
  

 

Abstract— The presence of motion artifacts in the 

photoplethysmographic (PPG) signals is one of the major 

obstacles in the extraction of reliable cardiovascular 

parameters in real time and continuous monitoring 

applications. In the current paper we present an algorithm for 

motion artifact detection, which is based on the analysis of the 

variations in the time and period domain characteristics of the 

PPG signal. The extracted features are ranked using a feature 

selection algorithm (NMIFS) and the best features are used in a 

Support Vector Machine classification model to distinguish 

between clean and corrupted sections of the PPG signal. The 

results achieved by the current algorithm (SE: 0.827 and SP: 

0.927) show that  both time and especially period domain 

features play an important role in the discrimination of motion 

artifacts from clean PPG pulses.  

I. INTRODUCTION 

Photoplethysmography (PPG) is a non-invasive, low cost 

tool to continuously monitor blood volume changes in tissue 

as a function of time. It has been accepted by the 

International Standards Organization (ISO) and the 

European Committee for Standardization as the standard 

non-invasive measure of oxygen saturation level since 1987 

[1]. Moreover, this technique has been widely applied in 

many clinical areas such as anesthesia, surgical recovery and 

critical care.  

Motivated by unmet needs in low cost, non-intrusive and 

portable techniques in p-Health, the PPG technique has been 

object of an extensive research in the later decades. Due to 

technological advances in the field of opto-electronics, 

clinical instrumentation and digital signal processing, the 

PPG technique achieved a broader spectrum of potential 

applications, ranging from the field of clinical physiological 

monitoring to the vascular assessment, and autonomic 

function evaluation [2]. 

However, PPG signals can be easily influenced in the 

measurement process which may lead to inaccurate 

interpretation of the PPG waveform. Well-known sources of 

error are ambient light at the photodetector, poor blood 

perfusion of the peripheral tissues and motion artifacts [3]. 

In uncontrolled environments such as the primary and home 

care settings, these potential error sources are more frequent 

and can become a serious obstacle to the reliable use of PPG 

derived parameters in real time and continuous monitoring 
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applications. Therefore, it is essential to provide a signal 

quality or trust metric that provides the subsequent analysis 

algorithms with a level of trust in the derived parameters. 

Although the recent technological advances allowed the 

minimization of some of these limitations, motion artifact 

detection and suppression is still a major challenge in 

research. Indeed, the field of motion artifact and noise 

suppression has been subject of intensive research in the last 

decade. Various approaches have been investigated, where 

the corrupted signal is recovered or reconstructed by 

applying signal processing techniques such as adaptive 

filtering techniques [4-6], time-frequency analysis [7, 8] and 

source separation techniques [9]. However, PPG signals 

severely contaminated by noise and motion artifacts show 

dramatic changes in the waveform morphology, which 

compromise the signal quality and therefore its suitability 

for further analysis. An alternative is the robust detection of 

PPG signal sections corrupted by noise and motion artifacts. 

Techniques such as morphological analysis [3] and higher-

order statistical analysis [10] have been proposed in this 

research field. 

In this paper, a motion artifact detection algorithm is 

presented. The proposed methodology is based on the 

analysis of the time and period domain characteristics of the 

PPG signal. The NMIFS algorithm [11] is used to select the 

most relevant features which are used as inputs to a Support 

Vector Machine (SVM) classification model.  

The reminder of the current paper is organized as follows. 

In section II, the experimental protocol is presented. The 

proposed methodology is introduced in section III. The 

results and respective discussion are presented in section IV. 

Finally, the conclusions are summarized in section V. 

II. EXPERIMENTAL PROTOCOL 

To evaluate the performance of the proposed algorithm, a 

data collection study was conducted in the Faculty of 

Sciences and Technology of the University of Coimbra 

aiming at the simultaneous collection of 

electrocardiographic (ECG) and photoplethysmograpic 

(PPG) signals from 8 healthy volunteers, aged 27.3 ± 3.7 

years and with BMI 24.4 ± 2.8 kg/m
2
. 

The PPG waveform was recorded from the tip of the 

index finger using the transmissive mode infrared finger 

probe, while the ECG was recorded using Einthoven-II lead 

configuration. The PPG and ECG signals were recorded 

using a HP-CMS monitor and were digitized at a sampling 

frequency of 125 Hz and 500 Hz, respectively. 

In order to conduct a wide variety of motion artifact 

patterns, the subjects were asked to execute two runs of 

eleven different types of hand and body movements, 
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resulting in 22 records of 60 seconds for each subject. The 

movements are described as follows: 1) Disturbance of the 

PPG probe, causing variations in the contact point between 

fingertip and probe; 2) Gently bending of the index finger; 

3) Repeated movement of the wrist left and right; 4) Shaking 

the wrist; 5) Repeated movement of the epsilateral arm in 

the horizontal plane; 6) Repeated movement of the 

epsilateral arm in the vertical plane; 7) Lifting and lowering 

a book with both hands; 8) Repeated tapping of the table 

with the index finger; 9) Repeated raising and lowering of 

the arm; 10) Repeated sitting down and standing up; 11) 

Slow walking in a straight line. Each of the movements was 

performed in the 20 seconds centre epoch of the record. The 

records were annotated by a clinical expert. 

III. METHODS 

The proposed methodology for the detection of motion 

artifacts consist in the following stages: a) Pre-processing 

and baseline removal; b) Segmentation; c) Feature 

extraction; d) Feature selection and e) Classification.   

A. Pre-processing 

The goal of the pre-processing stage is to remove the 

frequency components that do not represent the fundamental 

features of the PPG signal. Firstly, the spectral components 

above 18Hz are filtered using a 7
th

 order low-pass 

Butterworth filter. Additionally, a 2 second window moving 

average filter is applied to derive an approximation of the 

PPG signal baseline with spectral content below 0.23Hz, 

which is subtracted from the original PPG signal.  

B. Segmentation 

In the segmentation step, the PPG signal is firstly 

differentiated using a five-point digital differentiator, 

resulting in 1
st
 to 3

rd
 order derivatives. To detect the PPG 

pulses, a histogram based threshold detection algorithm was 

applied to detect the most significant local maxima of the 1
st
 

derivative and the corresponding local minima of the 3
rd

 

derivative. The PPG beat onset/offset was defined to be the 

most relevant peak prior to the detected most relevant valley. 

C. Feature extraction 

The feature extraction approach is based on the analysis 

of the time and period domain characteristics of the PPG 

signal. In the time domain analysis, the main morphological 

characteristics of the PPG pulses are assessed resulting in 7 

features. In the period domain analysis, the characteristics of 

principal components of the period spectrum and their 

relationships are evaluated, leading to the extraction of 19 

features. In summary, 26 features were extracted from the 

time and period domain analysis. 

1) Time domain analysis 

The morphology of the PPG pulses and their relationships 

with the neighboring pulses are analyzed, leading to the 

definition of the following characteristics:  1) pulse 

amplitude; 2) pulse length; 3) pulse rate; 4) trough depth 

difference; 5) peak height difference; 6) pulse skewness; and 

7) pulse kurtosis. 

As illustrated in Figure 1 the pulse amplitude is defined as 

the difference between the pulse peak height and its 

preceding trough depth (pulse onset), the pulse length is the 

time interval between the onset of two consecutive pulses 

and the pulse rate is the time interval between maxima of 

two consecutive pulses. The difference between the peak 

height and peak depth of two consecutive pulses was also 

considered. Furthermore, the symmetry and “peakedness” of 

the PPG pulses are assessed using skewness and kurtosis 

measures, respectively. From the analysis of various types of 

PPG pulses, we observed that when motion artifacts are 

present, the aforementioned characteristics vary 

significantly. Contrarily, in clean PPG signals the PPG 

pulses are similar and therefore there is almost no variation 

in its characteristics. To capture these variations, the change 

in the pulse characteristics is evaluated using eq. (1), 

resulting in the features F1 to F7. 

                            (1) 

where,    is the i
th

 characteristic and j is the pulse (section) 

index. 

2) Period domain analysis 

To assess the periodic characteristics of the PPG signal, 

the Discrete-time Short Time Fourier Transform (STFT) was 

applied. Let the                 be the sequence defining 

the section of the PPG signal under analysis. For a sampling 

frequency Fs, the frequency “bin” k of the N-point STFT 

corresponds to the frequency fk=k.Fs/N Hz, and 

                              

   

   

 (2) 

is the expression for the DFT of the windowed sequence 

x[n+m]w[m] of the k
th

 frequency bin. To derive the STFT in 

the period domain, let s=1,2,…,N-1samples be the range of 

possible periods in the aforementioned sequence. The 

frequency fk corresponds to the period sk=1/fk=N/(k.fs) 

seconds =N/k samples. Substituting into (2), for the period s, 

gives the STFT in the period domain, i.e. PD-STFT. 

                           

   

   

 (3) 

To choose the size of the sequences (L) and the forward 

step (Δn), that is related to the section overlapping (L-Δn) 

one must take into account: i) the stationarity of the analyzed 

signal section; ii) the tradeoff  between the PD-STFT period 

 

Figure 1.  Time domain characteristics of the PPG data. 



  

and temporal resolution; iii) the temporal resolution needed 

for the subsequent analysis.    

Considering the aforementioned issues, the PD-STFT was 

applied using a rectangular-shaped sliding window with 

approximately 3 times the fundamental period of the PPG 

signal and the overlap between consecutive windows was set 

to be approximately 85%. Thus, we assume the stationarity 

of the signal in the analyzed section and guarantee an 

appropriate frequency resolution of the computed PD-STFT. 

Furthermore, by choosing 85% window overlap size we 

ensure that the analysis output has the temporal resolution 

necessary for further analysis and motion artifact detection. 

The fundamental period was extracted and updated based on 

the periodic analysis of small sections (5s) of the PPG 

signal.  

The resulting stream of period domain spectra goes into 

analysis for feature extraction. The feature extraction 

procedure resorts on the principle that, similarly to the 

morphology of the PPG signal, the PD-STFT also exhibits a 

regular shape representing the main features of the signal. 

From an analysis of the PD-STFT of various classes of PPG 

[12] one observed that the PD-STFT of a clean PPG signal 

consists of three major spikes with different locations, 

lengths and amplitudes. The most relevant spike corresponds 

to the fundamental period of the PPG signal, i.e. the length 

of the cardiac cycle (beat). The remaining spikes are thought 

to be associated with the location and amplitude of the 

waves reflected from the periphery towards the aorta. Based 

on these assumptions, the power spectra of several 

uncorrupted and motion corrupted PPG sections were 

analyzed. We observed that the power spectra of PPG 

sections corrupted with motion artifacts presented several 

random components that do not represent the fundamental 

characteristics of the underlying uncorrupted signal, 

resulting in a random and significant change in the period 

domain characteristics. 

To capture these variations, the PD-STFT of each PPG 

section was analyzed and the following characteristics were 

defined (see Figure 2)): 1) height (H); 2) location (L); 3) 

width (W); and 4) area (A). These characteristics were 

evaluated for each of the three most relevant spikes (  
  

,for 

i=1,…,4 and j=1,2,3). Additionally, the relationship between 

characteristics of the two most relevant peaks (   and   )  

was also assessed and defined as follows: 

     
     

               (4) 

The area of the remaining spectrum (  
  ) and its 

relationship with the area of the three most relevant peaks 

was also considered: 

   
  

  

  
     

     
   (5) 

From abovementioned analysis 18 features (F8 to F25) were 

extracted, corresponding to the rate of change (see eq. (1)) of 

the aforementioned characteristics. 

Assuming that the main periodic characteristics of the 

PPG signal are represented by the most relevant components 

in the distribution and that the remaining components are the 

result of noise and motion artifacts, a model of the original 

distribution was created based on the 3 most relevant spikes, 

using Gaussian functions. The parameters of each Gaussian 

are determined based on the height, location and width of the 

detected spikes. The comparison between the computed 

model (  ) and the original distribution (  ) is then 

evaluated using Kullback–Leibler divergence measure (eq. 

(6)). 

                        
     

     
 

 

 (6) 


The rationale behind this comparison is that the increase 

in the spectrum complexity, as a result of the inclusion of 

random components, can be detected by an increase in the 

Kullback–Leibler divergence. 

D. Feature selection 

In the features selection step, the objective is to select a 

subset that contains the most relevant and least redundant 

features for the discrimination of motion artifacts, enabling 

an enhanced performance of the classification model to be 

built upstream. Additionally, improvements can be expected 

in classification model’s generalization capability and 

interpretability. The feature selection was performed using 

the algorithm NMIFS [11] which is based on the 

maximization of the normalized mutual (nMI) information 

between the extracted features and the classes, and 

minimization of the inter-feature nMI. Additionally, a ROC 

analysis was also performed to evaluate the capability of 

each feature to discriminate motion artifacts from clean 

PPG. 

In Figure 3 we present the scores of the extracted 

features, that is: i) the NMIFS “score”; ii) the feature 

 

Figure 2.  Major components of the PPG signal in the period domain. 

 

Figure 3.  NMIFS and ROC analysis “scores” for the 26 extracted features. 

 



  

relevance (nMI); and iii) the ROC analysis scores 

(sensitivity, specificity and accuracy for the optimal 

threshold). From the analysis of the computed scores, the 8 

most relevant features were selected, corresponding to 3 

features from the time domain (F1,F4 and F6) and 5 features 

from the period domain (F17, F19,…, 21, F23). 

E. Classification 

A Support Vector Machine (SVM) has been adopted for 

the discrimination between motion artifacts and clean PPG. 

The classification process was performed using the 

algorithm C-SVC [13], with a radial basis function kernel. 

In order to find the parameters gamma ( ) and cost ( ) 

that better suit the present classification problem, a grid-

search method using 10-fold cross-validation was used.  

The proposed methodology was validated using a 10-fold 

cross-validation scheme and repeated 20 times. 

IV. RESULTS AND DISCUSSION 

The 176 recorded signals were analyzed and each section 

was classified using the proposed methodology and 

compared to the manually annotated classification. The 

performance of the algorithm was evaluated using a 10-fold 

cross validation scheme with the following metrics: 

sensitivity (SE) and specificity (SP), and accuracy (ACC). 

As can be observed in TABLE I the algorithm achieved a 

good performance in the classification of both corrupted and 

clean PPG sections, with an overall accuracy of 88.6%. 

From TABLE I it can be observed that the majority of the 

movement artifacts are identified with an accuracy over 0.9. 

On the other hand, there is decrease in the detection 

performance for 4 movement artifacts, which is possibly 

associated with low corruption of the PPG data and/or an 

increase in the periodicity in the performed movements. 

V. CONCLUSION 

In the current paper a novel algorithm for the detection of 

motion artifacts in photoplethysmographic signals has been 

proposed. The discrimination between motion artifact 

corrupted and uncorrupted pulses was performed based on 

the analysis of the PPG signal only in the time and period 

domain, resulting in the extraction of 26 features. In order to 

simplify the classification model, the extracted features were 

ranked using the NMIFS algorithm with 8 selected features. 

The discrimination between corrupted and clean pulses was 

performed using an SVM model. 

The proposed model was tested in 8 subjects, and 11 

different motion sources. To validate the proposed algorithm 

a 10-fold cross-validation scheme was repeated 20 times. 

The results achieved by the current algorithm (SE: 0.827 and 

SP: 0.927) suggest that the characteristics of periodic 

components of the PPG signal can be used as discriminative 

features for motion artifact detection.   

Future work will focus on the extraction of more 

discriminative features. According to [10], the clean and 

corrupted PPG data exhibit different bispectral 

characteristics which can be used to improve the 

performance of the current algorithm. 
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TABLE I . PERFORMANCE RESULTS OF THE PROPOSED ALGORITHM 

Context 
Performance metric (avg ± std) 

SE SP ACC 

All movements 0.827±0.01 0.927±0.007 0.886±0.006 

Movement 1 0.865±0.041 0.932±0.021 0.905±0.017 

Movement 2 0.893±0.037 0.953±0.016 0.930±0.020 

Movement 3 0.561±0.043 0.958±0.017 0.794±0.025 

Movement 4 0.816±0.038 0.955±0.015 0.902±0.019 

Movement 5 0.753±0.044 0.910±0.024 0.847±0.028 

Movement 6 0.881±0.028 0.943±0.021 0.920±0.017 

Movement 7 0.883±0.021 0.947±0.014 0.919±0.017 

Movement 8 0.721±0.046 0.913±0.030 0.835±0.019 

Movement 9 0.843±0.027 0.904±0.028 0.876±0.018 

Movement 10 0.923±0.018 0.886±0.033 0.903±0.018 

Movement 11 0.938±0.024 0.898±0.030 0.915±0.020 

 


