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Abstract— Machine learning algorithms are progressively
assuming important roles as computational tools to support
clinical diagnosis, namely in the classification of pigmented
skin lesions using RGB images. Most current classification
methods rely on common 2D image features derived from
shape, colour or texture, which does not always guarantee
the best results. This work presents a contribution to this
field, by exploiting the lesions’ border line characteristics using
a new dimension – depth, which has not been thoroughly
investigated so far. A selected group of features is extracted
from the depth information of 3D images, which are then used
for classification using a quadratic Support Vector Machine.
Despite class imbalance often present in medical image datasets,
the proposed algorithm achieves a top geometric mean of
94.87%, comprising 100.00% sensitivity and 90.00% specificity,
using only depth information for the detection of Melanomas.
Such results show that potential gains can be achieved by
extracting information from this often overlooked dimension,
which provides more balanced results in terms of sensitivity
and specificity than other settings.

I. INTRODUCTION

Image processing methods have become important tools to
assist professionals in their diagnostic decisions. One of their
greatest contributions focuses on differentiating melanoma
and nevus, respectively a life-threatening dermatological
disease and a benign kind of skin lesion [1]. In the field
of skin lesion classification, significant results exist using the
dermoscopic image (2D) modality, while other image modal-
ities or data dimensions are fairly unexplored. Nonetheless,
the existing research on 3D information from stereo imaging
indicates that depth features can lead to promising results by
improving skin lesion classification performances [2], [3].

The 3D information of images can be obtained through
different approaches and acquisition setups. In this work,
depth maps are extracted from dense light-fields. Each light-
field presents over 10, 000, 000 pixels, yet if only a small
line of less than 5, 000 pixels is extracted along the lesions’
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perimeter region, it might contain relevant information to
classify the type of lesion. From such border line, features
can be calculated using solely the depth information present
along the set of connected pixels. Assuming that surface-
level information (texture) differs from melanoma to nevus,
the respective border lines are expected to have structural
differences between them or a different overall geometric
behaviour. Thus, discriminative features capable of extracting
relevant information about such type of details must be used.
Features extracted from electrocardiogram (ECG) signals
seem specially suitable for this task, since in ECG classifica-
tion problems, it is necessary to discriminate patterns from
fine variations along a one-dimensional signal. Therefore, a
similar type of features may be employed for classification
of skin lesions, based on the depth values of the border lines.

Overall, the main contribution of this paper is the ex-
ploitation of 3D information from skin lesions, aiming to
achieve high discrimination in the classification of melanoma
versus nevus and, consequently, showing that this third
dimension provides significant information for classification.
Different from previous studies, this work investigates new
3D information from the segmentation mask border line to
provide evidence that skin surface topology has potential
discriminative information.

The remainder of the paper is organised as follows:
Section II presents the state-of-the-art and other similar
experiments, as well as details about the dataset. Further,
Section III describes the proposed approach and relevant
details about data pre-processing, feature extraction and
classification. Finally, Section IV presents and discusses the
experimental results and Section V exhibits the conclusions
and future work.

II. BACKGROUND

In the field of skin lesion image processing, several
processing steps have been established aiming to enhance
melanoma classification [4], namely: image pre-processing,
segmentation, and classification [4], [5], [6]. Algorithms em-
ployed in melanoma or skin lesion classification range from
those using Deep Learning (DL), where the algorithm au-
tomatically selects which types of features are exploited for
classification, to other classic Machine Learning algorithms
that require hand-crafted features. Significant classification
performance results have been achieved resorting to DL
(e.g. [4]), however these algorithms require rich datasets with
large amounts of balanced data. Such constraints might not
be achievable and, even when they are, the image modality or
information granularity might not be ideal for the problem.
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Existing datasets, described in the literature, revolve
around the same modality, 2D dermoscopic images [4], [6],
which are commonly used by field-experts. Despite the good
classification results obtained using only dermoscopic infor-
mation, they are rather limited, as only planar information
can be retrieved from such data. To overcome this limitation,
in [2], [3], a method using a stereoscopy technology is pre-
sented. Although the literature addressing 3D surface studies
of melanoma and other skin lesions is almost nonexistent,
some previous research indicate that improved results arise
when using depth information (3D) [2], [3]. Even if real 3D
information is absent, in [7], artificial 3D information was
generated for datasets which do not provide it.

In order to fill the void of 3D skin lesion data, a dataset
named Skin Lesion Light-fields (SKINL2) was created and
made public to enable research over skin lesions 3D surface
information [8]. This dataset provides 4-channel images
(RGB+Z), where RGB corresponds to the 2D colour image
and Z stands for the depth information. At the time of
writing, to the authors best knowledge, there are no works
published by other authors resorting to this recent dataset.

Similarly to [6], which uses dermoscopic images, in this
work only depth information located at the lesions’ border
region is utilised for classification. The remaining image data
of the lesion is discarded. This depth information in the
border line is represented by a one-dimensional signal, from
which a set of discriminative features is extracted.

In regard to feature extraction, one can consider two main
approaches: either deep learning or handcrafted features. In
this work, the latter option was used because the SKINL2
dataset is very small in comparison to what is normally
necessary for deep learning approaches. Due to the reduced
size of the dataset and the large amount of pixel data in each
light field, the global depth map of the skin lesion is reduced
to fewer data, yet representative of the 3D characteristics.
This is done by only considering few border lines of the
segmented lesion. Such data reduction is also necessary to
avoid over-training as pointed out in [2], [3].

The depth information of a border line can be analysed
as a time-series, like other types of known signals, such
as ECG for instance. Thus, relevant characteristics can be
discriminated by extracting the same type of features. Ex-
amples include regression/prediction coefficients as in [9], or
localised entropy values as in [10], or some form of wavelet
observation as in [11]. In [9], the authors present a feature
extraction approach for reliable heart rhythm recognition.
After data pre-processing and feature extraction steps, the
classifier recognition of 6 types of heart rhythm reaches
99.68% by receiving two sets of features: the transform
coefficients of a wavelet transform; and the values of auto
regressive modelling applied to the temporal structures of
ECG wave forms (model order selection is described by min-
imisation methods). In [10], the authors detail experiments
about the influence, on the performance, of mother wavelets
and level of decomposition for wavelet packet decomposi-
tion, type of entropy and the number of base learners in a
random forest classifier. At the time, the authors stated that

experimental results were superior to those of several state-
of-the-art competing methods, showing that wavelet packet
entropy had promising results for 1D signal classification,
such as of ECG. In [11], the authors explain that such
signals present complex irregular fluctuations. Hence, to
extract information related with such fluctuations, the authors
use multi-fractal analysis, specifically wavelet leader based
multi-fractal analysis in short-time windows – which had
already been proposed in [12] and achieved superior results.

III. CLASSIFICATION METHODOLOGY

In this work, the main goal of classification of skin lesions
is to distinguish between melanomas and nevi. To this end
the utilised methodology pipeline (depicted in Fig. 1) is
comprised of three main steps: data preparation – comprised
of extraction, preparation, and augmentation (described in
subsection III-A); feature extraction (described in subsec-
tion III-B); and classification (described in subsection III-C).

A. Data Preparation

For each 4-channel image (RGB+Z) of the SKINL2
dataset (Fig. 2a), a lesion mask (Fig. 2b) is manually
generated (using the colour RGB channels, Fig. 2c) so that
the lesion perimeter pixels could be identified and their
depth channel values (hereinafter – the “Z” channel, Fig. 2d)
sequentially extracted from a random starting position (here-
inafter – the “border line” vector, Fig. 2e).The Z-pixel values
might not be all within acceptable ranges (mainly due to
errors caused by light reflection), therefore all border line
values higher than 10mm (chosen as arbitrary threshold)
were replaced by previously valid values in the sequence.
Afterwards, border line Z-values are normalised to a range
of [−0.5, 0.5]. Note that RGB is only used to produce a
segmentation mask (and then is then discarded), as all data
used to train the model is from the Z channel.

Additionally, three supplementary border lines may be ex-
tracted depending on the experiment augmentation settings.
If enabled, this step iteratively shrinks the lesion mask by
20 pixels until it produces 3 inner border lines, which are
inside the lesion region. The belief is that melanoma and
nevus surfaces are different, hence more information would
allow to compensate any model overfitting and also reinforce
a better comprehension about the problem dimension to the
classifier.

Since not all border lines have the same length (as skin
lesions come in all shapes and sizes), it was necessary to
uniformise their size before the feature extraction process.
Thus, four transformations were considered: T1) pad smaller
lines with zeros; T2) repeat (by rotation) smaller lines;
T3) linearly stretch smaller lines; or T4) cubicly interpolate
smaller lines.

In addition to the already mentioned options, further data
augmentation techniques were added to evaluate the gener-
alisation of the model: by flipping/inverting all border lines
(doubling the dataset size); and repeating data to balance-out
the smaller class samples.
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Average 10 Executions

9-Fold Cross-Validation

C. Classification

B. Feature Extraction

AutoRegressive Coefficients

A. Data Preparation

Shannon Entropy Values

Train SVMCost
Matrix

Border line Extraction from Z

Generate Mask

Border line Normalisation

Uniform Size Transformation

Train Test

Augmentation

Multi-fractal Wavelet Leader Estimates

Test SVM

Fig. 1. Proposed methodology pipeline comprises three main blocks, which
are executed inside a 9-Fold Cross-Validation scheme that is executed 10×
for average calculations. Given train and test datasets, the first block prepares
the data by: generating a lesion mask so that border lines may be extracted
from the Z dimension; which are then normalised and transformed to a
uniform size; and augmented in the end. Given the prepared data, the second
block performs feature extraction by: computing named AutoRegressive
Coefficients, Shannon Entropy Values, and Multi-fractal Wavelet Leader
Estimates. Given the extracted features, the third block trains an SVM using
the features generated from the fold-dependent train data and a defined cost
matrix, and later tests the SVM model using the features generated from the
fold-dependent test data. Blue arrows indicate the pipeline training sequence.
Red arrows indicate the pipeline testing sequence. Black arrows indicate
previous dependencies or common progressions through the pipeline.

B. Features Extraction
After having a set of equal-sized border lines, feature

extraction takes place. Most of the features provide global

(a) RGB+Z, 3D view (b) Lesion Mask

(c) RGB, 2D (central) view
1.8

2.8

3.8

(d) Z, 2D (central) view
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Fig. 2. SKINL2 Dataset melanoma data sample 0059 (a) 3D visualisation,
(b) lesion segmentation mask, (c) RGB central view, (d) depth channel “Z”
central view with blue-to-light-blue colour bar, and (e) extracted border line
Z-values in millimetres.

representations of the border line (which makes fine details
along smaller sections become expressionless) or require
continuous samples of the data to generate meaningful coef-
ficients. Due to these cases, border line vectors were either
empirically split into chunks of eight equal-sized windows or
observed with windows of size 8. The selected list of features
(186 in total) corresponds to a set including the more relevant
features regarding their performance in classifying waveform
signals with similarity to border lines. Their description is
as follows:

• AutoRegressive model coefficients of order 4 [9] over
eight equal-sized windows (producing 4 × 8 features).
For each window, the model coefficients are estimated
using the Burg method [13], which estimates the reflec-
tion coefficients and enables the reflection coefficients to
estimate the AR parameters, recursively. Based on [9],
where model order selection methods are used to de-
termine the model order that provides the best fit in a
similar classification problem, order 4 was selected for
our model.

• Shannon entropy values [14] for the maximal overlap
discrete wavelet packet transform at level 4 [10] applied
to the signal divided into eight windows, resulting in
24 × 8 features.

• Multi-fractal wavelet leader estimates [12] (of the sec-
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ond cumulant of the scaling exponents) and the range
of its exponents, which quantify the local regularity,
or singularity spectrum as in [11], creating 2 × 8 and
10 features, respectively. Wavelet variance measures
the variability in a signal by scale (over octave-band
frequency intervals), being extracted for each signal
over the entire data length, as in [15], based on [14].
In order to have an unbiased estimate of the wavelet
variance, it is necessary to use only levels with at
least one wavelet coefficient unaffected by boundary
conditions. Our signal (border line) length and the
Daubechies 2 (db2) wavelet [16] result in the usage of
10 levels. Similarly to [11], the width of the singularity
spectrum obtained from multi-fractal 1D wavelet leader
estimates was selected as a measure of the multi-fractal
nature of the border line signal. Note that the second
order cumulants were selected because they broadly
represent the departure of the scaling exponents from
linearity – scaling exponents are scale-based exponents
describing power-law behaviour in the signal at different
resolutions.

C. Classification

The classification of the lesions is performed resorting to
a Support Vector Machine (SVM) model with a polynomial
kernel of second order and a box constraint of 1. Given that
this is a binary classification problem, the SVM solver is the
Iterative Single Data Algorithm, (which is optimised through
a series of one-point minimisations and neither respects the
linear constraint nor explicitly includes the bias term) [17].

In addition, due to the unbalanced nature of the dataset,
adjustments to the classifier’s cost matrix were also tested. In
this matrix, each element consists of the cost of guessing that
a sample belongs to class X (lines) when it belongs to class
Y (columns), leaving all elements of its main diagonal equal
to zero. Therefore, since the melanoma class is three times
smaller than the nevus class, the experimental cost matrix
adjustments were made to accommodate this discrepancy in
unit steps: making a mistake in the melanoma classification
have an importance equal to a that of a nevus ([0 1; 1 0]), or
have twice ([0 1; 2 0]), or thrice ([0 1; 3 0]) said importance.

IV. EXPERIMENTAL ASSESSMENT

The proposed classification methodology was applied to
the publicly available SKINL2 dataset [8]. The skin lesion
light-fields were captured at a hospital facility (Centro Hos-
pitalar de Leiria, Portugal), with a Raytrix R42 camera, from
patients previously screened by a medical doctor during der-
matology clinical appointments. Each image has 3858×2682
pixels of RGB channels, as well as the relative depth of each
pixel. The skin lesions were classified and organised based
on clinician diagnosis according to ICD10 (International
Classification of Diseases) and on histopathological analysis.
Procedures related with image acquisition were evaluated and
approved by a health ethics committee. The procedure and
purpose of the study was explained to all volunteers, who
also signed an informed consent form. Particularly in this

TABLE I
SUMMARY RESULTS FOR EACH EXPERIMENT.

Geometric-Mean (GM)
#Lines CostMatrix Augmentation T1 T2 T3 T4

1 [0 1 ; 1 0] — 93.33 43.30 90.45 72.47
Flip 87.66 46.56 78.06 84.98

BalanceOut 94.87 50.55 78.06 84.98
Flip+BalanceOut 87.66 50.55 81.91 68.77

[ 0 1 ; 2 0 ] — 94.87 63.25 72.47 81.91
Flip 81.83 34.96 90.45 78.47

BalanceOut 67.42 34.96 61.83 73.19
Flip+BalanceOut 70.12 63.25 68.77 68.79

[ 0 1 ; 3 0 ] — 93.33 50.55 89.11 78.47
Flip 81.83 55.65 69.56 81.91

BalanceOut 64.98 64.09 62.50 78.47
Flip+BalanceOut 67.42 60.18 64.09 68.77

1+3 [0 1 ; 1 0] — 89.43 37.30 90.45 80.77
Flip 84.60 58.79 82.73 88.87

BalanceOut 68.71 0.00 70.57 69.86
Flip+BalanceOut 70.09 51.70 68.77 77.56

[ 0 1 ; 2 0 ] — 86.36 37.30 73.46 81.83
Flip 83.12 32.61 79.97 79.71

BalanceOut 66.31 41.48 67.56 81.63
Flip+BalanceOut 60.18 52.93 67.51 76.65

[ 0 1 ; 3 0 ] — 76.20 41.17 71.44 78.47
Flip 66.69 54.72 68.77 87.66

BalanceOut 66.69 0.00 67.52 66.15
Flip+BalanceOut 62.18 40.72 77.98 72.16

work, the second version of this dataset was used [18], due
to its increase in lens magnification of ≈ 30% (which means
more detail) in comparison to its first version. This dataset
currently comprises 9 melanomas and 27 nevi images, which
undergo the pre-processing, feature extraction, and classifica-
tion processes described in Section III. All experiments were
performed using Leave-One-Out Cross-Validation (which
effectively results in a 9-fold Cross-Validation because of
the dataset size) and were executed 10 times to mitigate any
biased or stochastic decision in the model on an Alienware
M17xR3 Laptop (Intel® Core™ i7 2nd Generation 2670QM
octa-core 64-bit CPU at 2.20GHz, with 8 GB of Memory
RAM).

The results achieved in these assessments are evaluated
in terms of percentage of classification Accuracy (Acc.),
Specificity (SPE), and Sensitivity (SEN). A more detailed
description of these metrics can be found in [19]. In addition,
because this is an unbalanced problem, the Geometric-Mean
(GM), Eq. (1), is also used [20]. It corresponds to the
geometric mean of sensitivity and specificity. To facilitate the
reader’s understanding, each experiment is first summarised
into the GM metric (Table I) and then only the best results
are detailed with the other three previous mentioned metrics
(Table II). Metric results above 75% are highlighted with a
colour gradient white-to-grey.

GM =
√

SEN× SPE (1)

Additionally, as mentioned in Section III-A, data aug-
mentation variations are also shown in the results table
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TABLE II
DETAILED METRIC RESULTS FOR THE BEST GROUPS.

T1 (Padding Zero)
#Lines CostMatrix Augmentation Acc. SEN SPE

1 [ 0 1 ; 1 0 ] — 88.89 100.00 87.10
Flip 88.89 85.71 89.66

BalanceOut 91.67 100.00 90.00
Flip+BalanceOut 88.89 85.71 89.66

[ 0 1 ; 2 0 ] — 91.67 100.00 90.00
Flip 86.11 75.00 89.29

BalanceOut 75.00 50.00 90.91
Flip+BalanceOut 77.78 53.85 91.30

“Augmentation” column. Four variations are tested: no aug-
mentation (“—-”), flipping the data (“Flip”), balancing-
out (“BalanceOut”), or flipping and balancing-out data
(“Flip+BalanceOut”) during training. The experiments also
include tests using a variable number of lines (column
“#Lines”), as described in Section III-A (i.e. whether to use
or not the 3 supplementary border lines). As mentioned in
Section III-C, because of the unbalanced dataset distribution,
balancing of the classifier’s training was also performed
resorting to its cost matrix, as expressed in the tables by
column “CostMatrix”. Furthermore, each combination of the
previously mentioned variations is used four times, since
there are four possible ways of adjusting the border lines
length (that is T1/T2/T3/T4, as expressed in Section III-A).

The experimental setup takes, on average, 17 minutes to
process the dataset, extract features, and classify using an
SVM with 9-Fold Cross-Validation over 10 executions. There
are 2× 3× 4× 4 experiments of 9-Fold each in Table I (but
only 1 × 2 × 4 × 1 in Table II), which are run 10 times
for variance verification. The highest standard deviation is
4.3, and most executions have 0.0 (zero). Due to space
constraints, standard deviations are not shown in tables.

From Table I, the highest and lowest results are achieved
with experiments involving line size transformations T1 and
T2, respectively, with an average difference of 30.30% GM
between both. As expected, looping the extraction of Z values
(along the mask perimeter until the recorded vector reaches
the same length of the largest mask perimeter – T2) did
not provide proper results because the repetition of infor-
mation/details introduced large variations on the extracted
features (which take into account the signal’s structure).
Experiment T3 has a similar behaviour to T1 but the linear
interpolation seems to degrade the results by 2.99% GM,
on average. Experiment T4, on the other hand (with cubic
interpolation), only degrades 0.13%, on average. Therefore
the scenario T1, which pads the remaining space with zeros,
provides the overall best results.

Balancing the data by repeating samples of the smallest
class (BalanceOut augmentation) provides a similar result
to balancing the SVM cost matrix for the dataset unbal-
anced data ([0 1; 2 0]), which is also evident in Table II
(91.67/100.00/90.00, rows 3 and 5).

Still in Table I, the presence of “normal” and “flipped”

vectors (Flip augmentation) almost always provides worst
results. From the observed experiments, the presence of
flipped vectors greatly induced homogeneity across the fea-
tures space, which makes it harder, or impossible, for the
classifier to find a proper separation in the data. Therefore,
using the two augmentation settings (Flip+BalanceOut) had
similar outcomes. Depending on the configuration, one of the
augmentation modes always induces worse results. Although
this could be a misinterpreted effect due to the size of the
dataset.

Regarding the number of extracted lines, the use of extra
border lines generally degraded the results, except in T4.
In 28 (out of 48) experiments, using more than one border
line, provided worse results in comparison to using a single
border line. This can be explained by the fact that, having
used a small dataset, the classifier might not find the best
hyper-plane separation and the added samples help nudge it,
albeit the added samples are of a different origin thus can
also decrease some of the data separability. Note, however,
that in T4, in 9 out of 12 experiments the results improved
in comparison to using only one border line. Thus, it is more
evident that, despite of the data interpolation, the results are
improved by using the additional border lines.

As can be seen in Table II, SPE values range from 87.10%
to 91.30%, which are the best results. SPE indicates the
ability to correctly reject healthy patients without a condition.
This (high SPE) makes it useful for ruling in disease.
However, given that the SKINL2 dataset is very unbalanced,
it is not easy to obtain balanced SPE and SEN results at the
same time. Even so, manually balancing the data through
augmentation or repetition seems to help in certain cases.
The accuracy performance is 91.67% when forcing sample
balancing either by replicating the smaller class or adding
more weight to said class misclassifications. It is must be
noticed that the proposed method exploits only the lesion
depth information for feature extraction and classification
(for the melanoma vs nevus problem). However, while show-
ing results similar to other methods reported in the literature,
it is not directly comparable because the other methods are
based on RGB colour images and, consequently, in other
datasets. This approach relies on a less invasive technology
(does not require physical contact with the patient) that uses
light-field cameras instead of dermatoscopy devices.

Other top results, as the 89− 90% GM in experiment T3,
could also be worth noticing. Because of the behaviour of the
GM metric, factually, any result above 80% can only have
SEN and SPE values in the [64, 100] range. While results
above 90% need SEN/SPE values in the [81, 100] range.
This means that other not-detailed results could compete
with state-of-the-art skin lesion classification algorithms (if
not for the data modality constraint, which makes direct
comparison impossible). On a practical perspective, a passive
mechanism even with results of 70% GM could be appealing,
since false positive detection of nevus as melanoma is not
completely undesirable. In T1, cost matrix [0 1; 2 0], the
highest SPE of 91.30 is achieved (70.12 GM), which means
that a system would identify 7 out of 9 melanomas, albeit a
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misclassification rate of 6 out of 27 nevi.
As previously mentioned, this work focuses on showing

that skin surface topology has potential discriminative infor-
mation for melanoma classification and, as such, compar-
isons with other literature works that resort to RGB only
are neither possible or relevant. Additionally, at the time of
writing, to the authors best knowledge, there are no works
published by other authors resorting to the utilised dataset
that provides RGB+Z images.

V. CONCLUSIONS AND FUTURE WORK

Automated melanoma detection is crucial to help der-
matologists to improve their diagnostic accuracy. Among
all skin lesion discriminations, classification of melanoma
versus nevus is considered the most difficult, therefore a
computer expert system is of utmost importance. As an
alternative of recent works, where skin lesion classification
is based on dermoscopic images (2D), this paper investi-
gated other type of image information, which have been
fairly unexplored – e.g. surface (3D) information; to find
out whether it could potentially provide better discrimina-
tion of melanoma versus nevus. Taking advantage of the
recently introduced technology of light-field cameras, this
work provides a new insight on this domain, being the first
one to demonstrate that classification of skin lesions, based
on multi-dimensional imaging, is possible to achieve with
quite good accuracy. To this end, the 3D border lines of
the lesion were used to perform a classification with high
discrimination. Due to its characteristics, the extracted signal,
obtained from the border lines, can be classified using 1D
features.

The achieved experimental results present a discrimination
of melanomas against nevi of 94.87% GM (100.00% SEN
and 90.00% SPE). Since these results are comparable with
others available in the literature, they provide evidence that
skin lesion classification (of melanoma and nevus) is possible
using non-invasive techniques and avoiding the additional
artifacts that the use of a dermatoscope (and gel) induces in
algorithm pipelines.

Overall this work provides insight for further research
in the field of skin lesion image detection, segmentation
and classification to either improve existing methods/models
that are lacking in performance or refine the existing top
performers. It is also demonstrated that the extended 3D
information enabled by the light-field cameras is useful,
beyond conventional texture (2D), to improve lesion discrim-
ination algorithms.
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