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Abstract—Computer-aided diagnostic has become a thriving
research area in recent years, namely on the identification of
skin lesions such as melanoma. This work presents a novel
approach to this field by exploiting the 3D characteristics of
the skin lesion surface, advancing beyond common features such
as, shape, colour, and texture, extracted from dermoscopic RGB
images. To this end, a relevant set of features was investigated
to obtain 3D skin lesion characteristics from images with depth
information. These features were used to train a Bag-of-Features
model to distinguish between malignant and benign lesions, also
discriminating melanoma from all other lesion types. Despite the
large class imbalance, often present in medical image datasets,
the feature set achieved a top accuracy of 73.08%, compris-
ing 75.00% sensitivity and 66.67% specificity when classifying
between malignant and benign lesions, and 88.46% accuracy
(100.00% sensitivity and 86.96% specificity) when discriminating
melanoma from all other lesion images, using only depth informa-
tion. The achieved experimental results indicate the existence of
relevant discriminative characteristics in the 3D surface of skin
lesions which allow the improvement of existing classification
methods based on 2D image characteristics only.

Index Terms—Medical Image Analysis, 3D Features, Classifi-
cation, Melanoma, Skin Lesion

I. INTRODUCTION

The importance of computational methods for skin lesion
classification arises from the fact that one of the most lethal
types of skin cancers, the melanoma, is developed from
pigmented melanocytes, which are becoming increasingly
common in the global population [1], and yet they are hard
to distinguish from other types of benign lesions. Computer
vision techniques to automatically identify melanoma have
been under study for decades and automatic techniques for
detection and classification are becoming increasingly useful
to assist dermatologists [2]. In the pursuit of a solution,
current systems tend to use the same type of information that
is used by dermatology experts, dermoscopic images (2D).
However, other image modalities or data dimensions exist
which are fairly unexplored. One of these modalities is 3D
imaging (e.g., stereo), which has already proven to enhance
skin lesion classification performances due to the added depth
information [3], [4]. In this work, only the 3D information is
used for feature extraction and classification. Such information
is computed from dense light fields captured by a light field
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camera, which provides multiple views of the visual scene
with small disparities.

Various feature extraction methods resorting to 3D infor-
mation are already described in the literature, as presented in
Section II. From these, a total of 11 were selected to be used
in this work to either characterise the underlying 3D image
globally or characterise it in key local regions. The adequate
selection of these regions is also a research topic, therefore two
different methods were studied in this work.

The main contribution of this paper is to demonstrate that
3D information from skin lesions contains relevant discrimi-
native features capable of providing high classification preci-
sion of melanoma versus nevus. Such third dimension, that is
beyond conventional colour, texture, and shape, proves to be
beneficial for the classification process. This work does not
aim to use RGB information nor improve existing algorithms,
it is exclusively to evidence that skin surface topology has
potential discriminative information.

The remainder of the paper is organised as follows: Sec-
tion II presents the current state of the art, including previous
works that inspired this work. Section III provides brief de-
scriptions of feature extraction and keypoint detection methods
relevant to this research. Section IV presents the proposed ap-
proach, describing feature extraction and relevant classification
details. Section V presents and discusses the attained results
and Section VI highlights the conclusions and future work.

II. BACKGROUND

Most available skin lesion datasets used in related litera-
ture include a single modality – 2D dermoscopic images. Al-
though significant performances have already been achieved
using these single modality datasets [5], the low granularity of
the information might still pose limitations to the classification
problem. Alternative modalities have already shown to be effi-
cient in identifying the type of skin lesion using, for example,
3D stereo imaging techniques [3], [4]. However, the research
on 3D features of skin surface in either melanoma identifica-
tion or any other related studies involving skin lesions is very
scarce. Nevertheless, recent studies indicates that depth infor-
mation can be useful and methods to synthetise 3D information
have been investigated in 2D datasets, such as [6]. Real 3D
information of skin lesions was also made available through a
dataset named Skin Lesion Light-fields (SKINL2) [7].

Since Bag-of-Features (BoF) models [8], [9] were proposed
for skin lesion classification in 2008 [10], several research
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works have been published resorting to it [11]. In image clas-
sification, a bag of features is a vector of occurrence counts
of a dictionary of local image features, which can also be
understood as a histogram over extracted image features. This
type of structure can be employed for classification resort-
ing to a Support Vector Machine (SVM) classifier. The im-
age features that compose the BoF models are designed for
object detection, classification, or retrieval generally fall un-
der two base types: signature or histogram. Signature-based
feature extractors aim to register specific object characteris-
tics or attributes capable of providing discrimination against
other objects or scenes – effectively, a signature of a set is a
lossless representation of its histogram. Examples of signature
based features extractors are: Normal Aligned Radial Features
(NARF) [12], Radius-based Surface Descriptor (RSD) [13],
[14], Global RSD (GRSD) [15], and Principal Curvatures (PC)
[16]. In contrast, histogram-based extractors aim to produce a
summarised representation of the underlying data – typically,
the presence of a set of features and their occurrence count.
Examples of histogram based features extractors are: Rotation
Invariant Feature Transform (RIFT) [17], Point Feature His-
togram (PFH) [18], Fast PFH (FPFH) [19], [20], Signature of
Histograms of OrienTations (SHOT) [21], [22], Ensemble of
Shape Functions (ESF) [23], 3D Shape Context (SC3D) [24],
and Unique Shape Context (USC) [25]. More details on these
features ( [12]–[25]) are described in Section III.

In some cases, having a large number of features can be a
problem – e.g., when several features are extracted but their
relevance for the intended solution is unknown, or when there
are insufficient data samples. A useful method to reduce the
number of features, by selecting the most meaningful ones, is
the Neighborhood Component Analysis (NCA) [26]. NCA is
a non-parametric algorithm that enables feature selection with
the goal of maximising prediction accuracy of regression and
classification algorithms.

III. KEYPOINT DETECTORS AND DESCRIPTORS

As mentioned above, BoF classification operates over ex-
tracted image features. Some of these features may require
additional methods (hereinafter “keypoint detector”) to pre-
determine keypoint locations to operate on. Examples of
keypoint detectors and relevant feature extractors for 3D
characterisation are detailed in the following:
• In [12], the authors define the NARF, which comprises

two distinct algorithms: a keypoint detector and a feature
extractor that operates on found keypoints. The keypoint
detector has two major characteristics. Firstly, keypoints
are extracted in areas where the direct underlying surface
is stable and the neighbourhood contains major surface
changes. The resulting keypoints are located in the local
environment of significant geometric structures and not
directly on them. Secondly, NARF takes object borders into
account, which arise from view dependent non-continuous
transitions from the foreground to the background. Thus,
the silhouette of an object has a strong influence on the
resulting keypoints. The NARF keypoint detector pipeline

is as follows: (i) transform point cloud to range image; (ii)
find object borders; (iii) compute normals to border points;
(iv) compute principal curvature for non-border points; (v)
compute interest value for all points; (vi) isolate keypoints.
Having found areas of interest, the NARF feature extractor
can now take place. The feature descriptor is computed by
defining a normally aligned range value patch around the
feature point, computed by constructing a local coordinate
system, where the observer looks at the point along the
normal. At this point, a star-shaped pattern is projected
into the patch (where each beam corresponds to a value in
the final descriptor) capturing how much the pixels under
the beam change. Then, a unique orientation is extracted
from the projection and the values are shifted accordingly,
to make this rotation invariant.

• In [27], the author defines the Intrinsic Shape Signatures
(ISS) keypoint detector, which employs a saliency measure
based on the eigenvalue decomposition of a scatter matrix
of the points belonging to a support value. These points
are only retained if the ratio between two successive
eigenvalues is below a predefined threshold. Their saliency
is determined by the magnitude of the smallest eigenvalue,
in order to only include points with large variations along
each principal direction. The rationale behind this pruning
stage is that points exhibiting a similar spread along the
principal directions (where a repeatable canonical reference
frame cannot be established) should be avoided because a
subsequent description stage would hardly turn out effec-
tive. Afterwards, a point will be considered a keypoint if it
has the maximum saliency value on a given neighbourhood.
Contrary to the NARF detector, the ISS is much more
selective and inherently produces less keypoints, reducing
the computation time.

• In [13], [14], authors define the Radius-based Surface
Descriptor (RSD) as a descriptor that depicts the geometric
property of a point by estimating the radial relation with its
neighbour points. First the radius is modelled as a relation
between distance of two points and the angle between their
normals. Then, the maximum radius and minimum radius
are recorded as the final features for each point.

• In [15], the RSD extractor is extended to the Global
RSD (GRSD), which computes a global histogram for
the whole point cloud. First, the input point cloud is
voxelised and the RSD descriptor is generated for every
voxel neighbourhood. Then, voxel surfaces are categorised
into six possible surfaces based on a set of defined rules
using the two RSD features. After categorising all voxels,
the GRSD histogram relies on the number of transitions
between all of these local categories, which results in 21
dimensions/features. GRSD allows the use of depth images
with or without colour information.

• In [16], authors define the Principal Curvatures (PC), which
returns the eigenvector of the largest eigenvalue along
with both the largest and the smallest eigenvalues after
performing a Principal Components Analysis on the point
normals of a surface patch (in the tangent plane of the
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given point normal).
• In [17], the Rotation Invariant Feature Transform (RIFT) is

defined such that, given a point, it extracts a sparse set of
affine covariant elliptical regions of the surrounding texture
using the Harris affine or Laplacian blob detectors, which
detect complementary types of structures, and normalise
each elliptical region into a unit circle to reduce the affine
ambiguity to a rotational one. Then, the method divides the
circular normalised patch into four concentric rings with
equal width and compute a gradient orientation histogram
with eight orientations/bins within each ring. This results
in a descriptor of 32 features that is later adjusted for
rotational invariance by the radial outward direction at each
point.

• In [18], a method named Point Feature Histogram (PFH)
that encodes the geometric properties of the k-nearest-
neighbours of a point is defined, by using the average
curvature of the multidimensional histogram around such
point. This is done by calculating, for each pair of points,
the difference of three angular variables (obtained from a
Darboux frame where the third angular variable is normal
to the point’s plane) and their euclidean distance. Finally
a histogram is created with the 4 variables along each
computed pair.

• In [19], [20], a variant of PFH, the Fast Point Feature
Histogram (FPFH), is proposed as a computational simpli-
fication of PFH. In comparison, first, for each point, FPFH
uses a method similar to PFH to calculate the three angular
variables and obtain a simplified PFH. Then, a weighted
neighbouring pairing is used to calculate the final value of
the histogram, where the weights depend on the centre
point and a neighbour point at a given distance metric
space.

• In [21], [22], a method defined as the Signature of His-
tograms of OrienTations (SHOT) is proposed, based on
disambiguated eigenvalue decomposition of the covariance
matrix of points within the neighbourhood region, where
an isotropic spherical grid defines the signature structure.
These locations produce local histograms by counting the
number of points within a region of the spherical grid.
The juxtaposing of all local histograms with quadrilinear
interpolation generates the final collection of features.

• In [23], authors define the Ensemble of Shape Functions
(ESF), which comprises ten 64-sized histograms: three
angle related histograms, three area related histograms,
three distance related histograms, and one histogram of
distance-ratio. The first nine histograms are created by,
respectively, classifying an angle formed by randomly
sampled three points, the area created by such three points,
and a shape function. While the last is built on the paring-
lines generated during the shape function execution.

• In [24], authors define the 3D Shape Context (SC3D)
as a descriptor that captures the local shape of a point
cloud at a centre point using the distribution of points
in a spherical support. Within this support, a set of bins
is formed by equally dividing the azimuth and elevation,

and logarithmically spacing the radial dimension. Then,
the final descriptor is computed as the weighted sum of
the number of points falling into bins.

• In [25], authors define the Unique Shape Context (USC)
as an improvement over the SC3D descriptor by adding
a unique and unambiguous local reference frame, with
the purpose of avoiding computation of multiple features
at each keypoint. Given a query point and its spherical
support region, a weighted covariance matrix is defined so
that three unit vectors of a local reference frame can be
computed from the Eigen Vector Decomposition of this
matrix. The eigenvectors corresponding to the maximum
and minimum eigenvalues are reoriented in order to match
the majority of the vectors they depicted, while the sign of
the third eigenvector is determined by the cross product.
Once the local reference frame is built, the subsequent steps
are analogous to those in SC3D.

IV. PROPOSED CLASSIFICATION EXPERIMENT

The main goal of the work described here is to perform the
classification of malignant skin lesions based on 3D surface
information. To this end, the utilised methodology comprises
a BoF approach, as in [8]–[10], with a dataset holdout of
30% on the SKINL2 dataset where, as a pre-processing stage,
pixel values in the RGB channels of all images were replaced
with zeros (since some of the selected feature extractors also
consider colour information). This means the colour informa-
tion is not used, only the depth. The following subsections
provide added details to the pipeline. Section IV-A details
about the selected keypoint detectors and feature extractors.
Section IV-B provides some information about the BoF model.

A. Features

A total of 5215 features were extracted from each image
using 11 features extractors. These extractors were selected
based on the relevance of their characteristics for the input
signal (3D information). RIFT (32 features) was selected
because it provides invariant to illumination, viewpoint, scale,
and rotation. Like RIFT, NARF (42 features) and PFH/FPFH
(125/33 features) also possess some of these characteristics,
PFH/FPFH, in particular, provides robustness against outliers
and noise. Other features extractors as SHOT (361 features),
SC3D (1989 features), and USC (1969 features) also provide
robustness against noise. Additionally, both SHOT and USC
are reported to provide uniqueness amongst detection, as well
as unambiguous representations. Finally, ESF (640 features),
PC (5 features), RSD (2 features), and GRSD (21 features)
were selected for being descriptive, simple, and intuitive shape
descriptions. ESF has proven to be efficient and expressive,
while GRSD adds expressiveness to the simple RSD by
partitioning the image point cloud into several voxel-surfaces
of understandable shapes.

Apart from ESF and GRSD, the other feature extractors
operate on specified image keypoints, which must be predeter-
mined. In order to provide such set of locations, two keypoint
detectors were selected: NARF and ISS. The NARF detector
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seems specially suited for skin lesion imagery since it selects
locations of high surface changes and takes object borders
into account, as in skin to lesion borders, which have already
been noticed to have relevant information [28]). Then, ISS is
also selected because, like NARF, it produces keypoints which
tend to be at saliency regions, like the lesion border or texture-
full regions inside the lesion, but in a more selective manner
(outputting less keypoints).

B. BoF model

The dataset images were divided into a training and a
testing set, the former with 70% and the latter with 30%.
From the training set keypoints are extracted, producing 5215
features each, and a SVM model is trained on the histograms
produced after applying k-means clustering to those features.
A SVM model is selected for this work because the mentioned
dataset provides fewer images than typically necessary for
Deep Learning approaches. When building the BoF model,
for classification of Malignant versus Benign lesions or for
Melanoma versus All other lesions, the used SVM classifier
is of polynomial kernel of second order and has box constraint
of 1. Since all experiments are defined for binary classification,
the SVM solver is the Iterative Single Data Algorithm, which
minimises by a series of one-point minimisations and does not
respect the linear constraint nor explicitly includes the bias
term [29].

Because some of the features might not contribute for
the adequate label separation, or might effectively injure the
model’s capability, during the classification training process
the feature selection is also performed with NCA (on the tar-
geted 70%) before training the BoF model. Fitting of the NCA
model is done with all training samples and using a stochastic
gradient descent solver. The NCA algorithm is susceptible to
overfitting but possesses a parameter to prevent it through reg-
ularisation. This value is fine tuned via grid-search in the range
of [0; 0.003], where 20 equidistant grid-points are selected. At
the end, the NCA model provides a relevance-weight for each
of the 5215 features. In this experiment, only those with a
relevance superior to 0.02 ∗ max(1,max(fw)) are selected,
where fw is a vector with all provided NCA feature weights.

V. EXPERIMENTAL ASSESSMENT

The proposed pipeline was applied to the publicly available
SKINL2 dataset [7]. The skin lesion light-fields were captured
at a hospital facility (Centro Hospitalar de Leiria, Portugal),
with a Raytrix R42 camera, from patients previously screened
by a medical doctor during dermatology clinical appointments.
Each image has 3858 × 2682 pixels per RGB channel, as
well as the relative depth of each pixel. The skin lesions
were classified and organised based on clinician diagnosis
according to ICD10 (International Classification of Diseases)
and on histopathological analysis. Procedures related to the
image acquisition, storage, and publication were evaluated and
approved by a health ethics committee. The procedure and
purpose of the study was explained to all volunteers, who also
signed an informed consent form. Particularly in this work, the

TABLE I: Overall Top Results.

Experiment Detector #Clusters Acc. SEN SPE BAC

Ma vs Be NARF 84 73.08 75.00 66.67 70.83
96 80.77 100.00 15.00 57.50

Me vs All NARF 48 84.62 66.67 86.96 76.81
96 84.62 66.67 86.96 76.81

ISS 96 84.62 66.67 86.96 76.81

second version of this dataset was used [30], due to its increase
in lens magnification of ≈ 30% (which means more detail)
in comparison to its first version. This dataset currently com-
prises 19 malignant lesion images (9 melanomas, 9 basal cell
carcinomas, and 1 squamous cell carcinoma) and 66 benign
lesion images (32 nevi, 13 angiomas, and 21 seborrheic ker-
atoses), which undergo the pre-processing, feature extraction
and classification processes, described in Section IV.

The results obtained from these assessments are recorded
in terms of percentage of classification accuracy (Acc.), speci-
ficity (SPE), and sensitivity (SEN), similarly to [4]–[6], [10],
[11], [28]. In addition, because this is an unbalanced problem,
the named balanced-accuracy (BAC) (1) is also used (as
in [11]). It corresponds to the average value between sensitivity
and specificity.

BAC =
SEN + SPE

2
(1)

The main experimental results are shown in Table I and
the individual behaviour of the different extracted features is
plotted in Fig. 1. Table II adds to Table I with results resorting
to the features selected after running the NCA algorithm.
Only best BAC results are shown in the tables. In these
tables, results are shown without background shading while
values above 75% are highlighted in grayscale towards 100%.
Given the available dataset samples previous described in this
section, in these tables the column “Experiment” indicates
the classification objectives, being either “Ma vs Be” for
malignant versus benign lesions or “Me vs All” for melanoma
versus all other skin lesion types. Additionally, as mentioned
in Section IV-A, a keypoint detector is necessary for most of
the feature extractors, therefore column “Detector” is present
to indicate which of the two selected keypoint extractors was
used. As the BoF model pipeline uses a k-means clustering
algorithm, column “#Clusters” expresses the number of spec-
ified clusters. In this work the number of clusters was defined
as: either 6 or multiples of 12 up to 96, in a total of nine
variations, as represented by x-axis of Fig. 1.

From Table I, the highest accuracy (Acc.) result obtained
for detecting malignant skin lesions is 80.77% (when the BoF
pipeline uses 96 histogram bins for classification). Although
this is not the best overall result, some clinicians find it
appealing as it presents 100% SEN, meaning that no life-
threatening condition goes unchecked. It is important to notice
that, in this case, the SPE metric indicates that benign lesions
are correctly classified only 15.00% of the time, meaning that
83.33% of the benign lesions are incorrectly labelled as malig-
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Fig. 1: Performance of each feature extractor for Me vs All
classification problem: (a) Acc. metric and (b) BAC metric.

nant instead of benign. A more balanced solution is achieved
with 73.08% accuracy when merging some of the data points,
by using less clusters (84). This solution comprises 75.00%
SEN and 66.67% SPE, meaning that 25% of the malignant
lesions pass as benign but only 33.33% of the benign lesions
get get classified as malignant, in comparison to the previous
83.33%. Focusing on the melanoma lesion type, a higher
accuracy result of 84.62% is achieved when performing direct
comparison between melanoma and the remaining skin lesion
images. In this case, the best results achieved using the NARF
detector are also attainable using the ISS detector. However,
balanced SEN and SPE results show that: the algorithm is
only capable of correctly classify melanomas 66.67% of the
time (SEN), while the benign lesions are correctly classified
86.96% of the time (SPE).

The achieved balance of the metrics shows that some
information exists in the 3D surface that enables a level
of discrimination between skin lesion types. By observing
the individual behaviour of the different feature extractors
in Fig. 1, it is possible to infer their contributions towards
the current melanoma classification results shown in Table I.
Such behaviour is not uniform across all features extractors,
but from the accuracy metric in Fig. 1a it can be seen that
there is a trend to provide superior accuracy results as the
number of clusters increases, although not all feature extractors
follow this rule. An exception to this trend occurs, for instance,
for RSD features, which provide a constant 11.54% accuracy,
resulting from the classification of every sample as melanoma.
This also means that the BAC metric for the RSD, in Fig. 1b, is
50% ((100 + 0)/2). Another example of a non-discriminative
set of features is the PC, which always presents a BAC

TABLE II: Overall Top Results after NCA.

Experiment Detector #Clusters Acc. SEN SPE BAC

Ma vs Be NARF 6 61.54 100.00 50.00 75.00
84 69.23 83.33 65.00 74.17

Me vs All NARF 24 84.62 66.67 86.96 76.81
48 88.46 100.00 86.96 93.48

performance lower than RSD, e.g. 32.61% for 96 Clusters,
despite presenting a higher accuracy. A possible reason for
this type of contradictory results is the use of a unbalanced
dataset. RSD always labels samples as melanoma, the smaller
class (lower accuracy), while PC mostly labels samples as
nevus, the larger class (higher accuracy). Apart from the
mentioned outliers, what stands out the most in Fig. 1b is
that several individual feature extractor results (26, at different
cluster settings) achieve BAC performances that are superior
to the recorded 76.81% in Table I, which are only achievable
with balanced SEN and SPE settings, thus also generating
high accuracy values. In particular, results above 80% are
attained when using either NARF, RIFT, SC3D, SHOT, or
USC. Specifically, USC and RIFT are able to reach a top
performance of 86.96% BAC.

With the previously mentioned insights, it becomes clear
that the BoF model is not able to withstand the presence of
non-discriminative features and performs poorly in comparison
to use only a feature extractor’s individual-set of features.
Nevertheless, the combination of various subsets of different
feature extractors could still yield even higher performance
results. For this reason, the NCA feature selector is introduced
in the experimental setup. Results obtained after applying the
NCA selection are depicted in Table II. Only the experiments
with the highest performing BAC are shown in the table
(changing the selected “#Clusters” column from Table I to
Table II). When applying NCA to the Malignant versus Benign
problem, 21 features are selected and the performance of the
BAC metric increases from the previous 70.83% to 75.00%.
Also, when applying NCA to the Melanoma versus All other
lesions problem, fewer (14) features are selected, but the BAC
metric achieves the best performance of 93.48% (from the
previous 76.81% in Table I). Independently of the problem, the
best training results were achieved with a lambda of 0.0028.
In comparison to the results presented in Table I, the NCA
selected feature subset provides significant improvements (in
Table II). With 48 clusters, the BoF model achieves 88.46%
accuracy by only using depth-based features, in the Melanoma
versus All other lesions problem. In addition, the generated
model presents the capability of correctly identifying all
melanoma samples (100.00% SEN), while only incorrectly
labelling 13.04% of benign lesions as malignant ones (86.96%
SPE). As expected, these results are far superior than using
an individual set of features with only one feature extractor,
e.g. 93.48% BAC for NCA, in Table II, against 86.96% BAC
for USC at 96 Cluster, in Fig. 1b.
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VI. CONCLUSIONS AND FUTURE WORK

The pursuit of a solution to automatically identify melanoma
or malignant lesions has been under research for many years.
Currently, automatic techniques for detection and classifica-
tion are becoming increasingly useful. However, classification
(or discrimination) of melanoma versus nevus still remains
difficult to achieve, due to its similarity at an early stage of
the lesion development. A reliable solution might depend on
the use of new acquisition modalities instead of the widely
available, and utilised, 2D dermoscopic images, which may
introduce new fairly unexploited dimensions.

The main contribution of this work is exploitation of depth
information from light fields images for classification of skin
lesions. This newly introduced type of 3D data was specifically
acquired for this purpose and has shown the ability to provide
rich information for image classification. There are already
several methods for classification using 3D surface information
in the literature, even if originally developed for other pur-
poses. These works address the definition of features extraction
methods and classification models, as is the Bag-of-Features
model for classification of the image feature-collections.

As previously exposed, classification between benign and
malignant lesions achieved 75.00% BAC, comprising 61.54%
accuracy, 100.00% SEN, and 50.00% SPE. In a more explicit
setting, discrimination of melanomas against all other available
skin lesions was achieved with 88.46% accuracy, 100.00%
SEN, and 86.96% SPE, with a BAC of 93.48%. These results
evidence the usefulness of unexploited 3D lesion surface
information in the classification process of skin lesions.

The insight drawn from the experiments in this paper may
foster further research that takes advantage of all the informa-
tion provided by the light-field cameras, namely embracing
depth information with texture information (2D) to improve
lesion discrimination algorithms.

REFERENCES

[1] H. Kaufman, The melanoma book: a complete guide to prevention and
treatment, Gotham Books, New York, NY, USA, 1st edition, May 2005.

[2] K. Korotkov and R. Garcia, “Computerized analysis of pigmented skin
lesions: A review,” Artif. Intell. in Medicine, vol. 56, no. 2, pp. 69–90,
Oct. 2012.

[3] S. McDonagh, R. Fisher, and J. Rees, “Using 3D information for classi-
fication of non-melanoma skin lesions,” in Med. Image Understanding
and Anal., Dundee, United Kingdom, July 2008, pp. 164–168.

[4] L. Smith, M. Smith, A. Farooq, J. Sun, Y. Ding, and R. Warr, “Machine
vision 3D skin texture analysis for detection of melanoma,” Sensor Rev.,
pp. 111–119, Mar. 2011.

[5] S. Pathan, K. Prabhu, and P. Siddalingaswamy, “Techniques and
algorithms for computer aided diagnosis of pigmented skin lesions -
A review,” Biomed. Signal Process. and Control, vol. 39, pp. 237–262,
Jan. 2018.

[6] T. Satheesha, D. Satyanarayana, M. Prasad, and K. Dhruve, “Melanoma
is skin deep: a 3D reconstruction technique for computerized dermo-
scopic skin lesion classification,” IEEE J. Transl. Eng. Health Med.,
vol. 5, pp. 1–17, Jan. 2017.

[7] S. Faria, J. Filipe, P. Pereira, L. Tavora, P. Assuncao, M. Santos,
R. Fonseca-Pinto, F. Santiago, V. Dominguez, and M. Henrique, “Light
field image dataset of skin lesions,” in Annu. Int. Conf. of the IEEE Eng.
in Medicine and Biol. Soc., Berlin, Germany, July 2019, pp. 3905–3908.

[8] J. Sivic and A. Zisserman, “Video google: A text retrieval approach to
object matching in videos,” in IEEE Int. Conf. on Comput. Vision, Nice,
France, Oct. 2003, pp. 1470–1477.

[9] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual
categorization with bags of keypoints,” in Workshop on statistical learn.
in comput. vision, Prague, Czech Republic, May 2004, pp. 1–2.

[10] N. Situ, X. Yuan, J. Chen, and G. Zouridakis, “Malignant melanoma
detection by bag-of-features classification,” in Annu. Int. Conf. of the
IEEE Eng. in Medicine and Biol. Soc., Vancouver, BC, Canada, Aug.
2008, pp. 3110–3113.

[11] K. Hu, X. Niu, S. Liu, Y. Zhang, C. Cao, F. Xiao, W. Yang, and X. Gao,
“Classification of melanoma based on feature similarity measurement
for codebook learning in the bag-of-features model,” Biomed. Signal
Process. and Control, vol. 51, pp. 200–209, May 2019.

[12] B. Steder, R. Rusu, K. Konolige, and W. Burgard, “Point feature
extraction on 3D range scans taking into account object boundaries,” in
IEEE Int. Conf. on Robot. and Automat., Shanghai, China, May 2011,
pp. 2601–2608.

[13] Z. Marton, D. Pangercic, N. Blodow, J. Kleinehellefort, and M. Beetz,
“General 3D modelling of novel objects from a single view,” in
IEEE/RSJ Int. Conf. on Intell. Robots and Syst., Taipei, Taiwan, Dec.
2010, pp. 3700–3705.

[14] Z. Marton, D. Pangercic, N. Blodow, and M. Beetz, “Combined 2D-
3D categorization and classification for multimodal perception systems,”
The Int. J. of Robot. Res., vol. 30, no. 11, pp. 1378–1402, Aug. 2011.

[15] A. Kanezaki, Z. Marton, D. Pangercic, T. Harada, Y. Kuniyoshi, and
M. Beetz, “Voxelized shape and color histograms for RGB-D,” in IROS
Workshop on Active Semantic Perception, San Francisco, CA, USA,
Sept. 2011, pp. 1–6.

[16] R. Rusu and S. Cousins, “3D is here: Point cloud library (pcl),” in IEEE
Int Conf on Robot. and Automat., Shanghai, China, May 2011, pp. 1–4.

[17] S. Lazebnik, C. Schmid, and J. Ponce, “A sparse texture representation
using local affine regions,” IEEE Trans. on Pattern Anal. and Machine
Intell., vol. 27, no. 8, pp. 1265–1278, June 2005.

[18] R. Rusu, N. Blodow, Z. Marton, and M. Beetz, “Aligning point cloud
views using persistent feature histograms,” in IEEE/RSJ Int. Conf. on
Intell. Robots and Syst., Nice, France, Sept. 2008, pp. 3384–3391.

[19] R. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(FPFH) for 3D registration,” in IEEE Int. Conf. Robot and Automat.,
Kobe, Japan, May 2009, pp. 3212–3217.

[20] R. Rusu, A. Holzbach, N. Blodow, and M. Beetz, “Fast geometric point
labeling using conditional random fields,” in IEEE/RSJ Int. Conf. on
Intell. Robots and Syst., St. Louis, MO, USA, Oct. 2009, pp. 7–12.

[21] F. Tombari, S. Salti, and L. Stefano, “Unique signatures of histograms
for local surface description,” in Comput. Vision - ECCV, Heraklion,
Crete, Greece, Sept. 2010, pp. 356–369.

[22] F. Tombari, S. Salti, and L. Stefano, “A combined texture-shape
descriptor for enhanced 3D feature matching,” in IEEE Int. Conf. on
Image Process., Brussels, Belgium, Dec. 2011, pp. 809–812.

[23] W. Wohlkinger and M. Vincze, “Ensemble of shape functions for 3D
object classification,” in IEEE Int. Conf. on Robot. and Biomimetics,
Karon Beach, Phuket, Thailand, Dec. 2011, pp. 2987–2992.

[24] A. Frome, D. Huber, R. Kolluri, T. Bülow, and J. Malik, “Recognizing
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