
Client-Side Black-Box Monitoring for Web Sites

Ricardo Filipe, Rui Pedro Paiva and Filipe Araujo

CISUC, Dept. of Informatics Engineering
University of Coimbra

Coimbra, Portugal
rafilipe@dei.uc.pt, ruipedro@dei.uc.pt, filipius@uc.pt

Abstract—In spite of their growing maturity, current web
monitoring tools are unable to observe all operating conditions.
For example, clients in different geographical locations might
get very diverse latencies to the server; the network between
client and server might be slow; or third-party servers with
external page resources might underperform. Ultimately, only
the clients can determine whether a site is up and running in
good conditions.

In this paper, we use the response times experienced by
clients, to infer about server and network performance. The goal
is to detect internal and external bottlenecks doing black-box
monitoring, in particular CPU (internal) and network (external).
We aim to determine to what extent are the clients able to
tell one type of bottleneck from the other, i.e., what kind of
information do the server and network leak, regarding their
operating conditions.

To answer this question, we resort to an empirical approach.
We submit an HTTP server and network to a large number of
operating conditions and train two machine learning algorithms,
a linear and a non-linear one, to identify the cause of the
congestion affecting the system. Results show that the server and
network leak information to a level of detail that allows sorting
out CPU from network bottlenecks, or even a combination of the
two, in a large spectrum of cases. This suggests that a black-box
monitoring approach is not only possible, but promising, as it
may complement traditional white-box approaches.

Index Terms—Black-box monitoring; Client-side monitoring;
Web-site monitoring; Analytics

I. INTRODUCTION

The Hypertext Transfer Protocol [1] (HTTP) is used by
millions around the globe on a daily basis and makes up for a
large fraction of the Internet traffic. In the HTTP ecosystem,
networks and servers are crucial, as the quality of interactions
depends on their quick responses to requests. Developers and
administrators must keep a watchful eye on applications, to
detect and mitigate server and infrastructure bottlenecks, as
accurately and swiftly as possible.

Unix monitoring tools, Application Performance Monitoring
(APM) or Real User monitoring (RUM) suites can help
with this goal. Unix boxes usually ship with a plethora of
monitoring tools, such as top, lsof, or netstat. With
these, system administrators can observe a large array of
metrics out-of-the-box, such as memory or CPU occupation
by process, open files, network connections, and so on. On
the other extreme, Application Performance Monitoring suites,

like New Relic [2], AppDynamics [3] or Dynatrace [4], tend to
be a lot more intrusive, but provide impressive results in return.
They launch agents to reverse engineer distributed systems,
provide information on their architecture, and access logs to
correlate failures with performance metrics. While the former
Unix tools cannot grasp the users’ quality of experience, the
latter commercial APM suites can amass abundant information
on the application, for some programming languages, usually
at the expense of significant resources and configuration.

Unfortunately, even the most intrusive monitoring suites
tend to ignore the actual clients’ waiting times, often a result
of their real locations and network conditions. Furthermore,
some resources on a web page are served from third-party
providers, thus slipping under the radar of server-side instru-
mentation. Hence, to gather a complete picture of the system,
white-box monitoring solutions should include client-side data.
Furthermore, the simplicity of installing and changing as little
as possible and automatically observing beyond administration
frontiers is extremely appealing. In this paper, we follow this
path and evaluate to what extent can black-box monitoring
identify different bottlenecks, using only clients’ data. Real
user monitoring suites, like Pingdom [5], Monitis [6] or open
source project Bucky [7] do this to some extent, by relying on
clients’ data, but they mostly serve to create dashboards and
trigger notifications according to a set of rules. In simple terms,
our goal in this work differs from these previous approaches,
because we want to automatically infer more information
about the internal state of the server, using only readings from
clients.

In [8], [9], we used JavaScript snippets to collect and send
client-side information to the server using an approach similar
to Google Analytics [10], while in [8] we surveyed a number
of sites looking for bottlenecks. We now extend our previous
work, by performing automatic detection of bottlenecks. In
the process, we realized that there are limits to what we can
infer from the client perspective, or more precisely, and in
converse terms, we identified some of the information that the
server and networks leak about its internal condition, during
its operation (in a process that bears some similarities to black-
box attacks that aim at gaining information from the physical
implementation of crypto systems).

To extract information from the server, we resort to two
types of timings, known as request and response times. Short-



ly, the request time is the time that elapses from the request
to the first byte of the response, on the client, whereas the
response time is the time to transfer the entire information
following this byte. Based on these times, we aim at pinpoint-
ing the precise cause for internal and external bottlenecks.
We created a laboratory experiment with the Mediadrop [11]
open source video service, to identify two possible sources of
bottlenecks: CPU and network. We ran a set of clients under
a combination of 100 different types of CPU and network
performance restrictions. For each of these combinations, we
collected the request and response times, for the batch of client
requests. Using these data, we trained two algorithms, a linear
and a non-linear one, to identify the state of the server.

Our results demonstrate that client-side data enable CPU
and network bottleneck identification, thus showing not only
the utility, but the necessity of considering client metrics for
performance monitoring. The increase in complexity to collect
the additional data is also fairly small, because JavaScript
snippets can do the trick of uploading limited amounts of
performance data to the server. The trade-off involved thus
seems to be quite favorable and independent of the operating
system, programming language, or platform. On the other
hand, we were also confronted with the difficulty to exactly
pinpoint all sorts of problems. Black-box monitoring seems
unable to distinguish some bottlenecks from others, as timing
information from different sources gets mashed on its way to
the client. It is an interesting open problem to determine if
doing such distinction is indeed impossible or just a matter of
improving the identification algorithms.

The rest of the paper is organized as follows. Section II
describes the problem we tackle in this paper and the method
we used to solve it. Section III describes the experimental
settings. Section IV discusses distinct machine learning alter-
natives to solve our problem. In Section V we show the results
of our experiment and evaluate the meaning of these results,
the strengths of this approach and the limitations. Section VI
presents the related work. Section VII concludes the paper and
describes future directions.

II. PROBLEM DESCRIPTION

CPUNetwork

Database

Fig. 1: Representation of the considered server-side bottle-
necks

As we show in Figure 1, we consider a stand-alone HTTP
server, including a relational database, and a set of clients
requesting objects available on the server. We collect the

request and response times seen by each client, and, based
on these times, we aim at determining the level of utilization
of network and CPU on the HTTP infrastructure, including
the client-server network. We assign a real number in the
interval [0, 1] to the availability of each of these resources,
where 1 stands for a completely available resource and 0 for
a completely occupied one.

response 
time

request
time

first byte

last byte

client server

Fig. 2: Request and response times

We use two metrics that are available on web browsers,
via JavaScript: the request time and the response time. In
Figure 2, we can see that the request time is the time it takes
from the client’s request to the first byte of the response.
This time includes the network round-trip-time, plus all the
server processing delays. The response time is the time from
the first byte to the last byte of the response. To some
extent, the former time mostly involves latencies, whereas the
latter mostly concerns network transfer throughput, although
in some cases the server might also need to perform extensive
computation and disk operations to produce the first byte, or
even the remaining bytes of the response.

To automatically determine the kind of bottleneck affecting
the server, clients perform object requests to the server and
measure the request and response times. As we discuss in
Section V, we eventually discarded the response time, and
used the request time alone. Based on a sequence of request
times, the goal is to determine the level of availability of
CPU and network in the interval [0, 1]. Note that in real
conditions, system administrators can follow an approach
similar to Google Analytics [10], to upload client data to their
facilities and analyze such data, to determine server operating
bottlenecks.

In our experiments, we run the server under a wide range
of controlled conditions, knowing beforehand the exact level
of availability of each resource. Each of these conditions
produces different request times on the clients. We then get
the times directly from the clients and add the availability
numbers for the two resources, in the [0, 1] interval. We then
train machine learning algorithms using these data, to perform
an offline analysis of the overall performance, to understand
the possibility to pinpoint the server status using only client
data.

III. EXPERIMENTAL SETUP

To experiment our method, we used the Mediadrop [11]
open source video platform. Mediadrop is one of the compo-
nents of BenchLab [12]. BenchLab addresses the limitations of



TABLE I. SOFTWARE USED AND DISTRIBUTION.

Component Observations Version
Mediadrop open source video platform 0.10.3
Selenium selenium-server-standalone jar 2.53.1
Firefox browser 45.4.0
JMeter performance application 3.0
Xvfb xorg-server 1.13.3
cpulimit binary 0.2
traffic control change network bandwidth 1.0.2

older benchmark tools like TCP-W [13], or RUBIS [14], which
are outdated and do not include Web 2.0 features. Cecchet
et al. [12] list some more possibilities, but their adoption is
somewhat more complicated, because these benchmarks lack
open source implementations.

We installed Mediadrop on a Ubuntu 14.04.1 LTS Server
x64, running on a Citrix XenServer virtualization platform.
The virtual machine has 2 single-core Intel Xeon CPU E5-
2650 0 @ 2.00GHz virtual processors, and 2 GiB of RAM.
We used a server thread pool with size 10, along with other
Mediadrop default settings and components. The storage is
accessed through a storage area network, via 10 Gbps fiber
channel. Mediadrop supports HTML5, Flash, and includes
features such as video statistics or popularity, social network
integration with Facebook and Twitter, content management
and the ability to import videos from Youtube. Mediadrop
has an off-the-shell front-end that can be accessed through
a browser to let users see, import or comment videos. It was
written in Python and can be extended via plugins.

To simulate CPU bottlenecks, we used the cpulimit [15]
tool, which limits the CPU usage of a process. To restrain the
network available to the Mediadrop server, we used the traffic
control tool [16]. We varied the available CPU from 10% to
100% in steps of 10% (for 10 different values overall) plus the
network from 100 kbps to 1000 kbps in steps of 100 (another
set of 10 values). In total, with these two tools, we operated
the server under 100 different conditions (10× 10), by doing
requests from the client. The goal is simple: understand if,
from the client’s point-of-view, we can recognize these distinct
patterns of network and CPU usage.

To observe the effect of the aforementioned tools, and
ensure the correct outcome of the experiments, we resorted
to the /proc virtual file system. For the CPU, we got data
directly from /proc/stat; for the network utilization, we
used bmw-ng [17].

Client processes ran on the same virtualization infrastructure
as the server, using a similar hardware configuration, with
two identical single-core virtual CPUs, in the same local
area network. The client’s operating system is CentOS 6.7
x64. To perform client-side operations, we used a test tool
called Selenium [18]. Selenium is a framework that emulates
clients accessing the Internet using browsers. Normally, this
tool is used for front-end tests, but it can be used to automate
tasks, such as accessing a Uniform Resource Locator (URL)
and collect the responses, as we do in this paper. To avoid
being tied to a specific browser, Selenium uses a WebDriver,

Fig. 3. Navigation Timing metrics (figure from [21])

which allows the framework to use pretty much any option.
In our experiments we used Firefox. To run multiple browsers
without real screens, we used Xvfb [19], to emulate a display
and perform the graphical operations. To control the clients,
we injected the browser requests through Apache JMeter [20],
which is a standard performance evaluation tool. JMeter
triggered the clients, each one of them using the Selenium
framework, coupled with Firefox. We resorted to the Navi-
gation Timing Application Programming Interface (API) [21],
to collect performance times. This API, is a JavaScript-based
mechanism that runs on the browser and enables collection
of several performance times, including interaction times with
the server, as well as rendering and processing times of the
browser itself. Figure 3 depicts the different metrics that are
available to this library, as defined by the World Wide Web
(W3) Consortium.

This tool collects information like DNS or TCP times,
as well as the request and response times we need for our
algorithms. Table I summarizes the software and respective
versions of the most important components of the setup. Our
utilization of standard tools reproduces production site condi-
tions, something that would not be possible with customized
clients.

In our experiments, we used 4 browsers, each one of them
triggered by a distinct JMeter thread. Each browser requested
the entry page of Mediadrop 25 times to the server. With
the combination of the two metrics, plus three iterations, our
infrastructure generated 300 distinct results (10 steps for CPU
× 10 steps for network × 3 iterations). From this 300 we
collected 100 distinct results using the median of the three
iterations that each client did for the 25 requests. These 100
values, together with the operating server conditions, will be
the input of the machine learning algorithms of Section IV.

The program we used in the experiment is summarized in
Algorithm 1.

IV. MACHINE LEARNING APPROACH

We followed a machine learning approach to predict CPU
and network availabilities from the clients’ input data. We



Algorithm 1 WebPage report

Input: Range of metrics to measure
Output: web pages metrics

Initialization :
1: cpu range = list(range(10,100,10))
2: network range = list(range(100kbit, 1000kbit, 100))
3: iteration range = list(range(1, 3, 1))
4: Open Mediadrop Application

LOOP Process
5: for all cpu rank in cpu range do
6: Limit Mediadrop Application to cpu rank
7: for all nw rank in network range do
8: Limit NW Bandwith to nw rank
9: for all it rank in iteration range do

10: Run it rank iteration
11: Invoke JMeter from the client machine;
12: Create 4 threads with respective Firefox Browsers;
13: Invoke web page link;
14: Save metrics to File;
15: end for
16: end for
17: end for
18: Parse Data and create final output with the median from

all experiments.

…

100

...

…

100

...

…

100

...

C

P

U

N

W

I

O

CPU Level

NW Level

IO Level

Fig. 4. Machine learning regression models for CPU and network prediction
of availabilities

created a regression model (rather than a classification) for
each of the two problems, as illustrated in Figure 4, since
the output variables take continuous values (rather than class
labels). The idea behind regression is to predict a real value,
based on a previous set of training examples [22]. We provide
100 different lines to each regression model, where each of
the lines has 100 inputs: 25 request times seen by the first
client, another 25 by the second, etc.. There is a 101st value
in the line, which is the availability of the resource (i.e., the
actual output value, e.g., CPU). This reference is necessary for
training, but it is not available in the test cases, as we show
in Figure 4.

A wide range of regression methods are available in the
literature [23]. In the context of the present study, two of
them assume particular relevance: simple linear regression
(SLR) and Support Vector Regression (SVR). SLR is a sim-

ple algorithm where input-output linearity is assumed. This
method was selected for its simplicity, speed and adequacy as
a baseline approach, following the principle of Occam’s razor
or law of parsimony (“when you have two competing theories
that make exactly the same predictions, the simpler one is
the better”) [24]. However, since the linearity assumption
may not be valid, we also evaluate a non-linear solution,
in this case, SVR. SVR is a particular case of Support
Vector Machines, where the outputs are real-valued and input-
output non-linearity is typically assumed, by using a non-linear
kernel, e.g., polynomial or radial basis function kernels. SVR
have proved to outperform other regression approaches in a
wide range of problems, e.g. [25].

These algorithms were run using the Weka framework [26].
For SVR, the normalized polynomial kernel was selected
based on experimental results. Both input and output data were
normalized to the [0, 1] interval, to attain better numerical
behavior in SVR training. As for algorithmic parameteriza-
tion, both algorithms were employed with default parameters.
Finally, all experiments were performed using 10-fold cross
validation with 20 repetitions.

V. RESULTS

As we referred in Section III, we collected a set of 100
request and response times for the Selenium and JMeter client
invocations. As we went through the data, we observed that the
request time completely dominated the overall time necessary
to retrieve the webpage, whereas the response time only
contributed with an insignificant offset, thus providing little
or no information at all. For this reason, we used the request
times alone as the input to the machine learning algorithms.

The results obtained for the CPU and network availabilities
regression models are summarized in Table II. We report
average results for two evaluation metrics: the mean absolute
error (MAE) and the Pearson correlation coefficient (CC),
between the predicted and actual values. Since we performed
20 repetitions of 10-fold cross-validation, we present average
and standard deviation results.

As one can observe, good results were attained for CPU
and network availability prediction. There, average 0.12 MAE
(with 0.02 standard deviation) and 0.14 (with 0.02 standard
deviation) were attained using SVR, respectively. On a [0, 1]
range this is a good result. Regarding correlation, high cor-
relation coefficient values (0.82 and 0.79, respectively) also
denote that the proposed SVR approaches adequately model
CPU and network availabilities.

Both SLR and SVR work better with the CPU than with
the network, because CPU bottlenecks tend to dominate the
request time. When the availability of the CPU is only 0.1
the average request time of the 100 requests (4 clients times
25 requests) can grow as large as 10, 000 ms, whereas a
very occupied network can only raise request times to around
400 ms. Hence, very large request times immediately point
to low CPU availability, but can make it quite difficult to
identify the state of the network, because this component



TABLE II. Regression results for CPU and network availabilities

Method CPU Network
MAE CC MAE CC

SLR 0.21± 0.03 0.59± 0.12 0.28± 0.05 0.29± 0.17
SVR 0.12± 0.02 0.82± 0.05 0.14± 0.02 0.79± 0.05

contributes relatively less to the overall delay. Indeed, when
CPU availability is only 10%, the correlation coefficient (CC)
of the network decreases to 0.4, for SVR, as we try all network
availability levels. Finally, we observed that when the CPU and
the network contribute with delays of the same magnitude, in
the order of 200 − 300 ms, the correlation coefficient of the
network is 0.75, i.e., quite reasonable. Put in other words, SVR
could easily identify the availability of the resource that is
responsible for the longer delays (CPU), and also did a good
job for a second resource (network), as long as the relative
magnitudes of both delays are more or less the same. In the
extreme case where one of the resources (CPU) dominates the
delay, the other (network) becomes almost invisible.

Comparing SVR and SLR, the former clearly outperforms
the latter in all cases and in both metrics (MAE and CC). To
evaluate the significance of these results, statistical significance
tests were performed using the MAE results obtained for SLR
and SVR. As both MAE distributions were found to be Gaus-
sian using the Kolmogorov–Smirnov test, the paired T-test was
carried out. These results proved statistically significant (p-
value < 0.001). Hence, the improved performance obtained
from the non-linear SVR model shows that the input-output
relationship cannot be adequately captured using a simple
linear regression model.

VI. RELATED WORK

We divide previous related work into two main areas: meth-
ods concerning internal server data and methods that resort to
client-side data. Concerning server internal methods, we can
enumerate some analytic models that gather several metrics
to detect and predict server bottlenecks. Malkowski et al. [27]
collect more than two hundred metrics from the server system,
including the application. With this information, they show the
metrics responsible for the low system performance. In [28],
Malkowski et al. made a deeper study concerning bottlenecks.
They focused in the phenomenon of multi-bottlenecks, and
concluded that these may result from a chain reaction, even
in slightly saturated resources. Wang et al., in [29], aimed to
detect transient bottlenecks recurring to a fine-grained analysis
of each component of the infrastructure. Although functional,
this approach suffers from the same problem of [27]: it is
closely coupled to the system architecture.

Looking only to non-academic research, we have three types
of tools. First, we have internal tools that gather server metrics,
but require a huge amount of maintenance and operation [30].
Other tools [30], [31], which are more similar to our own
experiment, allow the client to configure an URL to monitor.
If something goes wrong, an alert (SMS or email) will be
sent to the site owners. Unfortunately, these tools can only

detect some network bottlenecks or a “slow” system, because
they lack the fine-grained evaluation we propose in this paper.
Finally, we have tools that use a hybrid solution, with internal
and external metrics [30].

Concerning client-side data, in [32] a Java applet, called
Netalyzer for browsers, tries to understand network errors.
To make the test in the presence of a slow URL, it invokes
the same HTTP from distinct locations and analyzes the
results obtained. Others articles, such as [33–36] use a similar
approach, with a browser plugin that collects information from
distinct clients, to detect connectivity issues (discarding appli-
cation errors). In all the aforementioned papers, the gathered
information is then processed at a central point. Again, all
these articles are based on a volunteer perspective, where the
clients allow the plugins to run on their browsers.

Dasu [37] is a platform to measure network from distinct
locations. It is also volunteer, because clients must allow the
program to run on their machines. [38] also uses information
from multiple crawlers in different locations to collect network
errors, HTTP, DNS and TCP connection data.

WebProphet [39] and Polaris [40] are more focused on
determining the dependencies between objects referred in the
HTML, to decrease the page load time on the client. For this,
they compute the critical path of dependencies and change the
load sequence from the webpage. Our research is somehow
orthogonal and complementary to the aforementioned meth-
ods.

Unlike most previous approaches, we are not tied to any
specific architecture. Our goal is to evaluate the server from
the client, while, aiming to identify the type of bottleneck or
performance pattern that is occurring on the server. To stay
away from any platform ties, we use the browser standard
Navigation Timing API, thus avoiding plugins or customized
crawlers. Additionally, with the client metrics, we can un-
derstand how the network influences the response in terms
of quality-of-experience, something that could not be made
using only the data from the server. Furthermore, we showed
that it is possible to use machine learning techniques on the
information gathered by the clients and, in this way, get vital
information about the system reliability.

VII. DISCUSSION AND FUTURE WORK

Proper monitoring of web pages is a challenge to system de-
velopers and administrators, due to the size and complexity of
the overall system and to the presence of third-party physical
resources. The most popular monitoring tools are implemented
on the server alone, thus not including the clients’ point-
of-view. This is quite limiting, because the client-to-server



network is a crucial factor for performance, not to mention
that some resources come from other domains.

The evidence we collected in this paper supports the idea
that a black-box monitoring system, using client metrics
alone, can be achieved with limited effort. In particular,
results demonstrate that it is possible to accurately separate
an internal server bottleneck, such as CPU, from external
network bottlenecks. Furthermore, since this method is not
tied to any operating system, or programming language, it is
compatible with current monitoring systems, thus being able
to complement standard white-box monitoring tools.

As future work, we intend to explore several directions.
First, by testing a wider range of client-side setups using
the same server configuration. This involves two main points:
running clients on different sites, over a wide-area network,
to check the impact of diversity on the machine learning
approach; and requesting additional and varying resources,
with different sizes that require observation of the response
times (besides request times). We also plan to consider a more
complex server, with more machines and a load balancer. In
this case, as long as we can recover the parts of the infrastruc-
ture that were responsible for the response, we believe that we
might still be able to pinpoint bottlenecks.

Finally, determining the limits of information that client-
side (black-box) monitoring can extract from server operation,
using only request (or other) timings, would be a particularly
interesting challenge.

REFERENCES

[1] Rfc 2616 - Hypertext Transfer Protocol – HTTP/1.1. Internet Engineer-
ing Task Force (IETF), June 1999.

[2] New Relic. https://newrelic.com/application-monitoring/features. Re-
trieved May, 2017.

[3] Appdynamics. https://www.appdynamics.com/product/application-
performance-management/. Retrieved May, 2017.

[4] Dynatrace. https://www.dynatrace.com/platform/. Retrieved May, 2017.
[5] Website performance monitoring - pingdom. https://www.pingdom.

com/. Retrieved: Jun, 2017.
[6] Real user monitoring (rum) - monitis. http://www.monitis.com/real-user-

monitoring/. Retrieved: Jun, 2017.
[7] Bucky performance measurement of your app’s actual users. http:

//github.hubspot.com/bucky/. Retrieved: Jun, 2017.
[8] Ricardo Filipe, Serhiy Boychenko, and Filipe Araujo. Online client-side

bottleneck identification on HTTP server infrastructures. In The Tenth
International Conference on Internet and Web Applications and Services
(ICIW 2015), pages 22–27, Brussels, Belgium, June 2015.

[9] R. Filipe and F. Araujo. Client-side monitoring techniques for web sites.
In 2016 IEEE 15th International Symposium on Network Computing and
Applications (NCA), pages 363–366, Oct 2016.

[10] Google Analytics. https://analytics.google.com/analytics/web/. Re-
trieved: Jun, 2017.

[11] Mediadrop - mediadrop open source project. http://mediadrop.video/.
Retrieved: Jun, 2017.

[12] Emmanuel Cecchet, Veena Udayabhanu, Timothy Wood, and Prashant
Shenoy. Benchlab: an open testbed for realistic benchmarking of web
applications. In Proceedings of the 2nd USENIX conference on Web
application development, pages 4–4. USENIX Association, 2011.

[13] Tpc-w benchmark, objectweb implementation. http://jmob.ow2.org/
tpcw.html. Retrieved May, 2017.

[14] Rubis home page. http://rubis.ow2.org/. Retrieved Jun, 2017.
[15] Cpulimit - cpu usage limiter for linux. https://github.com/opsengine/

cpulimit. Retrieved May, 2017.
[16] Traffic control. http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.

html. Retrieved May, 2017.

[17] Bandwidth Monitor. https://github.com/vgropp/bwm-ng. Retrieved May,
2017.

[18] Selenium browser automation. http://www.seleniumhq.org/. Retrieved:
May, 2017.

[19] Xvfb. http://www.x.org/archive/X11R7.6/doc/man/man1/Xvfb.1.xhtml.
Retrieved: Feb, 2017.

[20] Papers — Apache JMeterTM . http://jmeter.apache.org/. Retrieved: May,
2017.

[21] Papers — Navigation Timing. https://dvcs.w3.org/hg/webperf/raw-file/
tip/specs/NavigationTiming/Overview.html. Retrieved: May, 2017.

[22] Ashish Sen and Muni Srivastava. Regression analysis: theory, methods,
and applications. Springer Science & Business Media, 2012.

[23] Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal. Data
Mining: Practical Machine Learning Tools and Techniques. Morgan
Kaufmann, Burlington, MA, 4 edition, 2016.

[24] William M Thorburn. Occam’s razor. Mind, 24(2):287–288, 1915.
[25] Renato Panda, Bruno Rocha, and Rui Pedro Paiva. Dimensional music

emotion recognition: Combining standard and melodic audio features.
In Proceedings of the 10th International Symposium on Computer Music
Multidisciplinary Research (CMMR), pages 583–593, 2013.

[26] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H Witten. The weka data mining software: an
update. ACM SIGKDD explorations newsletter, 11(1):10–18, 2009.

[27] Simon Malkowski, Markus Hedwig, Jason Parekh, Calton Pu, and Akhil
Sahai. Bottleneck detection using statistical intervention analysis. In
Managing Virtualization of Networks and Services, pages 122–134.
Springer, 2007.

[28] Simon Malkowski, Markus Hedwig, and Calton Pu. Experimental eval-
uation of n-tier systems: Observation and analysis of multi-bottlenecks.
In Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on, pages 118–127. IEEE, 2009.

[29] Qingyang Wang et al. Detecting transient bottlenecks in n-tier appli-
cations through fine-grained analysis. In ICDCS, pages 31–40. IEEE
Computer Society, 2013.

[30] External site monitoring services - web test tools. http://softwareqatest.
com/qatweb1.html#MONITORING. Retrieved May, 2017.

[31] Check my website. https://checkmy.ws/en/features/. Retrieved May,
2017.

[32] Christian Kreibich, Nicholas Weaver, Boris Nechaev, and Vern Paxson.
Netalyzr: Illuminating the edge network. In Proceedings of the 10th
ACM SIGCOMM Conference on Internet Measurement, IMC ’10, pages
246–259, New York, NY, USA, 2010. ACM.

[33] Tobias Flach, Ethan Katz-Bassett, and Ramesh Govindan. Diagnosing
slow web page access at the client side. In Proceedings of the 2013
Workshop on Student Workhop, CoNEXT Student Workhop ’13, pages
59–62, New York, NY, USA, 2013. ACM.

[34] Mohan Dhawan, Justin Samuel, Renata Teixeira, Christian Kreibich,
Mark Allman, Nicholas Weaver, and Vern Paxson. Fathom: A browser-
based network measurement platform. In Proceedings of the 2012 ACM
Conference on Internet Measurement Conference, IMC ’12, pages 73–
86, New York, NY, USA, 2012. ACM.

[35] S. Agarwal, N. Liogkas, P. Mohan, and V.N. Padmanabhan. Webprofiler:
Cooperative diagnosis of web failures. In Communication Systems
and Networks (COMSNETS), 2010 Second International Conference on,
pages 1–11, Jan 2010.

[36] Heng Cui and E. Biersack. Troubleshooting slow webpage downloads.
In Computer Communications Workshops (INFOCOM WKSHPS), 2013
IEEE Conference on, pages 405–410, April 2013.

[37] Mario A. Sánchez, John S. Otto, Zachary S. Bischof, David R. Choffnes,
Fabián E. Bustamante, Balachander Krishnamurthy, and Walter Will-
inger. Dasu: Pushing experiments to the internet’s edge. In Presented
as part of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13), pages 487–499, Lombard, IL, 2013.
USENIX.

[38] C.M. Vaz, L.M. Silva, and A. Dourado. Detecting user-visible failures in
web-sites by using end-to-end fine-grained monitoring: An experimental
study. In Network Computing and Applications (NCA), 2011 10th IEEE
International Symposium on, pages 338–341, Aug 2011.

[39] Zhichun Li, Ming Zhang, Zhaosheng Zhu, Yan Chen, Albert G Green-
berg, and Yi-Min Wang. Webprophet: Automating performance predic-
tion for web services. In NSDI, volume 10, pages 143–158, 2010.

[40] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan.
Polaris: Faster page loads using fine-grained dependency tracking. In
NSDI, pages 123–136, 2016.


