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Abstract—We present a Matlab framework for heart sound 

processing and analysis. This framework includes algorithms 

developed for segmentation of the main heart sound components 

capable of handling situations with high-grade murmur, and for 

measuring systolic time intervals (STI). Methods for cardiac 

function parameter extraction based on STI are also included. 

Currently, the proposed algorithms are being extended for multi-

channel applications. The algorithms outlined in the paper have 

been extensively evaluated using data collected from patients 

with several types of cardiovascular diseases under real-life 

conditions.  
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I.  INTRODUCTION 

According to the WHO report on chronic diseases [1] 80% 
of all deaths worldwide due to chronic diseases occur in middle 
and low-income countries, being cardiovascular diseases 
(CVD) by far the most prevalent chronic disease. The first line 
of defense against CVD is the regular follow-up by primary 
care physicians. Given the medical, social and economical 
implications of CVD, a significant research trend is observed in 
science and technologies to deploy personal health (pHealth) 
systems for CVD management (e.g. [2]). The goal of these 
systems is to support physicians and patients in detecting trends 
and in collecting data for clinical decision support. In order to 
implement cost effective CVD prevention strategies, pHealth 
systems as well as physicians require affordable, comfortable 
and highly discriminative information sources for diagnosis. 
Traditionally, the electrocardiogram (ECG) and heart sound 
(HS) auscultation are among the most used signals for CVD 
diagnosis. These information sources provide complementary 
information: the ECG enables to assess the electrical activity of 
the heart, while heart sounds (HS) provide information on the 
mechanical activity of the heart [3].  

Heart sound is a consequence of turbulent blood flow and 

vibrating cardiovascular structures, which propagate to the 

chest. These vibrations typically result from myocardial and 

valvular events that are affected by the function, the 

hemodynamics and electrical activity of the cardiac muscle. 

The later have a direct impact on the morphological, spectral 

and the timing characteristics of the main heart sounds (S1, 

S2), which have been found to be highly sensitive and specific 

for several important diagnosis tasks ranging from heart valve 

dysfunction [4][5] to systolic cardiac function [6][3]. 

Unfortunately, cardiac auscultation - the interpretation of 

heart sounds - requires highly proficient physicians. Several 

studies (e.g. [7]) have shown that the ability of physicians to 

perform cardiac auscultation is reduced and significantly 

impaired as time progresses. Hence, the existence of signal 

analysis algorithms for HS to deploy decision support systems, 

both for the physicians in their clinical practice as well as to 

deploy pHealth systems, are one possible solution to fully 

explore this highly informative, low cost and non-invasive 

information source on cardiac state. 

There are few known integrated frameworks for heart 

sound acquisition and processing. Rajan et al. [8] introduce an 

integrated framework for HS processing based on Morlet 

wavelet bank of correlators. Their framework tackles the 

problems of noise detection, S1 and S2 segmentation and 

murmur/click/snap classification. Javed et al. [9], describe a 

signal processing module that includes a signal acquisition 

functionality. Time-frequency processing is wavelet-based and 

is limited to HS segmentation and murmur detection.  More 

recently, Syed et al. [10] introduced a framework with similar 

functionalities as the one described in [8]. It is observed that 

none of the sited frameworks include modules for systolic 

time interval measurement, i.e., the pre-ejection period (PEP) 

and the left ventricle ejection time (LVET), which is related 

directly to the left ventricle function.  

In this paper we introduce a Matlab framework for the 

acquisition and processing of cardiac auscultation. The paper 

is organized as follows: Section 2 outlines the algorithms that 

have been developed by the team and are integrated into the 

heart sound processing toolbox. In section 3 we present and 

discuss results of the main modules that comprise the toolbox. 

Finally, in section 4 some main conclusions are drawn and the 

main directions for future work are outlined. 

II. ALGORITHMS  

A. Noise Detection 

The proposed approach for noise handling is to identify 

and to exclude signal portions with noise contaminations. The 

foundations for this approach are twofold: (i) noise 

contamination of HS is typically non-linear, time-variant and 

complex, and (ii) it usually suffices to detect contamination in 

order to generate an alert to the user to eliminate/avoid the 

contamination source and to discard the contaminated data.  

Noise interference in HS might come from internal (e.g. 

physiological noises) as well as external (e.g. noises by 



bystander) sources. These noise sources exhibit a very broad 

range of spectral bands, loudness and durations. Noise 

detection is tackled in the toolbox by observing that HS are 

quasi-periodic signals. This characteristic manifests itself both 

in the time domain as well as in the time-frequency domain for 

different frequency bands. A detailed description of the 

strategy proposed [11] is depicted in the flowchart in Fig. 1: in 

phase I a non-contaminated HS clip of one complete heart 

cycle is selected. This HS will serve as a reference template 

for further processing; since this selection operation is always 

performed at the start of the signal acquisition process, it 

ensures that the method exhibits resilience towards 

auscultation site, posture changes and changing physiological 

characteristics. In order to grant that this reference template 

does not exhibit noise contamination, the template is selected 

from candidates that exhibit the aforementioned quasi-

periodicity characteristics. In the second phase this template is 

applied to each signal window using temporal energy and 

spectral similarity criteria to check for noise contamination. 

 

Fig. 1: Noise detection algorithm. 

 

Regarding phase I, first each individual heart beat is identified 

in the HS signal. If an ECG is available, this can be obtained 

using the R-peaks. Otherwise, the heart cycle limits can be 

estimated from the prominent peaks (which correspond to S1 

and S2) of the signal’s envelop and the heart rate assessed 

from the singular value decomposition (SVD) of the envelop 

of the signal. Let 

  

y(t) be the envelop of the HS obtained using 

the Hilbert transform. Let k(wT) = [y(wT), …, y((w+1)T)] and 

S(T) = [kT(T), …, kT(nT)]T, nT is limited by the available 

duration of y(t). The cardiac beat period T can be obtained 

from T = argmax(2/1)2, where 1 and 2 are the singular 

values of S() and the search interval  is defined using 

physiological limits of admissible heart rates. Once each heart 

cycle section of the signal’s envelop has been identified, time 

domain similarity is checked using the inner product. Only 

those cycles which exhibit a similarity towards its neighbor 

greater than 0.8 (obtained empirically) are retained for further 

processing. The second test performed during this phase is 

performed in the time-frequency bands. First the spectrogram 

(0-600Hz) is split into 15 contiguous, non-overlapping 

frequency bands. Since the main energy sources in HS are due 

to the S1 and S2 components, it is observed that the envelops 

in each time-frequency band tend to exhibit linear dependent 

auto-correlation functions (with decreasing linear dependency 

for natural and bioprosthetic valves and with increasing linear 

dependency for mechanical valves) with aligned peaks. The 

linear dependency is assessed using the SVD of the matrix , 

whose rows are the autocorrelation functions of the time-

frequency bands. Namely, it is observed that it has to verify 

123 or 123, where k=(k+1/k)2 and k represents 

the kth singular value of . The heart cycle with the highest 

average similarity (radial distance) with respect to all available 

heart cycle template candidates is selected as the template. 
Once the reference heart sound has been defined, phase II is 

initiated where a template matching approach is applied to each 
HS signal window using the following spectral and temporal 
features: first the correlation between spectral power of the 
template and the signal under analysis is assessed. If it is 
greater than 0.98, then the signal is subject to a temporal 
energy test (required to capture very short duration 
contaminations). In this test, the energy of each 50ms signal 
window is checked against the energy of the template.  

 

Fig. 2: HS segmentation method. 

 

B. Segmentation 

HS segmentation into its main constituent parts is approached 

using two distinct methods: one is based on the signal’s 

envelogram, the other is based on a wavelet-simplicity filter. 

The former algorithm is very efficient computationally. 

However, its performance degrades rapidly for HS with 

murmur. To automatically select between both methods, a 

selection stage has been incorporated into the segmentation 

module (see Fig. 2).  

Heart sounds, particularly those with murmur, contain 

nonlinear and non-Gaussian information whose dynamic 

behavior, such as chaos and complexity, can be assessed using 

the embedding theory. In the proposed method, the degree of 

chaos is measured via the Lyapunov exponents estimation. 

Suppose the heart is considered as a nonlinear dynamical 

system X(t + 1) = F[X(t)] that generates the heart sound time 

series x(t), t = 1....N. Signal x(t) can be treated as a one 

dimensional projection of the unknown multidimensional 

dynamic variable X(t). Phase space transformation of the one 

dimensional observation x(t) is performed using the 

embedding theorem, which states that, using some suitable 

assumptions, a phase space can be formed that is topologically 

equivalent to an original system [12]. The method of delay is 

Murmur Detection
by Lyapunov Exponents

Murmur?
S1, S2, S3 

Segmentation using
Wavelet-Simplicity Filter

S1, S2, S3 
Segmentation using
Envelop-based Filter

No Yes



applied to reconstruct the attractor in the multidimensional 

space or embedding space P, i.e., yi(t) = [x(t), x(t − ), ....., x(t 

− (m − 1) ))] ∈  IRm
, where i = 1, 2, 3,...,P and yi(t) are row 

vectors of the embedding matrix Y(t). To determine the 

exponents from the embedded matrix Y(t), the nearest 

neighbor points are located to measure their distance from the 

initial points as given in equation. 
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Fig. 3: (top) High frequency signature applied to detect the S2 sounds; HFS 
and LFS stand for high and low frequency segment, respectively. (bottom) 

Lyapunov exponents for sound heart sounds with and without murmur. 

where M is the number of repetitions the trajectory takes in 

traversing the entire data and denotes the Lyapunov 

exponents. Fig. 3 depicts the average of 150 exponents 

obtained from 35 HS clips (20 clips without murmur and 15 

clips with murmur). As can be observed, HS without murmur 

are significantly less chaotic. The decision stage in is 

implemented using a simple threshold decision rule. 

 

Fig. 4: Wavelet-Simplicity Filter segmentation algorithm. 

The segmentation method based on the signal’s envelop is 

basically formed by two simple steps [13]: (i) first the S1 and 

S2 candidates are identified using the zero-crossings of the 

envelop of the approximation coefficients of the 5th level 

wavelet decomposition. The envelop is computed with a 

running average of the Shannon energy. The identification of 

the S1 and S2 components is based on the observation that 

pressure gradients are usually higher across the aortic valve 

compared to the mitral valve. Hence, the S2 heart sound 

should exhibit more pronounced high frequency components 

compared to S1. In order to capture this, a new high frequency 

feature was introduced. This new feature is composed by the 

Shannon energy of the detail coefficients of the wavelet 

transform. As can be seen in Fig. 3 (top), this signature 

coupled to some simple physiological motivated rules enable 

the discrimination between the different components of the 

heart sound.  

Regarding the wavelet-simplicity filter algorithm, it follows 

the same steps of the algorithm we developed using the 

Wavelet-Simplicity transform [14]. Therefore, only 

fundamental changes in the steps of the basic algorithm are 

described herein. Murmurs occur between S1 and S2 or S2 

and S1 sounds. Therefore, the first task consists of the 

identification of the boundaries of the S1 and S2 sounds. The 

main steps for achieving S1, S2 and murmur separation using 

the strength and simplicity features are (see Fig. 4): 



Step 1: Heart sound is decomposed using the wavelet db6. 

The approximation coefficients are used in further processing. 

Step 2: Simplicity (Sl) and global strength (GSl), where l is the 

depth of wavelet decomposition, of the decomposed signal is 

computed. 

Step 3: The S1 and S2 components of a heart sound exhibit 

high strength and simplicity, hence clear peaks can be 

observed in these curves. In severe heart murmurs, murmurs 

overlap S1 or S2 sounds. Other unknown sounds may occur 

due to physiological events (e.g. S3) that exhibit similar 

characteristics of S1 and S2 components. Usually, S1 and S2 

sounds exhibit relatively high simplicity as well as strength, 

whereas other artifacts exhibit high simplicity but on the 

contrary low strength.  Therefore, the width (or duration) of 

S1 and S2 sounds are separately segmented using both feature 

curves. For this task, the peak peeling algorithm (PPA) [15] 

based upon an iterative thresholding process is applied. PPA is 

applied first to the GS curve and then to the S curve 

successively.  Subsequently, start and stop times of S1 and S2 

sounds are achieved and can be gated. The segmented time 

gates using both feature curves are shown in Fig. 5. 

Step 4: It is observed from Fig. 5 that correct start and stop 

times of S1 and S2 sounds can be achieved by common 

segmented time gates in both thresholded feature curves.  

Step 5: The suitable decomposition depth is found by applying 

the mean square error criterion on gated decomposed heart 

sound signal. 

 

Fig. 5: Segmentation results in severe (grade V) mitral regurgitation 

murmur. 

C. Murmur Characterization 

This module of the toolbox performs murmur classification 

using features extracted from the systolic, i.e., S1-S2, or the 

diastolic intervals, i.e., S2-S1. The classifier (implemented 

using a SVM) considers seven distinct classes of murmur: 1) 

Aortic Regurgitation (AR), 2) Aortic Stenosis (AS), 3) Mitral 

Regurgitation (MR), 4) Pulmonary Regurgitation (PR), 5) 

Pulmonary Stenosis (PS), 6) Subaortic Stenosis+Ventricular 

Septal Defect (SAS+VSD), 7) Systolic Ejection (SE). It 

should be noted that murmur presence detection is based on 

Lyapunov exponents described earlier. 

Murmur classification is a challenging task, whose success is 

mainly conditioned by the quality of the features. The features 

implemented in this toolbox have been obtained using a 

feature selection approach from a pool of 256 features. These 

features have been collected using a two-fold approach: 

features have been collected from two well-known methods 

described in literature and a set of new features has been 

introduced [16]. Regarding the feature sets taken from the 

literature, the sets introduced by Alhstrom et al. [17] and by 

Olmez and Dokur [18] have been considered. The most 

discriminative features have been selected using Pudil’s 

sequential floating point forward selection method. The 

module uses 10 features listed in table I. The transition rate is 

defined by transition rate = Tasc/Tdesc, where Tasc is the 
transition time taken from the first minimum of the energy 
curve to the maximum energy, and Tdsc is the time interval 

from the energy maximum to the last subsequent minimum 

energy. The remaining features are well-known in signal 

processing. 

 

TABLE I: FEATURE SET FOR MURMUR CLASSIFICATION. 

Loudness 

Transition Ratio 

Fundamental frequency 

Spectral power (100-200Hz) 

Spectral power (200-300Hz) 

Zero crossing rate 

Skewness (time domain) 

Spectral Shape 

Spectral Flux 

Max. Lyapunov Exponent 

 

D. Cardiac Function Assessment 

The assessment of the left ventricle cardiac function is based 

on the extraction of the left ventricle systolic time intervals 

(STI), i.e., the pre-ejection period (PEP) and the left ventricle 

ejection time (LVET). STI are defined by the events of the 

aortic valve. Namely, PEP is defined by the time interval 

between R-peak of the ECG and the opening of the aortic 

valve, while LVET corresponds to time span between the 

closing and the opening events of this valve. We have shown 

[19] that S1 and S2 can be applied to extract the aortic valve 

events from S1 and S2 using synchronized echocardiography 

and HS under resting conditions.  

The details regarding the algorithm for the detection of the 

aortic events using HS were presented in [6]. The method is 

based on a Bayesian approach using instantaneous amplitude. 

Once the beat-by-beat STI have been extracted, the toolbox 

enables the calculation of the following cardiac function 

measures: 

Corrected STI with respect to heart rate and classification: 

The implemented correction algorithms are those described in 

[20] and [21]. For STI correction under exercise, the 

correction steps described by Mertens et al. [22] have been 

considered in the toolbox. The toolbox presents diagnosis 

information regarding if the STI are pathological or not. 



Contractility index and classification: The contractility 

index PEP/LVET is computed average runs of 5 beats. Heart 

Failure diagnosis is automatically provided based on clinically 

validated threshold.  
Stroke Volume and Cardiac Output: The beat-to-beat as 

well as the average stroke volume and the cardiac output are 
calculated using the model described in [23].  

III. RESULTS AND DISCUSSION 

Table II presents the sensitivity and specificity results of the 

algorithms implemented in the heart sound toolbox of the 

framework. The STI estimation entries, i.e., PEP, LVET and 

RS2 entries, refer to the absolute estimation error with respect 

to echocardiography (the clinical gold standard). These results 

were obtained using heart sounds acquired at several hospitals 

from typical target populations, i.e., patients suffering from 

several types of cardio-vascular diseases such as atrial 

fibrillation, tachycardia, premature ventricular contractions, 

several types of valve problems with regurgitation and 

stenosis, patients with artificial valve implants, as well as 

several degrees of heart failure. Regarding the data acquisition 

for noise detection, the protocol followed included 

contaminations by several distinct internal and external noise 

sources at different intensity levels. All databases have been 

collected and annotated under medical supervision. Table III 

summarizes the population characteristics and the amount of 

data collected for each validation database. 

 

TABLE II – SUMMARY OF RESULTS. 

Function SE/Abs. Error SP/Corr. 

Noise detection 95.88% 97.56% 

Segmentation 
 (without murmur) 

97.95% 98.20% 

Segmentation  
(grade I-IV murmur) 

91.09% 95.25% 

Murmur classification 
(set of 10 features) 

95.74% 95.01% 

PEP  11.98.8ms 0.70 

LVET 18.017.4ms 0.83 

 

As can be observed from the results in table II and III, most of 

the algorithms developed by the team and integrated into the 

toolbox have been evaluated thoroughly. Furthermore, these 

methods exhibit very high sensitivity and specificity values.  

 

TABLE III – VALIDATION CONDITIONS.  

Function N BMI Age 

Noise detection 71 25.17.8kg/m2 35.312.0y 

Segmentation  
(without mur.) 

55 24.41.5kg/m2 32.69.7y 

Segmentation  
(grade I-IV mur.) 

21 24.92.3kg/m2 54.736.0y 

Murmur classif. 51 25.42.2kg/m2 64.658.6y 

STI 11 25.93.2kg/m2 53.818.1y 

 

Given the achieved maturity level of the toolbox, it is being 

used to deploy clinical applications. Currently, the team is 

developing an intelligent stethoscope using the framework. As 

can be observed in Fig. 6, the application fully annotates each 

HS component per heart cycle, i.e., it segments the main HS 

components, measures the STIs and the stroke volume and 

classifies existing murmur.  

 

 

Fig. 6: Visualization of the Intelligent Stethoscope application interface with 
automatically annotated HS. 

 

Fig. 7: Acquisition setup with synchronized echocardiography using the multi-

channel setup. 

IV. CONCLUSIONS AND FUTURE WORK 

In this paper we introduce a Matlab toolbox for acoustic 

cardiac signal processing. The main algorithms developed 

specifically for the heart sound toolbox are outlined. These 

include solutions for the main challenges that are encountered 

in real life applications based on heart sounds. In comparison 

to other existing heart sound processing frameworks, the 

proposed toolbox includes methods for the processing 

functionalities that are commonly handled, i.e., noise 

contamination detection, heart sound segmentation and 

murmur classification, but also tackles problems that most 

known frameworks do not contemplate. More specifically, 



methods for cardiac function assessment are part of the 

proposed toolbox. To the best of the authors’ knowledge, the 

proposed toolbox is the first one that enables STI 

measurement using heart sounds. This opens new application 

areas to heart sounds such as heart failure management. 

The proposed framework exhibits a significant maturity level. 

Most of the integrated algorithms have been tested using heart 

sound clips obtained under medical supervision and using 

typical CVD populations under real-life conditions. The 

achieved results are comparable and in most cases exceed the 

state of the art in competing methods.  

Currently, the described algorithms are being extended for 

multi-channel acquisition settings in order to increase their 

performance. This task is being tackled at several levels: (i) in 

order to enable a more robust setup to collect clean HS for 

processing, blind source separation algorithms are being 

developed using this multi-source setup, (ii) a multi-source 

extension to the Bayes-based algorithm is being developed in 

order to improve the reported performance, namely in what 

concerns correlation as well as the absolute error, (iii) 

detection of S3 components and (iv) to develop a robust S2 

split detection and analysis algorithm. In our current setup (see 

Fig. 7), the acquisition system is being implemented using a 

PowerLab® system from AdInstruments. 
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