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ABSTRACT

Music Emotion Recognition was dominated by classi-
cal machine learning, which relies on traditional classi-
fiers and feature engineering (FE). Recently, deep learn-
ing approaches have been explored, aiming to remove the
need for handcrafted features by automatic feature learning
(FL), albeit at the expense of requiring large volumes of
data to fully exploit their capabilities. A hybrid approach
fusing information from handcrafted and learned features
was previously proposed, outperforming separate FE and
FL approaches on the 4QAED dataset (900 audio clips).
The results suggested that, in smaller datasets, FE and FL
could complement each other rather than act as competi-
tors. In the present study, these experiments are extended
to the larger MERGE dataset (3554 audio clips) to analyze
the impact of the significant increase in data. The best-
obtained results, 77.62% F1-score, continue to surpass the
standalone FE and FL paradigms, reinforcing the potential
of hybrid approaches.

1. INTRODUCTION

Recently, several Deep Learning (DL) approaches have
been proposed to address research problems in Music
Emotion Recognition (MER). These eliminate the neces-
sity of feature engineering efforts since DL architectures
can automatically learn relevant features from the input
data.

However, as pointed out in a previous study [1], the cur-
rent state-of-the-art DL approaches are still underperform-
ing compared to classical MER approaches using hand-
crafted features. The lack of sizeable and quality MER
datasets is part of the problem since DL architectures can
only reach their full potential with a large, representative
set of samples for the problem at hand, which usually takes
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hundreds of thousands of samples. Furthermore, the fea-
tures learned by a neural network depend on the data pro-
vided. Emotionally-relevant patterns may be missed if they
are rare in the dataset, unlike handcrafted features, which
can target specific characteristics even if they appear infre-
quently, though this might not improve classification per-
formance.

To take advantage of the strengths of both the classical
and DL paradigms, a hybrid methodology was previously
developed and validated on a set of small datasets (con-
taining 1372 samples), showing promising results. This
methodology surpassed all classical and neural network-
based baselines [1].

In this article, we further extend the evaluation of this
hybrid methodology to two new datasets proposed by
Louro et al. [2], containing 3554 samples.

2. RELATED WORK

In this section, we briefly review the state-of-the-art ap-
proaches relevant to this study. Both classical ML and
DL-based methodologies are discussed, concluding with
a summary of the advantages and disadvantages of each.

Seminal works in MER follow a common pipeline.
First, a set of songs is collected and manually annotated
by subjects, followed by the extraction of features relevant
to emotion, and finally, training and evaluating a classifier,
such as Support Vector Machines (SVM) or Random For-
est, to name a few. Feng et al. [3] presents such a pipeline,
with a slight difference regarding the song annotations. In-
stead of manual annotations, these are automatically ob-
tained through predefined intervals of the extracted fea-
tures, e.g., an excerpt with legato as the predominant ar-
ticulation and a slow tempo labeled as sad.

Subsequent works improve on the oversights of this ap-
proach and explore the problem in other directions. Some
of these works include Lu et al. [4], which keep the single
label approach but use a Gaussian Mixture Model to clas-
sify samples based on intensity, timbre and rhythm fea-
tures, and Yang et al. [5], defining MER as a regression
problem to mitigate the ambiguities inherent to the discrete
labels from the previously mentioned approaches.

Recently, Panda et al. [6] proposed a set of new audio
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Figure 1. Hybrid augmented architecture. The architecture can be decomposed into the frontend, or the CNN and DNN
portions where features are learned or processed, respectively, and the backend, further processing the concatenated features
and outputting the predicted quadrant.

features alongside a small but thoroughly validated bal-
anced dataset of 900 song excerpts and a state-of-the-art
methodology focused on classical static MER. There, the
4 Quadrant Audio Emotion Detection (4QAED) dataset
was built with the aid of a semi-automatic approach, build-
ing on user-generated labels from AllMusic, and manual
validation. Features were extracted for each excerpt and
ranked, from which only the top 100 were used to train
an SVM classifier. The observed results are considerably
higher than those previously reported, attaining a 76.4%
F1-score.

As discussed previously, neural networks have the abil-
ity to automatically learn the most relevant features from
the input data. Such an idea is very appealing to any Mu-
sic Information Retrieval (MIR) problem, considering the
hardship of developing and validating features by hand.
To our knowledge, the first application of these models to
MIR was presented by Choi et al. [7]. Here, the exper-
iments used only convolutional layers, learning and pro-
cessing the learned features from Mel-spectrogram repre-
sentations of the considered datasets for validation. Later,
the same authors presented a more complex network, con-
sisting of a convolutional portion for feature learning, and
a recurrent portion for processing time-related features and
performing classification, referred to as Convolutional Re-
current Neural Network (CRNN) [8]. The final system,
trained for multi-label classification, attained a 0.86 Area
Under the ROC Curve (AUC), outperforming the other
proposed architectures.

Several approaches built on this system, iterating
mostly on certain aspects of its architecture. Some of these
include musically-motivated filters applied to the convo-
lutional portion of the network, focusing on finding tim-
bral and temporal information [9], and end-to-end archi-
tectures, which aim to learn the most relevant features di-
rectly from the raw audio waveform [10].

Regarding MER specifically, many works build upon

the previously described system’s pipelines, experiment-
ing with different data representations such as chroma-
gram [11] and conchleogram [12], applying transfer learn-
ing from related tasks such as speech [13], and experiment-
ing with smaller input sizes [14].

This work builds on Panda et al. [6] and Choi et al. [7]
for the FE and FL portions respectively, given their impact
in the field.

3. MATERIALS AND METHODOLOGY

This section describes the methodology followed in this
study, starting with the pre-processing steps, then describ-
ing the architecture details, and ending with the optimiza-
tion strategy.

Dataset Q1 Q2 Q3 Q4 Total
MERGE Audio C 875 915 808 956 3554
MERGE Audio B 808 808 808 808 3232

MERGE Bimodal C 525 673 500 518 2216
MERGE Bimodal B 500 500 500 500 2000

Table 1. Datasets used and their distribution per quadrant.

3.1 Datasets

The methodology was evaluated using two datasets:
MERGE Audio and MERGE Bimodal, which includes a
complete and a balanced collection of samples for each
dataset, detailed in [2]. MERGE Audio contains 3554 and
3232 samples, while the MERGE Bimodal comprises 2216
and 2000 samples. The quadrant distribution of each is de-
tailed in Table 1.

Each dataset entry includes a 30-second audio clip of
the most emotionally-representative part of the song. Sam-
ples were annotated into one of four emotion quadrants
(happy, tense, sad, and relaxed), according to Russell’s Cir-
cumplex model [15]. While the MERGE Bimodal dataset
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includes the full lyrics for each sample, this research does
not explore the lyrical content.

A 70-15-15 train-validate-test (TVT) split was used as
our validation strategy, as recommended in [2].

3.2 Pre-processing Steps

Initially, the audio samples are converted into WAV for-
mat. To obtain Mel-spectrograms, these samples are down-
sampled from 22.5 kHz to 16kHz, as per the methodology
in [1].

The handcrafted features are extracted from all samples
using MIRToolbox [16], Marsyas [17], and PsySound3
[18] audio frameworks, complemented by the novel fea-
tures proposed by Panda et al. [6]. A final set of 1714
features is obtained after performing feature decorrelation,
i.e., eliminating redundant features that would not con-
tribute to increasing the model’s performance.

As for the input data for the CNN portion, the librosa
library [19] is used to obtain Mel-spectrogram represen-
tations. The library’s default settings for the Fast Fourier
Transform window length (2048) and the hop size (512)
are used to generate the spectral representations.

Data augmentation is also performed on the train set
of each dataset when optimizing the CNN portion. This
is done by applying time shifting (shifts the start or the
end of the audio clip by a maximum of 5 seconds), pitch
shifting (increases or decreases the pitch by a maximum
of 2 semitones), time stretching (speeds up or slows down
an audio clip by a maximum of 50%), and power shifting
(increases or decreases amplitude by a maximum of 10 dB)
to each audio clip. Since each transformation is applied
individually, the train set essentially increases five-fold.

3.3 Architecture Details

The architecture, illustrated in Figure 1, comprises a CNN
and DNN portion for feature learning and processing, re-
spectively, and a smaller DNN portion for classification.

The CNN portion, based on the mentioned work by
Choi et al. [7], comprises four convolutional blocks, each
containing a sequence of Batch Normalization, Dropout,
and Max Pooling layers, ending with a ReLU activa-
tion layer. The last convolutional block does not con-
tain the Dropout layer. The previously discussed Mel-
spectrograms are fed as input to this portion.

The resulting output of both is concatenated at the fea-
ture level before being fed to the classifier, a set of three
Dense layers, with the last one outputting one of the four
quadrants of Russell’s Circumplex model [15]. This way,
the classifier could pick the set of patterns that are most
relevant to the problem at hand.

The CNN portion’s training phase includes synthesized
samples to improve its performance. Therefore, this and
the DNN for feature processing are pre-trained separately,
freezing their weights before training the classification por-
tion.

Dataset
Best Hyperparameters

Batch Optimizer Learning
Size Rate

MERGE
Audio
Complete

32 SGD 1e-2
128 SGD 1e-2
16 Adam 1e-2

MERGE
Audio
Balanced

32 SGD 1e-2
128 Adam 1e-4
32 SGD 1e-3

MERGE
Bimodal
Complete

32 SGD 1e-2
128 SGD 1e-2
64 SGD 1e-4

MERGE
Bimodal
Balanced

32 Adam 1e-3
32 SGD 1e-2
64 Adam 1e-3

Table 2. Optimal hyperparameters per dataset. For each,
the optimal values for standalone CNN and DNN portions
are shown, followed by the final classifier optimization.

3.4 Optimization Strategy

The model optimization was carried out with the Bayesian
optimization approach provided by the Keras Tuner library
[20]. This technique searches for the optimal combina-
tion of hyperparameters within predefined ranges, aiming
to maximize or minimize a specific objective function de-
fined by the user.

The tuner’s objective is to maximize the validation set’s
accuracy. The optimal values for each hyperparameter, in-
cluding batch size, optimizer, and the respective learning
rate, are detailed in Table 2.

The process involves running ten trials, beginning at the
lower end of the specified intervals. For every trial, the
model undergoes training up to a maximum of 200 epochs.
However, an early stopping mechanism fires if the valida-
tion accuracy does not improve for 15 straight epochs or if
the training accuracy exceeds 90%. This approach greatly
decreases the time required for the optimization by reduc-
ing the time spent on hyperparameters that show poor per-
formance, also preventing overfitting.

We used the 70-15-15 train-validate-test (TVT) split de-
fined in [2] as our validation strategy. The resulting models
for each trial are backed up for later usage, including the
evaluation phase, which is discussed next.

In the TVT strategy, the optimization function uses both
training and validation sets to identify the best hyperpa-
rameters. Once the model is trained using these, it under-
goes evaluation on the test set. This evaluation involves
calculating the F1-score, Precision, and Recall by compar-
ing the actual values with the model’s predictions for each
category and assessing the model’s overall performance.

4. RESULTS AND DISCUSSION

The results and gathered insights are presented in this sec-
tion. We begin by highlighting the most relevant results
from the previously presented metrics, followed by a dis-
cussion on the improvements and drawbacks of applying
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Dataset F1-score Precision Recall

MERGE
68.84% 69.52% 68.80%

Audio Complete
MERGE 77.62% 78.11% 77.89%

Audio Balanced
MERGE

73.13% 75.45% 74.40%
Bimodal Complete

MERGE
70.00% 69.99% 70.33%

Bimodal Balanced

Table 3. TVT 70-15-15 results for the mentioned datasets

Predicted
Q1 Q2 Q3 Q4

A
ct

ua
l Q1 70.2% 10.9% 9.4% 9.4%

Q2 7.1% 92.1% 0.8% 0.0%
Q3 3.9% 2.6% 55.3% 38.2%
Q4 18.3% 0.9% 21.7% 59.13%

Table 4. Confusion matrix for MERGE Audio Complete

Predicted
Q1 Q2 Q3 Q4

A
ct

ua
l Q1 77.9% 7.6% 3.8% 10.9%

Q2 6.0% 93.2% 0.9% 0.0%
Q3 2.8% 1.4% 68.8% 27.0%
Q4 8.4% 0.0% 18.9% 72.6%

Table 5. Confusion matrix for MERGE Audio Balanced

Predicted
Q1 Q2 Q3 Q4

A
ct

ua
l Q1 73.9% 5.7% 6.8% 13.6%

Q2 7.1% 92.9% 0.0% 0.0%
Q3 5.7% 0.9% 58.5% 34.9%
Q4 5.1% 0.0% 23.1% 71.8%

Table 6. Confusion matrix for MERGE Bimodal Complete

Predicted
Q1 Q2 Q3 Q4

A
ct

ua
l Q1 74.7% 5.3% 8.0% 12.0%

Q2 9.1% 90.9% 0.0% 0.0%
Q3 3.5% 1.2% 58.8% 36.5%
Q4 14.3% 0.0% 30.2% 55.6%

Table 7. Confusion matrix for MERGE Bimodal Balanced

the hybrid methodology to the MERGE Audio and Bi-
modal datasets.

The best F1-score attained was 77.62% on the MERGE
Audio Balanced dataset, as seen in Table 3. Again, the
model’s performance is shown to be particularly suscep-
tible to quadrant balancing since the lowest result is ob-
served when using the largest but most unbalanced of the
validation datasets.

From previous experiments and according to the lit-
erature, one of the biggest challenges of audio-only
approaches is to accurately differentiate valence when
arousal is low, i.e., confusion between the third and fourth
quadrants of Russell’s Circumplex model. As observed in
Table 4, this is still present in this model when consider-
ing MERGE Audio Complete, also with some considerable
confusion between the first and fourth quadrants. Using the
balanced counterpart, as seen in Table 5, the confusion is
reduced considerably in the third quadrant. This improve-
ment is very significant given that it is the quadrant that
produces the most confusion, even for human annotators.
The fourth quadrant also improves significantly, a conse-
quence of less confusion with the first quadrant.

There are some caveats to consider, such as the over-
all higher results for MERGE Bimodal Complete against
Bimodal Balanced. Although this contradicts the previous
idea that quadrant distribution is essential for this model,
this could be explained by less disparity between the num-
ber of samples of the third and fourth quadrants compared
to MERGE Audio Complete. This is further corrobo-
rated by the confusion matrices in Tables 6 and 7, as the
most significant difference is the performance of the fourth
quadrant.

5. CONCLUSION AND FUTURE WORK

The Hybrid Augmented methodology is further experi-
mented with in the present study. Due to the promising re-
sults of the fusion of handcrafted and learned features, we
conducted further experiments on larger datasets, namely
the complete and balanced versions of MERGE Audio and
MERGE Bimodal. Each portion of the architecture is
trained independently, first pre-training the CNN portion
for feature learning and the DNN portion for feature pro-
cessing, with additional synthesized samples added to the
optimization phase of the former. The optimal weights for
each portion are frozen, finally optimizing the classifica-
tion portion.

The best result from these datasets is a 77.62% F1-
score, attained with MERGE Audio Balanced. This was
expected since previously reported results indicate the im-
portance of large datasets with even distribution between
quadrants for optimal performance. The confusion matri-
ces for the MERGE Audio datasets further corroborate this
conclusion, as low arousal quadrants are more easily dis-
tinguished in the balanced version of these. There are some
inconsistencies, such as the higher results in the complete
version of the MERGE Bimodal datasets, which may be
due to a smaller gap between the number of samples of the
third and fourth quadrants.

Regarding the methodology, it would be beneficial to
analyze further the impact of new data augmentation tech-
niques applied to the CNN portion of the model. It would
also be beneficial to experiment with optimizing the DNN
portion of the network with the same synthesized data of
the CNN counterpart. Finally, the classifier could be fur-
ther enhanced by including recurrent layers, such as in the
CRNN architecture, to process time-related features from
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the previously processed information.
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