
  

 

Abstract— The noise contamination of the ECG signals 

significantly influence the accuracy of algorithms designed to 

detect several cardiac pathologies such as arrhythmias. 

Therefore, the existence of reliable noise detection algorithms is 

crucial. 

In this paper we present an algorithm to be used in a pre-

processing phase, prior to pathology detection algorithms, by 

identifying noise periods and by evaluating the ECG signals’ 

quality. The proposed algorithm was designed to detect noisy 

periods based on single-lead ECG signals. Two main features 

were considered: the error of the reconstruction by Principal 

Component Analysis (PCA) and a high frequency feature, the 

high-pass filtered signal’s module.  

The algorithm was tested with different noise types, at 

different SNR levels. With a test set of 49 signals from different 

leads, comprising approximately 20 hours of recording, the 

average results were 94.08% and 89.88% of sensitivity and 

specificity, respectively. The average computational time was 

0.14s per 5 minutes of ECG using MATLAB code. 

Additionally to the accurate results and low computational 

cost achieved, the proposed algorithm is robust to different 

noise types and to the presence of arrhythmia patterns.  

I. INTRODUCTION 

In an ambulatory acquisition environment the ECG signal 
may be corrupted by various sources of noise, like electrical 
activity originated by muscular activity (electromyogram 
(EMG)), baseline wandering due to the respiration, or even 
electrode motion, caused mainly by the patient’s corporal 
position changes. The last one presents a predominant 
prevalence, due to the nature of the acquisition, and the lack 
of control.  

One simple way to deal with noise contaminations lies in 
discarding the signal segments where those artefacts are 
identified. In [1], before the separation of sources, a measure 
of Gaussianity, the neguentropy, is used to evaluate the 
presence of noise segments. In [2], a morphological filtering 
is performed in order to detect noise segments. The use of 
accelerometers are explored to detect movement noise in [3]. 
In [4], statistical metrics are investigated across the first 
intrinsic mode function (IMF) of an empirical mode 
decomposition (EMD). In [5], statistical properties are 
explored on a Laplacian model of the ECG. In [6], the RMS 
error is computed between the original signal and the 
approximation resulted from the reconstruction by PCA, 
using some of the top eigenvectors. In [7], a set of detectors, 
each one specific to one noise or interference type, is 
explored. At the end the effects of each interference are 
weighted to the overall signal quality. 
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In this paper we describe a fast and reliable methodology 
for noise detection in ECG. This algorithm was designed in 
order to be integrated in a tele-monitoring system from the 
WELCOME project (http://www.welcome-project.eu), 
therefore, it was optimized to the characteristics of the 
referred project, namely ECG’s with 5 minutes of duration 
and sampled at 250 Hz. The noise assessment was performed 
with consideration of two features: the error of the 
reconstruction by Principal Component Analysis (PCA) and 
the high-pass filtered signal’s module. 

II. MATERIALS AND METHODS 

A. Data 

Since the referred tele-monitoring system is still in 
development, we used the ECG signals provided by 
Physionet (MIT-BIH Arrhythmia Database [8][9]) and noise 
records from the MIT-BIH Noise Stress Database also from 
Physionet [10][9], all sampled at 360Hz. Three types of noise 
were present in these records, the baseline wandering (BW), 
the EMG artifact (MA), and the electrode motion (EM) 
artifact. To add noise to the ECG signals at different SNRs, 
we used the ‘nst’ function from the WFDB Software Package 
also provided by Physionet [9], based on a peak-to-peak 
amplitude to calculate the gains to apply to the noise records. 
All the signals were resampled to a sampling frequency of 
250 Hz. 

Based on the overall quality of the signals we extracted a 
total of 55 ECGs from the entire dataset, 25 of lead II (625 
min), 21 of lead V1 (525 min), 4 of lead V2 (100 min), and 5 
of lead V5 (125 min). This selection was made to prevent the 
adverse effect of having noise periods left to annotate, and 
thus, affecting the algorithm’s specificity. Also, with the 
objective of having a better insight about the algorithm 
capabilities on detecting different noise types at different 
SNR’s. 

The chosen dataset was divided it in two subsets, one for 
training, and another for testing. We parameterized our 
algorithm on 6 different signals of lead II, namely the records 
201, 205, 213, 217, 223 and 231, comprising a total of 150 
minutes. We have chosen this records due to its high quality 
signal and the presence of various types of arrhythmias, in 
order to determine the parameters that best discriminate the 
noise periods, keeping a low sensitivity to arrhythmia 
patterns. 

B. Algorithm 

The focus of this algorithm is the detection of noise 
periods in ECG signals with high adaptation to different 
leads. It also aims to evaluate the signal’s quality depending 
on the amount and duration of the noise periods. We did not 
choose a noise reduction strategy since there is a great 
amount of available ECG data (in a tele-monitoring context), 
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and the referred strategy may distort the original signal and 
lose valuable information. 

So we choose to adopt the strategy of removing the noisy 
periods. The noise detection method comprises four main 
stages: 

 A preprocessing stage where baseline shifts are 
removed and signal is normalized; 

 An R-peak detection stage; 

 A feature extraction stage where two features used 
for classification are computed, namely: the 
approximation error by PCA [6] and the high-pass 
filtered signal’s module; 

 And a final stage where the assessment of noise 
corruption is performed in 4 seconds windows 
recurring to the main features. 

A diagram that generally depicts the algorithm is shown 
in Figure 1. 

1) Preprocessing:  
The algorithm was optimized for 5 minutes segments of 

ECG signal. If the signal is longer than 5 minutes, the signal 
is truncated. In each signal, the baseline shifts are removed 
recurring to a high-pass FIR filtering with a cut-off frequency 
of 0.5 Hz [11]. 

2) R-peak detection:  
In order to obtain the beat matrix to perform the 

approximation by PCA, first the ECG is segmented in 
heartbeats. To do so, we use a R-peak detector based on the 
Pan & Tompkins algorithm [12]. In order to detect the R-
peaks a band-pass filtering between 5 and 20 Hz was 
implemented. Afterwards, the energy of the signal is derived 
with the square of its first derivative. The energy is then 
smoothed by a moving average filter. The modification 
performed in the Pan & Tompkins algorithm is in the 
threshold used to assess the peaks locations, which is 
adaptive. The threshold is derived by the result of a moving 
average filter with a span of 2 seconds on the resulted energy 
vector. This modification is made to take in account the 
different possible beat amplitudes. 

Then, a removal of the peaks corresponding to a RR 
interval lower than 100ms is implemented. As the process of 
filtering causes a phase shift compared to the original/raw 
signal, the real peak locations are identified by finding the 
absolute maximum on the original signal resorting to a back 
search of 150 ms from the energy peaks locations. 

If the rate of beats per minute is below 25 or above 200, 
the whole 5 min segment is discarded. This is because of the 
physiological impossibility of this heart rate values, and 
indicates a disconnection of the electrodes from the skin or a 
high prevalence of noise.  

3) RMS error of the approximation by PCA: 
The PCA is performed on the beat matrix (M), which 

consist in one beat signal per line. Each beat signal Bi in M is 
obtained from the adjacent R-peaks locations (Ri−1 and Ri+1) 
of the current R-peak location, Ri (see (1) and (2)). 

Bi
reach = min{(Ri − Ri−1) 2⁄  ;  (Ri+1 − Ri) 2⁄ } (1) 

Bi = S[k], k = Ri − Bi
reach, … , Ri − Bi

reach (2) 

In (1), Bi
reach is the number of samples used to find the 

extremities of each beat in signal S (see (2)). As the lengths 
of each beat are different we must perform a resampling to 
equalize all the beat lengths in order to perform the PCA. The 
chosen length is 125 samples. All the beats in M suffer a min-
max normalization.  Then we derive the eigenvalues and the 
eigenvectors of the covariance matrix of M, and make the 
reconstruction of the beats matrix based only on the 
eigenvectors that provide at least 98% of the initial total 
variance (see (3)). This value was found as the best to 
discriminate between noise and clean periods according to a 
ROC analysis. 

M′ = MVVT (3) 

In (3), the matrix M′ is the result of the reconstruction of 
M based only on the most significant eigenvectors, V. 

RMSerr[i] = √∑(M′[i, j] − M[i, j])2

125

j=1

 (4) 

In (4), the vector RMSerr is the root mean square error per 
beat between the original beats and the approximation beats. 
This vector is one of the features used to assess the presence 
of noise in ECG segments. Finally, the error sequence is 
smoothed with a moving average filter. 

4) High pass filtered signal’s module: 
The second feature used to assess the presence of noise is 

the module of the result of a high-pass 100th order FIR filter 
with a cut-off frequency of 90 Hz applied to the original ECG 
(HFX). The value of 90 Hz corresponds to the best 
discriminative frequency between noisy and clean periods 
according to a ROC analysis.  

 
Figure 1. Diagram of the noise detection algorithm in ECG. 
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5) Noise assessment in 4s segments and thresholding: 
The assessment of corrupted periods is done by 

windowing the whole signal in 4 seconds chunks with 50% 
of overlap, and by examining the two previously reported 
features in that time frames. The 4 seconds window was 
found to have the sufficient length to determine if there is a 
disconnection of the electrodes based on the beats presence, 
as also the noise corruption of a given window. Before 
windowing, thresholds are defined in order to evaluate what 
is and what is not noise. These thresholds are not fixed to 
specific values instead they change in each one of the 
analyzed signals. To set them, we must first look for noise 
free periods. The clean periods correspond to the 3 segments, 
each with 10 beats, with minimum RMSerr and no overlap. 
The average RMSerr of those segments is taken as our 
reference error for clean periods, REFerr. The thresholds for 
the first feature are derived from this value as shown in (5) 
and (6). 

th1err = f1err × REFerr (5) 

th2err = REFerr + f2err × (th1err − REFerr) (6) 

In (5) and (6), th1err and th2err correspond to the 
adaptive thresholds for the first feature, RMSerr. The 
constants f1err and f2err were found in the training stage 
using a ROC analysis and correspond to 2 and 0.5, 
respectively. To find the thresholds for the second feature, a 
similar methodology is followed. The same periods of time 
used to assess REFerr are used to calculate the mean value of 
HFX, named REFHF (see (7) and (8)). 

th1HF = f1HF × REFHF (7) 

th2HF = REFHF + f2HF × (th1HF − REFHF) (8) 

th1HF and th2HF correspond to the adaptive thresholds 
for the second feature, HFX. In the same way as for th1err 
and th2err, f1HF and f2HF are constants found in the training 
stage in the ROC curve and correspond to 1.115 and 0.6, 
respectively.  

The reason to choose the RMSerr feature to look for clean 

periods lies in its highly sensitivity to noise. One may ask, 
why not just use this feature for classification if it is so 
sensitive. The reason is that it is also sensitive to uncommon 
heart beat types, which normally corresponds to abnormal 
heart beats and rhythms that we want to diagnose. On the 
other hand, the HFX feature does not discriminate between 
different heart beats or rhythm types, even if it has not the 
noise sensitivity of RMSerr. The combination of the two 
features and the consideration of multiple thresholds provide 
the algorithm with a more founded decision rule to assess 
whether a 4s segment signal is noise corrupted or not. Before 
the final decision rule in (9), in each 4s chunk it is evaluated 
if there are beats detected by the R-peak detector, if not, the 
whole chunk is considered as non-quality segment. 

IF (max{HFX
w

} > th1HF &  max{RMSerr
w

} > th2err) 

 OR 

 (max{RMSerr
w } > th1err &  max{HFX

w} > th2HF) 

(9) 

In (9), max{RMSerr
w } and max{HFX

w}  represent the 
maximum values on the 4s window of the first and second 
features, respectively. If the condition is true, then the whole 
window is classified as noise corrupted. Figure 2 shows an 
example of the features’ response to a contaminated signal. 

III. RESULTS  

All the results were computed using MATLAB version 
R2013b and a 4.00GHz Intel Core i7-4790k processor. To 
see the influence that different noise types have on a 
detection algorithm, we tested the corrupted signals at several 
SNR’s. 

Based on the results of TABLE I, we consider that the 
noise influence is only critical in the ranges: [-6, 18] dB of 
SNR for the electrode motion (EM) noise; [-6, 24] dB for the 
muscle artifact (MA) noise; and [-6, 12] dB for the baseline 
wandering (BW) noise.  The BW noise has less impact at 
higher SNR levels because this noise type is easily 
minimized with a detrend operation. ECG detrend is a typical 

 

Figure 2- Result of the noise classification performed in an ECG signal with one noise corrupted period. 
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procedure performed by the majority algorithms, thus making 
BW less troublesome [11]. 

In the aforementioned noise ranges the results on noise 
detection where of 94.08% of sensitivity and 89.88% of 
specificity, as presented in TABLE II. 

IV. DISCUSSION 

The results in TABLE II show a high sensitivity and 
specificity in noise detection and also that the accuracy of the 
algorithm does not vary significantly in different leads, 
suggesting a good adaptability.   

A drawback arising when trying to assess noise 
contaminated periods in ECG signals relies in the algorithm’s 
possibility to detect abnormal heartbeats or rhythms as noise 
therefore misclassifying periods with value diagnostic 
information. It is then essential to evaluate if the false 
positives are correlated with abnormal heartbeats or rhythms. 
Our algorithm is capable of a good discrimination between 
noise and pathological periods, achieving a low sensitivity 
(below 10%) in the majority of rhythms types, namely atrial 
fibrillation and flutter, bradycardias, pre-excitation and paced 
rhythms, as well heart blocks and ventricular bigeminy and 
trigeminy. The only alarming result in the false positive 
analysis is the 78.87% detection rate on the supraventricular 
tachyarrhythmia rhythm in lead MLII, i.e., the developed 
methodology misclassifies these pathological periods as noise 
in 78.87% of the times. On the other hand, the whole test 
dataset only has 14 seconds of this rhythm type in the clean 
periods, thus so, there is not sufficient statistical size to infer 
with certainty about the algorithm’s sensitivity on this rhythm 
type. 

The highest precision documented in the literature is 
96.63% and 94.74% of sensitivity and specificity, 
respectively, in the ECG noise detection context, recurring to 
an EMD based algorithm [4]. However, the authors only 
consider noise corruption in the periods where the R-peaks 
are not clearly recognizable, indicating that the documented 
precision is only correspondent for noise corrupted signals at 
very low SNR levels. Our approach is capable of detecting 
noise even when the R-peaks are clearly recognizable, 
suggesting a higher sensitivity to noise. The computational 
time of the EMD based algorithm is documented in [4] to be 
0.2s per 5s of ECG signal at sampling frequency of 180Hz. 
The computational time of our algorithm is 0.14s per 5 
minute ECG signal with a sampling frequency of 250 Hz. 

V. CONCLUSION 

The noise detection algorithm in ECG demonstrates a 
high precision and fast performance, as well as a good 
adaptability for different leads and high specificity even in 
pathological signals. The results indicate that it is a suitable 
algorithm to integrate a Tele-monitoring system. Future work 
will include real-world testing, as also an analysis on the non-
tested leads. 
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TABLE II. Results for each lead and noise type at critical SNR levels. 

 
EM MA BW Average per 

Lead 
 

[-6, 18] dB [-6, 24] dB [-6, 12] dB 

 
SS SP SS SP SS SP SS SP 

II 97,24 89,92 95,69 90,30 92,84 89,39 95,26 89,87 

V1 94,12 88,95 94,71 89,20 96,39 88,68 95,07 88,94 

V2 95,86 90,15 94,88 89,57 96,38 88,40 95,71 89,37 

V5 90,76 91,60 90,66 90,88 89,39 91,52 90,27 91,33 

          
Avg 94,49 90,16 93,98 89,99 93,75 89,50 

94,08 89,88 

TOTAL 

 

TABLE I. Results on the influence that different noise types have on 
the R-peak detector at different SNR levels. These results were 
computed on the MLII test data. The results on the clean signals were 
99.39% and 99.64% of sensitivity (SS) and specificity (SP), 
respectively. 

Noise 

type 
EM MA BW 

SNR 

(dB) 
SS (%) SP (%) SS (%) SP (%) SS (%) SP (%) 

-6 36,17 27,41 36,82 34,20 88,86 51,19 

0 63,47 43,42 47,48 47,03 95,57 79,24 

6 91,28 67,26 63,40 60,70 98,31 92,38 

12 98,55 92,30 86,29 73,38 99,26 97,76 

18 99,31 98,98 96,90 84,33 99,38 99,34 

24 99,37 99,44 99,30 97,36 99,38 99,54 
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