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Abstract— During the acquisition of lung sounds, several
sources of noise can interfere with the recordings. Therefore, the
detection of noise present in lung sounds plays an important
role in the correct diagnosis of several pulmonary disorders
such as in chronic obstructive pulmonary diseases.

Denoising tools reported so far focus mainly in the detection
of abnormal lung sounds from the background noise (usually
vesicular background) or even just in the discrimination of
normal from abnormal lung sounds. Algorithms for heart sound
cancellation have also been proposed. However, it can be noticed
that there is a lack of signal processing methods to efficiently
detected and/or remove artifacts introduced in the acquisition
environment or produced by the subject (e.g., speech).

The present study focuses in the analysis of lungs sounds
recorded in two different populations containing events of
cough, speech and other artifacts from the surrounding en-
vironment. Feature extraction and binary classification were
performed achieving, on average, values of a sensitivity and
specificity ranging from 76% to 97% for the classification of
cough, speech and other artifacts and from 83% to 90% for
the specific detection of cough events. The detection of artifacts
achieved sensitivity and specificity values of 84% and 61%,
respectively for one population and 88% and 52% for another
population.

I. INTRODUCTION

The acquisition of lung sounds (LSs) using the stethoscope
is considered an important, fast and noninvasive method
in the detection of pulmonary disorders, namely chronic
obstructive pulmonary diseases (COPD) [1]. The presence of
abnormal LSs in the normal respiratory cycle is an indicator
that leads to a positive diagnosis.

LS is a biological signal characterized by a stochastic non-
stationary behavior, with sudden variations in short periods of
time over the signal [1], [2]. The signal’s bandwidth typically
ranges from 50Hz to 2500Hz (when signals are acquired on
the chest) [3], [4]. In fact, the morphology of the LS can vary
from subject to subject, depending on the chest size and on
the body mass, and it is also influenced by the variations in
the air flow rate and on the position where the stethoscope
is attached in the chest [5], [6].
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However, LSs can be contaminated with noise coming
from the acquisition environment and also with physiologi-
cal interferences, such respiratory muscle and heart sounds
(HSs) [3], [4]. Specifically, concerning HSs interference, it is
known that the predominant frequency components typically
detected in those signals may overlap the frequency range of
the LSs, making it hard to distinguish both types of sound
[5], [7].

Then, in order to truthfully conclude about the clinical
state of a subject, concerning pulmonary disorders, the LSs
should ideally be free of any type of noise. Following
that purpose, several approaches in literature have been
proposed to detect abnormal LSs from the vesicular back-
ground (considered the background noise) present in the
original LS. Those methods include higher-order statistics
(HOS), fuzzy logic, wavelet transform (WT), empirical mode
decomposition (EMD) and fractal dimension (FD) [1], [4]. In
most of the studies, one infers that the acquisitions take place
in controlled clinical environments, where external noise is
intentionally reduced or just nonexistent.

There is also a wide number of authors who presented
algorithms developed to remove HSs from the original LSs,
using mainly adaptive HOS, WT, recursive least squares and
time-frequency spectrum analysis [4].

However, only few articles were found to report signal
processing methods to detect and remove artifacts from LSs,
in m-Health environments. Two papers reported algorithms
based on spectral subtraction of a noise estimate obtained
from: a period when the patient sustained breathing [8] or a
reference sensor that solely and simultaneously recorded the
ambient noise [6]. In another study a denoising filter based
on a combination of EMD and FD was described, returning
91.8% of sensitivity and 97.7% of specificity [1].

The aforementioned methods can be of great usefulness
when LSs need to be acquired in unpredictable noisy en-
vironments. In other words, denoising tools for LSs are
required in telemonitoring systems that could provide con-
tinuous monitoring of patients with pulmonary disorders.

Herein, we analyze LSs that were deliberately contami-
nated with periods of cough followed by speech performed
by each patient. Furthermore, other sources of noise can be
heard that include voices and cough from other subjects
in the room and hair rub. The purpose of the study is
the detection of all types of artifact, to allow the further
interpretation of the LSs. We follow a multi-feature approach
to face the problem of noise detection in LSs.



II. MATERIAL AND METHODS

A. Data Collection

Pulmonary signals were recorded in two different popu-
lations: at the (1) George Papanikolaou General Hospital of
Thessaloniki and (2) General Hospital of Imathia-Health Unit
of Naoussa, Greece (see Table I). All subjects comprising the
Thessaloniki dataset were diagnosed with COPD. Wheezes
or wheezes and crackles were identified in the LSs of six
subjects of the Naoussa population. The ethical committee
of both hospitals authorized the acquisition of the data.

Auscultation was performed with the participants in a
sitting position, using six channels that were set in different
positions: four in the back and two in the front of the chest.
During the acquisition, the volunteers were asked to simulate
cough and next to count from one to ten. The different events
were annotated in the timeline by the physicians who super-
vised the acquisition and we assigned them to four distinct
classes: (1) cough and speech, (2) artifact, (3) abnormal LSs,
and (4) normal LSs (see Table I). Cough and speech periods
last on average 5-6 s in the Thessaloniki population and are
also the predominant events in the Naoussa dataset.

B. Feature Extraction

The features were computed for each individual channel,
since each channel corresponds to different positions in the
chest and also to different recording times.

Four different features were tested in the analysis of
LSs and will be briefly described in this section. The LSs
signals were windowed, with a given percentage of overlap.
The size of the window and the overlap were defined for
the highest specificity and sensitivity, depicted in a receiver
operating characteristic (ROC) curve.

1) Teager-Kaiser energy operator (TKEO): As a nonlin-
ear energy operator, this feature is useful to highlight sudden
discontinuities (either in amplitude or frequency) and reduce
smooth transitions occurring in the signal [9].

In (1) the discrete version of TKEO is computed for the
signal xn. Energy is obtained for each window in each instant
and depends on the strength of the previous and next sample

TABLE I: Population Description

Population Thessaloniki Naoussa

Sampling Rate (Hz) 10000 4000

Stethoscope 3M Littman 3200 Meditron

Number of subjects 7 9

Mean signal duration (s) 70 19

Abnormal lung sounds wheezes, fine crackles, coarse crackles

Artifacts
external voice,

cough with
artifacts

speech
background,

cough
background, hair

rub

[9]. So far only another author used this feature for the
detection of crackles [10].

En = x2n + xn−1xn+1 (1)

2) Katz fractal dimension (KFD): This feature is a mea-
sure of the complexity of a signal in the time domain. KFD
is estimated in (2), where L is the sum of the Euclidean
distance between successive points, d is the distance between
the first point of the window and the point of the window at
which the distance is maximal, n is the number of steps in
the window (n = N − 1), and N is the length of the input
data [4], [11], [12].

KFD =
log10(n)

log10
(
d
L

)
+ log10(n)

(2)

3) Mel-frequency cepstral coefficients (MFCC): The cep-
stral coefficients are obtained from the inverse cosine trans-
form of the logarithm of the short-time Fourier transform
(STFT) of each window and are given by (3):

cn =

M∑
k=1

log(Ek)
(
n(k − 0.5)

π

M

)
(3)

where n = 1, 2, ..., L, L is the desired number of cepstral
coefficients, M is the number of frequency subbands and
Ek is the respective filter bank energy. This approach uses
a different weighting frequency scale that closely resembles
how human ear perceives sounds. The cepstrum, in addition
to the spectrum which informs about the predominant
frequencies present in the signal, allows to know how those
frequencies change across time [6], [13]. The extracted
feature corresponds to the coefficient with the highest
module of specificity and sensitivity in the ROC curve.

4) Normalized mutual information (NMI): Mutual infor-
mation quantifies the statistical dependence between random
variables or, in other words, the amount of information
shared by those variables. The I between two variables X
and Y , denoted I(X;Y ), is obtained using the corresponding
entropies, H(X) and H(Y ) and the joint entropy H(X,Y )
[14]:

I(X;Y ) = H(X) +H(Y )−H(X,Y ) (4)

H(X) and H(Y ) are given by:

H(X) = −
∑
x∈X

p(x) log p(x) (5)

With x taking any of the nonrepeated values in the variable
X and p(x) corresponding to the frequency counts of the
discrete variable X . Joint entropy is given by:



H(X,Y ) = −
∑
x,y

p(x, y) log p(x, y) (6)

In order to scale the values of I(X;Y ) between 0 (statis-
tically independent variables) and 1 (variables with the same
information) normalization was performed:

NMI =
I(X;Y )

H(X)
(7)

NMI was computed for a reference window, free of noise,
and for each of the windows into which the LS was seg-
mented (named test windows). The final feature corresponds
to the comparison between the NMI of the reference window
and each of the test windows. This method of finding a
reference window was developed in another study which
purpose was the detection of artifact in phonocardiogram
signals [15]. However, this algorithm to denoise HSs has
suffered slight changes aiming to adapt it to the study of
LSs. Shortly, the algorithm comprises two steps: (1) search
for a reference window considered free from noise and (2)
comparison of the reference window with all the windows
into which the signal was segmented (named test windows),
in order to distinguish contaminated from clean windows.

In the first phase, differently from the HSs’ algorithm,
the LSs signal is windowed and the TKEO is computed
for each window. The reference window will correspond to
the window with the minimum value of TKEO. Other two
features, spectral similarity (R) and PSD ratio, described in
[15], were also computed for the LSs.

C. Classification

Detection of artifacts is performed in three stages. Firstly,
events other than LSs (cough, speech and other artifacts)
were classified using different features (TKEO, KFD, MFCC,
R, and PSD ratio). In the second part, the events of cough
were classified using features NMI and MFCC, depending on
dataset. In the final phase, the detection of artifact, including
the speech segments, took place using the output of the two
previous classifications (see Fig. 1).

The binary classification outputs a vector of 0’s and 1’s
(called ”detected”), where one corresponds to the detection
of the artifact and zero to a nondetected event, respec-
tively. Consequently, classification only takes place if a fixed
threshold is set for each of the features. If the value of
the feature in the test window is above this threshold, that
window is classified as contaminated. In order to obtain the
best values of specificity and sensitivity for each feature
several thresholds were tested and further analyzed using
the ROC curve. The 100 tested thresholds ranged from the
minimum to the maximum of the feature. In other words,
the tested thresholds were a percentage of the signal, making
them adaptive thresholds. The discrimination capacity of the
features was assessed in terms of specificity and sensitivity,
by comparing the output of the classification, the ”detected”,
with the target (annotated by the physicians).
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Fig. 1: Multi-stage algorithm for the classification of artifact.

The algorithm was implemented in Matlab R2013b on
Windows 8.1 using an Intel R© CoreTMi7-4790K CPU at
4GHz.

III. RESULTS AND DISCUSSION

Tables II and III contain the results of the classification
in terms of sensitivity and specificity, averaged across the
subjects for each one of the parameter combination (window,
overlap and threshold).

A. Detection of cough, speech and artifact events

The detection results obtained for the five features pre-
viously described in section II-B are presented in Table II.
The best results were obtained for the features TKEO and
KFD in the Thessaloniki dataset and MFCC in the Naoussa
population. Naoussa signals were of lower size comparing
to the files from Thessaloniki, explaining the variation in the
window size across the two populations.

B. Detection of cough events

Cough is an important manifestation of several pulmonary
diseases (e.g. pulmonary fibrosis, COPD, lung cancer, etc.).
Consequently, counting and classification of cough is con-
sidered a useful diagnostic tool [16]. The cough events
were classified using the NMI and MFCC features in the
Thessaloniki and Naoussa populations, respectively. Unlike
other tested features, NMI and MFCC (the latter using a
different window size) allowed the identification of the cough
events rather than the detection of both cough and speech
segments. Results are presented in Table III.

C. Detection of speech and artifact events

For this classification the ”detected” vectors obtained in
sections III-A and III-B were used to compute the ”detected”



TABLE II: Classification results for cough, speech and artifact detection.

Population Feature Window (s) Overlap (%) Threshold* SS(%) SP(%)

Thessaloniki

TKEO 3.9 90 9 92.04 97.24

KFD 4 90 10 90.91 99.24

MFCC 4 80 58 86.52 93.71

PSD ratio 4 80 9 85.98 92.81

R 4 90 5 86.14 96.37

Naoussa

TKEO 2.3 60 57 63.09 99.50

KFD 2.8 70 53 69.18 98.79

MFCC 1 90 64 84.66 96.40

PSD ratio 1 90 20 78.47 94.18

R 0.5 90 3 84.38 96.29

*Percentage of the features’ amplitude.

TABLE III: Classification results for cough detection.

Population Feature Window (s) Overlap (%) Threshold* SS(%) SP(%)

Thessaloniki NMI 4 90 81 84.49 83.05

Naoussa MFCC 0.5 90 83 90.36 90.09

*Percentage of the features’ amplitude.

for the third phase of the algorithm (see Fig. 1). The results
of the classification of the class speech and artifact versus
the class cough and LSs are presented in Table IV.

The results are strongly dependent on the annotations
(which will influence the target definition). Moreover, the
detection of artifact, the main purpose of this study, was
affected by the size of the windows selected through the
ROC curve. In the specific case of the Thessaloniki dataset,
using a 4 s window lead to good results in the classification of
cough and speech since those events’ duration is superior to
the window used to segment the signal. On the contrary, other
artifact events such external voices or hair rub last less than
4 s making these type of events hard to detect when cough
and speech are the predominant segments in the signal.

IV. CONCLUSIONS

The detection of artifact in lung sounds becomes an
important step when those signals need to be acquired
in unpredictable conditions, e.g., when there are different
sources of noise in the acquisition environment. Therefore,
in the search for a suitable methodology to identify inter-
ferences in LSs, several features were tested and optimal
parameters were selected. The features analyzed reached a
high detection capacity in the classification of cough, speech

TABLE IV: Classification results for
speech and artifact detection.

Population SS(%) SP(%)

Thessaloniki 84.39 61.54

Naoussa 87.72 56.38

and other artifacts occurring in uncontrolled environments.
This performance was reflected in the values of sensitivity
and specificity, which average value for all the features
was 88% and 96%, respectively for Thessaloniki population
and 76% and 97%, respectively for the Naoussa dataset.
The results for the classification of cough were equally
high, with sensitivity and specificity ranging, respectively
from 83% to 90% in both populations. The classification
of artifact, including speech against the other events, lead to
lower sensitivity (ranging from 84% to 88%) and even lower
specificity (ranging from 61% to 56%) in both populations.

As future work, the set of features tested will be con-
sidered as inputs of more complex classifiers able to define
more flexible, nonlinear decision boundaries. Data from each
channel, i.e., each position of the stethoscope can also be
analyzed separately in order to conclude about the more
suitable locations to detect noise. Finally, it must be noticed
that a careful inspection of the annotations of the events will
have a significant impact in the specificity and sensitivity.
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