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ABSTRACT This work presents a contribution to advance current solutions for the problem of melanoma
detection based on deep learning (DL) approaches. This is an active research field, which aims to aid
on the detection and classification of melanoma (the most lethal type of skin cancer) with non-invasive
solutions. By exploiting both 2D and 3D characteristics of the skin lesion surface, the proposed approach
advances beyond commonly used colour features of dermoscopic images. Two competing classification
methods are exploited, namely Multiple Instance Learning (MIL) and DL, which are combined using an
uncertainty-aware decision function. The DL method performs classification resorting to RGB data, while
MIL performs 3D feature extraction, selects the most significant set, and performs classification at two
different learning instances. The novel aspects of this work include DL uncertainty evaluation mechanisms
along with MIL to train a robust ensemble classifier, and also the use of dense light-fields for skin lesion
classification. Despite the large class imbalance (often present in medical image datasets), the ensemble
model achieves cross-validated melanoma classification accuracy of 84.00% when trained against nevus
lesions, and 90.82% accuracy when discriminating against all present lesion types. The results show that,
in the absence of discriminative 2D characteristics, the 3D surface provides redeeming results, demonstrating
that existing methods can benefit from the proposed method by looking beyond 2D image characteristics.

INDEX TERMS 3D features, classification, light-fields, medical image analysis, melanoma, skin lesion.

I. INTRODUCTION
Medical image processing, identification, and classification
has been evolving for decades to assist dermatologists [1].
One of the most common research topics related to skin
lesions involves the identification of melanoma skin cancer,
a life-threatening dermatological disease. This type of
skin lesion, which is increasingly common in the global
population [2], develops from pigmented melanocytes and
is hard to distinguish from other benign lesions – namely
nevi. Therefore, the world population would benefit from
automation’s that lead to the immediate and automatic
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classification of cancerous lesions through non-invasive
methodologies.

Seeking a solution, current systems tend to use the same
type of information as dermatology experts – i.e. dermoscopic
imagery (2D/colour). However, since a fully satisfactory
solution is still to be found, other image modalities or
fairly unexplored data dimensions ought to be considered.
One of these modalities is 3D imaging (e.g., stereo), which
has already proven to enhance skin lesion classification
performances due to the additional dimension, i.e. depth
information [3], [4].

The main contribution of this paper is to demonstrate
that features of such third dimension are beneficial for the
melanoma classification process. With this aim, an ensemble
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model is proposed. It enables melanoma classification
by resorting to 3D surface data when the initial colour
classification is uncertain, thus demonstrating that features
of such third dimension are beneficial for the classification
process. Both the colour of 2D images and corresponding
depth information are used by resorting to a dataset of
light-field skin lesions, which grants the inspection of the
new dimension, providing more knowledge and decision
boundaries to classification pipelines. Here, classification
of colour or depth information is performed separately. For
2D information, a Transfer Learning (TL) approach [5],
comprising a Deep Learning (DL) model, is used. While for
the depth information, features extracted from the 3D surface
feed a Multiple Instance Learning (MIL) approach when
the DL model shows high uncertainty towards classification.
Both local and global features are used to characterise the
3D depth surfaces. Feature selection also takes place and is
performed by an automatic feature reduction algorithm that
allows the model to cope with the dataset size. The usage
of a small DL network to process the colour dimension is
preferred toMachine-Learning feature-extraction approaches
(as in [6]–[8]) since it can better couple with any shift in the
dataset.

The remainder of the paper is organised as follows:
Section II presents the background information and state-of-
the-art that is relevant for this work. Section III describes the
proposed model and the corresponding pipeline, including
relevant details about data pre-processing, segmentation,
model training, feature extraction and selection, and classifi-
cation. Finally, Section IV presents and discusses the attained
results while Section V highlights the conclusions and future
work.

II. BACKGROUND
Machine Learning (ML), in particular for image recognition
or classification, has become a major topic in a wide range
of research fields because of the ability to learn abstract data
models and intrinsic discriminative properties. The datasets
used for training, validation and testing are crucial elements
required for research on image classification with machine
learning. Amongst the most important of them is the Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC),
currently considered one of the standard reference and used
in recent years as a benchmark standard for large-scale object
recognition, i.e. image classification, single-object location
and object detection. ImageNet has been used by many
authors to improve their image classification/recognition
algorithms. Its use promoted an exponential growth of
research results and significant improvements to the state-of-
the-art techniques [9].

The remainder of this section is structured into subsections
addressing the different concepts that support this work.

A. DL APPROACHES FOR SKIN LESION CLASSIFICATION
In recent years, the DL paradigm has attracted research in
several domains of medical image analysis, demonstrating

that noticeable improvements are achieved beyond conven-
tional approaches [10]–[13]. In the field of skin lesion
classification, Convolutional Neural Networks (CNN) have
also produced promising results [13]–[17]. In [18] a CNN,
pre-trained on the ILSVRC, is used as a feature extractor
(rather than trained from scratch). This work demonstrated
that the existing filters (used on the ILSVRC natural images)
generalise well for a set of 10 classes using non-dermoscopic
images. More recently, research with such pre-trained
models reported the highest performance measurements ever
published across multiple test datasets [5], [19]. The use
of pre-trained models is typically accompanied by a TL
approach [20], [21], which can be further aided by manually
extracted features (e.g., as in [22]).

In [5], classification of segmented colour skin lesions is
performed using TL with the pre-trained AlexNet CNN [23].
In this work, data augmentation is based on image rota-
tion and the model classification layer is replaced with
the appropriate Softmax layer for either: melanoma and
nevus (binary); or melanoma, seborrheic keratosis, and
nevus (ternary) classification. After fine-tuning the model
weights on each dataset and performing augmentation in both
train and test sets, the reported system accuracy performance
was measured as 96.86%, 97.70%, and 95.91% for three
different datasets. While performance without augmentation
was recorded at 88.24%, 91.18%, and 87.31% for the same
datasets.

B. UNCERTAINTY
Sometimes, DL classification results are enhanced with the
model’s inner statistics, namely the features’ distribution that
exists before a Softmax layer. If the model’s values prior to
this layer are not well separated, it might indicate that the
model is uncertain of the which target label is the correct
answer, or even that both are equally correct. For this reason,
some researchers look for a better solution to replace the
Softmax layer [24]. These model’s values can be used to
determine network class uncertainties or, for example, the
CNN belief in the classification of the segmented pixels
[25]–[27]. Such uncertainty values, which exist before the
Softmax layer, have been used to improve CNN models [25],
[27], [28]. As highlighted in [29], further inspection of
uncertain decisions results in better performance. Additional
research on uncertainty can be found in [27].

C. MULTIPLE INSTANCE LEARNING (MIL)
Assuming the calculation and usage of such uncertainties,
other models can be used, or combined, to compensate, when
a previous DL model is uncertain of its classification output.
These other models need not be of matching technique and
can even be a new combination of multiple models. When a
new model depends on multiple outputs of a previous one,
such composition is known as Multiple Instance Learning
(MIL). This concept was introduced in 1991 [30], and was
later used, in 1998 [31], to solve a machine vision scene
classification problem.
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In [30], an instance is defined as one or more fixed-size
sub-images of a given image, and the bag of instances is the
image itself. An image is labelled positive if it contains a
target scene related instance or negative otherwise. For this to
work, it is assumed that a relationship between the instances
within a bag and the class label of the bag exists, allowing
the classification itself to be performed in several ways. For
example, given each instance classification, a bag of instances
can be given the final label by a thresholding model, by a
count-based assumption, by the presence of a single positive
or negative class, or by more complex models – like for
example a multidimensional-polynomial-border created by a
Support Vector Machine (SVM) model [32].

In [33], the same concept is exploited. The authors
proposed a weakly supervised DL framework with uncer-
tainty estimation in order to address a disease classifica-
tion problem. Firstly, a CNN instance-level classifier is
iteratively refined by using the proposed uncertainty-driven
deep MIL scheme. Secondly, a Recurrent Neural Network
takes each of the previous instances features (from a same
bag/image) as input and generates the final prediction,
considering each local instance and their global aggregated
representation.

D. SEGMENTATION
Most methods dealing with skin lesion classification require
some form of prior lesion segmentation or region iden-
tification [5]. Several previous works present some form
of skin lesion segmentation to prepare the data for clas-
sification, such as [10], [12]–[15], [21], [22], [34], [35].
This preprocessing step is typically needed since skin
information (or image acquisition artefacts) can produce
outlier features or expand the dimension of the hyperspace in
which the parameter search is performed by DL algorithms
(as, for example, with CNN) – both undesirable outcomes.
A relevant example of such method is described in [36],
where the image is segmented into super-pixels using
local features and then iteratively merged into regions to
form two classes of regions (lesion and non-lesion), while
considering a spatial continuity constraint on the super-pixels
colour.

E. DATASET
The majority of publicly available datasets for skin lesion
classification only include conventional 2D images [37].
In these datasets, the images can be separated into two
sources: dermoscopic, as those in the PH2 [38], Der-
mofit [39], and Atlas [40] datasets; and macro, as in
MED-NODE [41]. Typically, these datasets are comprised of
small resolution images that, given the nature of this type
of medical data, have high class imbalanced and a relatively
small amount of samples.

Due to the limitations imposed by the planar nature of
2D images, few works have attempted to use different image
modalities. The main motivation has been to find out whether
additional information, beyond RGB, can be helpful for

skin lesion classification. An example of such alternative
modalities is stereoscopic technology, as in [3], [4], which
has already shown to be more efficient than single-view
images to identify skin lesions, using the obtained disparity
information. Even so, literature on 3D surface of melanoma
or related skin lesions is still very scarce, as well as datasets
including this type of information. However, existing research
indicates that using richer information, including depth
information (3D) of the lesion surface, contributes to improve
the classification accuracy of skin lesions. For instance, the
study presented in [42] attempted to use artificially generated
3D information to enhance an existing 2D dataset, with
moderate success.

As a contribution for research using 3D skin lesion data,
a dataset named Skin Lesion Light-fields (SKINL2) was
acquired and made public to enable further advances in
skin lesion classification using 3D surface information [43].
This dataset was created with light-field images, using a
handheld light-field camera. Light-fields have the advantage
of enabling the extraction of several multi-view photographs
in one single shot, and the reconstruction of a detailed skin
surface map. At the time of writing, to the best of the
authors knowledge, there are no works published by other
authors resorting to this recent dataset for the purpose of 3D
skin lesion classification. There are, however, some previous
exploratory works by the authors dealing with 3D features
extracted from this dataset [15], [34], [35].

F. HAND-CRAFTED FEATURES
As mentioned before, most works in the literature rely
on 2D datasets, that either extract hand-crafted features
for melanoma classification or, more recently, use DL or
TL to automate the process. Some of these hand-crafted
features include: colour, distribution, shape, texture, and
border irregularity [1], [37], [44]. After the feature extraction
step more automated machine learning methods such as
K-Nearest Neighbours, Artificial Neural Networks (ANN),
Logistic Regression, Decision Trees, and SVMs are used to
perform classification – typically with nomore thanmoderate
success [1], [37]. Hence the literature transition in recent
years to more rewarding DL methods, which relieve the
research on new features. Examples of related work using
2D hand-crafted features and known classifiers can be found
in [1], [21].

So far, there are no 3D features specifically studied for
melanoma classification. Thus a primary approach towards
defining a relevant set of such features is to look at other
research fields, where 3D features have been used. Depending
on the target recognition task, several 3D features have been
developed and generalised across multiple 3D datasets and
tasks. This type of generalisation is performed to propose
a set of features that capture a broad spectrum of 3D
characteristics – typically applied to key regions. In general,
an algorithm responsible for extracting the designed features
is called feature extractor and the key regions where these
feature extractors are applied are determined by a keypoint
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detector. In the scope of this work, the Normal Aligned Radial
Features (NARF) [45] is used as both a keypoint detector
and feature extractor. Other relevant feature extractors are the
following:

• Radius-based Surface Descriptor (RSD) [46],
• Global RSD (GRSD) [47],
• Globally Aligned Spatial Distribution (GASD) [48],
• Rotation Invariant Feature Transform (RIFT) [49],
• Point Feature Histogram (PFH) [50],
• Fast PFH (FPFH) [51],
• Signature of Histograms of OrienTations (SHOT) [52],
• Ensemble of Shape Functions (ESF) [53],
• 3D Shape Context (3DSC) [54],
• Unique Shape Context (USC) [55].

G. FEATURE SELECTION
In many cases, the initial number of features can be
overwhelming for the classification algorithm, particularly
when the number of data samples is not enough to enable
a correct understanding of all feature space combinations.
Thus, feature reduction is necessary to select the most
meaningful ones, which can be done by using several
methods such as, for instance, using a diagonal adaptation
of Neighborhood Component Analysis (NCA) [56]. NCA
is a non-parametric algorithm that enables feature selection
with the goal of maximising the prediction accuracy of
regression and classification algorithms. The algorithm
performs better when estimating feature importance for
distance-based supervised models that use pairwise distances
between observations to predict the response. NCA can be
understood as a pre-processing step before the classification
step, as in [57], allowing the removal of similar or noisy
features from the feature space. But it can also be used
between models [58], namely when initial DL models
produce too many latent features in comparison with the
amount of available data samples [59].

III. PROPOSED APPROACH
As pointed out before, in addition to conventional colour
(RGB, left column in Fig. 1), the proposed approach also
explores depth information (Z, middle column in Fig. 1) to
improve beyond current classification results. To this end,
a new pipeline was devised (as summarised in Section III-A),
to operate over a dataset with lesion segmentation masks
(generated as described in Section III-B). This pipeline
utilises both a DL process, as a baseline 2D classifica-
tion model (Section III-C), as well as a two-step model
scheme that resorts to hand-crafted features from the 3D
surface (Section III-D). This is an ensemble classification
approach, where the objective is to collectively obtain
better predictive performances than those from any of
the individual learning algorithms on its own. In order
to increase the reliance on the attained model (and the
produced results), a cross-validation scheme is used to show

FIGURE 1. Sample SKINL2 dataset images. The left column displays RGB
images, the middle column shows depth (Z) values in grayscale, and the
right column contains generated segmentation mask images. From top to
bottom, samples show: angioma, carcinoma, dermatofibroma, melanoma,
nevus, and seborrheic keratosis.

that the outcome is consistent and thus supportive of the
findings.

A. OVERVIEW
An overview of the pipeline is depicted in Fig. 2. Given a 4D
dataset (with its lesion segmentation masks), at any 10-fold
cross-validation (CV) partition k , a Traink and Testk datasets
are received by the ensemble pipeline. As training precedes
the test step, the Traink -set is first used to train both a TL
model and a MIL model prior to the use of the Testk -set.
Note that the same data is used by both the TL and MIL
models.

TL is performed with a DL model to update its weights
to the classification problem at hand. The other part of the
ensemble classifier (MIL) comprises a two-step learning
approach.

The Softmax layer present in the CNN model allows to
predict the level of confidence the CNN has in its prediction,
which is known as the model certainty. It can be asserted
either naively or by imposing alternative computations.
Therefore, if the CNN 2D classification model is certain of
its prediction it is set as the ensemble prediction, otherwise,
the MIL 3D-classification model is preferred.
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FIGURE 2. Proposed pipeline: a given dataset is partitioned into 10 folds
for cross-validation; at any stage, both TL and MIL are trained on
9 training folds and later tested on 1 test fold; afterwards, if the TL
process certainty is high, the TL test image classification result is
recorded, otherwise the MIL classification result is recorded. Blue arrows
indicate the pipeline training sequence. Red arrows indicate the pipeline
testing sequence. Black arrows indicate previous dependencies and/or
abstract progressions through the pipeline.

B. SEGMENTATION
The employed segmentation method is based on a modified
version of the Lazy Snapping algorithm [60], which resorts
to an internal method to group similar pixels. However,
in this work, such method is replaced by a more recent
approach described in [61], which has been observed to
achieve good performance in coloured images of skin lesions
in [36].

Given an RGB coloured image (Fig. 3, top-left), pixels are
first grouped into super-pixels (Fig. 3, top-right) using the
Simple Linear Iterative Clustering (SLIC) method [61]. This
method serves as a pre-processing step for the Lazy Snapping
algorithm, as it compacts the problem dimension to less
samples (super-pixels). In this work, the SLIC compactness
is set to 10 and its clustering phase is performed for
10 iterations. Then, the Lazy Snapping algorithm constructs
a graph of the image super-pixels, where each super-pixel is
a node connected by weighted edges. The higher the prob-
ability that pixels are related, the higher the weighted edge.
The algorithm cuts along weak edges, achieving the object
segmentation by maximising the colour similarity within the
object. To generate the necessary binary segmentation mask,
that separates foreground from background, the graph-cut is
guided with user provided information (Fig. 3, bottom-left)
about pixels belonging to the lesion (foreground, green points
in the figure) and pixels belonging to the non-lesion skin
(background, red points in the figure). Given the user input,

FIGURE 3. Segmentation method: given a dataset coloured central-view
image (top-left); the image pixels are grouped through superpixel
over-segmentation (top-right); then, some pixels regarding the
lesion (green) and skin region (red) are marked to guide the
segmentation process (bottom-left); lastly, a segmentation mask is
generated (bottom-right).

the Lazy Snapping algorithm then outputs the segmentation
mask (Fig. 3, bottom-right).

C. TL PROCESS
Starting with the employed TL process, only the 2D RGB
images are processed along with their segmentation masks.
This process mainly comprises a model named AlexNet,
which is obtained with the ILSVRC pre-trained weights. The
DL training process is performed for 32 epochs of batch size
10, with a learning rate of 0.001. The colour images first
undergo a segmentation process (described in Section III-B),
so that non-lesion skin can be coloured black – effectively
removing colour information and forcing the CNN to focus
on the RGB characteristics of the target lesion area. This is
performed in alternative to a crop and resize process because
applying different crop shapes and different resize ratios
would make the problem more difficult for the network.
Data augmentation (by online rotation) is also performed,
as described in [5]. The retrained layers are also the same as
in [5].

Additionally, in the present work an enhancement is
performed to allow the model to be aware of its classi-
fication uncertainty. Instead of naively using the internal
Softmax probabilities for the ensemble model uncertainty,
the model is reinforced with the capability to generate its
internal classification certainty during training. Thus, the
loss function is changed from the default Softmax cross
entropy to the sum of two components [25], as expressed
by

loss =
‖v1‖22 + ‖v2‖

2
2

2
× 0.005+ UIF(eo, a), (1)

where ‖X‖22 represents the L2-norm, defined as 1
2

∑
x2i ,

where xi are the elements of the vector X , v1 and v2 are
the outputs of the first and last classification layers, o are
the values at the end of the network, and a the target
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classification one-hot label probabilities. The mean-square-
error uncertainty-infused function (UIF), is expressed as

UIF(b, a) = (b−
a
s
)2 +

a(s− a)
s2(s+ 1)

+ KL(P(b, a)‖Q), (2)

where s is the sum of all one-hot exponential values and KL is
the Kullback-Leibler divergence term, defined as KL(P′‖Q),
where P′ is the result obtained from applying Eq. (3) and Q
is the one-hot distribution.

P(b, a) = (a− 1)× (1− b)+ 1 (3)

The KL divergence is used in this context to regularise the
predictive distribution by penalising predictions that diverge
from the desired uncertainty (which is known as Learned Loss
Attenuation [25]).

At the end of the Alexnet uncertainty-infused-model
training stage, a classification uncertainty for each class can
be obtained by dividing the number of possible output classes
by the natural (Euler) exponential of the values outputted
by the network. For the proposed ensemble, a classification
certainty above 50% is considered high (refer to Fig. 2, ‘‘High
Certainty’’). This means that the final output of the ensemble
model will be: the TL process output if the classification
certainty is above 50%; or reevaluated with the MIL process
if below 50% (or equal) certainty.

Both the classification labels and uncertainties are output
to the ensemble definition described in Section III-A.

D. MIL PROCESS
The MIL process performs skin lesion classification using
only 3D surface information. This means that, from the
available SKINL2 data exemplified in Fig. 1, the RGB data
shown in the left column is discarded and not used in this
process. A detailed pipeline of the this process is depicted in
Fig. 4. Note that the correct dependency-flow starts with the
training stage (blue-arrows), whichmight initiate black-arrow
flows. Any procedure is only executed if all input training
flows (arrows) are present or if it has already been executed
for training.

The process comprises four main blocks, each being
executed only after the previous one’s completion. Blocks
named 1 and 2 comprise the dataset pre-processing stage
with feature extraction and selection, while blocks 3 and
4 comprise the actual MIL aspect of the process. Detailed
information about each block is provided in the following
four subsections.

1) FEATURE EXTRACTION
Given either a training or a test-set of 4-channel images
(RGB+Z), pixel values in the RGB channels of all input
images are replaced with zeros. This operation is performed
to guarantee that no colour related feature is generated,
meaning that further processing only uses depth. Having
only the 3D surface, the NARF keypoint detector elects
several key locations in each image. Using the lesion masks
(as described in Section III-B), after a dilation process to

FIGURE 4. MIL process pipeline comprising four blocks: 1) given an
image dataset, only depth information is kept and features from detected
image keypoints are extracted; 2) given a keypoints training-set, an NCA
model is created with the lowest possible loss. This is obtained by
performing a Bayesian search over a 6-fold cross-validation of the train
data to find the NCA optimal λ value. Given the NCA model, the algorithm
advances to next block with the top meaningful features; 3) given the
selected features, a fine-tuned SVM model for keypoint classification is
created. This tuning occurs through a parameter search using 1-out-of-9
folds for evaluation of said SVM model, and the SVM keypoint
classification labels bagged by image advance to the next block; finally,
4) given a dataset with bags of labels, a linear SVM is trained to provide
the grouped image final classification label. Blue arrows indicate the
pipeline training sequence. Red arrows indicate the pipeline testing
sequence. Black arrows indicate previous dependencies and/or abstract
progressions through the pipeline.

extend each mask by 25 pixels, keypoints not belonging
to the new lesion region are discarded. Fig. 5 provides
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FIGURE 5. Visualization of keypoint locations (in green) in excerpts of
two image samples from the SKINL2 dataset. Left column images provide
a top visualization in 3D space, while images on the right column provide
a different point-of-view to highlight depth perception.

examples of keypoint distribution on a lesion’s surface.
Feature extractors are applied to each of the remaining
keypoint locations. In essence, this block generates a new
datasetkf from the input set of images, where each image is
now represented bymultiple instances (keypoints) ofmultiple
features.

TheNARF keypoint detector was selected because it seems
specially suited for skin lesion images, since it selects the
surface locationswhere abrupt changes occur and takes object
borders into account, such as skin-to-lesion borders, which
have already been recognised as relevant information [62].
The keypoint detector has two major characteristics. First,
keypoints are extracted in areas where the direct underlying
surface is smooth and the neighbourhood contains major
surface changes. The resulting keypoints are located in the
vicinity of significant geometric structures and not directly
on them. Second, NARF takes object borders into account.
Such objects are detected when non-continuous transitions
from the foreground to the background arise. Thus, the
silhouette of an object has a strong influence on the resulting
keypoints.

As for the feature extractor methods, 11 are utilised,
generating a total of 5726 features per keypoins. The
distribution of keypoints per method is shown in Table 1.
These extractors were selected based on the relevance of
their characteristics for the type of input signal in use
(i.e., 3D information). RIFT (32 features) was selected
because it provides invariance to illumination, viewpoint,
scale, and rotation. Like RIFT, NARF (42 features), and
PFH/FPFH (125/33 features) also possess some of these
characteristics, PFH/FPFH, in particular, provides robustness

against outliers and noise. Other features extractors as SHOT
(361 features), SC3D (1989 features), and USC (1969 fea-
tures) also provide robustness against noise. Additionally,
both SHOT and USC are reported to provide uniqueness
amongst detection, as well as unambiguous representations.
Finally, ESF (640 features), RSD (2 features), GASD
(512 features), and GRSD (21 features) were selected for
being descriptive, simple, and intuitive shape descriptors.
ESF has proven to be efficient and expressive, while GRSD
adds expressiveness to the simple RSD by partitioning the
image point cloud into several voxel-surfaces of understand-
able shapes.

2) NCA FEATURE SELECTION
Given a (training) feature dataset, feature reduction is
performed resorting to an NCA model. This is done because
some of the extracted features might not contribute for the
adequate label separation during later classification process.

Since NCA is a data-driven algorithm, it is possible that,
without due care, the generated feature’s meaningfulness-
weight is overfitted to the training data. To overcome this
problem, NCA includes a regularisation parameter λ that
helps to prevent overfitting. Since this parameter has to
be predefined, the method performs a Bayesian search for
the λ value that originates the lowest average test loss of
a six-fold CV partitioning scheme of the given (training)
features dataset. This inner CV is implemented to further
prevent data overfit.

Having found the NCA model with the optimal λ,
the (training) features dataset can now be reduced to the
most meaningful features. Meaningfulness-weights obtained
from the training data can be applied to later testing-sets.
In this model, only features with a normalised absolute
meaningfulness greater than 0.02 are selected – meaning
that features with meaningfulness-weights below 2% are
discarded. In essence, this block generates a new datasetkft
from the feature dataset, where only features relevant to
classification are maintained.

The implemented Bayesian search is performed by
constraining λ values to the range [0.00001, 0.1], using
four initial seeds randomly chosen from the λ search
range. This search is executed for 50 steps, comprising
24 evaluations each. To promote a balance between the search
exploitation and exploration [63], the Bayesian propensity
to explore is 0.5. In addition, to avoid over-exploiting,
the acquisition function in [63] is modified as suggested
in [64].

As for the NCA model parameters, the inner network
is optimised using Stochastic Gradient Descent and an
initial learning rate is determined by selecting 200 random
dataset samples and training a temporary model on increasing
learning rates for 15 epochs. The learning rate providing the
lowest loss is selected as the initial learning rate (on average,
the initial learning rate is 51.2000). With the initial learning
rate defined, the network is trained using all training data
(five-folds) over 10 epochswith amini-batch size that enables
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TABLE 1. Summary of used features extractors and the number of features their provide.

at least 40 iterations per epoch. At each epoch, the learning
rate is decreased when a convergence tolerance of step size
0.000005 is met.

Since there is only one regularisation parameter (λ) for
all weights, and the weight magnitudes must be comparable,
i.e. within the same range, any dataset data entering the
model is normalised with zero mean and unit standard
deviation.

3) KEYPOINT-LEVEL CLASSIFICATION
Given a (training) dataset ofmeaningful-features, which com-
prises multiple instance data (keypoints) for each image, label
classification of each image keypoint takes place resorting to
a SVM. As SVMs have several hyper-parameters, parameter
fine-tuning is necessary at this stage. Due to the complexity
of the pipeline, the theoretical determination of the optimal
SVM implementation is not feasible. Assuming an initial data
partitioning into 10 folds CV (as detailed in Section III-A),
the training data comprises nine folds. Therefore, the last
fold is hold-out from the SVM classification training process,
so that it can be later used for the SVM selection during
the parameterisation fine-tuning. This single fold is called
evaluation fold. Having found the SVM model with the best
performance in the evaluation fold, the same model can be
applied to later testing-sets. In essence, this block generates
a new datasetkb comprising a bag of classified keypoints, that
is, a label classification for each keypoint of each image.
During pipeline training stage, classification label results
from both training and evaluation folds advance to the next
block as one training-set – i.e., maintaining the original
dataset data sample counts. Evaluation results will not be
perfect, but this is helpful during the next pipeline block
training stage as it provides behavioural insight of how the
model operates on unseen data.

As for the SVM parameter fine-tuning, instead of using
a full Bayesian search, several predefined parameters were
evaluated for simplicity. The SVM kernel function can
be either linear, polynomial, or Gaussian. In the case of
polynomial, it can be either of order 2 or 3. In the case of
Gaussian, it can be either of kernel scale 0.9, 3.6, or 14. Data
normalisation always takes place and the box constraint is
set to 1. This enables the evaluation of six different SVM
models in total. The quadratic kernel SVM is typically the
top performing.

The SVM solver is the Iterative Single Data Algorithm
(ISDA) [32], given that this is a binary classification problem.
In addition, the SVM also comprises a custom cost matrix,
which is set to [0 1; 2 0] in order to enforce a double
penalty when miss-classifying the melanoma class. In this
matrix, each element consists of the cost of guessing that a

sample belongs to class X (lines) when it belongs to class Y
(columns), leaving all elements of its main diagonal equal to
zero. This matrix was empirically defined considering that
misclassification in the melanoma class have a more severe
outcome.

4) IMAGE-LEVEL CLASSIFICATION
Finally, given bags of labels, a last SVM model provides
the image-level label classification. Since the objective is
to reduce a variable-sized list of keypoint-level labels to a
single image-level label, the data is summarised to enable
thresholding. That is, given an arbitrary number of data
samples belonging to an image, the data is transformed
into two sums: the number of melanoma labels and the
number of non-melanoma labels. Then, these sums are
normalised to the [0, 1] range, while making their sum
1 – producing a probability distribution over predicted output
classes, as occurs in a Softmax layer. Furthermore, these
probabilities are given as features to a SVM model of linear
function and ISDA solver, with box constraint set to 1, and
without implicit data standardisation. In a training pipeline,
this effectively produces a threshold along the probability
distribution that attempts to separate the target class labels.
A SVM is used rather than a common thresholding technique,
due to its capability for better forming the threshold boundary
and also because it would enable future work beyond
binary classification. As in the keypoint-level classification,
the SVM cost matrix is adjusted in order to enforce a
double penalty when miss-classifying the melanoma class
([0 1; 2 0]).
In a testing pipeline, the linear SVM model image-

level labels are sent to the ensemble, as described in
Section III-A.

IV. RESULTS AND DISCUSSION
The performance of the proposed method is evaluated and
discussed in this section, encompassing two classification
experiments, both executed applying 10-fold CV, as previ-
ously mentioned. The selection of the number of folds was
based on a balance between the significance of the results
and the diversity and representativeness of the training data.
A larger number of folds would be possible but would not
add significant value, while less folds would make inner
training sets less representative of the underlying data. The
first experiment, named ‘‘MvsNevus’’, consists inmelanoma
classification against nevus samples, i.e., a more difficult
task, and the second experiment, named ‘‘M vs All’’, covers
classification of melanoma versus all other skin lesion types
(including nevus).
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TABLE 2. Features outputted in feature selection block.

A. DATASET
The proposed pipeline was applied to the publicly available
SKINL2 dataset [43]. The dataset comprises light-field
imagery of skin lesions acquired using a Raytrix R42 camera,
captured at a hospital facility (Centro Hospitalar de Leiria,
Portugal) from patients previously screened by a physician
during dermatology clinical appointments. The procedure
and purpose of the study was explained to all volunteers,
who also signed an informed consent form. Procedures
related to the image acquisition, storage, and publicationwere
evaluated and approved by a health ethics committee. The
information available from acquisition process are the RGB
channels with resolution of 3858 × 2682 and relative depth
of each pixel.

Particularly in this work, the second [65] and third versions
of this dataset were used. Both versions are present due
to their increase in lens magnification of approximately
30% (which means more detail) in comparison to its first
version. At the time of publication of this paper, the third
version is still in development and is used in this work as
an extension to the second version. The combined dataset
includes 14 melanomas, 36 nevi, and 48 other lesion types
(16 angiomas, six basal cell carcinomas, one dermatofibroma,
24 seborrheic keratoses, and one verruca). Among these
lesions, 70 belong to the second dataset and 28 from
the third. All images undergo the pipeline described in
Section III.

Therefore, experimentMvsNevus comprises 14melanoma
samples against 36 nevus samples, while experiment M vs
All comprises 14 melanoma samples against all other 84 non-
melanoma samples.

B. FEATURE SELECTION
In the pipeline described in Section III, the MIL process
is responsible for performing the classification when the
TL process does not have enough certainty. The feature
selection performed within fold samples in this step is a key
component of the former process. Depending on the fold,
different dataset samples arrive at NCA Feature Selection
block (III-D2), which in turn will induce different features

to be marked as meaningfully in different folds for the
classification objective.

Table 2, comprising five major columns, provides some
statistics regarding feature selection. For each feature extrac-
tor in the first column, the number of inner features compris-
ing said extractor is shown in the second column. Subsequent
columns are sub-divided to provide information for either the
M vs Nevus or the M vs All experiment, respectively. Across
the 10-fold execution, the number of unique features that are
selected at least once are defined in the third column, while
the total amount of features (regardless of repetition) selected
across folds is presented in the fourth column. Finally, the
fifth column indicates how many times a feature extractor is
used (that is, if any of its features were used in any given
fold).

Table 2 shows that most literature features considered
potentially relevant for melanoma surface discrimination are
not selected. This can be considered a normal behaviour since
features with higher discriminative power overshadow the
lesser ones, making the NCA model algorithm reduce their
meaningfulness to marginal values. This occurs as they do
not present added information to the higher representative
features.

Table 2 also shows that only the ESF, GASD, GRSD,
and RIFT feature extractors are selected across the two
experiments, with NARF being used in only one fold of
the second experiment (M vs All). Concerning the feature
extractors, it can be seen that, if the uniquely selected features
were always the same across folds (third column), then the
total amount of features selected (fourth column) would be
10 times that value – which is never the case. However, this
does not mean that no feature is meaningful enough to be
selected across folds.

For the five selected feature extractors, Fig. 6 presents
the number of times each feature extractor is used across
folds (bar plot representing the same information as in
Table 2), as well as the number of times each feature
extractor’s feature is used (scatter plot). From this figure,
it is possible to observe that: in the M vs Nevus experiment,
four ESF and six GASD features are always selected (i.e.
having usage count equal to 10) independently of the fold
data, while in the M vs All experiment, only two ESF and
two GASD features are always selected. This suggests that
discrimination between melanoma and nevus is possible in
more ways than in melanoma versus every other class (as
evidenced by the scatter plot’s data-points spread). Also,
in the second experiment, the NCAmodel algorithm excluded
some features while adding others, namely including two
features from NARF in one fold (as previous mentioned).
All in all, from one experiment to the other, a total of
50 features change from either being or not being used
in the experiment pipeline, while 40 remain in usage at
least once. On average across folds, the feature selection
block chooses 33.8±4.8488 features in the M vs Nevus
experiment, and 28.1±4.5080 features in the M vs All
experiment.
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FIGURE 6. Number of times that features (or feature extractors) are selected during the 10-fold cross-validation process. Scatter plot values indicate how
many times a given feature (from a feature extractor) is marked meaningful for classification during the feature selection block. Bar plot bars indicate
how many times a feature extractor is meaningful for classification (.i.e having any of its features selected for usage in a fold) during the feature selection
block. Only features extractors which had any meaningful features for classification are displayed.

TABLE 3. Experimental results.

C. RESULTS
In this subsection, the results are presented in terms of
percentage of classification accuracy (ACC), specificity
(SPE), and sensitivity (SEN), where SEN represents the suc-
cessful melanoma identification rate and SPE the successful
identification of the other class.

Table 3 shows the achieved results. As detailed in
Section III, the proposed ensemble model is comprised of
two processes: TL and MIL – respectively, a 2D-only and
a 3D-only classifier. The TL process includes alterations
to enable the classification uncertainty to be determined
in a non-naive manner. Therefore, the TL model without
the mentioned uncertainty calculations is referred to as
‘‘TL-naive’’, which corresponds to the effective imple-
mentation of the state-of-the-art method described in [5],
mentioned in Section III-C – providing the literature baseline
classification result in both experiments. This method was
selected from the literature for its superior results across
several datasets. While it provides poor results in this dataset,
it is important to remember that no adaptations were made
from the original paper implementation description (meaning

that this is an expected behaviour given this work’s data
constraints). The ACC performance of the TL-naive is of
68.00% and 73.47% for the M vs Nevus and M vs All
experiments, respectively.While the accuracy increases in the
experiment with more data (which has 48 additional samples
in comparison with MvsN), it is important to point-out
that the SEN metric decreases by 7.14 percentage points
(pp), even though the number of melanoma samples is the
same (14) in both experiments. This decrease represents
one melanoma misclassification. The SPE metric is not
comparable between both experiments, since the amount of
samples differs between experiments. Across folds, TL-naive
identifies 31 out of 36 nevus in the first experiment, and 70 out
of 84 non-melanoma lesions in the second experiment.

In the M vs Nevus experiment, TL-naive incorrectly
classifies 16 samples in the testing stage. Performing naive
uncertainty calculations with the TL-naive model (using
the internal Softmax probabilities) enables the identification
of nine potential misclassifications. Among these, only six
are actual misclassifications, while three were originally
correct. If the uncertainty-awareness is performed during
training, the (TL) model incorrectly classifies 17 samples
in the testing stage, but enables the correct identification of
11 (instead of six) of these misclassifications (while also
incorrectly identifying one sample that was actually correct).
This improvement to the TL uncertainty identification
enables MIL (the 3D-only classifier), which has a 72.00%
ACC and 78.57% SEN, to potentially correct or disregard
said misclassifications performed while observing 2D-only
information (as described in the proposed ensemble pipeline,
Section III-A). From the TL-uncertain-classifications (which
uses only colour information), MIL corrects 10 out of
11misclassifications (of which, five aremelanomas) and only

VOLUME 10, 2022 76305



P. M. M. Pereira et al.: Multiple Instance Learning Using 3D Features for Melanoma Detection

wrongly changes one sample that was originally correctly
identified, although with low certainty – improving from the
TL initial performance from 66.00% (2D-only) to 84.00%
ACC (2D and 3D), as shown in Table 3 for the ‘‘Proposed
Ensemble’’.

In M vs All, the detailed observations are similar to the
previous experiment. The TL-naive incorrectly classifies
26 samples in the testing stage from which the naive uncer-
tainty calculations enable the identification of 12 potential
misclassifications – 10 comprising actual misclassifications
and two originally correct. If trained with the uncertainty-
awareness, the (TL) model incorrectly classifies 28 samples –
but potentially enables the correct identification of 21 (instead
of 10) misclassifications (while also incorrectly identifying
three samples which were actually correct). As with the previ-
ously detailed-experiment results, this improvement to the TL
uncertainty identification enables MIL, which has a 51.00%
ACC and 71.43% SEN, to potentially correct or disregard
themisclassifications. From the TL-uncertain-classifications,
MIL corrects 20 out of the 21 misclassifications (of which,
nine are melanomas) and incorrectly classifies one of the
three uncertain (but correctly classified) samples – improving
from the TL initial performance from 71.43% to 90.82%
ACC, as shown in Table 3 for the ‘‘Proposed Ensemble’’.
In this section, all comparisons with the baseline classi-

fication results obtained with TL-naive have shown that the
proposed ensemble method provides superior performance
results. This can be interpreted as an indirect comparison with
the works considered in [5] and other works that resorted
to the same dataset and metrics as [5]. In essence, since
TL-naive [5] reports results superior to 10 other works,
it serves as indication that the proposed ensemble method
could prove superior to these previous mentioned methods.
This can be further extended to other literature works (as [13],
[21], [22], [37], [62]), which experiment on the same datasets
as [5] using the same metrics.

As a reminder to the reader, the purpose of this manuscript
is not to provide a new model with the highest literature
results, but to evidence that, when RGB image classifica-
tion is uncertain, a second-level classification using depth
information might increase the overall performance of the
skin lesion classification system. For this reason, previous
author’s works are not directly compare here, which, in any
case, provide inferior accuracy performances for theM vs All
experiment [15], [34], [35].

V. CONCLUSION AND FUTURE WORK
The pursuit of a solution to automatically identify melanoma
has been under research for many years. Automated
melanoma detection is crucial to help dermatologists improve
their diagnostic accuracy. Still, even with Deep Learning
methods, current systems are yet to achieve satisfactory
sensitivity performances. Instead of continuously attempting
to improve algorithms with available colour (2D) datasets,
which are commonly used by dermatology experts, new
dimensions and modalities should be explored as, for

example, surface (3D) information; which can potentially
provide new melanoma discrimination capabilities. In order
to advance beyond current state-of-the-art results, more
reliable solutions might depend on the joint exploitation
of both 2D and 3D information. Taking advantage of the
recently introduced technology of light-field cameras, the
main contribution of this work is to be the first to exploit both
colour and depth information for classification of skin lesions
using a recent dataset of multi-dimensional imaging, which
was specifically acquired for this goal and has shown the
ability to provide rich information for image classification.
Accordingly, this work groups different literature domains,
even if originally developed for different purposes, aiming
to build a model that takes advantage of the recent literature
improvements in both 2D and 3D modalities. As a result, this
work is the first to incorporate Deep Learning uncertainty
evaluation mechanisms with Multiple Instance Learning for
the training of a robust synergistic ensemble classifier with
the intent of performing skin lesion classification using light-
field imagery.

Targeting the melanoma class with this model, despite
the large class imbalance (often present in medical image
datasets) and limited data samples, the ensemble model
achieves a cross-validation accuracy of 84.00%, with 71.43%
sensitivity and 88.89% specificity. These results account
for the classification against nevus lesions and show an
accuracy increase of 16.00pp (supported by a sensitivity
increase of 50.00pp) from the baseline method (applied
to the SKINL2 dataset). In a more challenging setting,
discrimination of melanomas against all other available
skin lesions was achieved with 90.82% accuracy, 78.57%
sensitivity, and 92.86% specificity, with a similar accuracy
increase of 17.35pp from the baseline, also supported by a
sensitivity increase of 64.28pp. The performed experimental
assessment allows to extrapolate that melanoma skin lesion
classification can be improved by including unexploited 3D
information, such as surface depth. This claim is supported
by the different constraints employed in the experiment that
aimed at increasing the confidence in the attained results
although operating on a small dataset.

Expanding on the presented concepts, further research can
be done in the field of skin lesion image classification to
either improve existing methods that lack in performance
or refine existing top performers, as shown in this research.
Thus, future works should try to enlarging existing datasets
and acquisition modalities to enable the emergence of
features specifically tailored for skin lesion detection and
classification. In the presence of untrustworthy 2D features,
the achieved results indicate that the 3D surface provides
redeeming results, showing that improvement of existing
methods is still possible when looking beyond 2D image
characteristics.
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