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ABSTRACT

Static music emotion recognition systems typically focus
on audio for classification, although some research has
explored the potential of analyzing lyrics as well. Both
approaches face challenges when it comes to accurately
discerning emotions that have similar energy but differing
valence, and vice versa, depending on the modality used.
Previous studies have introduced bimodal audio-lyrics sys-
tems that outperform single-modality solutions by combin-
ing information from standalone systems and conducting
joint classification. In this study, we propose and com-
pare two bimodal approaches: one strictly based on em-
bedding models (audio and word embeddings) and another
one following a standard spectrogram-based deep learning
method for the audio part. Additionally, we explore vari-
ous information fusion strategies to leverage both modali-
ties effectively. The main conclusions of this work are the
following: i) the two approaches show comparable over-
all classification performance; ii) the embedding-only ap-
proach leads to a higher confusion between quadrants 3
and 4 of Russell’s circumplex model; iii) and this approach
requires significantly less computational cost for training.
We discuss the insights gained from the approaches we ex-
perimented with and highlight promising avenues for fu-
ture research.

1. INTRODUCTION

The most tackled problem in Music Emotion Recognition
(MER) is single-label static emotion recognition, where
the goal is to identify the predominant emotion in a song.
Over the years, mostly audio-based systems have been pro-
posed, ranging from feature engineering efforts to deep
learning (DL) approaches. Beyond the known problems
related to annotation protocols, dataset sizes, and lack of
standardization [1], these audio-based approaches struggle
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to differentiate emotions with similar energy but different
valence. On the other hand, lyrics-based MER (LMER)
systems, although attaining relative success, face the op-
posite challenge, i.e., successfully differentiating valence
while having difficulties with arousal [2].

Audio-lyrics bimodal systems, herein referred to only as
bimodal systems, emerge as a natural solution. Previous
work [3] has shown that simply fusing the information
from feature learning architectures outperforms single-
modality approaches, either based on audio or lyrics.

Considering the above, we defined the following research
questions to guide our experimental process:

* RQI: Are audio embeddings relevant for audio
MER, in comparison with standard spectrogram-
based deep learning approaches?

* RQ2: Does fine-tuning embedding models improve
MER systems?

* RQ3: What is the best information fusion strategy
for bimodal MER?

In this work, we tackle bimodal MER under the frame-
work of James Russell’s circumplex plane [4] (presented
below), namely for classification into four emotion quad-
rants.

For evaluation purposes, we employed the recently pro-
posed MERGE dataset [2].

We propose and compare two bimodal approaches. The
first approach is based solely on embedding models, in-
cluding audio and word embeddings, which is the primary
focus of this article. The second approach uses a stan-
dard DL method that relies on spectrograms for the audio
component. We also examine different information fusion
strategies to effectively combine both modalities.

The key conclusions from our work are as follows: i) both
approaches demonstrate similar overall classification per-
formance; ii) the embedding-only approach tends to create
more confusion between quadrants 3 and 4 of Russell’s cir-
cumplex model; and iii) this approach significantly reduces
the computational cost required for training.

We also provide some insights into the various embed-
dings and discuss the strengths of the various fusion strate-
gies experimented with.
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The document is structured into six sections. The present
section introduces the context and the problem we pro-
pose to tackle, presenting the various approaches consid-
ered. Section 2 discusses some related work relevant to
the present study. Each experimented methodology is dis-
cussed in detail in Section 3. In Section 4, evaluation de-
tails are presented, including optimization protocols and
evaluation metrics. The obtained results are presented and
discussed in Section 5. Section 6 concludes the present
work and discusses possible future work from the insights
gathered.

2. RELATED WORK

In this section, we briefly describe some of the approaches
proposed for static MER over the years. We present stan-
dalone audio and lyrics static MER systems, followed by
the audio-lyrics bimodal methodologies.

2.1 Emotion Models

Psychology researchers have long studied emotions, re-
sulting in various taxonomies categorized into categorical
(or discrete) models and dimensional models. Categori-
cal models use distinct categories or descriptors, while di-
mensional models organize emotions along axes, as seen in
Russell’s circumplex model. The latter, which is the most
widely used in MER and the target of the present work,
proposes that emotional states stem from two neurophysio-
logical systems: one for valence (pleasure vs. displeasure)
and another for arousal (energy level). The arousal-valence
(AV) plane defines four emotion quadrants: positive va-
lence - high arousal (Q1: happy), negative valence - high
arousal (Q2: tense), negative valence - low arousal (Q3:
sad), and positive valence - low arousal (Q4: relaxed).

2.2 Unimodal Audio MER

Most of the studies dealing with MER are on static emo-
tion recognition based on audio. Early approaches dealt
with a small set of audio features known to be correlated
with emotional states, either tackling classification [5] or
regression [6]. More recently, Panda et al. [7] proposed
a new set of audio features mostly related to underrepre-
sented musical dimensions, such as articulation and musi-
cal texture, that achieved state-of-the-art results.

Beyond classical approaches (based on feature engineer-
ing and classical Machine Learning methodologies), Deep
Learning (DL) saw increased interest after the multi-tag
classification approach by Choi et al. [8]. Various other ap-
proaches built on this foundation, such as proposing music-
theory-driven filters for the feature learning portion [9] or
replacing it with representation learning directly from the
audio waveform [10].

Audio embeddings were already proposed to classify
emotion in music, as proposed by Koh et al. [11]. The ap-
proach employed the OpenlL3 embedding model , trained
on environmental sounds, and evaluated it on a dataset de-
veloped by our team , reporting a 72% F1-score. However,
our efforts to replicate these results fell short, achieving a
55.70% F1-score [12]. Our intuition is that the data used

to train this model was not well-suited for music-related
tasks since all training datasets consisted of environmental
sounds.

2.3 Unimodal Lyrics MER

As in the audio domain, early works in LMER relied
on manual feature extraction techniques such as Bag-
of-Words, Term Frequency-Inverse Document Frequency,
and topic modeling (e.g., Latent Dirichlet Allocation) [13].
These methods, though computationally efficient, provided
only a shallow representation of lyrics, thereby limiting
their ability to capture the complex semantic and contex-
tual nuances essential for accurate emotion representation.

Advancements in deep learning prompted a shift toward
data-driven feature learning. Notably, static word em-
bedding models such as Word2Vec [14] and GloVe [15]
emerged, which generate fixed vector representations of
words based on co-occurrences or context within a text cor-
pus. These models facilitated a more refined encoding of
semantic relationships, although each word is assigned a
single representation that remains independent of the con-
text in which it appears. In parallel, recurrent neural net-
work architectures, particularly Long Short-Term Memory
(LSTM) models, were introduced to model the sequen-
tial dependencies inherent in lyrical text, but the restricted
context windows inherent to recurrent models continued to
limit the possibility of capturing emotions across broader
contexts.

More recently, transformer-based models have emerged
as state-of-the-art in the LMER domain [16]. These mod-
els produce contextual embeddings where each word’s
representation dynamically adjusts based on its surround-
ing sentence context. Models such as BERTand RoBER-
Taemploy self-attention and pre-training mechanisms on
large text corpora to capture long-range emotional con-
texts. Variants such as XLNet [17] have overcome limi-
tations related to sequence length, enabling the processing
of longer song lyrics and achieving significant results in
lyrics-based MER [18].

2.4 Bimodal Audio-Lyrics MER

In this work, bimodal MER refers to systems that incor-
porate both audio and lyrics information to predict the
predominant emotion in a song. Considering that audio
is known to more accurately predict a song’s arousal and
lyrics a song’s valence, it is natural to exploit together both
modalities’ capabilities [19].

Few audio-lyrics systems are found in the literature. Al-
though some incorporate classical audio and lyrics’ fea-
ture engineering techniques to perform classification [20],
more recent DL-based approaches have achieved more in-
teresting results [21].

The work from Delbouys et al. [22] thoroughly compares
different fusion approaches with the best-performing uni-
modal model approaches, namely mid-level fusion, which
concatenates the learned embeddings from both modali-
ties and late fusion, which creates a voting ensemble from
the above-mentioned models. We further explore this ap-
proach with more recent data representations.



3. MATERIALS AND METHODS

This section discusses the proposed methodologies. We
begin by introducing the dataset employed in this study.
Then, the proposed models are presented. This section
concludes with details regarding the experimented infor-
mation fusion strategies.

3.1 Datasets

MERGE [2] is a collection of datasets for static audio,
lyrics, and bimodal MER research. Each modality pro-
vides a complete and balanced variant. For the purposes of
this study, we only describe the bimodal datasets.

The MERGE Bimodal Complete dataset, herein referred
to as MERGE-BC, contains a total of 2216 pairs of audio-
lyrics samples annotated according to the four quadrants
of Russell’s Circumplex Model of emotion [4]. The Bal-
anced variant, referred to as MERGE-BB, contains a total
of 2000 pairs evenly distributed between each quadrant of
the above-mentioned model, as shown in Table 1.

Table 1: Total audio-lyrics pairs in MERGE.
Dataset Q1 Q2 Qs Q4 Total

MERGE-BC 525 673 500 518 2216
MERGE-BB 500 500 500 500 2000

Alongside these samples, metadata for each sample pair
is provided, from the AllMusic platform [23], as well as
the aforementioned emotion categorical annotations. Each
dataset also provides two train-validate-test splits, follow-
ing a 70-15-15 and a 40-30-30 strategy. We employ the
former to conduct the validation experiments on the pro-
posed methodologies.

3.2 Embeddings-Only Model (EOM)

In this section, we describe the embeddings-only model
(hereafter termed EOM), a proposed model based on audio
and word embeddings, and discuss possible fusion strate-
gies (early and late fusion).

3.2.1 Audio Embeddings

Due to the improvements observed by the introduction
of word embeddings for lyrics emotion recognition, we
explored the possibility of employing audio embeddings
for bimodal classification. In the following paragraphs,
we first present the main arguments for adopting au-
dio embeddings, followed by a succinct explanation of
the experimented embedding models: wav2vec2 [24] and
MERT [25].

From our previous work, we have theorized that the Mel-
spectrogram representation does not fully capture the same
information that can be extracted using feature engineer-
ing approaches, such as the work from Panda et al. [7],
explaining the consistently lower results from classical ap-
proaches.

Beyond this, the amount of data available severely lim-
its the capabilities of DL models, a common problem in
the MER field. Large general audio models pre-trained on

several hundred hours of data may extract more relevant
information useful for a variety of downstream tasks, cir-
cumventing the lack of domain-specific data.

Finally, the use of embeddings is particularly interesting
due to the relatively lower computational cost of training a
model for classification compared to models comprised of
several convolutional layers.

wav2vec2

Starting with wav2vec2, this is a family of pre-trained
models developed for speech recognition tasks. The avail-
able large version of the model comprises 960 hours of
16kHz speech data, which we adopt for this study. Given
the task for which it was trained, we expect that these em-
beddings will extract information mostly related to acous-
tics and timbre.

The model pipeline can be described as follows. A multi-
layer convolutional feature encoder first receives the raw
audio signal, outputting audio features by passing the sig-
nal through a set of seven temporal convolutional blocks
in 5-second increments with overlap. The resulting fea-
tures are passed through a Transformer-like architecture,
referred to as a context network, that uses dynamic convo-
lutions to act as relative positional embeddings.

For our use case, the embeddings were extracted using
the available ‘Large’ model on the wav2vec2’s Hugging-
Face repository [26]. The extracted vector contains a set
of 1028 values for each timestep of the 25 hidden layers of
the context network. Since our task deals with static emo-
tion, the information pertaining to timesteps is averaged,
resulting in a more concise 1028 values for each of the 25
above-mentioned layers.

MERT

The acoustic Music undERstanding model with large-
scale self-supervised Training (MERT) leverages the
knowledge of two teacher models for acoustic- and
musical-informed representation learning. We study the
application of the v1-330M version, pre-trained on 160k
hours of unlabeled music mined from the Internet. Beyond
the information related to acoustics and timbre, the musi-
cal teacher is expected to condition the representation to
include pitch and harmony information.

The backbone of MERT is the one-dimension convolu-
tional network that encodes the raw audio signal, sampled
at 24kHz, similarly to the feature encoder of wav2vec?2,
and the Transformer encoder, based on the HuBERT archi-
tecture, to obtain contextual representations from the en-
coded features.

In this study, we employ the available MERT-v1-330M
model from its HuggingFace repository [27]. We follow
the timestep averaging described for the wav2vec2 embed-
dings.

Classification Procedure

For both audio embedding model’s outputs, we perform
classification using the dense network described in Section
3.4. To this end, we further reduce the dimensionality of
these embeddings (a 25x1024 matrix) using a simple one-
dimensional convolutional layer (outputting a 1x1024 vec-



tor). This compresses the embeddings into a single vector
with the most relevant information for our problem. De-
tails regarding the optimization process can be found in
Section 4.1.

3.2.2 Word Embeddings

This section describes the experimental setup and method-
ology for drawing on word embeddings derived from
two Transformer-based models: RoBERTa and Modern-
BERT. Their encoder-only design ensures computational
efficiency without compromising representational quality,
making them well-suited for resource-constrained environ-
ments.

The availability of pre-trained models, built on vast text
corpora, provides a robust starting point for downstream
tasks with minimal data, such as lyrics datasets in MER.

RoBERTa

RoBERTa (Robustly Optimized BERT Pretraining Ap-
proach) refines the original BERT training strategy by
eliminating the Next Sentence Prediction objective, incor-
porating dynamic masking, and scaling up training on ex-
tensive corpora.

For this study, we utilize the pretrained RoBERTa
large configuration available from HuggingFace [28].
This model comprises 24 layers, 16 attention heads per
layer, and a hidden size of 1024. Pre-trained on diverse
datasets including BookCorpus, English Wikipedia, CC-
News, OpenWebText, and Stories (aggregating approx-
imately 160 GB of text), RoBERTa has demonstrated
robust performance in linguistic meaning representation
tasks—including in emotion recognition scenarios [29].

ModernBERT

ModernBERT represents a contemporary evolution of the
BERT architecture, incorporating several advancements to
improve both efficiency and performance. Key innova-
tions include Rotary Positional Embeddings (RoPE) for
enhanced positional encoding, GeGLU activation layers,
a streamlined architecture with reduced bias terms, and an
extra normalization layer for stabilized training. These im-
provements enable ModernBERT to support extended se-
quence lengths—up to 8,192 tokens—thus accommodat-
ing lengthy song lyrics without truncation.

In this work, we employ the pre-trained ModernBERT
large model from HuggingFace [30].

Classification Procedure

The generated text embeddings were classified using a
Support Vector Machine (SVM) with an RBF kernel. Prior
to classification, the embeddings were standardized to en-
sure consistent feature scaling. The final SVM model was
trained on the combined training and validation sets and
evaluated on the test set. Data splits were aligned with the
fine-tuning process to maintain comparability. Optimiza-
tion and fine-tuning details are provided in Section 4.1.

3.3 Embedding Fusion Strategies

We explore different strategies to fuse the extracted audio
and lyrics embeddings for bimodal classification, namely,

early fusion and late fusion. The rest of this section de-
scribes the process used for each strategy.

3.3.1 Early Fusion

Our first approach is to fuse the embeddings obtained from
audio and lyrics as a single feature vector and use it as input
to the dense network classifier from the ASWEM model.
We expect the model to automatically learn the most rele-
vant features from each modality to perform classification.
All embeddings are considered as possible input pairs to
this methodology.

In particular, all combinations of one audio and one
word embedding are evaluated (e.g., MERT+RoBERTa,
wav2vec2+ModernBERT, etc.).

3.3.2 Late Fusion

For the decision-level fusion, we consider two possible en-
semble approaches: majority and soft voting.

Majority voting receives a set of predictions for a given
sample and chooses the class with the majority of the votes.
We consider 2 neural networks to obtain the prediction for
wav2vec2 and MERT, while 2 different SVMs are used to
obtain predictions from RoBERTa and ModernBERT. In
the event of a tie, the ensemble final prediction is given
by the first model, which in our implementation is the one
using MERT as its input.

Soft voting differs from the previous approach by tak-
ing the probabilities from the models and performing a
weighted average to obtain the final prediction. For our
purposes, the weights of each model are directly propor-
tional to the Fl-score obtained during the standalone ex-
periments.

3.4 Audio Spectrogram + Word Embedding Model
(ASWEM)

We propose another approach based on the more or less
standard procedure for audio modeling using deep learn-
ing approaches, i.e., employing an audio spectrogram as
input to a deep neural network. Moreover, giving the supe-
rior results attained by the ROBERTa word embedding for
lyrics classification (as discussed later on in Section 5), we
use this embedding for the analysis of the lyrics counter-
part. Hereafter, this audio spectrogram plus word embed-
ding model is termed ASWEM.

As such, the architecture comprises three different mod-
ules: an audio feature extractor, a lyrics feature extractor,
and a dense classifier.

The audio portion receives a Mel-spectrogram represen-
tation obtained from the raw audio signal. The most rel-
evant patterns are extracted using a series of four two-
dimensional convolutional blocks. The feature extraction
architecture is adapted from Choi et al. [31].

The lyrics feature extractor operates in a similar fashion,
receiving word embeddings obtained from the lyrics’ text
and extracting relevant information through a sequence of
4 one-dimensional convolutional blocks.

Each modality is trained using small dense networks.
Therefore, we obtain an ASWEM audio-only model and
an ASWEM lyrics-only model.



Dataset Strategy Embeddings F1 Prec. Rec. Model Config.
ASWEM NA. 7921%  79.60% 79220 ~ Dach Size=16, Optimizer=SGD.
Learning Rate=1e
wav2vec2-Large Batch Size=32, Optimizer=Adam,
+ RoBERTa Large yUsSe S e Learning Rate=4.91¢™*
wav2vec2-Large 7518%  75.56%  75.30% Batch SIZC'=32, OptlleGI‘:_ﬁxdam,
COMPLETE EOM: Early Fusion + ModernBERT Large Learning Rate=4.91e
' MERT-v1-330M 7724%  7820% T7.11% Batch Size=128, Optimizer=Adam,
+ RoBERTa Large S S S Learning Rate=4.28¢ ™ *
MERT-v1-330M Batch Size=32, Optimizer=Adam,
+ ModernBERT Large 0% 76.82% 76.51% Learning Rate=4.91¢~*
EOM: Majority Voting All 7793% 78.07% 77.84% N.A.
EOM: Soft Voting All 77.86% 78.89%  77.72% N.A.
ASWEM NA. 7841% 79.07% 78339  Datch Size=64, Optimizer=SGD,
Learning Rate=1e
wav2vec2-Large Batch Size=32, Optimizer=Adam,
+ RoBERTa Large At L e, Learning Rate=4.91e™*
I\\/}vaVZVf;;:éii_,’l?rEe 7214%  72.95%  72.33% Batch SIZG.=32, Optlmlzer:fidam,
BALANCED EOM: Early Fusion + Modern arge Learning Rate=4.91e
MERT-v1-330M 7575%  77.98%  75.67% Batch Size=32, Optimizer=Adam,
+ RoBERTa Large O o D Learning Rate=4.91¢™*
MERT-v1-330M Batch Size=128, Optimizer=Adam,
+ ModernBERT Large  />34%  73.70% 73.00% Learning Rate=4.28¢
EOM: Majority Voting All 7597% 76.10%  76.00% N.A.
EOM: Soft Voting All 7321% 7327% 73.33% N.A.

Notes: F1=Weighted F1-score, Prec.=Precision, Rec.=Recall, N.A.=Not Applicable.

Table 2: Bimodal Emotion Classification Results.

To train the bimodal model, these small dense networks
(employed to train each modality separately) are removed.
Then, the previous layers from each branch are frozen, and
their corresponding outputs are concatenated. After con-
catenating the retrieved patterns, a dense network, com-
prised of alternating dense and dropout layers, performs
classification.

This procedure reduces the computational resources nec-
essary to obtain the final model and ensures rapid conver-
gence to an optimal solution.

4. EVALUATION AND MODEL SELECTION

Below is the evaluation procedure followed for each
methodology described in the previous section. The con-
sidered datasets are briefly described, followed by the
model selection procedure, including the optimization
strategy and evaluation metrics.

4.1 Model Selection and Fine-tuning

We briefly describe the optimization setup for the evaluated
methodologies, as well as specific optimizations for each
when necessary.

4.1.1 Fine Tuning of Word Embedding Models

We  fine-tune  pre-trained RoBERTa-large  and
ModernBERT-large, adapted to a four-class emotion
task using tokenized lyrics (maximum lengths: 512 tokens
for RoBERTa, 2048 for ModernBERT). Performance is
monitored using macro Fl-score on the validation set,
with early stopping triggered after 5 epochs without
improvement, saving the best model state.

Post-training, the classification head is replaced with an
identity layer to generate embeddings from the full dataset,
processed batch-wise.

4.1.2 Classification Models Optimization Protocol

We optimize Support Vector Machine classifiers through
systematic hyperparameter tuning using Optuna. The pro-
cess employs a search space for the critical parameters: (i)
C (Regularization Param.): [le=3, 1€%] (log. scale), (ii) v
(RBF Kernel Coefficient): [le~4, 1e!] (log. scale).

Embeddings are standardized using the combined train-
ing and validation datasets. Hyperparameter optimiza-
tion is performed by maximizing the macro F1-score via a
Bayesian optimization approach, evaluated through 5-fold
cross-validation over 50 trials.

The remaining approaches, which utilized neural net-
works as their foundation, employed validation accuracy
maximization as their objective function. This difference
is justified by the more stable training process.

Following the search spaces defined in our own work
for tuning audio-only and bimodal models, search spaces
for these approaches were set as shown below: (i) Batch
Size: {16,32,...,128}, (ii) Optimizers: [SGD, Adam],
(iii) Learning Rate: [10~4,1072].

4.2 Evaluation Metrics

The proposed models are evaluated using standard metrics
tailored for multi-class emotion classification (classes @1,
Q2, Q3, Q4), namely: Fl-score, precision, recall and con-
fusion matrices.



5. RESULTS AND DISCUSSION

The obtained results for the present study are presented and
discussed in this section. We begin by discussing the best
attained results and the gathered insights from comparing
the various approaches.

PA Q1 Q2 Q3 Q4

Q1  75.0% 7.14% 595% 11.90%
Q2 7.07% 91.92%  0.00% 1.01%
Q3 4.69% 0.00% 81.25% 14.06%
Q4 824% 1.18% 23.53% 67.06%

Table 3: Confusion Matrix for the ASWEM Model —
MERGE-BC

P/A Q1 Q2 Q3 Q4

Q1 8429% 5.71% 5.71% 4.29%
Q2 7.59%  8734%  2.53% 2.53%
Q3 2.86% 2.86%  68.57% 25.71%
Q4 9.88% 0.00% 2593% 64.20%

Table 4: Confusion Matrix for the EOM - Majority Voting
— MERGE-BC

The best results were attained with the ASWEM ap-
proach (79.21% in the MERGE-BC), closely followed by
the EOM majority voting methodology (77.93%, also in
the MERGE-BC).

Despite the decrease of around 1% compared to the
ASWEM model, the prediction accuracy for Q1 and Q2
is considerably higher, around 9% and 4%, as depicted in
Table 4. However, the ASWEM model performs better for
low arousal quadrants, particularly regarding Q3 (81.25%
against 68.57% for EOM - majority voting). So, despite
the ensemble being less computationally complex to opti-
mize, the tradeoff should be considered.

Regarding the experimented audio embeddings, both out-
perform the ASWEM model’s audio portion with an in-
crease of 10% F1-score, as seen in Table 5. This increase
is due to the higher discerning power of both Q3 and Q4,
which are known to be difficult to accurately predict when
using audio only. Despite this improvement, confusion is
still high in comparison to the other classes. Moreover,
MERT did outperform wav2vec2 as would be expected,
but with only slight improvements, particularly an increase
of 1.5% and 3% F1-score on MERGE-BC and MERGE-
BB, respectively.

We observed that the best-performing early fusion ap-
proaches employed RoBERTa as their word embed-
ding, achieving around 78% F1-score when paired with
wav2vec2 audio embeddings. The difference with the
MERT and RoBERTa pairing is very small at around 0.6%
on MERGE-BC, however, we would expect MERT to in-
troduce more relevant information considering it was spe-
cially trained for music-related tasks. As presented in Ta-
ble 2, similar results are observed in MERGE-BB with
MERT slightly above the wav2vec2 pairing by around
0.4%. The biggest drawback of this approach is the drop

in Q4 prediction accuracy compared with lyrics’ unimodal
approaches. This points to more influence from the audio
embeddings on the final prediction, considering that the
increase in predicting Q3 is very small compared to the
above-mentioned drop.

As for late fusion, the best-attained results from the newly
experimented methodologies were attained using the ma-
jority voting strategy, as mentioned above. The differences
between majority and soft voting are more noticeable on
the balanced set, where a 3% F1-score difference can be
observed, as presented in Table 2. Further analyzing the
quadrant-specific performance, it is interesting to note that
soft voting better predicts Q1 on MERGE-BC, but major-
ity voting outperforms when using MERGE-BB. 1t is also
worth noting that Q4 also has lower prediction accuracy
compared to the lyrics-only methodologies, following the
early fusion approaches. Q3 also suffers a large drop be-
tween MERGE-BC and MERGE-BB on both soft, 77.8%
to 68.2% F1-score, and majority voting, 74.7% to 68.6%
F1-score.

Overall, bimodal approaches continue to outperform
audio- or lyrics-only methodologies. The achieved re-
sults on the experimented fusion strategies point to the cur-
rent audio embedding models as a promising alternative to
the Mel-spectrogram-based models. However, the fusion
strategies still need further refining, as information from
both modalities may not be used to its fullest potential.
Moreover, fine-tuning the audio embedding models may
contribute to better overall performance.

6. CONCLUSION AND FUTURE WORK

Our study explored the application of audio and word em-
beddings, as well as spectrogram-based audio approaches,
for static Music Emotion Recognition. To fully exploit the
information provided by both audio and lyrics, two fusion
strategies were explored: either concatenating the resulting
embedded representations from the embedding models to
a dense classifier or using an ensemble of expert models to
obtain the final prediction.

Our best-attained results using majority voting did not
outperform the ASWEM approach in terms of the overall
score, but the reduced computational complexity and call
for more research in this area. In addition, we observed that
the EOM approach led to increased confusion between Q3
and Q4; on the other hand, the ASWEM led to higher con-
fusion between Q1 and Q4. The experiments conducted
on various combinations of early fusion strategies provide
some insight into future lines of research, which are briefly
discussed below.

The reported findings need to be further analyzed, consid-
ering the limited datasets considered in this study, which
was an exploratory effort. For a fair comparison, it is
also relevant to fine-tune the audio-embedding models em-
ployed in this study and retrain the ASWEM model with
the tuned word embeddings.

Beyond the inclusion of more datasets for evaluating the
developed methodologies, there are some interesting paths
to pursue regarding these approaches. Regarding the ac-
tual embeddings, an interesting approach would be to ex-



Dataset Model F1 Prec. Rec. Model Config.
s o
ASWEM Audio-only ~ 62.10% 63.03% 63.55%  DatchSize=150% Optimizer=SGD.
Learning Rate=1e
Batch Size=128, Optimizer=Adam,
wav2vec2-Large 70.84% 71.42%  71.69% Learning Rate=4.28¢~"
COMPLETE ize= imizer=
MERT-v1-330M 7237%  7407% 72.50% ~ Doch Size=32, Optimizer=Adam,
Learning Rate=4.91e
ASWEM Lyrics-only  72.33% 72.45% 72.59% Kernel=Linear, C=2.09
RoBERTa Large 76.47% 76.28%  75.49% Kernel=RBF, C=0.10, v = 6.36¢°
ModernBERT Large  76.13%  75.80% 75.14% Kernel=RBF, C=5.77, v = 1.03e >
15O P
ASWEM Audio-only ~ 63.95% 64.01% 64.00%  Datch Size=130% Optimizer=SGD,
Learning Rate=1e
Batch Size=32, Optimizer=Adam,
wav2vec2-Large 66.81% 66.65% 67.00% Learning Rate= 49164
BALANCED ize= imizer=
MERT-v1-330M 7005% 69.97% 70339  DuichSize=128, Optimizer=Adam,
Learning Rate=4.28e
ASWEM Lyrics-only 69.67% 80.34%  70.0% Kernel=RBF, C=1500, v = 3.35¢ 4
ROBERTa Large 74.46% 75.01% 74.67%  Kernel=RBF, C=4.40e™*, v = 1.09¢ >
ModernBERT Large 7532% 75.93% 75.67% Kernel=RBF, C=176.86, v = 1.13¢73

Notes: F1 = Weighted F1 score, Prec. = Precision, Rec. = Recall (in %). *ASWEM audio-only models were tested with fixed

hyperparameters.

Table 5: Unimodal Classification Results.

tract embeddings with wav2vec2 from the vocal stem of an
audio track and keep the proposed procedure with MERT,
possibly fine-tuned on our bimodal MER datasets. It is
also of interest to experiment with different numbers of
audio and lyrics embeddings in the early fusion approach
to control the influence of each methodology on the fi-
nal predictions. Finally, applying explainability methods
to the experimented fusion strategies could provide impor-
tant insights, particularly helping to understand the differ-
ent quadrant confusions observed in the two approaches.
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