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A B S T R A C T

In recent years, computerized methods for analyzing respiratory function have gained increased attention
within the scientific community. This study proposes a deep-learning model to estimate the dimensionless
respiratory airflow using only respiratory sound without prior calibration. We developed hybrid deep learning
models (CNN + LSTM) to extract features from the respiratory sound and model their temporal dependencies.
Then, we used an ensemble approach to combine multiple outputs of our models and obtain the respiratory
airflow waveform for entire respiratory audio signals as the final output. We conducted a comprehensive set
of experiments and evaluated the models using several regression evaluation metrics to assess how the models
would perform in various circumstances of different complexity. The methods were developed and evaluated
considering respiratory sound and electrical impedance tomography (EIT) data from 50 respiratory patients
(15 female and 35 male with an average age of 67.4 ± 8.9 years and body mass index of 27.8 ± 5.6 kg∕m2).
An external assessment was conducted using an external database, the Respiratory Sound Database (RSD). This
was an indirect evaluation because the RSD does not provide the ground truth values of the dimensionless
respiratory airflow. In the most complex evaluation task (Task II), we achieved the following results for the
estimation of the normalized dimensionless respiratory airflow curve: mean absolute error = 0.134 ± 0.061;
root mean squared error = 0.170 ± 0.075; dynamic time warping similarity = 3.282 ± 1.514; Pearson
correlation coefficient = 0.770 ± 0.235. External assessment with the RSD showed that the performance of
our model decreased when devices different from the ones used for their training were considered. Our study
demonstrated that deep learning models could reliably estimate the dimensionless respiratory airflow.
1. Introduction

Respiratory diseases are among the most significant causes of mor-
bidity and mortality worldwide and are responsible for a substantial
strain on individuals, healthcare systems, and society [1,2]. Early di-
agnosis and frequent monitoring are essential for the management
of these patients. Currently, chronic respiratory diseases are not cur-
able; however, various pharmacological (e.g., bronchodilators) and
non-pharmacological (e.g., physical activity, pulmonary rehabilitation)
treatments contribute to the improvement of the symptoms (e.g., short-
ness of breath, fatigue), physical and emotional function, and quality
of life of people with such diseases. Nevertheless, early diagnosis,

∗ Corresponding author.
E-mail address: dpessoa@dei.uc.pt (D. Pessoa).

detection of acute exacerbation (defined as an acute worsening of
respiratory symptoms that result in additional therapy [3]), and long-
term management remain highly challenging and have led to significant
research efforts to improve the prognosis of these conditions. One of
the most active research areas has been the computerized analysis
of respiratory sounds. The main objective of these techniques is to
overcome some of the drawbacks of conventional methods and provide
more objective methods to monitor and diagnose patients suffering
from lung diseases [4].

Lung auscultation is one of the most commonly used techniques
by clinicians when performing routine physical examinations [5,6].
vailable online 5 October 2023
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Although other measures are available to diagnose and monitor respi-
ratory diseases (e.g., spirometry and medical imaging techniques), the
information derived from respiratory sounds differs and complements
these measures [7]. When performing lung auscultation, clinicians usu-
ally look up for the presence of adventitious respiratory sounds. These
are additional respiratory sounds superimposed on normal respiratory
sounds, and their presence is usually suggestive of a respiratory disor-
der [8,9]. Their phase (inspiratory/expiratory) and location within each
phase (early/mid/late inspiratory or expiratory) of the respiratory cycle
are other important parameters of clinical interest to identify the respi-
ratory status of a patient and allow the differential diagnosis of various
cardiorespiratory pathologies [5,10]. For instance, early inspiratory
crackles at the lung bases have been found to be an indicator strongly
correlated with chronic obstructive pulmonary disease (COPD) [11].

Characteristics of respiratory sounds change with gender, location
of auscultation site, body size, posture, and airflow rate. In respira-
tory sound research, the simultaneous measurement of airflow and
respiratory sounds is essential [12]. Respiratory airflow is defined as
the volumetric flow rate of air inhaled and exhaled as a function of
time [13]. The airflow signal distinguishes between respiratory phases
(inspiration and expiration) with exact absolute values of volumetric
changes during these phases, and it provides information about the
current state of the lung [12]. In our study, we proposed a novel
calculation of dimensionless respiratory airflow curves from respiratory
sound recordings. As the name suggests, the dimensionless respiratory
airflow is a measure similar to regular airflow; however, it does no
provides any information regarding the absolute volume of air being
inhaled or exhaled at any given time. Therefore, the dimensionless air-
flow curve allows the assessment of a subject inspiration and expiration
patterns with relative flow rates.

The relationship between respiratory sounds and respiratory flow
can also reveal the pathophysiology of the respiratory system and can
be used as a basis for acoustical airflow estimation [13]. Currently, the
state-of-the-art techniques used for measuring airflow are spirometry
and pneumotachography [14]. Even though the methods can accurately
estimate the respiratory flow, they require complex setups, namely a
mouthpiece, and are unsuitable for continuous monitoring, particularly
in telemonitoring applications.

With recent technological advances, the research and development
of computerized methods for the automatic analysis of respiratory
sounds have intensified with the availability of electronic stethoscopes
(or similar acquisition devices). One of the most promising applications
is the use of an electronic stethoscope paired with an application for
respiratory sound processing and analysis [15]. Such setups enable the
deployment of algorithms to estimate respiratory airflow in actual clin-
ical settings and telemonitoring applications. Moreover, it may allow
for continuous monitoring, overcoming some drawbacks of spirometry
and pneumotachography.

Our main objective with this work was to develop a method to
estimate the dimensionless respiratory airflow using only respiratory
sound without prior knowledge or calibration. To this end, we proposed
a hybrid deep neural network to model this airflow curve. The proposed
models were developed from patient data obtained in a prospective
clinical study. Moreover, we carried out a comprehensive set of exper-
iments, even utilizing an external large respiratory sound database, to
validate their performance and suitability for the intended purpose. It
should also be noted that in this work, we used electrical impedance
tomography (EIT) to obtain the dimensionless respiratory airflow (see
Section 3.2).

EIT is a non-invasive, radiation-free imaging technique that relies
on the application of alternating electrical currents on the external
surface of the body to assess its internal electrical characteristics and
generate bio-impedance/conductivity images/maps [16,17]. Previous
clinical studies have supported the validity and reproducibility of EIT
findings by comparing them against reference techniques such as CT-
scan, single-photon emission CT, positron emission tomography, vi-
2

bration response imaging, inert-gas washout, and spirometry [17].
Moreover, EIT is an approved medical method [18,19]. The global EIT
waveform (dimensionless respiratory airflow curve) has also been used
to determine breathing patterns [20].

The main contributions of this work can be highlighted in the
following key points:

• Proposal of a new airflow concept based on the global electrical
impedance tomography waveform (dimensionless respiratory air-
flow);

• First deep-learning-based method for airflow estimation;
• Method developed and evaluated on a large number of subjects

with multiple scenarios of different complexity (with internal and
external evaluation).

The article is organized as follows: (1) Introduction: presentation
of the article’s context, main motivation, and relevance; (2) Related
Work: presentation of several related works published in the area as
well as some considerations; (3) Materials and Methods: presentation
of the data as well as the methodology used in this work; (4) Results:
presentation of the obtained results; (5) Discussion: discussion of sev-
eral aspects of the work, namely the results, strengths, and limitations;
(6) Conclusion: final remarks and possible directions for future work.

2. Related work

The respiratory acoustic analysis allows the assessment of changes
in respiratory sounds, aiding the diagnosis and management of respi-
ratory diseases [13]. Over the years, several studies have attempted to
explain the correlation between respiratory sounds and the airflow gen-
erated in the airway system, mainly based on classical signal processing
analysis [13]. In fact, one of the most explored topics in the area of
flow–sound relationship is the breathing phase-detection solely using
respiratory sound, and the potential use of deep learning methods has
been proposed to tackle this issue [5,21].

Although previous works had already shown a strong correlation
between respiratory sounds and airflow [13], it was not until 2002
that it was attempted to derive the acoustical respiratory flow from
respiratory sounds, with the respective error estimation [22]. Using
an exponential model, the authors estimated the respiratory airflow
from the average power of normal tracheal sounds collected from 10
healthy individuals at different flow rates. The error was evaluated
by comparing the estimated airflow with the actual airflow measured
using a pneumotachograph and found to be 5.8±3.0% when compared
o the target airflow. However, that model required subject-specific
alibration.

A novel method for estimating airflow using the tracheal sound
ntropy and the correlation between airflow and the entropy of res-
iratory sounds has been examined in [23]. Airflow and respiratory
ounds were recorded from 10 healthy subjects, and three different
odels were studied to identify the best model for estimating airflow

rom the entropy of tracheal sounds. The authors found an overall
stimation error of 8.3±2.8% and 9.6±2.8% for inspiration and ex-

piration phase detection, respectively. However, their technique still
required one breath cycle to calibrate the flow estimation model.
Later, the same authors developed a new method that did not require
previous calibration [24]. Tracheal sounds and airflow signals were
simultaneously recorded from 93 healthy individuals, both smokers and
non-smokers. This method was based on the relationship between flow
and sound power. Results showed that flow estimation error based on
the group-calibrated model was less than 10%, and the authors claimed
that their model could estimate the respiratory flow in subjects with
similar anthropometric features without needing to calibrate the model
parameters for every individual.

More recently, a study confirmed that airflow could be estimated
through acoustical means from respiratory sounds without previous
knowledge of the respiratory phases and without needing an additional

algorithm for phase detection [12]. The authors have used a 16-channel
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recording device paired with a pneumotachograph to simultaneously
record the lung sounds on the posterior chest and the respiratory flow.
A total of 6 healthy subjects were recorded in a supine position. Then,
the authors extracted the linear frequency cepstral coefficient (LFCC)
features and mapped these on the airflow signal using multivariate
polynomial regression to perform acoustic airflow estimation. Results
suggested that the acoustical airflow during inhalation and accuracy
of breath phase detection could be better estimated at higher airflow
rates.

A non-invasive instrument capable of estimating respiratory flow
parameters through tracheal sound analysis has also been developed
[25]. That study indicated that the tracheal sound entropy closely
followed the variation in airflow, i.e., the measured airflow was highly
correlated with the acoustically determined respiratory flow.

Most previous works for airflow estimation relied heavily on record-
ings performed over the trachea. Tracheal sounds are typically very
harsh and contain high frequencies easily heard during the two breath-
ing phases [6]. This happens mostly due to the large diameter of the
trachea and the absence of a structure to filter the sound [5,6]. Usually,
when clinicians auscultate a patient, they perform it at several auscul-
tation points throughout the lungs, specifically when trying to listen
to adventitious respiratory sounds [6]. Therefore, the trachea region is
not a common auscultation area. Besides, it can be uncomfortable for
patients to have a stethoscope/microphone pushed against their throat.
Another disadvantage of relying on tracheal sound is that it can be
technically challenging to develop a wearable device that can record
respiratory sounds in the trachea over long periods of time.

Some of the above-presented methods were also developed and
tested on small datasets and healthy subjects. It is known that healthy
subjects might present different breathing patterns compared to dis-
eased subjects [26]. Thus, these methods may not apply to subjects with
respiratory diseases, limiting their usefulness.

It should be noted that all previous works refer to the estimation of
the respiratory airflow in terms of volume variation per unit of time. In
all of them, the pneumotachograph was used to obtain the true value
of the respiratory airflow.

In the context of flow–sound relation, so far, deep learning models
have only been used to determine the respiratory phase, namely inspi-
ration and expiration, using larger databases [21,27]. A model based on
object detection networks (Faster R-CNN) was able to detect expiratory
and inspiratory segments using the Short Fast Fourier Transform to
represent the respiratory sound [5]. That method was developed with
data from the Tromsø 7 lung sound dataset and achieved an average
sensitivity of 97% and an average specificity of 84%. The recordings
were obtained at several chest locations. In another study, a different
architecture to solve the same problem, namely a hybrid deep learning
model, was proposed [21]. That convolutional-recurrent model was
developed using the HF_lung_V1 database and achieved an F1 score
of 86.1% and 70.0% to detect inhalation and exhalation segments
accordingly. The recordings were also collected at several chest lo-
cations. An extensive annotation process was required to identify the
respiratory phases to train the models in both of these studies [5,21].
Such annotation processes are usually error-prone and time-consuming,
thus limiting the scalability of the developed models.

Unlike the above-mentioned deep learning approaches used for
respiratory phase detection, our model can estimate the complete res-
piratory airflow curve, providing a better overall characterization of
the respiratory patterns. Our model also does not require any previous
patient-specific calibration, and the data used to train our models
does not require any human interaction for annotation, enhancing its
3

scalability.
3. Materials and methods

This section describes the data used for this study and the proposed
methodological framework. To process the respiratory sound, we used
MATLAB 2021b. All deep learning models were developed using Python
3.8 with Tensorflow [28]. The models were trained on an NVIDIA RTX
A5000 with 24 GB of GDDR6 RAM. The computer was also equipped
with an Intel® Xeon(R) Silver 4214 CPU @2.20 GHz and 320 GB of
RAM.

The data used in this study were collected at the Respiratory Re-
search and Rehabilitation Laboratory, School of Health Sciences of the
University of Aveiro (Lab3R-ESSUA). The study was conducted under
the scope of the European Horizon 2020 project WELMO [29]1 and
an independent ethics committee from the Nursing School of Coimbra
(ESEnfC) approved it (Reference AD1 P721-10/2020). Informed written
consent was obtained from all participants before the examinations.

Fig. 1 presents the three major steps related to the proposed method-
ology: (1) data preparation and augmentation (spectrogram compu-
tation and data windowing); (2) development of the deep learning
models; (3) performance assessment.

3.1. Database

In this study, we used data from the BRACETS database, an open-
access bimodal database containing respiratory sound and EIT [30].
A total of 50 participants (15 female, 35 male) from the database
were considered in this study. A list of the considered subjects and
the training and testing division can be found in the supplementary
material. Subjects suffered from several respiratory conditions (26 —
COPD, 17 — interstitial lung disease, 7 — asthma). Their average age
was 67.4±8.9 years and mean BMI was 27.8±5.6 kg∕m2 (Male: Age
68.1±9.6 years — BMI 27.4±6.2 kg∕m2; Female: Age 65.7±7.2 years
— BMI 28.7±4.1 kg∕m2). All participants were enrolled in a 12-week
community-based pulmonary rehabilitation program.

Respiratory sounds were collected by placing an electronic stetho-
scope at four different positions (see Fig. 2). For each stethoscope place-
ment, the corresponding EIT signal was also simultaneously recorded.
Therefore, each acquisition comprises a pair of respiratory sound–EIT
recording. In total, 396 acquisitions were collected, with a duration of
approximately 20 s each.

Respiratory sound data were recorded using the 3M™ Littmann®
Electronic Stethoscope 3200 with a sampling rate of 4000 Hz. The
stethoscope was hand-held by a physiotherapist in the respective
recording position, and the recording was started using the 3M Littmann
StethAssist Software in an auxiliary computer. After recording the
respiratory sound in every position considered, the recorded sounds
were uploaded from the internal memory of the stethoscope to the
auxiliary computer via Bluetooth. Every sound was then extracted from
the StethAssist Software using the three available filtering models. In
this study, we have used the ‘‘Extended’’ filtering mode.

EIT data were collected using the Goe-MF II EIT device (CareFu-
sion, Höchberg, Germany). An array of sixteen self-adhesive electrodes
(Blue Sensor, Ambu, Ballerup, Denmark) was attached to the chest cir-
cumference between the 5–6th intercostal space (xiphoid-sternal line),
with another reference electrode on the abdomen. Small alternating
electrical currents (5 mAmp) were delivered through adjacent pairs of
electrodes in a sequential rotating process, and the remaining passive
electrode pairs measured the resulting potential differences. A total of
208 voltages were measured per image frame. EIT data were acquired
at a sampling rate of 33 images/second (33 Hz).

In the data collection process, two different types of acquisitions
were performed. In the first type (tidal breathing + deep breathing -
TbDb), subjects were requested to breathe quietly for a few seconds.

1 https://cordis.europa.eu/project/id/825572

https://cordis.europa.eu/project/id/825572
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Fig. 1. Overall framework of the proposed methodology. 𝛿 — chunk time; MAE — mean absolute error; RMSE — root mean squared error; DTW — dynamic time warping;
CorrCoeff — Pearson correlation coefficient.
Fig. 2. Respiratory sound recording points (blue circles) and electrical impedance
tomography electrodes placement (yellow circles) during examinations. 1 — posterior
basal left; 2 — posterior basal right; 3 — anterior apical right; 4 — anterior apical
left.

After that period, they were prompted to start breathing deeply until
the end of the recording. In the second type of acquisition (tidal
breathing + cough + speech - TbCS), subjects were instructed to breathe
quietly at first. After a couple of breaths, they were prompted to cough
(intentionally) and speak (read a sentence shown by the respiratory
therapists). The sentence was in Portuguese as follows: ‘‘Está na hora
de acabar’’ (in English: ‘‘It is time to end’’). This sentence was selected
based on a previous study where several Portuguese phrases were
submitted to an extensive acoustic analysis [31]. For each recording
position identified in Fig. 2, both types of acquisitions were recorded.
Fig. 3 presents a subject 15-second sample of each type of acquisition.

Since we used two independent devices, the raw data from each
source were not synchronized. An architecture based on an auxiliary
signal was developed to synchronize respiratory sound and EIT data.
The system generated an auxiliary sound signal (a pure sinusoidal
tone at a frequency of 1900 Hz) that was then split to a loudspeaker
and the EIT device using an audio splitter and a 3.5 mm to BNC
adapter. Accordingly, this division allowed the auxiliary signal to be
detected simultaneously in both respiratory sound and EIT recording
systems. Subsequently, both signals were synchronized post-acquisition
4

Fig. 3. Respiratory sound in one of the studied patients during two types of recording
(TbDb and TbCS). (a) TbDb acquisition: tidal breathing followed by deep breathing
(green — tidal breathing; red — deep breathing); (b) TbCS acquisition: tidal breathing
followed by forced cough and speech (green — tidal breathing; yellow — cough; purple
— speech).
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by manually aligning the auxiliary signals in both sources. More details
on the database are available in [30].

3.2. EIT reconstruction and ground truth creation

The dimensionless respiratory airflow information may be obtained
using EIT, namely from the global EIT waveform, i.e., the sum of all
reconstructed EIT images/frames pixels’. This signal has been used in
multiple studies to determine breathing patterns (deep breathing, tidal
breathing, among others) [17,20]. While EIT does not allow obtaining
a concrete airflow value in terms of liters per minute or any other flow
unit, it can measure the dimensionless respiratory airflow indirectly
through the ventilation-related variation of the global impedance of the
lung tissue in arbitrary units. As documented in [32], lung tissue has a
resistivity which is about five times greater than most other soft tissues
in the thorax. The resistivity of this tissue also increases considerably
with inspiration as the alveoli stretch and electrical current has to flow
around them [32]. Therefore, by monitoring this change in resistivity
using EIT, the ventilation distribution can be seen over time and,
subsequently, used to estimate the respiratory airflow (Fig. 3).

In chest EIT, electrodes are placed around the thorax of the patient
and used for injecting electrical currents and measuring the resulting
potentials through well-defined stimulation patterns. Then, using the
resulting voltage measurements, reconstruction algorithms are used
to obtain a 2D or 3D image of a cross-section of the lung with the
respective conductivity/impedance distribution [33]. When the lungs
are filling up with air, the impedance of the tissue increases. The
inverse happens when they are emptying (as demonstrated in Fig. 3).

The acquired raw EIT data were processed offline to obtain the
reconstructed images/frames using the Graz Consensus Reconstruction
Algorithm for EIT (GREIT) [33,34]. The reconstruction was performed
using an adult thorax-shaped model with a single plane of 16 elec-
trodes. The adjacent stimulation pattern was selected from the models’
library of the EIDORS software [34,35]. The resulting reconstructed
EIT images consisted of 32 by 32 pixels. After obtaining the recon-
structed images for every time step (frame), the global EIT waveform
was computed by summing up all individual pixel values for each
image. Fig. 4 represents the process of EIT reconstruction and conse-
quent dimensionless respiratory airflow curve (global EIT waveform)
computation.

After obtaining the global EIT waveform, we employed a low-pass
filter with a cut-off frequency of 0.01 Hz to further smooth the curve
and remove high-frequency components [20]. Because the waveform
variation was expressed in arbitrary units, we have also normalized
each curve between 0 and 1 (linearly scaled). When the waveform
curve value was equal to 1, the lungs were at their highest impedance/
resistivity value for a specific recording (typically at the end of the
strongest inspiration period). Conversely, when the curve value was
equal to 0, the lungs were at their lowest impedance/resistivity (typi-
cally at the end of the lowest expiration period).

Since EIT was recorded at a significantly lower sampling rate
(33 Hz) in relation to the respiratory sound (4000 Hz), we have
increased the number of samples of the global EIT waveform (dimen-
sionless respiratory airflow curve) through interpolation to match the
number of time-steps of the respiratory sound inputs. To do so, we
used the ‘‘pcubic’’2 interpolation method. Thus, the number of time
steps obtained in the representation of the respiratory sounds (see
Section 3.3) was the same as the one in the respiratory airflow curve.

2 https://www.mathworks.com/help/matlab/ref/interp1.html
5

Fig. 4. Schematic representation of EIT reconstruction and consequent dimensionless
respiratory airflow curve (global EIT waveform) computation: (a) EIT reconstruction
using GREIT algorithm; (b) summation of all pixels for every reconstructed EIT
frame. Each image presented between steps (a) and (b) represents an EIT frame (2D
cross-sectional bioimpedance distribution).

3.3. Pre-processing and data preparation

We have computed the spectrograms (STFT) of the respiratory
sound to use as input for the deep learning models. The spectrogram
is one of the most used tools in audio analysis and processing because
it describes the evolution of the frequency components over time. The
STFT representation (F) of a given discrete signal is given by:

𝑋(𝑛, 𝜔) =
∞
∑

𝑚=−∞
𝑥[𝑚]𝑤[𝑛 − 𝑚]𝑒−𝑗𝜔𝑚 (1)

where 𝑥[𝑚]𝑤[𝑛−𝑚] is a short-time section of 𝑥[𝑚] at time 𝑛, and 𝑤[𝑛] is
a window function centered at instant n [36]. To compute the STFT,
we considered a 64 ms and 128 ms Blackman–Harris window with
80% overlap [37]. For the Fast Fourier Transform (FFT), 256 points
were used, resulting in 129-bin log-magnitude spectrograms. We have
trained and tested the models with the inputs generated with both
window sizes; however, since the 64 ms window obtained better results,
we have only presented the results with that size in Section 4.

After the spectrogram computation for each respiratory audio sig-
nal, we individually normalized each spectrogram between 0 and 1.
As the main objective of this work was to obtain the normalized
respiratory airflow curve for each complete sound recording, perform-
ing a global normalization using all spectrograms from the different
sounds would not be possible as it would disrupt the direct relationship
between each sound and the corresponding respiratory airflow curve.

Given the relatively low number of available samples (Section 3.1),
we used a data augmentation approach. To artificially increase the
number of available samples, we divided the normalized spectrograms
of the complete sounds into multiple overlapping chunks, as shown in
Fig. 1. To do so, we used a sliding window of fixed size (𝛿 seconds)
across the entire spectrogram with an overlap of 99%. In total, three
different lengths for the size of each chunk were considered, namely,
6 s, 10 s, and 15 s, respectively. The same windowing process was also
applied to the ground truth values for the dimensionless respiratory
airflow curves. It should also be noted that zero padding was applied
whenever the last chunk was bigger than the audio signals spectro-
grams. The main objective of developing models with different-sized
chunks was to understand whether the sequence length would impact

https://www.mathworks.com/help/matlab/ref/interp1.html
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Table 1
Number of respiratory sound chunks per chunk size after data
windowing (data augmentation).

Chunk size (s) # Chunks/Samples Input shape

6 85948 (129, 235, 1)
10 38507 (129, 392, 1)
15 14175 (129, 588, 1)

the performance of the models. Considering that the average respira-
tory rate typically ranges between 12 to 20 breaths per minute [38],
we considered the smaller chunk size as 6 s in an attempt to have
two respiratory cycles in every sample. The numbers of resulting sound
chunks for each 𝛿 value after the augmentation process are presented in

able 1. The corresponding input shapes for the models for each chunk
ize are also presented.

.4. Deep learning model architecture

In this work, we had the primary goal of developing a model that
ould modulate the dimensionless respiratory airflow over time when
rovided with a raw respiratory sound. Accordingly, we developed hy-
rid deep learning models resulting from a combination of convolution
nd recurrent modules (CNN + LSTM). While the convolution block au-
omatically extracted features from the time–frequency representation
f the respiratory sounds (i.e., feature learning), the recurrent module
as used to learn their temporal dependencies and modulate the respi-

atory airflow sequence over time. Because we wanted to obtain an out-
ut for every temporal value of the input spectrogram (many-to-many
egression problem), we considered 1D (one-dimension) convolutional
ayers. We opted for 1D convolutional layers so that they were able
o learn the features at every frame and model each one individually.
hen, the recurrent layers (LSTM) mapped the relationship between
he learned features from each time step. Lastly, the final layer of the
etwork (dense) was also distributed across every temporal instant.
herefore, our model produced one output for each temporal instant
f the input (many-to-many relationship).

Our model was composed of two large building blocks, the con-
olution and the recurrent modules (Fig. 5). The convolution module
onsisted of 3 residual blocks. Instead of learning a direct mapping
etween the input of each layer and the extracted features, the residual
rchitecture uses the difference between a mapping applied to the input
nd the original input. Previous studies suggested that convolutional
ayers were better at learning on the residual of a feature map instead
f directly on the feature map [39]. The structure of the residual
odel is represented in Fig. 5. After the convolutional module, a 1D

lobal maximum pooling layer was applied to concatenate the extracted
eatures from all filters per time step, maintaining the original number
f temporal instants. After the global pooling process, the samples were
ed to three bidirectional LSTM layers with 256, 128, and 64 hidden
nits, respectively. The LSTM layers mapped the temporal dependen-
ies between learned features of the temporal instants. Lastly, we used
time-distributed dense/fully connected layer with a linear activation.
he last layer mapped the input to the corresponding normalized
espiratory airflow and estimated the final frame-wise prediction.

We performed grid-search experiments using filters with size 3 and
ilters with size 5 and verified that the results were better using size
. Therefore, all convolutional layers comprise filters with size 5. We
ave also tested the architecture with unidirectional LSTM layers, but
e have verified that the output of the models was much noisier when

ompared to bidirectional layers. Thus, we kept the bidirectional layers.
esides those parameters, we also experimented with a different num-
er of convolutional and recurrent layers and kept the configuration
ith better results in our preliminary testing. In total, the final model
6

ad 2,023,425 parameters.
Fig. 5. Block diagram representation of the architecture of the deep learning model.
t — number of time steps for each chunks size (see Table 1); 𝑛𝑓 = 128 (number of
convolutional filters); k = 5 (kernel size); TimeDist — time distributed layer.

Table 2
Hyperparameters used for the training of the deep learning models.

Hyperparameter Value

Dataset Partition 5-fold cross-validation (Subject isolation)
Learning Rate 3e−4
Number of Epochs 100
Loss Function RMSE
Optimizer ADAM

The network models were trained for 100 epochs. Simultaneously
with the training process, the model was evaluated using the validation
subset at every new epoch to save only the set of weights with the
lowest validation loss. Table 2 presents the parameterization used in
the models’ training process. It also presents the used data split, which
will be further explained in Section 3.6.

3.5. Post-processing

As previously mentioned, we split the complete respiratory sounds
into multiple fixed-size chunks using an overlapping sliding-window
approach (see Section 3.3). Therefore, the developed models were
trained using these chunks; consequently, their output was also a
chunk-wise prediction for the respiratory airflow. To obtain the res-
piratory airflow sequence for the complete audio recordings when
testing the models, we used a sliding ensemble method [40]. Using
this approach, we combined the predicted value for the respiratory
airflow for each time frame. We averaged that value across all chunks
to obtain the final prediction for the whole sound signal. We only
averaged the predicted airflow for the overlapping indices/time-frames
because we used partially overlapping sliding windows. Fig. 6 presents
an example of the process of chunk grouping. Then, we applied a
5th-order Butterworth filter with a cutoff frequency of 0.05 Hz to
smooth any high-frequency variations in the predicted curves. Lastly,
we normalized the complete sound output between 0 and 1 to ensure
the output stayed within this interval. In the supplementary material,
an example can be found with the post-processing of a recording.

3.6. Evaluation tasks and metrics — internal validation

We created four evaluation tasks based on the type of recording

described in Section 3.1 to understand how the models behave under
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Fig. 6. Example of the output conversion from each chunk to the complete respiratory
sound. The predicted sequences for the respiratory airflow of each chunk were
combined into a single probability respiratory airflow sequence by averaging the
obtained values for all individual chunks in overlaying frames.

Table 3
Division of file type for each evaluation task training and testing sets.
TbDb - tidal breathing + deep breathing; TbCS - tidal breathing + cough
+ speech (Section 3.1 for file type description).

Train Test

Task I TbDb TbDb
Task II TbDb + TbCS TbDb + TbCS
Task III TbDb + TbCS TbDb
Task IV TbDb TbDb + TbCS

different circumstances and how they can generalize. In Task I, we
investigated whether the networks could model the respiratory airflow
using sound without external perturbations, such as speech and cough.
Task II represents the closest to the real-world task because all file
types were considered for training and testing, respectively. In Task
III, we wanted to understand if the networks could better model the
respiratory airflow in files without perturbations by using all files for
the training process. Finally, in Task IV, we wanted to understand how
the networks trained only with files without perturbation would behave
when used to model the respiratory airflow in all file types. Table 3
summarizes the type of files used for training and testing the models
in the different tasks. Given that the patient split (described below)
was the same across tasks, we used the models trained in Task I and
Task II for testing in Task IV and Task III, respectively, to reduce the
computational load. Thus, in Tasks III and IV, only the files in the test
set change.

In order to obtain a reliable estimate of the performance of the
models in all different tasks, we performed a 5-fold patient-independent
cross-validation scheme. Thus, 40 subjects were used in the training set
in each fold, and 10 were left for the testing set. Moreover, in each
fold, we randomly selected 12.5% of the tanning subjects (5 subjects)
7

for validation purposes. With this strategy, every subject belonged
exclusively to either the training or testing set of each fold (no data
leakage). Additionally, we used every subject to evaluate the model
because everyone was in the test set once. Typically, samples from the
same patient tend to have some similarity within themselves, which
might lead to overly optimistic performance results whenever data from
the same subject is in both sets [34]. Additionally, the main objective
for real-world applications is usually to deploy the models in new
subjects, stressing the need for patient-independent validation.

Several statistical metrics commonly used in regression problems
were considered to evaluate the trained models. We have used the
mean absolute error (MAE), rooted mean squared error (RMSE), dy-
namic time warping similarity (DTW) [41],3 and Pearson correlation
coefficient value (PCC). While MAE and RMSE were used to analyze the
overall fit and error of the predicted values compared with the true val-
ues, DTW and PCC were applied to evaluate whether the morphology of
the respiratory airflow curve followed a similar trend compared to the
original one. The DTW measures the similarity between two temporal
sequences and calculates their distance. On the other hand, PCC was
used to assess how similar the trend was between the original and
predicted curves (that is, if the curves had a similar evolution over time
in terms of their trend). The equations for each considered evaluation
metric are presented below:

𝑀𝐴𝐸(𝑦, �̂�) = 1
𝑛

𝑛
∑

𝑖=1

|

|

𝑦𝑖 − �̂�𝑖|| (2)

𝑅𝑀𝑆𝐸(𝑦, �̂�) =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝑦𝑖 − �̂�𝑖
)2 (3)

𝑃𝐶𝐶(𝑦, �̂�) =
∑𝑛

𝑖=1(𝑦𝑖 − �̄�)(�̂�𝑖 − ̄̂𝑦)
√

∑𝑛
𝑖=1(𝑦𝑖 − �̄�)2 ⋅

√

∑𝑛
𝑖=1(�̂�𝑖 − ̄̂𝑦)2

(4)

𝐷𝑇𝑊 (𝑦, �̂�) = min𝜋

√

∑

(𝑖,𝑗)∈𝜋
𝑑(𝑦𝑖, �̂�𝑖)2 (5)

where, 𝑦 is the original sequence, �̂� the predicted sequence, and 𝜋 is a
path from the cross-similarity matrix obtain from 𝑦 and �̂�.

3.7. Respiratory cycle detection — external assessment

Since we have designed a method based on an ensemble approach,
our models can deal with different sound durations. Therefore, we
have used an external database to understand better how our mod-
els would perform when tested with respiratory sounds other than
those considered in this study scope. The Respiratory Sound Database
(RSD) [42,43] was used as an independent external assessment set. This
is the only database with a complete annotation of respiratory cycles
that is freely available. The RSD contains audio samples collected inde-
pendently by two research teams in two countries. It is a challenging
database as the recordings contain several types of background noises
and sounds. The sounds were collected using multiple acquisition sys-
tems (AKG C417L Microphone (AKGC417L), 3M Littmann Classic II SE
Stethoscope (LittmannC2SE), 3M Littmann 3200 Electronic Stethoscope
(Littmann3200), WelchAllyn Meditron Master Elite Electronic Stetho-
scope (Meditron)). It is also worth noting that the RSD acquisition
protocol differed from the one in our study. We have not considered
RSD files that were recorded at the tracheal site.

To the best of our knowledge, there are currently no freely available
respiratory sound databases with respiratory airflow information or
respiratory sound and EIT. While the RSD does not have this type of
information, it has the annotations of complete respiratory cycles com-
posed of (inspiration and expiration). Therefore, using this database,
we could only assess the models regarding their ability to correctly

3 https://tslearn.readthedocs.io/en/stable/user_guide/dtw.html

https://tslearn.readthedocs.io/en/stable/user_guide/dtw.html
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Table 4
Qualitative evaluation scores description.

Score Description

5 Excellent correspondence between estimated and annotated
respiratory cycles. Respiratory airflow curve with good overall shape
and behavior and excellent correlation with respiratory phases.

4 Good correspondence between estimated and annotated respiratory
cycles. Respiratory airflow curve with good overall shape and
behavior.

3 Average correspondence between estimated and annotated
respiratory cycles. Respiratory airflow curve with average overall
shape and behavior.

2 Few identifiable matches between estimated and annotated
respiratory cycles. Respiratory airflow curve with irregular behavior.

1 No identifiable matches between estimated and annotated
respiratory cycles. Respiratory airflow curve with irregular patterns.

identify the respiratory cycles and the overall behavior of the output
curves, not the estimation of the relative respiratory airflow of each
recording in terms of amplitude. Even though this data did not allow
us to completely validate our model, we could assess their performance
and behavior with data from different patients, recording devices, and
recording protocols. Therefore, it served as an external assessment
element to better understand the generalization capabilities of the
models under different circumstances.

We have performed a visual qualitative assessment to evaluate how
the identified respiratory cycles from the respiratory airflow curve
aligned with the annotated respiratory cycles, aiming at validating our
models in the RSD. We visually inspected how well the lower inflection
points of the estimated airflow curves matched the annotated respi-
ratory cycles. Based on the alignment, we have given each estimated
respiratory airflow curve a score according to the criteria defined in
Table 4.

Fig. 7 presents two examples of the estimated respiratory airflow
curve for two RSD files (‘‘185_1b1_Pl_sc_Litt3200.wav’’ and
‘‘205_1b3_Pr_mc_AKGC417L.wav’’). The black dotted vertical lines rep-
resent the annotated respiratory cycles. In Fig. 7(a), we can see a
near-perfect match between all annotated respiratory cycles and the
local minima inflection points of the estimated respiratory airflow
curve, meaning that the model correctly identifies the cycles. Moreover,
the estimated curve presents a regular behavior with excellent overall
shape. Thus, the estimation for this specific respiratory sound would
score a 5. On the other hand, in Fig. 7(b), we cannot see any match
between the annotated respiratory cycles and the inflection points of
the estimated respiratory flow. Moreover, the estimated curve presents
an irregular behavior with no discernible breathing patterns. Therefore,
this specific respiratory sound would score a 1. In the supplementary
material, a document can be found with an example for all scores (from
1 to 5).

To perform this qualitative analysis, we have considered all the
60 files from the RSD recorded using the Littmann 3200 Stethoscope
(the same device was used in our study) and another 60 randomly
selected files recorded with the other devices (20 from each recording
device). The qualitative analysis was performed by the first author (who
has extensive experience in analyzing both EIT and respiratory sound
signals).

4. Results

As previously discussed in Section 3, we have considered two types
of evaluation. In the following subsections, we present the obtained
results divided by the type of evaluation, respectively.
8

Fig. 7. Example of normalized respiratory airflow estimation for RSD files. (a) RSD file:
185_1b1_Pl_sc_Litt3200.wav (Score - 5); (b) RSD file: 205_1b3_Pr_mc_AKGC417L.wav
(Score - 1).

4.1. Internal validation

To assess the performance of the developed models, we have consid-
ered four different evaluation tasks of different complexity (Table 3).
In each of them, we varied the set of files that were used, both in the
training and testing sets, as described in Section 3.6. We have also
computed the results for the output of the models when considering
the individual chunks output and the complete files output (merging
process described in Section 3.5). Table 5 presents the obtained results
in the test set for all considered evaluation tasks. The results were
obtained using a 64 ms window to compute the spectrograms (see
Section 3.3). We have also plotted the learning curves for the models
across all folds in Fig. 8.

In Task I, the models developed using 15-second chunks were
globally the best performers, with better results in almost all considered
metrics, both for the chunks and complete files output, respectively. On
the other hand, models developed using the smaller 6-second segments
had the worst performance. In Task III, nearly identical results were
obtained. Here, the models developed using 15-second chunks were
also the best, and the ones using 6-second chunks were the worst. In
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Table 5
Results summary table separated by task, with the mean value across all folds (mean ± standard deviation). The best results per metric within each task were highlighted in bold
or the chunks and complete files.
Task Chunk time (s) Type of sample MAE RMSE DTW CorrCoef

Task I

6 Chunks 0.118 ± 0.084 0.144 ± 0.097 1.982 ± 1.871 0.848 ± 0.272
Complete Files 0.112 ± 0.056 0.144 ± 0.068 3.024 ± 1.786 0.877 ± 0.161

10 Chunks 0.110 ± 0.064 0.138 ± 0.077 2.141 ± 1.666 0.890 ± 0.183
Complete Files 0.114 ± 0.055 0.146 ± 0.068 2.990 ± 1.626 0.875 ± 0.164

15 Chunks 0.105 ± 0.052 0.135 ± 0.070 2.435 ± 1.581 0.886 ± 0.166
Complete Files 0.110 ± 0.051 0.142 ± 0.067 2.859 ± 1.585 0.880 ± 0.157

Task II

6 Chunks 0.144 ± 0.083 0.171 ± 0.094 2.457 ± 1.806 0.780 ± 0.304
Complete Files 0.143 ± 0.059 0.180 ± 0.072 3.841 ± 1.809 0.769 ± 0.212

10 Chunks 0.135 ± 0.068 0.166 ± 0.080 2.709 ± 1.713 0.793 ± 0.251
Complete Files 0.138 ± 0.058 0.174 ± 0.071 3.553 ± 1.685 0.770 ± 0.221

15 Chunks 0.129 ± 0.060 0.161 ± 0.074 2.934 ± 1.567 0.786 ± 0.237
Complete Files 0.134 ± 0.061 0.170 ± 0.075 3.282 ± 1.514 0.770 ± 0.235

Task III

6 Chunks 0.125 ± 0.085 0.151 ± 0.098 2.132 ± 1.888 0.841 ± 0.291
Complete Files 0.118 ± 0.057 0.152 ± 0.072 3.290 ± 1.847 0.858 ± 0.187

10 Chunks 0.112 ± 0.065 0.140 ± 0.079 2.182 ± 1.607 0.881 ± 0.219
Complete Files 0.113 ± 0.054 0.145 ± 0.069 2.990 ± 1.628 0.869 ± 0.191

15 Chunks 0.106 ± 0.060 0.134 ± 0.076 2.362 ± 1.487 0.877 ± 0.223
Complete Files 0.109 ± 0.057 0.141 ± 0.074 2.679 ± 1.421 0.869 ± 0.216

Task IV

6 Chunks 0.181 ± 0.116 0.219 ± 0.133 3.165 ± 2.412 0.582 ± 0.469
Complete Files 0.169 ± 0.080 0.215 ± 0.097 3.894 ± 2.030 0.610 ± 0.353

10 Chunks 0.181 ± 0.100 0.224 ± 0.118 3.370 ± 2.188 0.554 ± 0.444
Complete Files 0.174 ± 0.081 0.222 ± 0.099 3.803 ± 1.772 0.584 ± 0.370

15 Chunks 0.179 ± 0.094 0.226 ± 0.115 3.719 ± 2.158 0.532 ± 0.430
Complete Files 0.178 ± 0.086 0.227 ± 0.106 3.927 ± 1.940 0.555 ± 0.396
Fig. 8. Graphical representation of the mean and standard deviation of training and validation learning curves obtained by averaging all five developed models in each fold with
the different chunk sizes. (a) Learning curves Task I (same for Task IV); (b) Learning curves Task II (same for Task III).
Task II, where all file types were considered, the performance decreased
due to the increasing complexity of the respiratory airflow curves in
respiratory files with perturbations, such as cough and speech. Once
again, in this task, the models developed with the larger chunks were
the ones that globally performed the best. However, the models using
10-second inputs obtained slightly better results regarding the correla-
tion coefficient value. Lastly, Task IV was, by a significant margin, the
task where the models struggled the most, with the lowest performance
results compared to the remaining tasks. In this case, the chunk size had
the reverse impact on the results, as the values obtained from 6-second
models presented overall better results.

4.2. External assessment

We analyzed the mean value for the Pearson coefficient correlation
value for all runs and configurations considered (6, 10, and 15 s) in
Task II and chose the model with the highest value for this specific
metric to assess how our model would perform when tested on external
data. Then, using the chosen model, we tested it on the RSD and gave
a score to every estimated respiratory airflow curve based on a visual
9

qualitative assessment, as described in Section 3.7 and Fig. 7. The
results of this analysis are depicted in Table 6, where the percentages
of files with each score (grouped by recording device) are presented.

The results presented in Table 6 showed that the model performed
better on external data that were recorded using the same device as
in the current study (Littmann 3200). This device had the highest
average score, with more than 80% of the files scoring a 4 or a 5. We
also observed that, with this device, more than 97% of the recordings
scored 3 or more, with a residual percentage of 3% scoring a 2. For the
Littmann C2SE, the obtained average score was almost the same, with a
larger standard deviation. However, a higher percentage of estimations
were classified as a 5 for this device. When considering the remaining
devices, the performance decreased substantially, with more than 50%
of the files recorded with AKGC417L microphone and Meditron digital
stethoscope scoring below 3.

5. Discussion

When globally analyzing the results obtained across all tasks in
Section 4.1, we observed that the models performed better in Task I



Biomedical Signal Processing and Control 87 (2024) 105451D. Pessoa et al.

.

s
i
C
g
e
t
o
s
c
t
a
T
s
H
t

e
h
a
b
d
d
c
d
v
e
s
h
s
s

e
o
w
t
t
d
m
o
r
o
W
c

Table 6
Qualitative analysis results (percentage of files with each score, divided by equipment)

Equipment \Score 5 4 3 2 1 Avg.

Littmann 3200 53% 28% 15% 3% 0% 4.3 ± 1.1
Littmann C2SE 75% 5% 10% 10% 0% 4.3 ± 1.4
AKGC417L 30% 5% 5% 30% 30% 2.2 ± 1.2
Meditron 25% 5% 15% 55% 0% 2.0 ± 1.5

Global 48% 17% 13% 18% 5% 3.6 ± 1.3

and Task III. The results were nearly identical in both tasks. Such results
were previously expected, as the testing set files in both tasks did not
contain systematic perturbations such as cough and speech. Another
interesting observation was related to the worst results obtained in
Task IV. In this task, not only were the results significantly lower, but
they were also much more dispersed, as seen by the larger standard
deviations. Since only TbDb files were used for the training process
and both types were used for the testing, we can infer that training
the deep learning models with different types of files was beneficial.
Using both file types can improve the overall generalization capability
of the model.

From the analysis of the results in Section 4.1, one pattern was
noticed in Tasks I, II, and III : the models developed considering 15-
econd chunks were the ones with the best overall average performance
n most evaluation metrics, both at chunk and complete files level.
onsidering this, we hypothesized that the larger sequence sizes, which
ave the model more contextual information, helped to achieve a better
stimation of the respiratory airflow. Moreover, we have also observed
hat, in general, the models using bigger chunks produced a better
utput in terms of the amplitude of the predicted curves. On the other
ide of the spectrum, the smaller sequence sizes, with fewer respiratory
ycles, led the models to perform the worst, providing further evidence
hat more contextual information leads to better estimations. This
spect is mostly related to the recurrent module (see Section 3.4).
his pattern presented an opposite behavior for Task IV, in which
everal metrics yielded better results when considering smaller chunks.
owever, the difference between chunk sizes was not as distinct as in

he remaining tasks, and the standard deviations were larger.
One of the main reasons for the lower results in tasks that consid-

red files with perturbations (TbCS files) was related to their inherent
igher complexity. For instance, while some subjects took a deep breath
nd then spoke continuously, others started speaking and then took a
reath in between words. Similarly, such variations were also observed
uring the coughing stage. For instance, while some subjects took a
eep breath and coughed, others started coughing and inhaled before
oughing again. Also, after coughing, some subjects would experience
yspnea, which, in consequence, led to sudden gasps for air. Such
ariations during the cough and speaking phases introduced consid-
rable variability in the airflow waveform samples. Therefore, each
ample is very specific to a particular subject, and there was substantial
eterogeneity in the airflow curve patterns, both within the same
ubject and different subjects. This heterogeneity between different
ubjects was also verified for TbDp files, albeit at a much lower degree.

Two examples of model outputs for two complete files, one for
ach type of acquisition, are presented in Fig. 9. In Fig. 9(a), we can
bserve that the model can estimate the respiratory airflow generally
ell for the TbDb acquisition, not only in terms of amplitude but also in

erms of behavior and morphology. Regarding the example in Fig. 9(b),
he model can also estimate the respiratory airflow curve with a high
egree of fidelity. In this concrete example, we see that the overall
orphology and behavior of the estimated curve are identical to the

riginal. However, it presents a slight mismatch in amplitude for the
espiratory cycles with cough. This behavior for the estimated curves
f both file types was broadly seen throughout all the performed tasks.
hen TbDb files were considered, the amplitudes of the estimated

urves were closer to the original ones. Despite that, there were still
10
Fig. 9. Example of dimensionless normalized respiratory airflow output for complete
files. (a) Example of model output for TbDb file; (b) Example of model output for TbCS
file.

several cases where the estimated curves were very different in terms
of amplitude and behavior when compared to the ground truth.

In general, we found out that our models struggled in TbDb files
when the respiratory sounds had intense background noise that pre-
sented a broad spectral signature across the spectrograms’ frequency
axis. Moreover, other situations that we observed to be particularly
difficult for the models were when the breathing patterns were very
shallow, making it very hard to visually identify any discernible pat-
terns related to the breathing process in the spectrograms. In both
cases, a human annotator would also struggle to identify/hear the
breathing phases of the respiratory sound. On the other hand, in TbCS
files, the models typically struggled the most whenever the power of
the perturbations was higher in the time–frequency representations.
Typically, this led to an amplitude misestimation of the dimensionless
respiratory airflow curves.

In Fig. 8, we observe a gap between the learning curves of the train-
ing and validation losses for the models with all three chunk sizes. This
gap may occur if the training dataset has too few examples compared
to the validation dataset (unrepresentative training set). Nevertheless,
our models did not overfit during training, as in both Tasks I and II, the
average training and validation losses show improvement over time and
did not increase. The number of subjects in the training dataset can be
increased to address the gap between curves. However, we decided to
keep a bigger number of subjects in the validation set (five subjects)
to avoid overfitting. Another interesting remark is that the bigger the
size of the chunks, the slower the learning curves converged. This was
mainly related to the tuning of the parameters of the recurrent layers
for the bigger chunk sizes because they had more temporal instants.
In Fig. 8, we also observed that the mean validation loss for the 15 s
models was generally lower than the other sizes.

When considering the external assessment process (Table 4), from
the analysis of the different spectrograms obtained from the different
recording devices, we have found that their morphology was quite
contrasting. Therefore, we hypothesize that the decrease in perfor-
mance observed when the model was applied to respiratory sounds
recorded with different devices was mainly related to the morpho-
logical differences between spectrograms obtained with the Littmann
3200 and the other devices. For instance, in Fig. 7, the morphological
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differences between spectrograms of different devices are contrasting,
with a very different spectral signature. While the sound recording
with the AKGC417L does not have any processing, the sound recorded
with the Littmann 3200 is filtered by the device. This leads to a
different energy distribution across the frequency axis. Given that the
models were only trained with a particular device in this study, they
behave better when considering that same device. From the analysis
of Table 4, we also observed that the Littmann C2SE performed well,
with a significant percentage of the files with the maximum score. This
was mostly related to the similar characteristics of the spectrograms
compared to the Littmann 3200. However, it is also worth noting
that most of the Littmann C2SE files were recordings of subjects in
tidal breathing with little noise. Those files were similar to the TbDb
considered in our study.

Another interesting observation made when performing the external
qualitative analysis on the RSD was that, in some cases, the inflection
points of the respiratory airflow curves were slightly offset compared
to the respiratory cycle annotation. However, upon closer inspection,
we concluded that, in fact, in those cases, the respiratory cycles were
marginally mislabeled. Although we have not conducted any extensive
validation, this fact leads us to believe that our method can be more
precise/sensitive when compared to human annotators, providing more
accurate detection and according delimitation of the respiratory cycles.
Some examples of those instances can be found in the supplementary
material. To better characterize the distance between the inflection
points of the estimated airflow curves and the annotated respiratory cy-
cles, we have manually annotated the inflection points of all estimated
airflow curves with a score equal to 3 or superior. Then, we computed
the time distance between the inflection points and the real respiratory
cycles: Score = 3 — difference = 0.27±0.23 s; Score = 4 — difference
= 0.19±0.19 s; Score = 5 — difference = 0.18±0.16 s. As expected, the
higher the score, the closer the inflection points of the estimated curves
were to the annotations of the respiratory cycles.

Regarding computational complexity, we timed how long it took
to run on the external RSD files. For files with approximately 20 s,
the complete estimation of the dimensionless respiratory airflow curve,
respective post-processing, took about 4 s. These files were tested on the
same machine described in Section 3 to train the models. Despite a high
running time for deployment in a real-time application, our method is
still suitable for implementation in a wearable device with off-device
processing. For instance, a wearable device could record respiratory
sounds and retrieve them for a cloud-based server for algorithmic
processing and analysis (similar architecture to [15]).

To the best of our knowledge, this was the first work where a
deep learning-based approach had been used to estimate the respiratory
airflow signal solely based on the respiratory sound. Even though our
models performed relatively well across all evaluation tasks, except for
Task IV, there is significant room for improvement. From our external
assessment, we have learned that our model performs well when used
on external data recorded with the same device used to record the
respiratory sounds in this work, namely the Littmann 3200. We also
verified that in the files from the Littmann C2SE device, with few
internal and external perturbations, the model also performed well in
the qualitative analysis. However, we observed a significant drop in
performance when considering other devices, implying that the model
does not have enough generalization capacity to cope with sounds from
those devices. As happens in all machine learning works, the diversity
of the datasets used for training is a factor that can highly affect the
performance of the models. Because our database only contained data
from one specific device, we expected our models to be better suited
for samples acquired with that same device. In order to overcome
this limitation of our models, we should integrate data from other de-
vices acquired under different circumstances and protocols to maximize
their generalization capability. In addition, methods to normalize the
11

spectral sensitivities of the recording devices should also be explored.
Ultimately, one of the greatest potentials of our methodology is that
it can be paired with other automated methods and pave the way for
the development of more advanced and autonomous pipelines in the
area of automated monitoring and processing of respiratory sounds.

For instance, the method could be used to extract the dimension-
less respiratory airflow from a respiratory sound recording and, on
top of it, use another method to extract spirometric parameters from
the airflow curve. Previous studies in the literature have used the
EIT waveform to extract spirometric parameters such as IVC, FEV1,
FEV1/FVC, among others [44–46]. With such an approach, extracting
these measures based on solely respiratory sound would be possible
(which, in comparison to classical spirometry, would be less dependent
on patient cooperation and easier to deploy in remote settings with
wearable devices; moreover, unlike spirometry, it would not require
patients to wear a nose clip and mouthpiece). The spirometric indices
are very well established for normality and disease cases and useful for
the differential diagnosis of respiratory diseases. Moreover, they are
some of the most common indicators used by clinicians to diagnose
respiratory diseases and monitor their evolution over time.

Similarly, after the extraction of the dimensionless airflow curve,
methods to perform breathing phase detection [20] and adventitious
respiratory sounds segmentation (applied to the respiratory sounds
[47]) could be employed. Then, the timing of these adventitious sounds
could be determined (e.g., late expiratory, early inspiratory). Previous
studies highlighted the clinical relevancy of the timing of adventitious
sounds and correlated them with several respiratory diseases [5,11].

6. Conclusion

The advent of electronic stethoscopes/microphones, coupled with
significant progress in electronics, machine learning, and signal pro-
cessing, has revolutionized auscultation, as computer-assisted deci-
sion/monitoring systems are now becoming increasingly more com-
mon. The method developed in this study to estimate the dimensionless
respiratory airflow aims to enhance further and promote the imple-
mentation of computer-based approaches to facilitate the development
of more advanced and autonomous pipelines in the automated mon-
itoring and processing of respiratory sounds. Such pipelines could be
particularly beneficial in telemonitoring/telehealth applications when
implemented with wearable devices.

Our study has demonstrated that obtaining the dimensionless respi-
ratory airflow signal is feasible using only the respiratory audio signal
and deep learning models. Nevertheless, some of the main limitations
of our models were related to their generalization capacity, highlighted
when considering external data. Future work should target the collec-
tion of more data, namely using different acquisition protocols and
recording equipment, to further increase the generalization capacity of
the models. Other network architectures should also be explored using
different representations for the audio recordings.

One of the most promising applications of our method would be its
pairing with other computerized methods for respiratory sound analysis
and processing, especially methods that can automatically segment ad-
ventitious respiratory sounds. With those two methodologies combined,
we could provide a better overall characterization of the respiratory
sound and, thus, enhance the diagnostics and monitoring capability of
computerized methods for patients suffering from respiratory diseases.
Therefore, significant future efforts should aim to develop further and
refine computational methods to analyze respiratory sound. Also, with
our method, one could envision predicting spirometric parameters
directly from the dimensionless airflow curve extracted directly from

the respiratory sound signal.
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