Detection of different types of noise in lung sounds
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Abstract— Lung sound signal processing has proven to be a
great improvement to the traditional acoustic interpretation of
lung sounds. However, that analysis can be seriously hindered
by the presence of different types of noise originated in the
acquisition environment or caused by physiological processes.
Consequently, the diagnostic accuracy of pulmonary diseases
can be severely affected, especially if the implementation
of telemonitoring systems is considered. The present study
is focused on the implementation of an algorithm able to
identify noisy periods, either voluntarily (vocalizations, chest
movement and background voices) or involuntarily produced
during acquisitions of lung sounds. The developed approach
also had to deal with the presence of simulated cough events,
that carry important diagnostic information regarding several
pulmonary diseases. Features such as Katz fractal dimension,
Teager-Kaiser energy operator and normalized mutual infor-
mation, were extracted from the time domain of healthy and
a pathological lung signals. Noise detection was the result of a
good discrimination between uncontaminated lung sounds and
both cough and noise episodes and a slightly worse classification
of cough events. In fact, detection of cough periods carrying
diagnostic information was influenced by the presence of two
other types of noise having similar signal characteristics.

I. INTRODUCTION

Auscultation of lung sounds (LSs) is a low-cost, practical
and non-invasive technique, therefore very useful in early di-
agnosis and further monitoring of pulmonary diseases. Addi-
tionally, auscultation performed with electronic stethoscopes
has proved to be an important asset which complements
the physician’s interpretation of the auditory information.
In fact, the identification of abnormal acoustic respiratory
sounds is highly dependent on the physician performing
auscultation and has then been drastically improved by using
digital signal processing methods to analyse those LSs.
Telemonitoring p-health systems also rely on sensors, namely
microphones, integrated on wearable vests for long-term
home-based monitoring. Those systems have been shown
to be particularly important in detection and monitoring
of chronic diseases, namely chronic obstructive pulmonary
diseases (COPDs) [1], [2]. The incidence of this disease
has been foretold to increase in the next years and soon
became the third worldwide leading cause of death. This
disease is common in older adults and is characterized by
the presence of adventitious LSs along the normal breathing
cycle, such as wheezes and crackles [2]. Furthermore, COPD

Research supported by the EU Project WELCOME (FP7-611223).

A. Leal, R. Couceiro, J. Henriques, R. Paiva, P. Carvalho and C. Teixeira
are with the Center for Informatics and Systems, Polo II, University
of Coimbra, 3030-290 Coimbra, Portugal {aleal, rcouceir, jh,
ruipedro, carvalho, cteixei}@dei.uc.pt

I. Chouvarda and N. Maglaveras are with the Laboratory of Medical Infor-
matics, Medical School, Aristotle University of Thessaloniki, Thessaloniki
54124, Greece {ioanna, nicmag}@med.auth.gr

is often associated with dyspnea, chronic cough and sputum
production [3].

LS auscultation in non-controlled environments such as
busy clinics or at home can be hampered by different sur-
rounding interferences including background voices, music,
objects’ handling, etc. Furthermore, lung signals can also be
contaminated with noise produced by internal sources such as
movement of the chest, subject’s voice, heart sounds, stom-
ach growls, intestinal and breathing sounds, among others.
Consequently, acquisition of lung signals in unpredictable
noisy environments requires the development of algorithms
able to detect events of noise and reduce its impact on the
further analysis regarding the detection of disease.

In the last fifteen years, few studies have been released
reporting algorithms designed for identification and/or can-
cellation of different noise types contaminating LSs that have
been acquired in non-ideal noisy settings. Emmanouilidou &
Elhilali [4] analysed LSs recorded in the presence of different
types of noise. Features were extracted from the frequency
spectrum (peak width, spectrum slope, power ratio, low-
to-high frequency ratio and harmonicity) and submitted to
classification using support vector machines. Average ac-
curacy was above 91% for clean LSs, background voice
and stethoscope movement type of noises and 85% for LSs
contaminated with electronic interferences. However, each
type of noise was present in individual signals of 0.3-3 sec-
onds. Additionally, two types of signal were predominantly
analysed: LS clips free from noise or contaminated with
background noise.

Spectral subtraction has also been widely used to suppress
noise from lung sounds. Towards that, an external sensor is
usually used to record exclusively surrounding noise during
LSs acquisitions [5], [6] or, alternatively, a noise estimate
can be obtained while the subject is sustaining breath [7].

The purpose of the present study is therefore the detec-
tion of noisy segments introduced along the lung signals.
Afterwards, the uncontaminated LSs contain diagnostic in-
formation can be accurately assessed as to the presence
of abnormal LSs.Assuming the acquisition of long-term
lung signals in non-controlled home-based facilities (home
screening), it is expected to have a great amount of data
available for analysis. Accordingly, the developed algorithm
addresses the identification of the noise periods, with no need
for a cancellation procedure.

II. MATERIAL AND METHODS
A. Data Collection

In this study LSs from two different datasets underwent
analysis. Data were acquired when subjects were in a sitting
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Fig. 1: Lung sound acquisition protocol for the healthy dataset having (a)
external (task 1) and (b) internal (task 2) interferences. Lung signals were
recorded in (c) anterior and (d) posterior chest, with the numbers and the
letters referring to the healthy and pathological dataset auscultation sites,
respectively.

position. Lung signals last on average 60 seconds.

One of the datasets includes 20 healthy volunteers which
agreed with data acquisition and processing under anony-
mous conditions. A protocol was followed during acquisi-
tions in which different types of noise were deliberately
introduced either by an external source or by the subject
participating in the study (see Fig. 1). Subjects were asked
to perform two runs of two distinct tasks. In addition to those
noisy periods willingly produced during acquisitions, other
unpredictable interferences could be heard along the signals
and have also been annotated. Two microphones integrated
in Philips Sensatron data-logger (sampling rate of 4000 Hz)
were attached to different auscultation positions in the chest
(see Fig. 1, positions A and B).

Lung sounds were also recorded in a pathological popula-
tion at the George Papanikolaou General Hospital of Thes-
saloniki, in Greece. The Ethical Committee of the hospital
authorized the acquisition of the data. The seven participants
comprising this pathological dataset were diagnosed with
COPD. During acquisitions, patients were asked to cough
and speak (namely, count from one to ten). Additionally,
interferences such as hair rub and speech and cough in the
background also occurred. All those events were annotated
by the physicians who supervised the acquisition. Cough
and speech periods last on average 5-6 seconds. A single
stethoscope 3M Littman 3200 (sampling rate of 10000 Hz)
was used to record the lung signals in six different auscul-
tation sites (see Fig. 1, positions 1 to 6). These signals were
downsampled to 4000 Hz.

B. Method

An algorithm was implemented in order to accurately
detect noisy segments in lung sounds. In other words, the

developed methodology should be able to identify the periods
when subjects are speaking or moving as well as periods of
signal affected by the surrounding interferences occurring
during acquisitions. The events of cough, however, can not
be considered noise as that is a common symptom of several
pulmonary diseases such as pulmonary fibrosis, COPD and
lung cancer. As result, cough can be used as a screening
feature in clinical practice and will then be considered as a
distinct class in this study.

Therefore, a simple three step rationale was designed
to classify the three different classes: (i) speech and other
noises, (ii) cough and (iii) clean lung sounds. The first step
consists in the discrimination between all occurring events
(including cough, speech and other types of noise) and clean
lung sounds and is followed by a second step aiming to detect
only the presence of cough along the respiratory signals. The
third and last stage corresponds to the classification of the
noisy events (including speech) using the output of the two
previous classifications (see Fig. 2).

More specifically, a binary classification is performed in
each step using the respective extracted features, described in
detail below. A vector of 0’s (class 1) and 1’s (class 2), herein
called detected, is obtained in the end of the classification.
Then, with the information about the location of the events
of cough, speech and other interferences, detectedl, and the
identification of the cough periods, detected?2, it is possible
to detect the segments of noise resorting to logical operations
(see Fig. 2). The binary detected vector is obtained by using
a linear classifier which in turn requires the definition of
a threshold, specific for each feature. For example, if the
value of a given feature in a given window is above a fixed
threshold, that window is classified as contaminated.

The best window and overlap used to span the signals and
also the best threshold that maximizes the discrimination
between two classes were defined in the training phase
of the classification. Having the annotations of the events
happening along acquisitions and extracting features from
a training dataset it was possible to obtain the parameters
corresponding to the optimal performance of the algorithm.
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Fig. 2: Multi-stage algorithm for the detection of noise.




Towards that, combinations of differently sized and over-
lapped windows and also different thresholds were tested.
Taking into account that the minimum duration of the noisy
periods occurring in the signal corresponds to approximately
one second, 0.5, 1 and 2 second windows and 60, 70, 80
and 90 % of window overlap were tested. A total of 100
thresholds, ranging from the minimum to the maximum of
the feature’s amplitude were also tried. These thresholds
were defined to be a percentage of the signal’s amplitude,
introducing adaptivity regarding different types of events
and also different datasets, gathered using specific sensors.
Sensitivity (SE) and specificity (SP) values were obtained
for each combination of the mentioned parameters, being
depicted in a ROC curve. The parameters corresponding to
the values of SE and SP that maximize the curve were then
introduced in the final algorithm which was validated using
a testing dataset (see Fig. 2).

The data acquired during performance of task 2 in the
healthy dataset (20 subjects) was used in the training phase.
During task 1, however, subjects were not asked to simulate
cough hence being only possible to compute specificity
values. Therefore, the task 1 data were used to validate
the algorithm, as well as the pathological dataset (seven
subjects).

Finally, depending on the events to be classified, different
features were computed and are briefly described bellow.
Namely, detection of cough and noise was performed
resorting to the feature Katz fractal dimension (KFD) and
normalized mutual information (NMI) and detection of
cough events, on the other side, involved the computation
of Teager-Kaiser energy operator (TEO).

1) Teager-Kaiser energy operator sum (TEOS): The
Teager-Kaiser non-linear energy operator makes possible to
enhance abrupt discontinuities both in time and frequency
domains and simultaneously minimize smooth transitions
occurring in the signal [8].

The feature, TEOS, is computed by summing the discrete
TEO in a given window w with N samples (see 1).

N-1

TEOS® = 3" ((xw[n])2+xw[n— awn + 1]) (1)

n=2

2) Katz fractal dimension: This feature measures the
complexity of a given signal in the time domain. It depends
on the sum of the Euclidean distance between successive
points (L), on the distance between the first point of the
window and the point of the window at which the distance
is maximal (d) and on the number of steps in the window
n = N — 1, where N is the length of the input data (see 2)
[9], [10].

logy4(n)

KFD = °
logyo (4) +logyo(n)

2)

3) Normalized mutual information (NMI): This feature
is given by the normalized mutual information between a
screened free noise window (X) called reference window,
and the other windows (Y) named test windows into which
the lung signal was divided.

H(X)+H(Y)—H(X,Y)
H(X)

NMI = 3)

NMI provides information about the statistical dependence
between two variables. In this case NMI is computed using
the entropies of the reference (H(X)) and test (H(Y))
windows and its corresponding joint entropy H(X,Y’). The
reference window corresponds to the window in the signal
with the lowest value of TEO.

All calculus were performed in Matlab R2015a on Win-
dows 10 using an Intel® Core™i7-4790K CPU at 4GHz.

III. RESULTS AND DISCUSSION

The results of classification are presented in Tables I
and Il and correspond to the average of sensitivity and
specificity for all participants. Concerning the pathological
dataset, it should be noticed that an algorithm that raises
less false positives has priority over another one returning
less false negatives. In other words, a high specificity means
that the algorithm strictly detected noisy events rather than
pathological lung sounds, decreasing the impact of noise in
the diagnostic. Furthermore, it must also be highlighted that
in the pathological dataset, the lung signals corresponding
to different auscultation sites had not been acquired simul-
taneously. Therefore, each signal was affected by different
types of non-controlled noise and the task was performed
slightly different in every chest location, introducing vari-
ability among auscultation sites.

The detection of cough events in the training dataset
resulted in an higher sensitivity than specificity, which can be
partly explained by the ratio between duration of the cough
events and the size of the entire lung signal (approximately
1/6). Additionally, blocks during which subjects had to per-
form chest movements in task 2 and blocks during which an
object fell in task 1 were classified as cough in a few signals.
Besides those events’ duration being on average 10 seconds
(see Fig. 1), they are sometimes over-simulated turning into a
non-realist interference in the signal. In fact, there are signals
presenting higher amplitude episodes of chest movement and
object falling comparing to cough, either in time domain or
in the frequency spectrum, making it hard to find a robust
feature, amplitude independent, to use specifically for cough
detection.

On the other hand, sensitivity can be affected by the
annotation of each event. For instance, sometimes three
sequential cough simulations were annotated as a block and
the algorithm identified them as individual events instead of
blocks, thus counting for the false negatives and decreasing
sensitivity values. To assess the impact of the annotation
factor, the events from the healthy training dataset were
annotated as individual occurrences and data was classified



TABLE I: Classification results for the healthy dataset.

Task Testing: Task 1 Training: Task 2
Event Cough Cough & Noise Noise Cough Cough & Noise Noise
Parameter | SE Sp SE Sp SE Sp SE Sp SE Sp SE Sp
Channel A - 7622 | 95.06 | 91.57 | 5278 | 93.89 | 99.09 | 92.04 | 89.53 | 9323 | 68.58 | 81.17
Channel B - 80.85 | 89.54 | 94.53 | 51.85 | 96.23 | 96.39 | 9246 | 89.69 | 9534 | 7599 | 85.21
Average - 78.54 | 9230 | 93.05 | 5232 | 95.06 | 97.74 | 92.25 | 89.61 | 94.28 | 7229 | 84.69

for the two options, returning better results for the block
annotations.

Despite the aforementioned reasons, the detection of
cough and noise was satisfactorily accomplished in both
testing and training healthy datasets. In pathological dataset,
however results were far worse that expected. In fact, this
classification is mainly limited by the already mentioned
detection of false negatives resulting from the comparison
of the block type of annotation with the defected vector
comprising individual noisy events.

With regard to the classification of noise, sensitivity and
specificity values reflect the impact of the misclassification
of cough events, with a drastic decrease in the values of
sensitivity comparing to specificity. Classification of cough
and noise, even though with better results will also influence
the final noise detection.

The use of different sensors may also explain the vari-
ability of the obtained results, across datasets. The signal
morphology varies from sensor to sensor and even more
from a microphone to a digital stethoscope. In fact, handling
a stethoscope can cause unpredictable abrasion artifacts,
which include excessive pressure on the patient or slight
movements with the stethoscope chestpiece. That type of
noise is typically reduced when using microphones, as they
are attached to the chest and therefore remain more steady.

IV. CONCLUSIONS

New lung sound denoising methodologies are required
when acquisitions occur in non-controlled conditions, either
at busy hospital facilities or at home, while making use of
telemonitoring systems. In fact, there is a lack of suitable
algorithms to detect the presence of noisy events in lung sig-

TABLE II: Classification results for the pathological testing dataset.

Event Cough Cough & Noise Noise
Parameter SE Sp SE Sp SE Sp
Channel 1 | 90.50 | 83.18 | 59.09 | 91.80 10.77 | 8791
Channel 2 | 75.81 | 82.89 | 71.99 | 88.39 19.77 | 84.57
Channel 3 | 73.59 | 81.93 | 67.72 | 92.20 | 24.23 | 88.14
Channel 4 | 79.53 | 86.36 | 63.54 | 87.79 | 25.60 | 83.74
Channel 5 | 7535 | 81.38 | 72.85 | 69.89 | 37.48 | 71.15
Channel 6 | 8543 | 77.38 | 79.04 | 62.09 | 37.87 | 72.40

Average 80.15 | 82.15 | 69.04 | 82.03 | 26.63 | 81.32

nals including for example vocalizations and/or interferences
from the acquisition environment. Those algorithms should
however be able to identify cough periods as not being a type
of noise but instead as a diagnostic indicator of the presence
of pulmonary diseases. In this study attempts were made
in order to solely detect all annotated noisy events rather
than cough events. The developed algorithm successfully
distinguished cough from the different types of noise with
exception of chest movement and object falling long duration
blocks of interferences. Nevertheless, the study shed light
on new ways to deal with the presence of different types of
noise in lung signals. Future work includes the acquisition of
more lung signals, both healthy and pathological, using mi-
crophones and also the development of multi-class approach.
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