computed tomography (CT), and tissue bi
opsies, among others. These techniques are generally more expensive, 
require more complex setups, and can be invasive, unlike auscultation 
and spirometry. 

One of the most active research areas in respiratory function 
assessment has been the computerized analysis of respiratory sound. The 
main objective of this computerized approach is to overcome the 
drawbacks of conventional methods and provide more objective mea
sures to monitor and diagnose patients suffering from lung diseases. 
Some drawbacks of conventional auscultation include its subjectivity in 
interpretation and difficulties memorizing findings from different chest 
locations and overtime. Computerized respiratory sound analysis 
(CORSA), which consists of recording patients’ respiratory sounds with 
an electronic device and analyzing them based on specific signal char
acteristics, is a simple, objective, and noninvasive method to detect and 
characterize respiratory sound in general, with particular emphasis on 
adventitious respiratory sounds (ARSs) [9]. ARSs are additional respi
ratory sounds superimposed on normal respiratory sounds. They can be 
continuous (like wheezes) or discontinuous (such as crackles). Their 
presence usually indicates pulmonary disorders [10]. Moreover, with 
the advances in embedded processors developed with low power con
sumption battery technology and integrated sensors to make stetho
scopes wearable and wireless, CORSA are also suitable to be deployed in 
remote applications [7,11,12]. Since the COVID-19 outbreak, remote 
monitoring has become a pressing need, primarily for sanitary reasons 
[13]. Therefore, automated methods for analyzing respiratory sounds 
are increasingly needed to reliably carry out remote auscultation and 
monitoring of subjects suffering from respiratory diseases. 

Another technique for monitoring the respiratory system that has 
experienced significant development in recent years is electrical 
impedance tomography (EIT). EIT is a radiation-free imaging technique 
that uses low electrical currents to determine differences in electrical 
impedance (or conductivity) and generate cross-sectional images of 
impedance distribution within electrically conductive objects (e.g., the 
chest region) [14,15]. In its simplest form, EIT is accomplished by 
placing electrodes on the surface of the body and passing current be
tween two electrodes while measuring the voltages induced on the 
remaining electrodes. Then, an inverse calculation is performed from 
these measurements to determine conductivity changes across the sec
tion being measured [15]. 

In the clinical application, EIT has emerged as a noninvasive, bedside 
monitoring technique that provides continuous, real-time information 
about the regional distribution of changes in the electrical resistivity of 
lung tissue due to variations in ventilation (or blood flow/perfusion) in 

relation to a reference state [16]. Besides that, thoracic EIT has also been 
extensively used for monitoring subjects under mechanical ventilation 
and pulmonary function testing [17]. Previous clinical studies have 
supported the validity and reproducibility of EIT findings by comparing 
them against reference techniques such as CT-scan, single-photon 
emission CT, positron emission tomography, vibration response imag
ing, inert-gas washout, and spirometry [17]. 

Despite being primarily used in hospitals, several studies in the 
literature have proposed/used wearable EIT systems in other settings 
[14,18–24]. The main goal of such systems is their deployment in tele
health/digital health applications for the remote monitoring of subjects 
suffering from respiratory diseases. Thus, similar to what happens with 
CORSA, there is also a growing need to develop automated methods 
using EIT to remotely monitor patients. 

One of the core problems in the field of automated respiratory 
function analysis is the need for large publicly available databases that 
can serve to develop algorithms and benchmark results [25]. Having 
large and representative databases is an essential requirement for 
algorithmic development as well as accurate and robust diagnostics. 
Otherwise, it is hard to develop methods with good generalization ca
pacity that perform well in real-world conditions. 

Over the last decades, many studies have targeted the development 
of methods for the automatic processing of respiratory sounds (espe
cially adventitious respiratory sounds) [26]. Most of these works were 
based on traditional signal processing and machine learning approaches, 
with a reduced number of works using shallow neural networks. Most of 
them were based on a small number of subjects and respiratory sound 
recordings. Table 1 summarizes the current publicly available databases 
on respiratory sound. Unlike the more recent online repositories (the last 
seven rows in Table 1), the older databases were typically designed for 
teaching purposes, with fewer samples available, and primarily 
collected in controlled environments. 

In general, most of the available databases listed in Table 1 were 
curated to be used in developing algorithms to process adventitious 
respiratory sounds. Only the databases presented in [39–42] can also be 
used to develop methods for the classification/detection of respiratory 
diseases. In clinical practice, physicians typically use various methods to 
diagnose respiratory diseases, such as spirometry, lung auscultation, and 
CT-scan, among other techniques [25]. So far, respiratory sound has 
been commonly used in the literature for developing models, typically 
machine learning based, for classifying respiratory diseases [25]. The 
databases from [39,40,42] have been commonly used to tackle this 
problem. A selection of works on respiratory disease classification 
through automated auscultation is summarized in Table 2. 

Despite the high results reported for the automatic classification of 
respiratory diseases, there is still significant room for improvement 
before these methods can be deployed in real-world applications. One 
key area that must be addressed is the evaluation of the generalization 
capability of the developed models, that is, the validation of the models 
with different databases. This is a critical step to understanding the 
validity of the proposed methods in new scenarios (i.e., different sub
jects, recording environment, and recording equipment, among others). 
However, it is hard to accomplish such validation due to the reduced 
number of databases in the area. 

Another main point that must be carefully addressed is related to the 
validation scheme of the developed models. For instance, the RSD [39, 
40] uses a one-time subject-independent hold-out separation mecha
nism to divide the database into training and testing. Likewise, many 
studies using this database (or other) follow the same approach. This 
approach might lead to overly optimistic results since only a small 
portion of subjects is used to evaluate the performance of the developed 
algorithms, introducing significant bias. This may be observed in several 
works [47,48,50,51] presented in Table 2. Another common problem in 
the literature is the lack of subject separation between the training and 
testing sets. Authors often consider a cross-validation scheme to eval
uate their models but do not ensure subject isolation between sets [49, 
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52]. Once again, significant bias was introduced in the evaluation of the 
methods with such approaches. 

Unlike respiratory sound, EIT has not been widely explored in the 
development of automated classification methodologies of respiratory 
diseases. In a preliminary study using part of the BRACETS database, 
several machine learning models have been proposed to automatically 
classify isolated respiratory cycles from healthy and non-healthy sub
jects using EIT [56]. In another study [57], the authors proposed a 
model to classify apnea and non-apnea cases in neonatal patients using 
EIT. A ResNet50 was used to encode features from the EIT data, which 
were then fed to an SVM classification model. Lastly, EIT image se
quences have also been used with deep learning methods in an 
end-to-end fashion to estimate respiratory and circulatory parameters 
(normalized blood pressure, normalized airway pressure, absolute flow, 
and absolute volume) [58]. 

To the best of our knowledge, thoracic EIT has no large open-access 
databases. Open-access EIT data are typically available for demonstra
tion/education purposes, with a reduced number of samples. Moreover, 
we are unaware of any public database containing combined respiratory 
sound and EIT data. 

The main objective of this work was to establish the first open-access 
bimodal database (respiratory sound and EIT) for purposes of respira
tory disease diagnosis. Secondary aims included sharing a mechanism 
that allows the synchronization of recordings from respiratory sound 
and EIT during post-processing and proposing several machine-learning 
models for the automated classification of respiratory diseases based on 
the current database. In summary, the main contributions of this work 
are the following:  

1. Establishment of the first bimodal (respiratory sound + EIT) open- 
access database for the diagnosis of respiratory diseases (https://da 
ta.mendeley.com/datasets/f43c7snks5/1); 

2. Proposal of a benchmark machine learning pipeline for the classifi
cation of respiratory diseases using the current database (traditional 
machine learning and deep learning models);  

3. Use of EIT for the development of automated classification models of 
respiratory diseases; 

Table 1 
List of publicly available respiratory sound databases.  

Database name and reference Number of 
subjects 

Number of 
recordings 

Type 

The Chest: its Signs and Sounds [27] - - CD 
Understanding Lung Sounds, second 

edition and third edition [28,29] 
- 28 CD 

Understanding Heart Sounds and 
Murmurs [30] 

- - CD 

R.A.L.E. repository [31] - >50 Online 
repository 

East Tennessee State University 
repository [32] 

- 20 Online 
repository 

Fundamentals of Lung and Heart 
Sounds [33] 

- - CD 

Auscultation Skills: Breath and Heart 
Sounds, fourth edition [34] 

- 96 CD 

Heart and lung sounds reference 
library [35] 

- 46 CD 

Lung Sounds: An Introduction to the 
Interpretation of the Auscultatory 
Findings [36] 

- 28 CD 

Secrets Heart & Lung Sounds 
Workshop [37] 

- - CD 

SoundCloud Lung Sound repository 
[38] 

- - Online 
repository 

ICBHI 2017/Respiratory Sound 
Database (RSD) [39,40] 

126 920 Online 
repository 

RespiratoryDatabase@TR (COPD 
Severity Analysis) [41] 

75 504 Online 
repository 

A dataset of lung sounds recorded 
from the chest wall using an 
electronic stethoscope [42] 

112 112 Online 
repository 

HF_Lung_V1 [43] 261 9765 Online 
repository 

HF_Lung_V2 [44] 300 13,957 Online 
repository 

HF_Tracheal_V1 [45] 227 10,448 Online 
repository 

SPRSound: Open-Source SJTU 
Paediatric Respiratory Sound 
Database [46] 

292 2683 Online 
repository  

Table 2 
Summary of selected works on respiratory disease classification. (CNN - convolutional neural network; LSTM - long short-term memory; ConvBiGRNN - convolutional 
bidirectional gated recurrent neural network; NMF - Non-negative matrix factorization; F1 - F1 score; HS - harmonic score).  

Reference Data Method Classes Best Results (%) 

Aykanat et al. 
[47] 

Participants: 1630; Recordings: 17930; 
Source: Private 

CNN Healthy; Unhealthy Accuracy: 85; Precision: 86; Sensitivity: 86; 
Specificity: 86 

Perna et al. 
[48] 

Participants: 126; Recordings: 920; Source: 
RSD 

RNN Healthy; Chronic; Non-chronic Accuracy: 98; Precision: 93; Sensitivity: 90; 
Specificity: 82; F1: 91 

Garcia-Ordás 
et al. [49] 

Participants: 126; Recordings: 920; Source: 
RSD 

Autoencoder +
CNN 

(1) Healthy; Chronic; Non-chronic, (2) URTI; 
COPD; Bronchiectasis; Pneumonia; 
Bronchiolitis; Healthy 

(1) - F1: 99; (2) - F1: 99 

Shuvo et al. 
[50] 

Participants: 126; Recordings: 920; Source: 
RSD 

CNN (1) Healthy; Chronic; Non-chronic, (2) URTI; 
COPD; Bronchiectasis; Pneumonia; 
Bronchiolitis; Healthy 

(1) - Accuracy: 98.7; Sensitivity: 98.9; 
Specificity: 100, (2) - Accuracy: 98.7; 
Sensitivity: 98.6; Specificity: 100 

Torre-Cruz 
et al. [51] 

Participants: 208; Recordings: 208; Source: 
Public 

Semi-supervised 
NMF 

Healthy; Unhealthy Accuracy: 96; Precision: 100; Sensitivity: 93; 
Specificity: 100 

Fraiwan et al. 
[52] 

Participants: 215; Recordings: 1484; Source: 
RSD and King Abdullah University 
Hospital Dataset 

Ensemble 
Classifiers 

Healthy; Asthma; COPD; Bronchiectasis; 
Pneumonia; Heart failure 

Accuracy: 98.27; Sensitivity: 95.28; Specificity: 
98.9; F1: 93.61 

Fraiwan et al. 
[53] 

Participants: 215; Recordings: 1484; Source: 
RSD and King Abdullah University 
Hospital Dataset 

CNN + LSTM Healthy; Asthma; COPD; Bronchiectasis; 
Pneumonia; Heart failure 

Accuracy: 99.62; Sensitivity: 98.43; Specificity: 
99.79 

Messner et al. 
[54] 

Participants: 23; Recordings: 387; Source: 
Private 

ConvBiGRNN Healthy; Pathological; No signal Precision: 100; Sensitivity: 85.9; F1: 92.4 

Nguyen et al. 
[55] 

Participants: 215; Recordings: 387; Source: 
RSD and Private 

ResNet50 (1) - Healthy; Chronic; Non-chronic, (2) - 
Healthy; Unhealthy 

(1) Specificity: 91.77; Sensitivity: 93.68; HS: 
92.57; (2) Specificity: 91.77; Sensitivity: 
96.92; HS: 93.60  

D. Pessoa et al.                                                                                                                                                                                                                                  

https://data.mendeley.com/datasets/f43c7snks5/1
https://data.mendeley.com/datasets/f43c7snks5/1


Computer Methods and Programs in Biomedicine 240 (2023) 107720

4

4. Development of an acquisition setup to allow data synchrony be
tween respiratory sound and EIT. 

2. Methods 

2.1. Data collection protocol 

In this section, we describe the data collection protocol. The study 
was conducted under the scope of the European Horizon 2020 project 
WELMO1. Furthermore, two independent ethics committees approved it 
in each country where the acquisitions took place: approval was granted 
by the Nursing School of Coimbra (ESEnfC) in Portugal (Reference AD1 
P721-10/2020) and by the Scientific Council of General Papanikolaou 
Hospital in Greece (Reference 51st/252/4-3-2021). We have complied 
with all relevant ethical regulations. Informed written consent was ob
tained from all participants before examinations. 

Respiratory sound data were recorded using the 3M Littmann Elec
tronic Stethoscope 3200 with a sampling rate of 4000 Hz. The stetho
scope was hand-held by a medical doctor/physiotherapist in the 
respective recording position. Recordings were either started using the 
stethoscope or the 3M Littmann StethAssist Software in an auxiliary 
computer. After recording the respiratory sound in every position 
considered, the recorded sounds were uploaded from the internal 
memory of the stethoscope to the auxiliary computer via Bluetooth. 
Every sound was then extracted from the StethAssist Software with the 
three available filtering modes: Bell, Diaphragm, and Extended. The Bell 
mode amplified sounds from 20 - 1000Hz, but emphasized lower fre
quency sounds between 20 - 200Hz; the Diaphragm mode amplified 
sounds from 20 - 2000Hz, but emphasized the sounds between 100 - 
500Hz; the Extended Range mode amplified sounds from 20 - 2000Hz 
similar to the Diaphragm Mode, but provided more low-frequency 
response between 50 - 500Hz [59]. 

EIT data were collected using the Goe-MF II EIT device (CareFusion, 
Höchberg, Germany). An array of sixteen self-adhesive electrodes (Blue 
Sensor, Ambu, Ballerup, Denmark) was attached to the chest circum
ference between the 5-6th intercostal space (xiphoid-sternal line), with 
another reference electrode placed on the abdomen. Small alternating 
electrical currents (5 mA) were delivered through adjacent pairs of 
electrodes in a sequential rotating process, and the remaining passive 
electrode pairs measured the resulting potential differences. A total of 
208 voltages were measured per image frame. EIT data were acquired at 
a sampling rate of 33 images/second (33 Hz). 

A photographic register of the acquisition devices/setup is available 
in the supplementary material. 

Data acquisitions took place in different countries using different 
acquisition protocols, namely the auscultation points differed between 
locations. Nevertheless, simultaneous acquisition of respiratory sound 
and electrical impedance tomography signals was performed in every 
subject. In summary, the main steps of the acquisition process can be 
summarized in the following key points:  

• Dialogue with the participant providing instructions regarding the 
acquisition protocol and sequence of events;  

• Placement of the EIT electrodes around the thoracic area (some 
subjects required the use of conductive gel);  

• Recording of respiratory sounds at the various auscultation points 
and corresponding EIT signals (recordings at Aveiro contemplated an 
initial phase for post-acquisition data synchronization purposes);  

• Removal of the EIT electrodes and storage of recorded respiratory 
sounds and EIT data to an external computer. 

The recording points considered in each location as well as the 
number of respiratory sounds per location are presented in Fig. 1. 

Below we present the protocols and the acquisition setups used at 
each location with further detail. Two types of acquisitions were 
collected in both locations. In the first type of acquisition (TbDb), most 
commonly used among clinicians during auscultation, participants 
performed tidal and deep breathing. In the second type (TbCS), partic
ipants were instructed to perform forced cough and speak to purposely 
introduce perturbations in the recordings. 

2.1.1. School of Health Sciences, University of Aveiro (ESSUA) 
Recordings were conducted by the research team of the Respiratory 

Research and Rehabilitation Laboratory (Lab3R) of the School of Health 
Sciences, University of Aveiro (ESSUA). Respiratory sounds were 
collected by placing an electronic stethoscope at five different positions 
(see Fig. 1). For each stethoscope placement, the corresponding EIT 
signal was also simultaneously recorded. Therefore, each acquisition 
comprised a pair of respiratory sound - EIT recordings. Participants were 
seated throughout the data collection process. 

In the data collection process, two different types of acquisitions 
were performed. In the first type (tidal breathing + deep breathing - 
TbDb), subjects were requested to breathe quietly for a few seconds. 
After that period, they were prompted to start breathing deeply until the 
end of the recording. In the second type of acquisition (tidal breathing +
cough + speech - TbCS), subjects were instructed to breathe quietly at 
first. After a couple of breaths, they were prompted to cough (inten
tionally) and speak (read a sentence shown by the respiratory thera
pists). The sentence was in Portuguese as follows: “Está na hora de 
acabar” (in English: “It is time to end”). This sentence was selected based 
on a previous study where several Portuguese phrases were submitted to 
an extensive acoustic analysis [60]. Both types of acquisitions were 
recorded for each recording position identified in Fig. 1. In Fig. 2, we 
present two example recordings with synchronized respiratory sound 
and EIT, one for each type of acquisition. 

Since two independent devices were used for data collection (3M 
Littmann Electronic Stethoscope 3200 and Goe-MF II EIT device), the 
raw data from each source was not synchronized in the time domain. 
Therefore, we developed an acquisition setup using an auxiliary signal to 
synchronize respiratory sounds and EIT data in post-acquisition. The 
system generated an auxiliary sound signal (a pure sinusoidal tone at a 
specific frequency of 1900 Hz) that was then split to a loudspeaker and 
the EIT device, using an audio splitter and a 3.5 mm mono jack to BNC 
adapter (see Fig. 3). Accordingly, this division allowed the auxiliary 
signal to be simultaneously detected in both respiratory sound and EIT 
recording systems. Subsequently, both signals were synchronized post- 
acquisition by aligning the auxiliary signals in both sources. 

The recording process was initiated with the EIT recording start, 
followed by the respiratory sound recording. The first seconds 
(approximately 10 seconds) after the sound recording was initiated were 
used to trigger the auxiliary input (see Fig. 3). The stethoscope was not 
in direct contact with the examined subject in this initial interval. This 
step was crucial to detect the auxiliary with the least attenuation 
possible. However, in the sounds recorded on the trachea (point 7 in 
Fig. 1), the stethoscope was in direct contact with the subjects the whole 
time, and the auxiliary signal was not audible in these cases. Since 
subjects usually experienced some level of discomfort at this specific 
auscultation point, we tried to place the stethoscope gently in the tra
chea and avoid the initial step of capturing the auxiliary signal over the 
sound. Therefore, for the sounds recorded over the trachea, it was not 
possible to detect the auxiliary signal in respiratory sound and, conse
quently, align the respiratory sound and EIT. 

Fig. 4 represents the chronological sequence of events of the acqui
sitions. In this figure, we observe the auxiliary signal present in both EIT 
system auxiliary signal and respiratory sound. After the acquisition, we 
manually identified (for higher accuracy) the time intervals of the 
auxiliary signal in both signals. These intervals were later used to 
determine the t1 interval (see Fig. 4) and align the respiratory sound and 
EIT recordings. 1 https://cordis.europa.eu/project/id/825572 
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2.1.2. Aristotle University of Thessaloniki (AUTH) 
Respiratory sounds were acquired by the research team of the Aris

totle University of Thessaloniki (AUTH) at the Geroge Papanikolaou 
General Hospital of Thessaloniki. Sounds were collected sequentially 
from six chest locations by simultaneously placing two electronic 
stethoscopes at two locations (multi-channel recording - not synchro
nized with EIT). The considered recording positions are presented in 
Fig. 1. The corresponding EIT signal was recorded for each pair of 
stethoscope placement. Therefore, each acquisition comprises a pair of 
two respiratory sounds - EIT recording. Participants were seated 
throughout the data collection process. 

During the recordings, two different types of acquisitions were per
formed. In the first type (tidal breathing + deep breathing - TbDb), 
subjects were requested to breathe quietly for a few seconds. After that 
period, they were prompted to start breathing deeply. In the second type 
of acquisition (tidal breathing + cough + speech - TbCS), subjects were 
prompted to cough voluntarily, perform throat clearing, and, lastly, 
count from one to ten in greek: “éna, dío, tría, tésera, pénde, éxi, eptá, 
októ, enéa, déka”. Despite the slight differences in the protocol when 
compared to the recordings at Aveiro (subsubsection 2.1.1), the ob
tained samples were similar to the ones presented in Fig. 2. 

Temporal data synchrony between respiratory sound and EIT was 
not ensured. Moreover, temporal synchrony between the respiratory 
sound of both stethoscopes was also not ensured. These were recorded 

with two independent devices without any external trigger to allow 
post-acquisition alignment. In the data collection process, the EIT 
recording was started first. Then, one of the health professionals col
lecting the respiratory sound with the stethoscope would signal the 
other to start the recording and initiate both stethoscopes simulta
neously. Despite that, during the acquisitions, we verified that the sec
ond stethoscope was occasionally initiated with some delay 
(approximately 1 to 2 seconds). 

2.2. Classification of respiratory diseases: Baseline 

We have proposed a baseline system for classifying respiratory dis
eases based on respiratory sound and EIT data. This baseline will facil
itate comparisons across future works using the current database. 

In our baseline classification systems, we have considered a feature- 
level fusion [61], in which we merge features extracted from both res
piratory sound and EIT. Moreover, we have also trained the same models 
with sound and EIT features separately. 

Fig. 5 presents the overall pipeline of the proposed baseline classi
fication models. It should be noted that for the samples recorded in 
Aveiro, there was only one respiratory sound available (single-channel 
recordings). Thus, only “Sample1” was considered for those cases. The 
extracted features were used to train and test the machine learning 
models. 

2.2.1. Preprocessing 
The acquired raw EIT data were processed offline to obtain the 

reconstructed images/frames using the Graz Consensus Reconstruction 
Algorithm for EIT (GREIT) [62]. The reconstruction was performed 
using an adult thorax-shaped model with a single plane of 16 electrodes. 
The adjacent stimulation pattern was selected from the library of models 
of the EIDORS software v3.10 [63]. The resulting reconstructed EIT 
images consisted of 32 by 32 pixels. After obtaining the reconstructed 
images for every time step (frame), the global EIT waveform was 
computed by summing up all individual pixel values for each complete 
image and multiple regions of interest (e.g., right part of the image, left 
part of the image, among others). 

The initial 10 seconds of every recording were discarded for the 
respiratory sounds recorded in Aveiro since they were used for syn
chronization purposes. Thus, they might contain background noise un
related to the respiratory sounds. Respiratory sounds used for the 
development of the differential diagnosis system were considered with 

Fig. 1. Respiratory sound recording points (blue circles) and placement of EIT 
electrodes (yellow circles) during examinations. 1 - posterior apical left (PAL), 2 
- posterior apical right (PAR), 3 - posterior basal left (PBL), 4 - posterior basal 
right (PBR), 5 - anterior apical right (AAR), 6 - anterior apical left (AAL), 7 - 
trachea (T). The blue rectangular shapes represent the number of recordings 
collected at each location at Aveiro (A), Thessaloniki (T), and in total (white 
rectangle). At Aveiro, only five auscultation points were considered (3,4,5,6,7). 

Fig. 2. Sample recording of each type of acquisition (TbDb from subject with COPD, and TbCS from subject with ILD). (a) TbDb acquisition: tidal breathing followed 
by deep breathing (green - tidal breathing; red - deep breathing); (b) TbCS acquisition: tidal breathing followed by forced cough and speech (green - tidal breathing; 
yellow - cough; purple - speech). (ΔZ-impedance variation; A.U.-arbitrary units). 
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the Littmman Extended filter (EXTD). 

2.2.2. Feature extraction 
Several features have been extracted from the two sources (respira

tory sound and EIT). For the sound-related features, we computed the 
spectrogram representation (STFT) of each audio with a 256 ms Ham
ming window and with 90% overlap. Then, 81 features were extracted 
from each frame of the spectrogram: 25 spectral features, 26 MFCC 
features, and 30 melodic features [64]. Several EIT features were 
extracted at a global and regional level from each complete EIT file. We 
have considered eight different regions of interest (ROIs) for feature 
extraction as defined in [56]. The features were extracted for each 
complete EIT file. Table 3 presents a brief description of each considered 
feature. 

Both audio and EIT features were calculated using MATLAB 2022b. 
Most audio features were extracted using the MIR Toolbox 1.7.2 [65]. 
After audio and EIT feature extraction, several statistical moments 

(mean, median, max, min, std) were used to represent each sample (that 
is, features were aggregated over the whole recordings). For the 
impedance curve correlations features, no statistical moments were 
computed, as these features correspond to a single value. This resulted in 
a total of 405 audio features and 246 EIT features. In the supplementary 
material a document can be found with the name of all extracted 
features. 

2.2.3. Classifiers 
We used six shallow machine learning algorithms to classify the 

respiratory sound and EIT samples: linear SVM (SVMlin), SVM with 
radial basis function (SVMrbf), k-nearest neighbor (knn), Ensemble of 
bagged decision trees (treebag), decision tree (DecisionTree), and 
random undersampling boosting (RUSBoost). All the classifiers were 
trained and tested on a 5-fold cross-validation scheme. Moreover, we 
have also performed hyperparameter optimization of the models. Their 
hyperparameters were optimized on a validation set containing 10% of 
the training set, with a stratified division maintaining the class ratio. 
Bayesian optimization [66] was used to optimize the following hyper
parameters of each model: box constraint and kernel scale for SVMlin 
and SVMrbf; distance metric, number of neighbors for knn; learning 
rate, number of variables to sample, number of learning cycles, mini
mum leaf size, and maximum number of splits for treebag and RUSBoost; 
and maximum number of splits and minimum leaf size for DecisionTree. 
After the training optimization, the models with the best hyper
parameters were then applied to the independent test set. All classifiers 
were trained and tested in MATLAB 2022b. We also tested two 
filter-based feature selection methods (ReliefF and minimum redun
dancy maximum relevance (MRMR)), but they did not increase the 
classification performance of the models. Therefore, we opted not to 
show these results. 

Apart from the six shallow machine learning models, we also 
developed a baseline deep learning model, namely a CNN. The archi
tecture of the proposed model is presented in Fig. 6. Similarly to the 
shallow models, the CNNs were also trained and tested on the same 5- 
fold cross-validation scheme. The model is composed of two branches, 
one for EIT and another for respiratory sound. Additionally, each branch 

Fig. 3. Schematic representation of the synchronization system based on the 
use of an auxiliary device. 

EIT and Respiratory Sound Synced Interval

EIT and Respiratory Sound Synced Interval

Auxiliary Signal

t1

t1

Auxiliary Signal

Auxiliary Signal t1 EIT and Respiratory Sound Synced Interval

EIT and Respiratory Sound Synced Interval

Fig. 4. Example of post-acquisition synchronization for a TbDb acquisition. (t1 - interval from the ending of the auxiliary signal until the end of the synchronization 
period (initial 10 seconds); ΔZ-impedance variation; A.U.-arbitrary units). 
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was composed of three convolutional blocks with different filters. After 
the convolutional blocks, we employed a 2-dimensional global max 
pooling layer. Lastly, we flattened the extracted/learned features to one 
dimension and concatenated them when respiratory sound and EIT were 
combined. As the final layer, we used a dense layer with a softmax 
activation function to output the probability of each class. If only one 
input was considered, only the corresponding branch was used. Since 
EIT data were a temporal sequence of 2-dimensional images (bio
impedance distribution maps), the EIT branch was time distributed; that 
is, the convolutional operations on the EIT branch were applied to each 
EIT image/frame separately. 

Following a similar approach to [53], we have considered only the 
initial five seconds of the signals as inputs for the CNN model, both for 
the respiratory sound and the EIT. We have computed the spectrograms 
(STFT) of the respiratory sound to use as input for the respiratory sound 
branch. To compute the STFT, a 128 ms Blackman-Harris window with 
80% overlap was applied. For the Fast Fourier Transform (FFT), 512 
points were used, resulting in 391-bin log-magnitude spectrograms. For 
the EIT branch, we used the reconstructed frames of each signal as 
described in Section 2.2.1 and considered only the frames corresponding 
to the first five seconds. The resulting input shapes for the respiratory 
sound and EIT branches were (257,195,1), and (165,32,32,1), 
respectively. 

The CNN models were trained for 100 epochs with a batch size of 16. 
Simultaneously with the training process, the model was evaluated 
using the validation subset at every new epoch to save only the set of 
weights with the lowest validation loss. As the loss function, we used the 
categorical cross-entropy. Similarly to the shallow classification models, 
10% of the training dataset was considered for validation. All CNN 
models were developed using Tensorflow v2.11.0. 

2.2.4. Evaluation 
The development of automated differential diagnosis methods for 

the detection of respiratory diseases is a valuable tool that can aid cli
nicians and facilitate the diagnosis of a particular subject. These 
methods can be particularly beneficial when considering their deploy
ment in remote monitoring applications. Considering this, we designed 
several tasks for developing and assessing such methods under different 
scenarios. The tasks are presented below. 

Evaluation tasks: We have considered six tasks, of different 
complexity, for classifying respiratory diseases: Tasks A1, A2, A3, B1, 
B2, and B3 (see Table 4). The tasks were divided into two main groups 
based on discriminating between different class groups at different 
levels (A - sample level, B - subject level) with different granularity. 

Task A (Respiratory disease classification at sample level): 1)Task A1 
is a binary classification task aiming at classifying samples as Healthy 
and Non-healthy; 2) Task A2 is a 3-class classification task aiming at 
classifying samples as Healthy, Obstructive, and Restrictive; 3) Task A3 is 
a 5-class classification task aiming at classifying samples as Healthy, 
COPD, Asthma, ILD, Pulmonary Infection. 

Task B (Respiratory disease classification at subject level): 1) Task 
B1 is a binary classification task aiming at classifying subjects as Healthy 
and Non-healthy; 2) Task B2 is a 3-class classification task aiming at 
classifying subjects as Healthy, Obstructive, and Restrictive; 3) Task B3 is 
a 5-class classification task aiming at classifying samples as Healthy, 
COPD, Asthma, ILD, Pulmonary Infection. 

Table 4 presents a summary of the different classification tasks. In 
tasks A2 and B2, the Obstructive class included the Asthma and COPD 
diagnoses; the Restrictive class included the ILD and Pulmonary Infection 
diagnoses. 

Data split: We have separated the complete database into training and 
testing sets multiple times to train and evaluate the performance of the 
classification models. We have considered a patient-independent strat
ified 5-fold cross-validation strategy for splitting the data. With this 
strategy, every subject belonged exclusively to either the training or 
testing set of each fold. Moreover, we used every subject to evaluate the 
model since everyone was in the test set once. Typically, samples from 
the same patient tend to have some similarity within themselves, which 
might lead to overly optimistic performance results whenever data from 
the same subject is in both sets. Previous studies have reported this 
behavior [56]. Additionally, for real-world applications, the main 
objective is usually to deploy the models in new subjects, stressing the 
need for patient-independent validation. Data splits created for tasks A1, 
A2, and A3, were used on the corresponding B tasks. The subject sepa
ration for each task is available online together with the database. 

Evaluation metrics: Given the imbalanced distribution in the number 
of samples of each class, we have considered the macro mean of the F1 
Score (F1) and the balanced accuracy (BAcc) to evaluate the 

Fig. 5. Schematic representation of the automatic classification pipeline. For subjects recorded in Aveiro (single audio channel) only “Sample1” was considered. (Acc 
- Accuracy; BAcc - Balanced accuracy; MF1 - Macro F1). 
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classification models. Moreover, we have also considered the global 
classification accuracy. Metrics for the multi-class classification prob
lems were computed in a one-vs-all fashion. The mathematical expres
sions for each considered metric are presented below: 

Accuracy =
TP + TN

TP + TN + FP + FN
(1)  

Precision =
TP

TP + FP
(2)  

Recall =
TP

TP + FN
(3)  

F1Score(F1) =
2 × Precision × Recall

Precision + Recall
(4)  

MacroF1 =
F1Class1 + F1Class2 + … + F1ClassN

N
(5)  

BalancedAccuracy =
RecallClass1 + RecallClass2 + … + RecallClassN

N
(6)  

where TP (True Positives) are the samples of the relevant class that are 
correctly classified; TN (True Negatives) are the samples of the other 
classes that are correctly classified; FP (False Positives) are the samples 
that are incorrectly classified as the relevant class; FN (False Negatives) 
are the samples of the relevant class that are incorrectly classified. For 
multi-class classification, the evaluation metrics were computed in a 

one-vs-all fashion. 

3. Results 

3.1. Database demographics and structure 

A total of 78 subjects from two countries (Portugal and Greece), 
healthy and non-healthy, were considered in the data collection for this 
database. All Portuguese data were recorded at the Respiratory Research 
and Rehabilitation Laboratory (Lab3R) of the School of Health Sciences, 
University of Aveiro; participants were enrolled in a 12-week 
community-based pulmonary rehabilitation program. Greek partici
pants were recruited at the George Papanikolaou General Hospital of 
Thessaloniki (outpatient clinic and intensive care unit). Non-healthy 
subjects suffered from various respiratory conditions (COPD, asthma, 
interstitial lung disease (ILD), among others). The demographic aspects 
and characteristics of the database as well as the distribution of subjects 
per primary diagnosis, are presented in Table 5. All primary diagnoses 
were assigned by pulmonologists. 

The audio files of the database were stored in .wav format, while EIT 
files were stored in .eit format. The signals from each subject were 
grouped in individual folders. Within each subject’s folder, two folders 
were created, one for respiratory sound (Sound) and one for EIT (EIT). 
Furthermore, inside each sound folder, there were three different sub- 
directories, one for each filter type used to extract the recorded respi
ratory sounds (BELL, DIAP, EXTD). We included a tree diagram repre
sentation of the organization of the folders in the database in the 

Table 3 
Brief description of the extracted features from respiratory sound and EIT.  

Source Features Description 

Sound Spectral Spectral Centroid Center of mass of the spectral distribution 
Spectral Spread Variance of the spectral distribution 
Spectral Skewness Skewness of the spectral distribution 
Spectral Kurtosis Excess kurtosis of the spectral distribution 
Zero-crossing Rate Waveform sign-change rate 
Spectral Entropy Estimation of the complexity of the spectrum 
Spectral Flatness Estimation of the noisiness of a spectrum 
Spectral Roughness Estimation of the sensory dissonance 
Spectral Irregularity Estimation of the spectral peaks’ variability 
Spectral Flux Euclidean distance between the spectrum of successive frames 
Spectral Flux Inc Spectral flux with focus on increasing energy solely 
Spectral Flux Halfwave Halfwave rectified spectral flux 
Spectral Flux Median Median filtered spectral flux 
Spectral Brightness Amount of energy above 100, 200, 400, and 800 Hz 
Brightness 400 Ratio Ratio between spectral brightness at 400 and 100 Hz 
Brightness 800 Ratio Ratio between spectral brightness at 800 and 100 Hz 
Spectral Rolloff Frequency such that 95, 75, 25, and 5% of the total energy is contained below it 
Rolloff Outlier Ratio Ratio between spectral rolloff at 5 and 95% 
Rolloff Interquartile 
Ratio 

Ratio between spectral rolloff at 25 and 75% 

MFCC MFCC 13 Mel-frequency cepstral coefficients 
Delta-MFCC 1st-order temporal differentiation of the MFCCs 

Melodic Pitch Fundamental frequency estimation 
Pitch Smoothing Moving average of the pitch curve with lengths of 100, 250, 500, and 1000 ms 
Inharmonicity Partials non-multiple of fundamental frequency 
Inharmonicity 
Smoothing 

Moving average of the inharmonicity curve with lengths of 100, 250, 500, and 1000 ms 

Voicing Presence of fundamental frequency 
Voicing Smoothing Moving average of the voicing curve with lengths of 100, 250, 500, and 1000 ms 

EIT Ventilation Ratios Ratio between the sum of all pixel values from two certain regions 
Coefficient of Variation Statistical measure that characterizes the relative magnitude of the standard deviation of a EIT frame with respect to its mean 

(quantifies the homogeneity of the volume distribution) 
Global Inhomogeneity 
Index 

Measure that quantifies the homogeneity of the volume distribution and it is defined as the summation of the absolute difference 
between median value and every pixel in a specific region 

Regional Ventilation 
Delay 

Expresses the delay between the global start of inspiration and the point in time where the regional impedance curve reaches a 
certain threshold (set to 40%) 

Impedance Curve 
Correlation 

Correlation between the GIC and the regional impedance curves, and between the regional impedance curves within themselves  
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supplementary material. Sound file names were structured as follows: 
“SubjectID_RecordingID_AuscultationPoint.wav”. EIT file names were 
structured as follows: “SubjectID_RecordingDateTime.eit”. 

The database also comprises a metadata folder, where all the char
acteristics of each subject are available. Moreover, the data splits used 
for the 5-fold cross-validation evaluation scheme of the machine 
learning models are also available. 

3.2. Respiratory diseases automatic classification results 

This section presents the results obtained for the classification 
models in the six considered evaluation tasks. Table 6 displays the re
sults obtained at sample-level and Table 7 at subject-level, respectively. 
The results for each individual class in all tasks can be found in the 
supplementary material. 

The subject-level predictions were obtained based on the individual 
predictions of each sample. We took all predictions at the sample level 
for each subject in each test set fold and determined a final class based 
on a majority voting process. Thus, the class attributed to each subject 
was based on the most common class in its samples. In case of a draw in 
the voting process, we assigned the class based on a conservative 
approach. A subject was classified as healthy in all cases where a draw 
occurred. For instance, in task B1, a subject with five individual samples 
classified as healthy, and five non-healthy, was classified as healthy. 
This rationale was applied in tasks B2 and B3. It should be noted that for 
task B, no new models were trained. In tasks B1, B2, and B3, the models 
trained for tasks A1, A2, and A3, were used, respectively. 

The machine learning models were trained using different feature 
sets based on their source. Three sets of features were considered: sound- 
based, EIT-based, and sound and EIT combined features. The main 
objective of this breakdown was to understand the individual 

contribution of each data source for the differential diagnosis of respi
ratory diseases and whether their combination would enhance the per
formance of the models. The presented results were divided according to 
the set of features used. 

In task A1, the radial basis function SVM classifier (SVMrbf), using 
both respiratory sound and EIT-derived features, was the best performer, 
with a mean balanced accuracy value of 77.9±13.1% and a mean macro 
F1 of 79.0±12.9%. When considering the subject-level classification, 
task B1, the SVMrbf model with both feature sets, is again the model that 
achieved the highest results, with a mean balanced accuracy value of 
90.0±22.4% and a macro F1 of 89.3±23.9%. 

For the 3-class classification problem at sample level, task A2, the 
model with the best performance was the SVMrbf using both respiratory 
sound and EIT-derived features, with a mean balanced accuracy value of 
51.6±9.7% and a mean macro F1 of 51.7±8.7%. Likewise, after the 
transposition of the results for the subject level, the same model, SVMrbf 
with respiratory sound and EIT features, presented a higher mean 
balanced accuracy, 61.4±11.8%, and a mean macro F1 of 60.6±12.0%. 

Lastly, in the 5-class classification problem at sample level, task A3, 
the model with the best performance was the RUSBoost using sound and 
EIT features, with a mean balanced accuracy value of 38.6±13.1% and a 
mean macro F1 34.2±11.9%. However, in task B3, the RUSBoost model 
with respiratory sound features only presented the highest mean 
balanced accuracy, 50.8±10.6%, and the SVMlin with both feature sets 
presented the highest mean macro F1, 38.5±11.3%. 

We have also represented the global confusion matrices for the 
models with higher mean balanced accuracy in every task to better 
understand their performance in Fig. 7. The global confusion matrices 
resulted from adding every fold’s confusion matrix. 

4. Discussion 

In this study, we built the first open-access bimodal database con
taining respiratory sound and EIT. The database contains 1097 respi
ratory sounds and 795 EIT recordings from 78 participants. Besides 
publicly releasing the database, we proposed several baseline machine- 
learning systems to classify respiratory diseases using respiratory sound 
and EIT. We also studied the discriminating power of each source by 
building models using different sets of features/inputs. These baselines 
will set a standard for future works on the topic using this database and 
allow a better comparison between them. 

In general, four main insights can be derived from the analysis of the 

Fig. 6. Architecture of the proposed dual-input CNN baseline model. (nf - number of filters; N - number of classes according to the task; Conv2D - 2D convolution 
layer; ReLU - Rectified Linear Unit). 

Table 4 
Summary of all classification tasks with respective disease distributions.  

Classification level Task Classes 

Sample (Task A) A1 Healthy, Non-healthy 
A2 Healthy, Obstructive, Restrictive 
A3 Healthy, COPD, Asthma, ILD, Pulmonary Infection 

Subject (Task B) B1 Healthy, Non-healthy 
B2 Healthy, Obstructive, Restrictive 
B3 Healthy, COPD, Asthma, ILD, Pulmonary Infection  
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obtained results on the classification of respiratory diseases based on our 
database:  

• The results in the binary classification tasks were significantly better 
compared to the multi-class classification problems  

• Generally, the combination of sources (respiratory sound and EIT) 
improved the classification performance of most models  

• The subject-level results were significantly better than sample-level 
ones in all classification tasks, highlighting the usefulness of 
recording multiple auscultation points  

• For several of the considered metrics, the standard deviations were 
high 

While the number of classes in the multi-class classification tasks is 
not very high, those are substantially more complex compared to the 
binary problem, particularly the discrimination between all individual 
diagnoses. This can be observed in the confusion matrices presented in 
Fig. 7, where there was a significant misclassification rate both at sample 
and subject levels for multi-class tasks (Fig. 7(c), Fig. 7(d), Fig. 7(e), and 
Fig. 7(f)). Moreover, given the unbalanced nature of the database, the 
models are biased towards the majority classes, which also makes the 
classification tasks more difficult. This behavior can also be observed in 
the confusion matrices presented in Fig. 7. 

Another main insight derived from the analysis of the results was that 
the combination of respiratory sound and EIT features improved the 
classification performance in most cases. In fact, with the exception of 
task B3, the best models with regards to mean BAcc and mean macro F1 
were all trained with features from both sources. For the shallow ma
chine learning models, the feature fusion approach yielded better results 
for three models in tasks A1, A3, B1, B2, and B3, and four in task A2. 
Therefore, combining both data sources improved the performance of 
the models in all tasks in at least 50% of the cases for shallow models. 
Such results highlighted the benefits of a bimodal approach for the 
specific problem of respiratory disease classification. As for deep 
learning models (CNN), we observed that the combination of the two 
inputs was only beneficial in tasks A1 and B1. On the remaining tasks, 
the models performed generally better using only respiratory sound or 
EIT. 

After grouping the sample predictions to obtain subject-level results, 
the mean balanced accuracy in the shallow models increased, on 
average, by approximately 3% from task A1 to B1, 6% from task A2 to 
B2, and 6% from task A3 to B3. Also, in task B3, the task with more 
classes, we observed that the model with the highest BAcc was the 
RUSBoost with only sound features. Such results stressed the importance 
of analyzing the respiratory sounds at multiple auscultation points. 
Moreover, multiple auscultation points can also detect a localized lesion. 
For instance, if the left lung is collapsed, there will be either decreased or 
absent respiratory sounds in that area during auscultation. Thereby, 
multiple auscultation points will provide a broader characterization of 

Table 5 
Demographic information of database (F - Female; M - Male; #RS - Number of 
respiratory sound recordings; #EIT - number of EIT recordings).   

All Aveiro Thessaloniki 

Number of subjects 78 50 28 
Gender (M/F) 53/25 35/15 18/10 
Age (years) 65.2 ±

13.0 
67.4 ± 8.9 61.3 ± 17.6 

Height (m) 1.67 ± 0.1 1.6 ± 0.1 1.7 ± 0.1 
Weight (kg) 78.5 ±

18.4 
75.9 ± 17.1 83.1 ± 20.1 

BMI (kg/m2) 28.1 ± 5.2 27.8 ± 5.6 28.7 ± 4.5 
Number of sound recordings 1097 490 607 
Number of EIT recordings 795 490 305 
Duration sound recordings (hours) 7.2 2.7 4.5 
Duration EIT recordings (hours) 8.2 5.4 2.8 
Number of sound recordings (TbDB/ 

TbCS) 
436/661 246/244 190/417 

Number of EIT recordings (TbDB/ 
TbCS) 

342/453 246/244 96/209 

Average duration of TbDB sound 
recordings (s) 

23.1 ± 4.2 19.8 ± 1.2 27.3 ± 2.7 

Average duration of TbCS sound 
recordings (s) 

24.2 ± 4.5 19.9 ± 0.7 26.7 ± 3.7 

Average duration of TbDB EIT 
recordings (s) 

37.5 ± 6.4 40.2 ± 5.1 30.4 ± 3.3 

Average duration of TbCS EIT 
recordings (s) 

37.0 ±
10.9 

38.7 ± 2.8 35.1 ± 15.6 

Subjects’ Primary Diagnosis (#RS/ 
#EIT)    
Asthma 8 (94/82) 7 (70/70) 1 (24/12) 
COPD 32 (384/ 

318) 
26 (252/ 
252) 

6 (132/66) 

Healthy 8 (176/89) - 8 (176/89) 
ILD 24 (315/ 

242) 
17 (168/ 
168) 

7 (147/74) 

Pulmonary Infection 6 (128/64) - 6 (128/64)  

Table 6 
Classification results at sample level. The highest values for each metric in every task were highlighted in bold.  

Source Classifier Task A1 Task A2 Task A3 

Accuracy BAcc MacroF1 Accuracy BAcc MacroF1 Accuracy BAcc MacroF1 

Sound DecisionTree 78.7±1.8 52.8±4.3 50.5±5.7 41.9±4.0 35.7±4.5 33.3±5.3 35.7±5.2 29.2±6.9 28.0±5.7 
RUSBoost 82.5±5.2 73.2±8.6 69.9±7.9 49.9±1.7 49.2±4.9 44.9±3.2 31.5±3.2 36.3±2.1 30.5±4.3 
SVMlin 85.1±4.8 65.7±7.9 67.0±9.4 44.3±5.3 41.3±6.7 39.0±10.6 35.9±4.5 30.7±4.6 28.9±4.9 
SVMrbf 87.0±5.1 70.1±8.7 71.9±9.2 45.9±3.6 44.4±4.8 43.8±5.2 38.4±4.6 33.3±4.7 32.1±4.9 
knn 79.9±8.0 63.3±4.9 62.9±5.4 44.9±2.5 40.9±3.2 40.2±3.6 36.0±6.3 29.0±4.8 27.1±3.5 
treebag 85.4±3.6 64.2±7.6 65.4±9.3 47.0±5.4 39.1±4.0 36.3±5.4 38.8±4.0 28.4±4.4 26.6±6.7 
CNN 57.0±24.0 57.0±5.4 45.7±16.0 33.6±9.7 34.3±2.4 21.7±5.2 25.5±4.2 24.8±4.4 18.3±4.6 

EIT DecisionTree 85.7±4.0 63.8±7.1 62.3±3.1 48.4±10.3 38.0±11.0 36.4±11.6 37.0±6.9 26.0±6.3 24.5±6.6 
RUSBoost 86.8±5.9 64.4±16.0 62.4±14.5 50.2±9.0 48.7±12.1 45.6±9.3 33.8±7.9 34.1±12.0 29.1±8.8 
SVMlin 87.6±5.5 59.6±7.4 61.2±8.6 47.4±4.2 45.1±8.9 42.9±6.9 33.9±7.8 27.5±4.5 25.5±3.5 
SVMrbf 87.3±3.4 61.1±12.8 58.8±7.8 47.8±4.1 40.9±4.8 40.9±6.0 33.5±5.2 25.4±4.1 23.9±3.2 
knn 86.7±4.2 55.5±11.9 54.1±11.8 51.9±5.2 46.4±6.9 44.6±5.9 37.1±8.3 29.3±7.9 26.8±6.3 
treebag 86.2±7.4 63.0±17.9 61.0±16.6 54.0±6.3 46.6±3.9 46.7±4.2 42.3±9.7 29.5±9.1 27.4±10.6 
CNN 81.5±5.2 58.5±9.6 55.4±6.2 51.3±4.1 42.6±3.3 40.7±4.1 24.6±3.4 18.8±3.5 18.3±2.7 

Sound + EIT DecisionTree 82.5±5.7 67.0±10.7 65.7±9.2 48.4±6.3 45.0±9.9 42.8±11.0 35.0±7.3 28.8±6.6 27.1±5.4 
RUSBoost 83.7±6.4 61.9±10.0 62.1±11.4 49.8±8.9 46.7±12.0 46.7±12.3 38.4±10.5 38.6±13.1 34.2±11.9 
SVMlin 86.6±3.0 73.9±8.7 73.2±6.0 49.3±6.2 50.9±8.5 50.4±8.7 39.2±9.8 34.2±9.0 31.3±8.5 
SVMrbf 89.9±6.4 77.9±13.1 79.0±12.9 49.4±6.8 51.6±9.7 51.7±8.7 37.5±8.0 32.5±7.7 29.8±6.7 
knn 76.8±4.8 58.9±5.5 57.9±5.4 47.8±5.9 45.1±4.8 43.5±4.4 30.4±4.0 27.0±4.0 24.5±3.1 
treebag 85.6±7.8 63.5±13.9 64.3±17.2 48.4±9.4 43.9±11.1 44.0±13.9 41.6±8.0 32.4±7.4 29.1±7.6 
CNN 78.4±9.1 59.7±11.0 60.1±13.0 35.0±14.6 34.6±8.2 27.7±12.0 19.1±8.1 19.8±6.2 15.9±4.9  
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the general health of a subject’s respiratory system. 
From the analysis of the results in Table 6 and Table 7, we also 

observed that, for some of the considered metrics, the standard devia
tion values were high. Those were mainly related to our approach to 
training and testing our models. Since we used 5-fold stratified cross- 
validation with subject-independent folds, the number of subjects in 
the test set for the minority classes was relatively small. Notwith
standing, using this evaluation approach provides a better assessment of 
the performance of the models than just considering a hold-out valida
tion with a single data split, which was the approach used for most 
databases previously published in the literature listed in Table 1. 
Moreover, if, in a specific fold, the models performed poorly in one of 
the minority classes, that would have introduced a high variation in the 
evaluation metrics, both at the sample and subject level. This was 
specially the case at the subject-level classification tasks (tasks B1, B2, 
and B3), where the deviations were higher. Lastly, since every patient 
was used in the test, there might have been some more complex folds 
than others. Considering that there is an inherent difference/heteroge
neity between samples of different subjects, this could have also intro
duced a higher variability in the results. 

Automatic classification of respiratory diseases is a complex task, as 
demonstrated by establishing this database. Despite the good results 
published in the literature for this specific task using solely respiratory 
sounds, there are still several areas for improvement before deploying 
such methods in real digital health-driven applications, namely the 
explainability and interpretability of the models. With the use of respi
ratory sound and EIT, we can complement the findings of each source to 
have a higher degree of confidence in the developed models. Moreover, 
there is also the need for more extensively validated models with 
different databases obtained under different conditions. This is a crucial 
step to assess the robustness of the developed models and their gener
alization capability. 

Despite the problem of automatically diagnosing respiratory diseases 
based on the respiratory sound being a common problem in the litera
ture [25], the same cannot be said about EIT. With regards to EIT, few 
studies leveraged its use for classification purposes. However, as 
demonstrated in this study, machine learning models trained on EIT 
features/data can obtain results comparable to those obtained with 
respiratory sounds for the automated classification of respiratory 
diseases. 

By using this database, future works can target the development of 
automated methods for diagnosing respiratory diseases using a bimodal 

approach, which can yield better results. Moreover, they might also 
solely focus on EIT for that same purpose, as the imaging modality is 
vastly unexplored in this context. Future works might also study other 
data-driven techniques, such as other deep learning architectures or 
ensemble methodologies, to combine respiratory sound and EIT. For 
instance, the two data sources might be combined at lower or higher 
levels (signal-level or decision-level fusion, respectively)[61]. Another 
possible area for improvement of the classification performance is the 
development of preprocessing techniques. Data augmentation tech
niques, both at the data and algorithm level, can also be employed to 
address the data imbalance issue. For instance, generative adversarial 
networks or variational autoencoders might be used to artificially 
generate new samples and increase the performance of the classification 
models [49,67]. Such approaches will particularly help to increase the 
performance of deep-learning models as these tend to scale better as the 
number of available samples increases. 

Apart from being used to develop algorithms for the automated 
diagnosis of respiratory diseases, the database can also be used for other 
tasks, leveraging the complementary information provided by the res
piratory sounds and EIT. As pointed out in [68], there is great potential 
for the integration of EIT with other bio-signals. For instance, EIT can 
identify a less ventilated area of the chest (e.g., left lung), and lung 
sound algorithms might target the auscultation points related to that 
area to derive further insights. Therefore, future works using this data
base might only target specific auscultation points and develop more 
targeted solutions. Besides this approach, specific solutions might also 
be developed by studying differences in the characteristics of respiratory 
sound and EIT in the different protocol stages. Such differences might 
convey relevant information for the differential diagnosis. For instance, 
this analysis might be relevant when comparing EIT-derived metrics 
extracted during tidal and deep breathing, as the asymmetry in the 
bioimpedance distribution in the lungs might be emphasized during 
deep breathing. 

Another use case can be the complete characterization of respiratory 
sounds. With respiratory sounds, we can detect the presence of adven
titious sounds (usually present in the case of respiratory disorder). On 
the other hand, with the synchronous EIT signal, we can detect the 
respiratory phase where those occur. The timing of the adventitious 
sounds with the respiratory cycle is of great clinical relevance [69]. 
Currently, we still do not have individual annotations of each adventi
tious respiratory sound in the sound recordings. However, we intend to 
release them in a future database update with the respective time stamps 

Table 7 
Classification results at subject level. The highest values for each metric in every task were highlighted in bold.  

Source Classifier Task B1 Task B2 Task B3 

Accuracy BAcc MacroF1 Accuracy BAcc MacroF1 Accuracy BAcc MacroF1 

Sound DecisionTree 88.6±5.0 49.3±1.6 46.9±1.4 50.1±5.9 37.8±5.0 34.5±7.9 52.8±13.5 38.7±20.0 32.8±17.7 
RUSBoost 93.8±8.8 87.9±23.4 84.9±24.1 57.8±6.8 61.4±12.0 51.5±10.1 37.4±9.5 50.8±10.6 37.4±13.2 
SVMlin 91.1±3.3 55.0±11.2 54.3±15.3 51.4±5.9 50.8±15.3 46.8±18.7 46.4±10.0 38.5±6.0 35.5±7.2 
SVMrbf 92.4±5.2 65.0±22.4 64.6±24.8 57.7±3.6 58.6±11.2 53.5±12.0 48.8±6.6 38.6±5.1 34.9±6.5 
knn 92.3±2.7 68.6±18.5 67.9±17.9 52.6±2.6 48.3±14.3 42.6±15.1 46.2±8.2 36.5±15.1 30.5±14.2 
treebag 91.1±3.3 55.0±11.2 54.3±15.3 53.8±9.8 37.8±8.6 34.9±8.3 43.8±6.7 26.9±7.4 21.9±9.4 
CNN 60.7±36.0 51.4±2.9 34.6±16.0 36.3±19.5 33.3±0.0 16.9±7.8 23.1±8.5 24.6±10.0 14.1±7.0 

EIT DecisionTree 91.1±5.7 77.9±19.6 74.2±19.3 55.5±17.4 45.0±19.7 43.0±20.2 43.5±14.0 24.8±8.7 22.6±7.5 
RUSBoost 90.0±9.5 68.6±28.7 67.3±29.9 52.7±12.3 50.6±18.1 42.8±13.8 42.5±16.2 41.2±18.3 38.1±17.8 
SVMlin 89.8±3.2 50.0±0.0 47.3±0.9 51.6±11.8 51.7±20.1 48.2±19.5 38.6±10.7 30.6±7.8 27.3±4.0 
SVMrbf 89.8±3.2 59.3±20.8 54.0±15.4 47.4±7.0 38.3±10.0 38.1±13.8 41.1±9.7 30.6±8.6 28.0±6.2 
knn 91.2±5.5 60.0±22.4 57.7±23.7 52.7±14.5 49.7±20.3 45.2±22.4 43.8±11.3 34.3±13.9 29.0±11.7 
treebag 91.3±8.4 69.3±28.1 67.6±29.6 61.7±9.4 53.6±11.0 52.3±11.9 51.6±11.8 34.5±13.9 30.9±14.3 
CNN 88.5±2.4 67.1±22.5 60.1±16.6 57.5±6.5 44.2±4.8 39.7±6.0 23.1±5.0 13.5±2.5 13.4±2.0 

Sound + EIT DecisionTree 88.5±5.2 72.1±23.3 65.1±18.2 57.8±10.7 55.3±20.5 52.6±19.9 44.7±14.0 33.2±15.3 29.0±13.7 
RUSBoost 89.9±7.1 68.6±27.1 63.9±25.3 59.3±11.3 53.9±21.3 50.3±20.8 45.1±14.8 43.1±18.5 37.5±17.2 
SVMlin 96.3±5.6 85.0±22.4 85.7±23.2 56.4±5.0 60.3±7.1 59.2±7.1 50.1±11.6 43.0±12.4 38.5±11.3 
SVMrbf 97.5±5.6 90.0±22.4 89.3±23.9 53.8±10.3 61.4±11.8 60.6±12.0 48.8±8.1 39.0±6.3 34.7±5.0 
knn 87.2±4.4 52.9±12.5 53.2±15.9 59.2±8.7 48.6±16.7 45.2±18.2 35.8±10.7 30.2±14.8 25.4±13.9 
treebag 91.3±8.4 69.3±28.1 67.6±29.6 56.6±9.7 45.0±19.2 42.4±20.8 53.9±7.6 36.5±7.9 30.8±7.1 
CNN 87.1±7.4 57.1±13.0 58.1±15.0 39.4±16.5 37.2±3.4 23.9±10.7 15.7.0±16.0 17.6±13.0 10.0±10.0  
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of the adventitious sounds. 
Besides the complementary information provided by respiratory 

sound and EIT, the database can also be used to take advantage the 
complementary information provided by the multi-channel sound re
cordings. As pointed in [54], spatial information obtained through 
several acquisition channels can improve the robustness of the devel
oped methods and provide and offer supplementary insights. 

Some of the limitations of this database are related to differences 

between healthy and non-healthy subjects. Healthy subjects were from a 
significantly younger age group than subjects with respiratory condi
tions. Besides, the database presents a significantly uneven subject dis
tribution for the different diseases/classes. Also, the proposed solution 
to synchronize the respiratory sound and EIT is subject to error, which 
we could not estimate quantitatively. The error is mainly related to 
human error associated with manually identifying the auxiliary signal in 
both data sources. Lastly, even though the multi-channel recordings 

Fig. 7. Confusion matrices of the best models in all four tasks (each confusion matrix was obtained by adding the confusion matrices of all folds in the according 
task). a) task A1: SVMrbf - sound + EIT; b) task B1: SVMrbf - sound + EIT; c) task A2: SVMrbf - sound + EIT; d) task B2: SVMrbf - sound + EIT; e) task A3: RUSBoost - 
sound + EIT; d) task B3: RUSBoost - sound. 
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were gathered simultaneously, they are not synchronous as they were 
collected using two independent devices without any external trigger to 
allow for post-acquisition alignment. 

In the future, we aim to collect further data and gather long-term 
recordings so that methods to monitor the evolution of patients over 
time can be developed. Moreover, we also aim to integrate synchronous 
respiratory sound and EIT data collected with a wearable device 
developed under the scope of the WELMO project and integrate them 
into the current database [12,18,70]. 

5. Conclusion 

With this work, we aim to further stimulate the development of 
automated methodologies to monitor and assess respiratory function, 
particularly using EIT. We believe there are significant gains to be ob
tained in the evolving field of digital health/medicine by merging the 
information from respiratory sounds and EIT, as these two sources map 
different aspects of the function of the respiratory system and can pro
vide complementary information. Ultimately, we hope this database can 
serve as a foundation for researchers to build new algorithms and further 
propel the automated monitoring of respiratory function, aiming to 
improve the quality of life of patients suffering from such diseases. 
Moreover, this database can further aid the development of new wear
able systems capable of recording multiple data sources. 

Besides publicly releasing the database, we proposed several baseline 
machine-learning systems to classify respiratory diseases using respira
tory sound and EIT. We also studied the discriminating power of each 
source by building models using different sets of features/inputs. These 
baselines will set a standard for future works on the topic using this 
database and allow a better comparison between them. 
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