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Abstract—Patients with respiratory conditions typically exhibit
adventitious respiratory sounds (ARS), such as wheezes and
crackles. In recent years, computerized methods for analyzing
respiratory function, namely ARS, have gained increased atten-
tion within the scientific community. Such methods primarily aim
to facilitate diagnosing and monitoring patients suffering from
respiratory diseases. In this work, we propose a deep learning
model for the automatic classification of respiratory sounds
within the proposed tasks of the “IEEE BioCAS 2023 Grand
Challenge on Respiratory Sound Classification”. The model was
based on a dual input convolutional deep learning architecture,
using the raw audio signal and the short-time Fourier transform
(STFT) spectrogram as inputs. Our model obtained a challenge
total score of 0.590 (Task 1-1: 0.756; Task 1-2: 0.467; Task 2-1:
0.658; Task 2-2: 0.458).

Index Terms—Respiratory sound classification, Adventitious
respiratory sounds, Respiratory diseases, Deep learning

I. INTRODUCTION

Respiratory diseases are among the leading causes of death
worldwide, affecting people in multiple aspects of their lives
[1]. Such diseases are responsible for a substantial strain on
health systems and significantly impact the quality of life
of people suffering from them [2]. Early diagnosis through
lung auscultation can help limit the impact of respiratory
diseases on patients, especially children and adolescents. To
date, auscultation is one of the main tools clinicians use to ana-
lyze respiratory function. Respiratory sounds reveal significant
information concerning the physiology of the lungs and any
potential airway obstacles [3]. When performing auscultation,
clinicians usually look up for the presence of adventitious
respiratory sounds (ARS). These are additional respiratory
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sounds superimposed on normal respiratory sounds, and their
presence is generally suggestive of a respiratory disorder [3]–
[5]. ARS can be continuous (e.g., wheezes) or discontinuous
(e.g., crackles), and their characteristics (such as timing in
the respiratory cycle and frequency) are of great clinical
relevance [4]–[6]. Despite auscultation’s extensive adoption,
its subjectivity is widely recognized, which has led to a new
era of developments in computerized techniques for acquiring
and analyzing respiratory sounds [4].

In recent decades, many machine learning algorithms have
been developed for respiratory sound classification [7]. Despite
the significant number of works published in the literature
over the years, the automatic classification of ARS is still a
challenging problem yet to be solved. Most previous works
listed in [7] relied on small datasets, typically designed for
teaching purposes. Thus, the models might not generalize in
more challenging scenarios (i.e., with new external subjects
or recordings with background noise). As a result, they might
also be prone to overfitting, while their predictive efficiency
is not extensively examined.

Bardou et al. [8] was one of the first works in which CNN
models were proposed for the static classification of ARS (at
the event level), using spectrogram, MFCCs, and LBPs as
inputs. Li et al. [9] proposed ResNet-based architectures for
deep feature extraction from spectrograms followed by a fully
connected layer for ARS classification (at event and record
level). Zhang et al. [10] proposed a feature polymerized-
based two-level ensemble model (FP-TLEM) for respiratory
sound classification (at event and record level). They have
extracted several handcrafted features of different domains
and employed the Synthetic Minority Oversampling Technique
for data augmentation. Rocha et al. [11] proposed a dual-
input deep learning architecture, with spectrograms and mel-
spectrograms, for the static classification of ARS at the event
level (wheezes, crackles, and normal). In another study by the
same authors, several models based on the same architecture



were developed for the static classification of ARS at record
level based on demographic characteristics (such as age, sex,
BMI) [12].

In this work, we introduced a hybrid convolutional deep
learning model consisting of two branches, each receiving a
different input: the raw respiratory sound and spectrogram
(time-frequency representation). The two branches are then
fused to make the final model prediction. The models were
trained to classify pediatric respiratory sounds at event and
record levels (based on the IEEE BioCAS 2023 Grand Chal-
lenge tasks 1).

The rest of the article is organized as follows: in section II,
we describe the dataset and the proposed approaches; in
section III we present and discuss the obtained results; lastly,
in section IV we conclude and suggest possible directions for
future work.

II. MATERIALS AND METHODS

This section describes the data used for this study and the
proposed methodological framework. Figure 1 presents the
main steps involved in the preprocessing and classification of
ARS. To process the respiratory sounds and train all deep
learning models, we used Python 3.8, Keras, and TensorFlow.
The models were trained on an NVIDIA RTX 2060 Super
with 8 GB of RAM. The computer was also equipped with an
AMD Ryzen 9 3900X 3.8 GHz and 64 GB of RAM.

A. Dataset

In the present study, we used the “SPRSound: Open-
Source SJTU Paediatric Respiratory Sound Database” [13],
[14]. Respiratory sounds were collected from the pediatric
respiratory department at Shanghai Children’s Medical Center
(SCMC). The sounds were recorded using a Yunting model
II Stethoscope with a sampling frequency of 8000 Hz and
involved a pediatric population aged between 1 month and 18
years old, with a mean age of 6.7 years. Also, each audio
sample has been manually annotated by medical experts at
event and record levels. At the event level, each recording
has been segmented into multiple respiratory events annotated
as Normal, Rhonchi, Wheeze, Stridor, Coarse Crackle, Fine
Crackle, or Wheeze + Crackle. On the other hand, at the
record level, following an initial separation based on the signal
quality (poor and high), the high-quality recordings have been
further annotated as Normal, CAS (continuous adventitious
sound), DAS (discontinuous adventitious sound), or CAS &
DAS according to the presence or absence of continuous or
discontinuous ARS. Table I overviews the annotations at both
event and record levels (training set).

The IEEE BioCAS 2023 Grand Challenge on Respiratory
Sound Classification involves two main tasks: Task 1 (respira-
tory sound classification at event level) and Task 2 (respiratory
sound classification at record level). Furthermore, each task
is also divided into two sub-tasks. Task 1-1 includes binary
classification into Normal and Adventitious events, and Task

1https://2023.ieee-biocas.org/grand-challenge

TABLE I
THE GRAND CHALLENGE DATASET (TRAINING SET).

Class Count

Events (Task 1)

Normal 5159
Fine Crackle 912

Wheeze 452
Coarse Crackle 49

Rhonchi 39
Wheeze + Crackle 30

Stridor 15
Total 6656

Records (Task 2)

Normal 1303
DAS 248

Poor Quality 177
CAS 134

CAS & DAS 87
Total 1949

1-2 refers to a multi-class classification challenge including,
in total, seven classes. Regarding the record classification task,
Task 2-1 is a ternary class classification challenge, including
Normal, Adventitious, and Poor Quality records. Task 2-2 is a
multi-class classification challenge comprising five classes. It
is also worth noting that the challenge contained an external
testing set used for the independent evaluation of models.

B. Preprocessing and feature extraction

All the respiratory sounds were recorded with a sampling
frequency of 8000 Hz. Nonetheless, as the typical frequency
of interest of respiratory sound lies below 2000 Hz [3], we
re-sampled all recordings at 4000 Hz.

Regarding Task 1-1 and Task 1-2, recordings have been seg-
mented into distinct events based on the experts’ annotations
of each event. The duration of the events ranged from 0.126 s
to 7.152 s, with an average duration of 1.278 s. Therefore,
we established a maximum time of 7.152 seconds for the
samples to be used as the inputs of our classification models
and applied zero padding to the shorter samples (center zero
padding). In Task 2, most of the respiratory recordings (1429)
had a duration of 9.22 s, while about a quarter of the recordings
(518) had a duration of 15.36 s. Two more recordings with a
different duration have been detected, one lasting 0.3 s and
one 8.51 s. Once again, a similar strategy has been used to
deal with this issue; first, a fixed recording duration of 15.36 s
has been selected. Then, all recordings with a shorter duration
have been expanded using zero padding (center zero padding).

After the audio preprocessing, we computed the short-
time Fourier transform (STFT) spectrogram of the respiratory
sounds in all tasks and used it as input for the deep learning
models, together with the raw audios. The spectrogram is
one of the most commonly used tools in audio analysis and
processing, since it describes the evolution of the frequency
components over time. The STFT spectrogram (X(n, ω)) of a
given discrete signal (x[n]) is given by:

X(n, ω) =

∞∑
m=−∞

x[m]w[n−m]e−jωm (1)
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Fig. 1. Overall framework (E: maximum length of events, Tasks 1-1 and 1-2; R: maximum length of complete recordings, Tasks 2-1 and 2-2; the dashed line
represents the combination of both inputs for the deep learning models - audio and spectrogram).

where x[m]w[n − m] is a short-time section of x[m] at
time n, and w[n] is a window function centered at instant
n [15]. To compute the STFT spectrogram we used a 64
ms Blackman–Harris window with 85% overlap. For the Fast
Fourier Transform (FFT), 256 points were used [16]. Both
inputs’ samples, raw audio signals and spectrograms, were
normalized between 0 and 1.

C. Model architecture and training

In this work, we had as primary goal the development of
models to automatically classify respiratory sounds at event
(previously segmented) and recording levels. To do so, we
developed deep learning models for both classification tasks
that leveraged the use of multiple inputs, using the raw res-
piratory audio signal and the according STFT time-frequency
representation. With the use of multiple inputs from different
time domains, namely the time-frequency (STFT) and time
(raw audio) domains, we intended to provide complementary
information for the model to learn and be able to classify the
different classes. Figure 2 presents a block diagram represen-
tation of the proposed model architecture.

Input Layer (t, 129, 1)

Spectrogram

2D CNN Block (32,(3,3))

2D CNN Block (64,(3,3))

2D CNN Block (128,(5,5))

2D Global Max Pooling

Input Layer (ns,1)

Raw Audio

1D CNN Block (128,(20,1))

1D Global Max Pooling

Concatenation

Dense (1024)

Dropout (0.5)

Dense (# classes)

Fig. 2. Block diagram representation with the architecture of the deep learning
model (t - number of time steps; ns - number of audio samples; CNN Block
parameter 1 - number of filters; CNN Block parameter 2 - kernel size).

Our model was composed of two main ramifications: the
spectrogram input’s convolution module and the raw audio’s
convolution module (Figure 2). The convolution module of the

spectrogram input consisted of three CNN blocks. Each block
was composed of a 2D convolutional layer [17], a LeakyReLU
activation layer (with α = 0.1), a 2D max-pooling (pool size =
2), and, lastly, a dropout layer (dropout percentage = 0.5). The
convolution module of the raw audio input consisted of only
one CNN block. The block consisted of a 1D convolutional
layer, a LeakyReLU activation layer (with α = 0.1), a 1D
max-pooling (pool size = 2), and, lastly, a dropout layer
(dropout percentage = 0.5). After the convolutional modules
of both inputs, 2D and 1D global maximum pooling layers
[18] were applied with the subsequent concatenation of the ex-
tracted features from both sources. The concatenated features
were then fed to a fully connected layer with 1024 neurons.
Lastly, the model had a dense layer for the respective output
according to each task (Task 1.1 - 2; Task 1.2 - 7; Task 2.1 -
3; Task 2.2 - 5).

We created five splits to validate our models in a subject
hold-out fashion (with subject independence). In each split,
we randomly selected approximately 80% of the subjects from
each class to train the models, while the remaining 20% were
kept for validation. The splits were performed independently
for each of the four considered tasks (Task 1-1, Task 1-2, Task
2-1, and Task 2-2) and in a stratified manner, maintaining the
same class ratio as the original training dataset. It is worth
noting that by isolating the subjects, we ensure no data leakage
between the training and validation sets.

The models were trained for 100 epochs for each task
validation split. We used a learning rate of 3e-4 with the
Adam optimizer and the categorical cross-entropy as the loss
function. Simultaneously to the training process, the models
were evaluated using the validation subset at every new epoch
to save only the set of weights with the lowest validation loss.
Then, we selected, for each task, the model with the highest
score (see subsection II-D) based on the results obtained for
the different splits. The best model out of the five for each
task was then used in the external testing set.

D. Evaluation metrics

To evaluate the performance of respiratory classification we
used sensitivity, specificity, average score, harmonic score and
task score. For Task 1, the equations for sensitivity (SE) and
specificity (SP) are presented below:

Sensitivity(SE) =
Rr +Ww + CCcc + FCfc +WCwc

Rt +Wt + CCt + FCt +WCt
,

(2)



TABLE II
RESULTS SUMMARY TABLE (TRAINING AND TEST/CHALLENGE). SE - SENSITIVITY ; SP - SPECIFICITY ; AS - AVERAGE SCORE; HS - HARMONIC SCORE;

ACC - ACCURACY; TS - CHALLENGE TASK SCORE; SD - STANDARD DEVIATION.

SE SP AS HS ACC TS
Task 1-1 (training - mean ± sd) 0.75 ± 0.02 0.95 ± 0.01 0.85 ± 0.01 0.84 ± 0.01 0.90 ± 0.01 -

Task 1-1 (best run training) 0.77 0.96 0.86 0.85 0.90 -
Task 1-1 (challenge score) 0.67 0.86 0.76 0.74 - 0.756

Task 1-2 (training - mean ± sd) 0.58 ± 0.05 0.93 ± 0.01 0.76 ± 0.03 0.71 ± 0.04 0.82 ± 0.02 -
Task 1-2 (best run training) 0.63 0.93 0.78 0.75 0.82 -
Task 1-2 (challenge score) 0.34 0.64 0.49 0.44 - 0.467

Task 2-1 (training - mean ± sd) 0.33 ± 0.09 0.89 ± 0.03 0.61 ± 0.04 0.47 ± 0.10 0.68 ± 0.04 -
Task 2-1 (best run training) 0.46 0.87 0.66 0.60 0.73 -
Task 2-1 (challenge score) 0.61 0.70 0.66 0.66 - 0.658

Task 2-2 (training - mean ± sd) 0.34 ± 0.04 0.78 ± 0.04 0.56 ± 0.03 0.48 ± 0.05 0.61 ± 0.03 -
Task 2-2 (best run training) 0.38 0.84 0.61 0.52 0.65 -
Task 2-2 (challenge score) 0.46 0.46 0.46 0.46 - 0.458

where Rr, Ww, CCcc, FCfc and WCwc the number of
correctly predicted events of each class, and Rt, Wt, CCt,
FCt and WCt the total number of Rhonchis, Wheezes, Coarse
Crackles, Fine Crackles and Wheezes+Crackles, respectively,
and

Specificity(SP ) =
Nn

N
, (3)

where Nn denotes the number of correctly predicted normal
events, and N the total number of Normal events, respectively.

For Task 2, the equations for SE and SP are defined below:

Sensitivity(SE) =
Cc +Dd + CDcd

C +D + CD
, (4)

where Cc, Dd and CDcd the number of correctly predicted
recodrs, and C, D and CD the total number of CAS, DAS
and CAS & DAS records, respectively, and

Specificity(SP ) =
Nn

N
, (5)

where Nn the number of correctly predicted records, and N
the total number of Normal records, respectively.

For both tasks, the Average Score (AS), Harmonic Score
(HS) and Task Score (TS) are defined as follows:

AverageScore(AS) =
SE + SP

2
(6)

HarmonicScore(HS) =
2 ∗ SE ∗ SP
SE + SP

(7)

TaskScore(TS) =
AS +HS

2
(8)

III. RESULTS

As discussed in subsection II-C, we have chosen the best
model from the five validation splits and used it in the testing
set (challenge result). Table II presents the obtained results
regarding the five validation splits for all tasks (with the
respective mean and standard deviation). Moreover, it also
presents the results for the best model of the training runs
in each task, as well as the respective task score obtained in
the challenge testing set. From the analysis of Table II, we
observe that the results obtained on the testing set by the best

model are generally on pair with those obtained in validation.
Our models have obtained a total score of 0.590 in the IEEE
BioCAS 2023 Grand Challenge (Total Score = 0.2 * Score
1-1 + 0.3 * Score 1-2 + 0.2 * Score 2-1 + 0.3 * Score 2-2).

While our current approach demonstrates promising results,
it is vital to acknowledge certain limitations that warrant
consideration. Firstly, the reliance on a single best model
may inadvertently introduce an element of model selection
bias, potentially skewing the perception of overall perfor-
mance. Exploring ensemble techniques or model averaging
could potentially address this concern and provide a more
comprehensive evaluation of the model’s capabilities.

Our model provides encouraging results considering Task
1-1 and Task 2-2, which represent binary and ternary clas-
sification problems, respectively. Therefore, an attempt to
improve the performance of our approach concerning the
tasks corresponding to multi-class classification remains an
open challenge for us. Considering this, data augmentation
techniques must also be considered to increase the number
of available samples and balance the different classes. Pre-
processing steps, such as feature selection based on causality
measures or the inclusion of additional inputs deriving for
the time and/or frequency domain, can enhance predictive
efficiency or even reduce the computational burden. The study
of different inputs for the classification models must also be
studied.

IV. CONCLUSION

In this work, we tested several approaches on the tasks of
the IEEE BioCAS Grand Challenge on Respiratory Sound
Classification. The best results were achieved by the model
with a dual input architecture, providing satisfactory diagnostic
performance in all the investigated tasks. For future work,
we intend to add a recurrent module to the current model to
capture time dependencies. Additionally, we aim to implement
other loss functions, such as focal loss, to deal with data
imbalance [19]. Finally, we will study the use of different deep
learning architectures and data augmentation methodologies to
compensate further for the uneven class distribution.
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