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Abstract—Respiratory diseases are among the deadliest in the
world. Adventitious respiratory sounds, such as wheezes and
crackles, are commonly present in these pathologies. Automating
the analysis of adventitious respiratory sounds can help health
professionals monitor patients suffering from respiratory con-
ditions. The ICBHI Respiratory Sound Database, a benchmark
dataset in respiratory sound analysis, has large and diverse data
available publicly. Given its diversity in data, a stratified analysis
by recording equipment, age, sex, body-mass index (BMI), and
clinical diagnosis is proposed in this article. Regarding the
experiments, three machine learning algorithms (Support Vector
Machine - SVM, Random Undersampling Boosting - RUSBoost,
and Convolutional Neural Network - CNN) were employed in
three tasks: 2-class crackles (crackles vs. others), 2-class wheezes
(wheezes vs. others), and 3-class (crackles vs. wheezes vs. others).
Overall, the CNNs achieved the best results in almost every
category, except when the equipment was Littmann3200 or
Meditron, where RUSBoost achieved better results. In terms of
stratification categories, we observed significant differences in
classification performance, namely in terms of equipment, where
the Littmann3200 underperformed the other equipment analysed.
In addition, in the 3-class task, the CNNs achieved better results
in Male subjects than Female subjects. In terms of BMI, the CNN
of the Overweight class in the 2-class wheeze task achieved worse
results than the other two BMI classes (Normal and Obese).

Index Terms—Adventitious Respiratory Sounds, Crackles,
Wheezes, Deep Learning, Machine Learning, Stratification

I. INTRODUCTION

The number of deaths caused by respiratory diseases such
as chronic obstructive pulmonary disease (COPD), lower res-
piratory tract infections (LRTI) and trachea, bronchus, and
lung cancers is increasing every year [1]. At the moment,
physicians use stethoscopes to auscultate patients and try to
identify any respiratory disorder. However, the results are not
accurate (since they depend on the level of hearing accuracy
and expertise of the physician), and continuous monitoring is
impossible to provide [2].

Respiratory sounds are produced by airflow in the respira-
tory tract, during the inspiration and expiration phases, and can
be recorded on the thorax, trachea or mouth [3]. Adventitious
respiratory sounds (ARS) are abnormal respiratory sounds that
are superimposed on breathing sounds. There are 2 types of
ARS: continuous ARS, e.g., wheezes, lasting more than 80-
100 ms, with a frequency range between 100-1000 Hz, and
discontinuous ARS, e.g., crackles, lasting less than 20 ms,

with a frequency range between 60-2000 Hz [4]. Depending on
their duration, intensity and location on the respiratory cycle,
ARS can assist in the diagnosis of respiratory conditions [4].
Figure 1 shows the spectrogram representation of the normal
breath sounds, crackles and wheezes.

Over the last decades, several studies have addressed the
classification of ARS events [5]–[9]. In these articles, var-
ious datasets were used, such as the Respiration Acoustics
Laboratory Environment (RALE) dataset, which is used to
teach students; private datasets; and the one used in this
study [10], [11]. Even though several studies have tackled the
classification of ARS events, a stratified analysis is missing in
those works.

Hence, the main contribution of this work is the stratified
analysis of ARS event classification in the RSD. To the best
of our knowledge, it is the first stratified analysis of this task.

This work is structured as follows: in section II, an overview
of the dataset, a description of the stratification process and a
summary of the models used are provided; in section III, the
obtained results are analysed; and the conclusion is presented
in section IV.

II. MATERIALS & METHODS

A. Dataset

The ICBHI Respiratory Sound Database (RSD)1 [10], [11]
was created by two independent teams from two countries
(Portugal and Greece). It contains 5.5 hours of respiratory
sounds (920 annotated audio samples) from 126 patients,
with a total of 8877 annotated crackles and 1898 anno-
tated wheezes. To standardise the comparison between results
among other studies that use this dataset, the authors parti-
tioned it into training and test sets.

The respiratory sounds were collected from patients of
different ages and with various respiratory conditions, such
as upper and lower respiratory tract infection (URTI and
LRTI), COPD, asthma, pneumonia, bronchiectasis, and bron-
chiolitis. These sounds were recorded with stethoscopes from
different manufacturers, i.e. WelchAllyn Meditron (Meditron),
3M Littmann Classic II SE (LittC2SE), 3M Littmann 3200

1https://bhichallenge.med.auth.gr/ICBHI 2017 Challenge
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Fig. 1. Spectrogram representation of the normal breath, crackles and wheezes sounds

(Litt3200)), as well as microphones (AKG C417L) with dif-
ferent sampling rates and background noises.

Randomly generated events were also added to increase
realism to the challenge for the models [9] with a variable
duration following two Burr distributions according to the
type of ARS: events shorter than 100 ms as the negative class
against which the crackle events would be classified, or events
between 100 ms and 2 s as the negative class against which
the wheeze events would be classified.

B. RSD Stratification

As the sounds in this dataset were collected from subjects of
different ages, with various diseases, body-mass index (BMI),
and sex and recorded with different types of equipment, a
stratified analysis of the results of the models was performed
to understand in more detail the behaviour of the models for
each subpopulation.

In the categorization by age, all patients under 18 were
considered children, the others were considered adults. Re-
garding the BMI categories, they were defined according to
the World Health Organization guidelines [12] and since there
were only three underweight patients, they were included in
the normal weight category. Concerning the diagnosis cate-
gory, patients with COPD, asthma, and bronchiectasis were
considered chronic; patients with LRTI, URTI, bronchiolitis, or
pneumonia were considered non-chronic, whereas participants
with no diseases were considered healthy. Table I shows the
number of events per class in each category in the data.

From Table I we can conclude that:

• The test set contains no audio files recorded using the
LittC2SE stethoscope

• Unknown Age subjects do not have any files in the
training set; a similar situation is observed for patients
with Unknown Sex

• For Healthy subjects there are no cases with annotated
wheezes and only 9 cases with annotated crackles iden-
tified in the test set

• The number of events in each stratification category is not
balanced between classes since the goal of the original
splitting was to guarantee a 60/40 partition of the data

Fig. 2. Dual Input CNN architecture.

according to the number of respiratory cycles (per class),
number of patients and number of files

We used three machine learning algorithms to classify the
test set: Random Undersampling Boosted Trees (RUSBoost),
Support Vector Machine with radial basis function (SVM-
rbf) and Convolutional Neural Network (CNN) (Figure 2).
The same training set was used for all models. Following
[9], handcrafted features were extracted for all the models
except the CNN. Namely, the following set of features was
extracted: spectral (e.g., centroid, spread, skewness, kurtosis),
Mel-frequency cepstral coefficients (MFCCs), and melodic
features (e.g., pitch, inharmonicity, voicing). Feature ranking
using the minimum redundancy maximum relevance (MRMR)
algorithm was employed to select the first 100 features.

Given the above stratification and the models already
trained, the test data were divided into the aforementioned cat-
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TABLE I
DISTRIBUTION OF EVENTS IN THE TRAIN AND TEST SETS PER EQUIPMENT, AGE (RANGE, MEAN±STANDARD DEVIATION), SEX, BMI (RANGE), AND

DIAGNOSIS [F: FILES, C: ANNOTATED CRACKLES, W: ANNOTATED WHEEZES, OC: ANNOTATED OTHER CRACKLES, OW: ANNOTATED OTHER
WHEEZES]

Category Elements F Train F Test C Train C Test W Train W Test OC Train OC Test OW Train OW Test

Equipment

AKG C417L 361 285 5387 2682 749 482 1170 1115 274 257
Littmann 3200 5 5 14 55 28 162 26 297 7 65

Meditron 87 41 273 144 174 81 884 268 198 66
Littmann C2SE 86 0 322 0 222 0 398 0 96 0

Age (years)
Adults (19-93, 67.7±11.6) 493 345 5927 2810 1110 676 2204 1441 510 329
Children (0-18, 4.9.±4.6) 46 30 69 52 63 36 274 180 65 48

Unknown 0 6 0 19 0 13 0 59 0 11

Sex
Male 272 319 2189 2741 728 682 1510 1256 348 292

Female 267 56 3807 121 445 30 968 365 227 85
Unknown 0 6 0 19 0 13 0 59 0 11

BMI

Normal (below 25) 235 91 3913 925 567 115 721 360 179 84
Overweight (25-29.9) 171 189 1216 908 460 437 910 862 207 190

Obese (above 30) 84 65 784 977 76 124 501 219 107 55
Unknown 49 36 83 71 70 49 346 239 82 59

Diagnosis
Chronic (64 COPD, 7 Bronchiectasis, 1 Asthma) 459 351 5899 2829 1085 689 1966 1500 455 340

Non-Chronic (14 URTI, 2 LRTI, 6 Bronchiolitis, 6 Pneumonia) 62 13 77 43 85 36 385 52 90 15
Healthy 18 17 20 9 3 0 127 128 30 33

egories, applied to two binary classification problems (crackles
vs. others, and wheezes vs. others) and one 3-class problem
(crackles vs. wheezes vs. others). Healthy subjects were ig-
nored in the analysis of the results, as their test set did not
have annotated wheezes and only contained 9 crackles. The
files with missing data (6 files with no information regarding
age or sex) were also discarded.

III. RESULTS & DISCUSSION

Four metrics were used to evaluate the performance of the
classification models: accuracy, area under the curve (AUC),
F1-Score, and Matthews Correlation Coefficient (MCC). For
the binary classification tasks, we calculated the accuracy,
AUC, MCC, and F1 of the positive class (crackles or wheezes)
and macro-averaged F1 (F1 Macro), considering that the
dataset is unbalanced. For the 3-class problem, we computed
the accuracy, the F1 for each class, and F1 Macro.

Table II shows the results for three of the analysed models:
SVMrbf with 100 selected features, RUSBoost with all the
features, and CNN with dual input, i.e., with a combination
of spectrogram and Mel spectrogram inputs. Henceforth, these
models will be called SVM, Boost, and CNN, respectively.

In all the performed comparisons (discussed in the follow-
ing paragraphs), statistical significance tests were conducted.
When comparing the results for different subpopulations, un-
paired tests were performed, namely the unpaired t-test (when
the distributions are Gaussian) or the Wilcoxon rank sum test
(when the distributions are non-Gaussian). When comparing
the results of different algorithms in the same subpopula-
tions, paired tests were performed, namely, the paired T-test
(Gaussian distributions) or the Wilcoxon signed rank test (non-
Gaussian distributions). In all cases, the Kolmogorov-Smirnov
test was employed to test for Gaussianity and the threshold for
statistical significance was set to p < 0.01. Unless otherwise
stated, all the results compared in the paragraphs below are
statistically significant.

Looking at Table II, we can observe that, for the three types
of classification problems, the model that obtained the best
results overall was the CNN, except for four cases: Children
in wheezes classification, where the Boost performed better;

Litt3200 stethoscope in wheezes classification, where the SVM
outperformed the CNN; Meditron stethoscope in crackles
classification, where the SVM model also outperformed the
CNN; and finally, in the 3-class classification problem, where
the SVM also performed better than the CNN in the Litt3200
and Meditron.

For the Equipment category, in wheezes classifica-
tion, the results are quite similar between all 3 stetho-
scopes/microphones, with a slight advantage for the
AKGC417L microphone (with F1 wheezes of 83.8% in the
AKGC417L microphone, maximum F1 wheezes of 80.7%
in the Litt3200, and F1 wheezes of 80.3% in the Med-
itron). In crackles classification, the results are higher for the
AKGC417L microphone and Meditron, while in the Litt3200,
the results are worse (F1 crackles of 90.9% in the AKGC417L
microphone, F1 crackles of 80.4% in the Litt3200, and a
maximum F1 crackles of 83.5% in the Meditron). In the
3-class problem, the AKGC417L microphone also achieved
better results than the other two (F1 macro of 81.8% in the
AKGC417L microphone, a maximum F1 macro of 50.4% in
the Litt3200, and F1 macro of 67.4% in the Meditron). Overall,
the AKGC417L microphone achieved better results, since this
microphone is more sensitive, it has no filters, and its training
and test sets are larger than the sets for the other types of
equipment.

When we look at the Age of the subjects, in wheezes
classification, Children’ achieved better results than Adults
(with F1 wheezes of 84.9% in Children using the Boost model
and F1 wheezes of 77.0% in Adults using the CNN model).
Even though the Boost achieved better results than the CNN
in wheezes classification in Children, the difference was not
statistically significant (p > 0.01). In crackles classification,
the reverse occurs, with Adults outperforming Children (with
F1 crackles of 90.5% in Adults and F1 crackles of 70.9% in
Children). Regarding the 3-class problem, Adults once again
outperformed Children (with F1 macro of 78.9% and F1 macro
of 78.2%, respectively).

Regarding the Sex category, Male subjects achieved superior
results in wheezes classification than Female subjects (F1

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on December 27,2022 at 21:41:00 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
RESULTS (ACC: ACCURACY, C: CRACKLE, W: WHEEZE, O: OTHER, SVM: SVMRBF 100MRMR, BOOST: RUSBOOST FULL, CNN:

CNN DUALINPUT, M: MACRO)

2 class crackles 2 class wheezes 3 class
SVM Boost CNN SVM Boost CNN SVM Boost CNN

Equipment

AKGC417L

Acc 70.3 ± 0.5 68.7 ± 0.6 86.4 ± 0.8 64.2 ± 1.3 60.7 ± 1.3 78.2 ± 0.9 Acc 69.1 ± 0.6 68.4 ± 0.7 84.5 ± 1.0
AUC 62.7 ± 2.5 64.0 ± 1.0 79.5 ± 2.3 59.3 ± 1.5 59.4 ± 1.5 74.5 ± 2.2 F1 C 80.5 ± 0.5 77.9 ± 0.8 90.4 ± 0.8

F1 C/W 79.4 ± 0.8 77.3 ± 0.8 90.9 ± 0.5 73.3 ± 1.9 67.8 ± 2.3 83.8 ± 1.0 F1 W 72.2 ± 2.2 76.8 ± 0.7 83.0 ± 1.5
F1 M 62.8 ± 3.3 63.5 ± 1.2 81.9 ± 1.8 59.3 ± 3.3 58.5 ± 2.6 75.1 ± 2.2 F1 O 38.8 ± 4.3 45.3 ± 1.3 71.9 ± 1.9

MCC M 26.3 ± 3.6 27.2 ± 1.5 66.2 ± 1.8 19.4 ± 2.3 18.1 ± 2.8 51.2 ± 2.2 F1 M 63.8 ± 2.3 66.7 ± 0.9 81.8 ± 1.4

Litt3200

Acc 77.3 ± 6.7 78.2 ± 1.9 90.9 ± 1.3 71.5 ± 3.4 65.2 ± 3.0 51.4 ± 1.8 Acc 55.7 ± 5.9 68.9 ± 1.4 65.1 ± 1.8
AUC 71.2 ± 3.1 67.0 ± 3.4 86.3 ± 0.7 62.4 ± 1.7 62.5 ± 2.2 57.7 ± 3.3 F1 C 9.6 ± 4.8 2.0 ± 3.0 16.1 ± 7.1

F1 C/W 46.7 ± 4.0 42.0 ± 4.8 80.4 ± 2.1 80.7 ± 2.9 73.7 ± 3.0 57.1 ± 2.0 F1 W 62.7 ± 6.3 71.2 ± 2.1 50.1 ± 6.0
F1 M 66.0 ± 4.8 64.3 ± 3.1 87.3 ± 1.5 63.1 ± 2.3 60.9 ± 2.8 50.5 ± 2.7 F1 O 65.0 ± 5.4 78.1 ± 1.4 78.2 ± 1.7

MCC M 36.1 ± 5.1 29.8 ± 5.9 74.7 ± 3.1 27.2 ± 5.5 23.4 ± 4.3 14.0 ± 6.0 F1 M 45.8 ± 5.5 50.4 ± 2.2 48.1 ± 4.9

Meditron

Acc 86.9 ± 1.0 87.7 ± 1.4 85.2 ± 1.5 72.2 ± 3.0 77.4 ± 2.4 79.6 ± 1.8 Acc 70.7 ± 2.5 73.6 ± 1.7 71.6 ± 1.8
AUC 88.6 ± 0.9 86.5 ± 1.8 86.3 ± 0.8 72.6 ± 2.9 78.4 ± 2.2 80.4 ± 1.8 F1 C 56.3 ± 2.5 58.5 ± 5.8 57.5 ± 3.8

F1 C/W 83.5 ± 1.2 82.4 ± 2.2 81.3 ± 1.2 73.0 ± 3.8 77.0 ± 3.1 80.3 ± 2.2 F1 W 59.6 ± 3.3 59.5 ± 1.5 61.5 ± 3.3
F1 M 86.4 ± 1.1 86.5 ± 1.6 84.5 ± 1.4 72.1 ± 3.3 77.4 ± 2.5 79.6 ± 2.0 F1 O 80.8 ± 2.9 84.2 ± 1.3 80.7 ± 1.2

MCC M 74.2 ± 1.9 73.0 ± 3.2 70.4 ± 1.9 45.1 ± 5.5 57.1 ± 3.9 60.5 ± 3.5 F1 M 65.6 ± 2.9 67.4 ± 2.9 66.6 ± 2.8

Age

Adults

Acc 71.5 ± 0.9 69.9 ± 0.6 86.7 ± 0.8 65.6 ± 0.6 61.4 ± 1.6 70.5 ± 1.0 Acc 67.2 ± 0.9 68.1 ± 0.5 81.9 ± 0.8
AUC 66.9 ± 2.3 67.4 ± 0.7 82.5 ± 1.9 59.8 ± 1.6 60.0 ± 1.3 68.7 ± 1.9 F1 C 77.8 ± 0.4 76.0 ± 0.7 88.7 ± 0.8

F1 C/W 79.0 ± 0.8 76.8 ± 0.7 90.5 ± 0.5 75.0 ± 0.7 69.0 ± 2.4 77.0 ± 1.6 F1 W 68.7 ± 2.7 73.9 ± 0.9 74.4 ± 1.9
F1 M 67.1 ± 2.8 67.1 ± 1.0 84.2 ± 1.5 60.0 ± 2.2 58.8 ± 2.3 67.7 ± 2.3 F1 O 45.2 ± 3.6 52.4 ± 0.9 73.5 ± 1.1

MCC M 34.9 ± 3.2 34.3 ± 1.2 70.0 ± 1.7 20.2 ± 2.7 19.0 ± 2.3 36.3 ± 2.9 F1 M 63.9 ± 2.2 67.4 ± 0.8 78.9 ± 1.3

Child

Acc 80.6 ± 1.5 84.4 ± 1.8 82.9 ± 2.1 81.2 ± 3.9 86.9 ± 2.1 86.0 ± 3.2 Acc 77.2 ± 4.2 78.2 ± 1.5 80.6 ± 3.0
AUC 84.2 ± 1.5 80.8 ± 3.4 86.4 ± 1.4 81.6 ± 3.8 86.9 ± 2.5 86.1 ± 3.6 F1 C 65.3 ± 5.1 64.1 ± 4.0 67.1 ± 2.3

F1 C/W 67.7 ± 2.0 68.0 ± 4.3 70.9 ± 2.0 79.4 ± 4.1 84.9 ± 2.9 84.0 ± 4.2 F1 W 72.7 ± 4.9 71.0 ± 2.0 82.8 ± 3.2
F1 M 76.9 ± 1.6 78.9 ± 2.8 79.4 ± 1.9 81.1 ± 4.0 86.7 ± 2.3 85.7 ± 3.6 F1 O 82.4 ± 3.8 83.7 ± 1.4 84.8 ± 3.0

MCC M 58.9 ± 2.8 58.2 ± 5.6 63.4 ± 2.4 62.8 ± 7.6 73.6 ± 4.5 72.3 ± 6.7 F1 M 73.5 ± 4.6 72.9 ± 2.5 78.2 ± 2.8

Sex

Male

Acc 72.0 ± 0.8 70.4 ± 0.7 87.3 ± 0.7 68.7 ± 1.0 64.4 ± 1.9 72.4 ± 1.3 Acc 69.2 ± 0.7 69.4 ± 0.7 82.7 ± 1.0
AUC 66.6 ± 1.8 67.8 ± 0.8 82.4 ± 1.9 62.2 ± 1.6 62.8 ± 1.1 70.4 ± 1.9 F1 C 79.4 ± 0.4 77.1 ± 0.8 89.4 ± 0.9

F1 C/W 79.8 ± 1.0 77.6 ± 0.8 91.2 ± 0.4 77.8 ± 1.0 72.4 ± 2.4 79.2 ± 1.8 F1 W 71.6 ± 2.7 76.9 ± 0.8 76.8 ± 2.1
F1 M 66.8 ± 2.3 67.0 ± 1.0 84.2 ± 1.4 62.2 ± 2.2 61.0 ± 2.1 68.9 ± 2.2 F1 O 46.1 ± 2.9 51.9 ± 0.9 72.7 ± 1.1

MCC M 34.0 ± 2.2 34.4 ± 1.4 69.9 ± 1.6 24.7 ± 2.7 23.9 ± 2.0 38.9 ± 2.6 F1 M 65.7 ± 2.0 68.6 ± 0.8 79.6 ± 1.4

Female

Acc 72.0 ± 5.4 72.9 ± 1.7 80.3 ± 3.1 50.8 ± 4.2 54.6 ± 3.1 66.0 ± 3.4 Acc 55.7 ± 4.5 63.1 ± 1.2 74.6 ± 2.3
AUC 78.3 ± 3.2 76.3 ± 2.3 84.1 ± 1.1 48.0 ± 5.7 46.4 ± 3.3 62.3 ± 1.7 F1 C 49.2 ± 2.4 53.8 ± 2.4 64.2 ± 1.9

F1 C/W 62.0 ± 3.7 60.4 ± 2.3 70.0 ± 2.7 30.8 ± 6.6 24.9 ± 5.6 45.5 ± 2.3 F1 W 29.0 ± 4.9 34.4 ± 3.0 41.7 ± 4.7
F1 M 69.9 ± 4.8 69.9 ± 1.9 77.7 ± 2.8 46.3 ± 5.2 46.1 ± 4.4 60.3 ± 2.9 F1 O 62.9 ± 5.6 72.1 ± 1.3 81.9 ± 2.1

MCC M 49.3 ± 5.3 45.8 ± 3.8 60.5 ± 3.0 -3.5 ± 10.1 -6.7 ± 6.2 22.8 ± 3.1 F1 M 47.0 ± 4.3 53.4 ± 2.2 62.6 ± 2.9

BMI

Normal

Acc 79.0 ± 1.7 80.0 ± 1.4 88.1 ± 1.3 63.0 ± 2.7 63.1 ± 1.7 79.4 ± 2.5 Acc 75.0 ± 0.8 76.9 ± 1.0 87.2 ± 0.9
AUC 65.9 ± 3.7 70.4 ± 1.5 80.2 ± 3.0 61.1 ± 2.8 62.4 ± 1.8 78.1 ± 2.6 F1 C 85.9 ± 0.3 86.7 ± 0.9 92.6 ± 0.6

F1 C/W 86.8 ± 0.8 86.9 ± 1.1 92.3 ± 0.8 69.5 ± 3.0 67.6 ± 1.9 82.9 ± 2.2 F1 W 69.2 ± 2.8 72.2 ± 1.0 82.2 ± 1.7
F1 M 67.7 ± 4.6 72.3 ± 1.8 83.3 ± 2.6 60.9 ± 4.4 62.3 ± 2.3 78.4 ± 2.9 F1 O 41.5 ± 5.0 51.4 ± 2.2 75.1 ± 2.4

MCC M 41.8 ± 6.4 46.6 ± 3.4 69.7 ± 3.4 23.1 ± 5.5 24.8 ± 3.6 57.6 ± 5.1 F1 M 65.5 ± 2.7 70.1 ± 1.4 83.3 ± 1.6

Overweight

Acc 74.2 ± 2.8 75.1 ± 1.2 85.5 ± 1.6 68.3 ± 2.0 64.2 ± 2.4 67.9 ± 2.2 Acc 64.9 ± 1.9 70.3 ± 0.8 78.0 ± 0.7
AUC 73.7 ± 2.9 74.7 ± 1.3 85.3 ± 1.7 59.5 ± 2.6 60.6 ± 2.2 66.9 ± 1.2 F1 C 72.0 ± 0.9 75.5 ± 0.6 83.4 ± 0.9

F1 C/W 78.5 ± 1.4 78.7 ± 0.7 87.0 ± 1.0 78.2 ± 1.4 73.0 ± 2.5 75.0 ± 2.8 F1 W 69.9 ± 1.8 74.0 ± 1.1 70.4 ± 1.7
F1 M 73.0 ± 3.7 74.4 ± 1.5 85.3 ± 1.8 59.9 ± 2.9 59.7 ± 2.9 65.0 ± 2.2 F1 O 52.2 ± 4.3 61.9 ± 1.7 76.0 ± 1.3

MCC M 51.2 ± 4.0 52.0 ± 2.0 72.0 ± 2.5 20.5 ± 5.5 20.3 ± 4.3 31.8 ± 2.2 F1 M 64.7 ± 2.3 70.5 ± 1.1 76.6 ± 1.3

Obese

Acc 59.5 ± 5.3 51.6 ± 3.3 88.1 ± 2.5 59.3 ± 3.3 50.0 ± 4.0 75.0 ± 3.8 Acc 62.9 ± 1.7 54.8 ± 2.2 83.4 ± 2.6
AUC 62.5 ± 3.4 61.7 ± 2.2 79.8 ± 0.8 57.9 ± 1.1 54.7 ± 2.9 72.6 ± 3.7 F1 C 75.5 ± 1.7 62.7 ± 2.8 90.7 ± 1.8

F1 C/W 69.7 ± 5.2 60.6 ± 3.8 92.6 ± 1.8 67.4 ± 4.1 53.6 ± 7.4 81.3 ± 3.3 F1 W 62.8 ± 9.2 74.8 ± 1.9 76.6 ± 4.0
F1 M 53.8 ± 4.2 48.8 ± 2.8 80.1 ± 2.4 56.2 ± 3.0 49.3 ± 5.2 71.7 ± 4.1 F1 O 33.0 ± 2.2 36.0 ± 1.1 61.8 ± 2.6

MCC M 19.6 ± 5.2 18.3 ± 3.4 61.1 ± 4.9 15.0 ± 2.6 9.0 ± 5.5 43.9 ± 7.4 F1 M 57.1 ± 4.4 57.8 ± 1.9 76.4 ± 2.8

Diagnosis

Chronic

Acc 71.9 ± 0.9 70.5 ± 0.6 86.6 ± 0.9 65.6 ± 0.7 61.9 ± 1.6 70.9 ± 1.0 Acc 67.4 ± 0.9 68.4 ± 0.5 81.8 ± 0.9
AUC 67.8 ± 2.1 68.3 ± 0.7 82.7 ± 1.9 60.2 ± 1.6 60.7 ± 1.2 69.3 ± 1.8 F1 C 77.6 ± 0.4 75.9 ± 0.8 88.3 ± 0.9

F1 C/W 79.1 ± 0.8 76.9 ± 0.7 90.4 ± 0.5 74.8 ± 0.7 69.2 ± 2.5 77.3 ± 1.6 F1 W 68.5 ± 2.7 73.6 ± 0.8 74.2 ± 1.9
F1 M 68.1 ± 2.6 67.9 ± 0.9 84.3 ± 1.5 60.3 ± 2.1 59.5 ± 2.3 68.3 ± 2.2 F1 O 47.1 ± 3.4 54.1 ± 0.9 73.9 ± 1.2

MCC M 36.7 ± 3.0 36.0 ± 1.2 70.2 ± 1.8 20.8 ± 2.7 20.4 ± 2.2 37.4 ± 2.7 F1 M 64.4 ± 2.2 67.9 ± 0.8 78.8 ± 1.3

Non-Chronic

Acc 81.6 ± 2.5 80.5 ± 2.6 85.3 ± 3.3 82.4 ± 3.7 84.1 ± 3.6 85.5 ± 4.4 Acc 77.8 ± 3.5 78.2 ± 2.2 84.7 ± 1.7
AUC 82.4 ± 2.5 80.7 ± 2.8 86.0 ± 2.8 80.9 ± 4.0 82.3 ± 2.5 83.5 ± 5.1 F1 C 78.7 ± 3.6 75.4 ± 4.1 84.0 ± 1.7

F1 C/W 81.8 ± 2.4 79.2 ± 3.2 85.4 ± 2.6 87.0 ± 3.0 88.4 ± 3.0 89.6 ± 3.2 F1 W 83.4 ± 4.7 85.8 ± 2.0 90.4 ± 3.0
F1 M 81.6 ± 2.6 80.4 ± 2.8 85.3 ± 3.3 79.5 ± 4.2 81.5 ± 3.5 82.9 ± 5.1 F1 O 73.6 ± 4.1 75.0 ± 2.5 81.6 ± 2.6

MCC M 65.1 ± 4.9 61.3 ± 5.5 72.4 ± 5.0 60.1 ± 7.4 63.5 ± 6.2 66.0 ± 10.1 F1 M 78.6 ± 4.1 78.7 ± 2.9 85.3 ± 2.4

wheezes of 79.2% in Males and F1 wheezes of 45.5% in
Females). In the classification of crackles, the same occurs,
Male subjects also achieved superior results than Female
Subjects (F1 crackles of 91.2% in Males and F1 crackles of
70.0% in Females). As for the 3-class classification problem,
even though there is still an advantage for the Male subjects,
the difference is lower (F1 macro of 79.6% in Males and F1
macro of 62.6% in Females). Even though Female subjects
have a large number of annotated crackles in the training set,
these differences can be explained by the unbalanced data
in both crackles and wheezes in Female subjects between

train and test sets. Overall, the results on the classification
of crackles were superior to the results on the classification of
wheezes, as there are more annotated crackles in both training
and test sets than wheezes.

Regarding the BMI category, in the classification of
wheezes, Obese and Normal BMI subjects achieved better
results than Overweight BMI subjects (with F1 wheezes of
81.3% in Obese BMI subjects, F1 wheezes of 82.9% in
Normal BMI subjects, and maximum F1 wheezes of 78.2%
in Overweight BMI subjects). In the crackles classification,
Obese and Normal BMI subjects achieved better results than
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Overweight BMI subjects (with F1 crackles of 92.6% in Obese
BMI subjects, F1 crackles of 92.3% in Normal BMI subjects,
and F1 crackles of 87.0% in Overweight BMI subjects -
except for the Obese and Normal CNNs where p > 0.01).
In the 3-class problem, Obese and Overweight BMI subjects
achieved similar results (in terms of F1 macro, with 76.4%
and 76.6%, respectively), while the Normal BMI subjects
achieved superior results (with F1 macro of 83.3% - except
for the Obese and Normal CNNs, where p > 0.01). Overall,
crackles classification achieved better results than wheezes
classification, maybe due to having more annotated crackles
than wheezes in the training set, which benefits the CNN
model.

In the Diagnosis category, the subjects with a Non-Chronic
diagnosis achieved better results in the wheezes classification
than the subjects with a Chronic diagnosis (F1 wheezes of
89.5% and F1 wheezes of 77.3%, respectively). In the classi-
fication of crackles, the reverse occurs and the subjects with
Chronic diagnosis surpassed the subjects with Non-Chronic
diagnosis (F1 crackles of 90.4% and F1 crackles of 85.4%,
respectively). As for the 3-class classification problem, the
same as the wheezes classification happened: the subjects
with Non-Chronic diagnosis once again achieved better results
than those with Chronic diagnosis (F1 macro of 85.3% and
F1 macro of 78.8%, respectively). Regarding wheezes and
crackles classification, that difference may be explained by
the fact that the AKGC417L microphone has more sensibility
than any other equipment, and in the training set of the sub-
jects with Non-Chronic diagnosis, there are only files where
the equipment used were the LittC2SE and Meditron (less
sensibility in general), while in the training set of the subjects
with Chronic diagnosis, most of the files were recorded using
the AKGC417L microphone.

IV. CONCLUSION

We have presented a stratified analysis of ARS event clas-
sification in the RSD. As discussed, we have observed several
significant differences in the analysed stratification categories
such as the fact that sounds recorded using the AKGC417L
microphone achieve better results, as well as in Male subjects
and Normal BMI subjects. Regarding the employed machine
learning models, the CNNs attained in general the best results,
except in some situations where the data were scarcer; in those
cases, the SVM or the Boost models achieved better results.

Since the splitting currently available was done according
to the number of respiratory cycles and the number of events
on each set, for a possible future work, a new splitting can
be created based on the demographic information to try to
balance the number of events between categories and sets to
achieve a more balanced partition of the data in both sets.

If a new partitioning is proposed, probably some models
can achieve better results, since the data are not always well-
balanced, making it a harder task for the models to learn the
characteristics of the less represented stratification categories.
The best model overall here presented (CNN) requires a large
amount of data to achieve better results. The other two models,

SVM and Boost, sometimes can achieve better results with
fewer data but require a feature extraction stage.

Further studies on this topic require a more detailed analysis
of Adults and Children results in all 3 classification problems.
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