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Abstract—Data on issue reports have been extensively used in
the literature for diverse applications. For example, in the last few
years, a series of Machine Learning (ML) approaches and models
have been proposed to automate software defects management
processes, e.g. classification, prioritization and triage of bug fixing
and implementation requests. Such works depend entirely on
issue reports data and show a growing need for high-quality
and heterogeneous datasets, which are not readily available in
the field. This paper presents a dataset containing over 2.4
million issue reports collected from 93 projects of several natures,
hosted by three tracking systems and written in 16 widely used
programming languages. To demonstrate the potential of the
dataset, three case studies are discussed, where more than 660,000
labelled samples are used to investigate critical aspects related
to the automatic classification of issue reports using ML. Results
show that our dataset has great potential and meets the quality
requirements for studies that rely on issue reports data.

Index Terms—datasets, issue reports, machine learning

I. INTRODUCTION

Issue reports, frequently called bug reports, are semi-
structured documents created by software developers, testers
or users, to report situations faced when using or testing a
software system [1]. A reason for creating issue reports is
often the reporting of a software defect, although other cases
are also frequent, such as requests for implementing new func-
tionalities in the system, improvement requests, documentation
updates and general tasks that need to be performed during the
software development. Typically, issue reports are created and
managed using an issue tracking system like Jira, BugZilla
and GitHub. As semi-structured documents, they include both
structured and plain attributes written in natural language,
although some tracking systems (e.g., GitHub) only support
plain text fields, such as titles and descriptions.

As procedures related to software defects management are
time- and resource-consuming, automating them is a key goal
of any software engineering team, but developing models to

This work has been partially supported by the FCT – Foundation for
Science and Technology, I.P./MCTES through national funds (PIDDAC),
within the scope of CISUC R&D Unit – UIDB/00326/2020 or project
code UIDP/00326/2020; and by Project “NEXUS Pacto de Inovação –
Transição Verde e Digital para Transportes, Logı́stica e Mobilidade”. ref.
No. 7113, supported by the Recovery and Resilience Plan (PRR) and by
the European Funds Next Generation EU, following Notice No. 02/C05-
i01/2022.PC645112083-00000059 (project 53), Component 5 - Capitalization
and Business Innovation - Mobilizing Agendas for Business Innovation; and
by the Portuguese Foundation for Science and Technology (FCT), through
the PhD grant UI/BD/151217/2021, within the scope of the project CISUC -
UID/CEC/00326/2020 and by the European Social Fund, through the Regional
Operational Program Centro 2020; and by INCD funded by FCT and FEDER
under project 01/SAICT/2016 nº 022153.

automate such processes is challenging and depends on high-
quality data. Furthermore, it requires a significant amount
of issue reports for training and evaluating models, espe-
cially when considering approaches based on modern word-
embedding strategies and deep neural networks. The problem
is that datasets of issue reports are hardly available, with
the few existing options being limited to a small number
of samples (e.g., [2]–[4]), collected from projects written in
a single programming language and supported by a specific
issue tracking system. However, a good quality dataset should
consider basic aspects like its size/scale and the heterogeneity
of the data in terms of programming languages, nature, com-
plexity and size of the projects, among other relevant aspects.
Creating a dataset that fulfils all these aspects is not easy.

Some issue report datasets can be found in the literature.
For instance, a dataset composed of 1,158 bugs and patches
extracted from 8 open-source projects was published in [2].
Also, a defect track dataset built with issue reports from both
Mozilla and Eclipse projects, and focused on the bug-triage
life cycle, was proposed in [5], containing 214,908 samples.
Another dataset, containing 859,799 samples, created with
data extracted from Chromium, Mozilla Core and Mozilla
Firefox, is available in [6]. In addition, a dataset containing
about 70,000 issue reports derived from 55 projects of the
Apache Software Foundation is shared in [3]. Finally, a dataset
containing 10,459 samples mined from GitHub repositories is
available in [4]. However, many limitations can be pointed
to these datasets, such as their relatively small size and lack
of representativeness, which is often the result of using only
a few projects, normally written in the same programming
language and supported by a single issue tracker. The current
lack of reasonable datasets constitutes a common problem for
machine learning practitioners in this field.

In this paper we present an issue report dataset, available
at [7], that includes about 2.4 million issue reports referring
to 93 projects of different dimensions and various natures,
implemented in 16 widely-used programming languages and
supported by 3 issue tracking systems. The issue reports in
the dataset refer to bug descriptions, improvement requests,
documentation updates, etc., have different severity levels, and
include a reference to the developer responsible for handling
each report. The dataset was created by means of an open-
source and extensible tool developed for this specific purpose
(available at [7]).

To illustrate the potential of our dataset, we discuss three
case studies related to the automatic classification of issue



reports using Machine Learning (ML). We study (i) the best
suitable source of information (i.e, titles or descriptions) for
training the models, (ii) analyse the performance of different
algorithms, and (iii) investigate if the models are capable of
classifying samples from projects not used in the train process.
Results show that the dataset can be indeed, a helpful base for
conducting different types of experiments in the context of
automatic classification of issue reports. From our case studies,
we discovered that, using either the report title or the descrip-
tion does not affect the classification outcome. Also, Support
Vector Machine, Logistic Regression and Random Forest seem
to be able to effectively classify issue reports. Finally, models
generated based on bug reports from heterogeneous projects
can, to some extent, be used to classify reports from projects
not present in the training data.

The remainder of this paper is structured as follows. Section
II presents the dataset and its main characteristics. Section
III discusses three case studies with the goal of showing the
potential of the dataset. Section IV discusses limitations and
Section V concludes the paper.

II. THE BUGHUB DATASET

In this section, we present an overview of the dataset, by
explaining the criteria adopted to select the issue reports and
describing the data collected.

A. Criteria

Well-defined and reasonable criteria are the key for creating
high-quality datasets. As we intended to collect representative,
heterogeneous and useful issue reports for diverse purposes, a
series of critical dimensions were taken into consideration, as
shown in Table I.

Respecting the aforementioned criteria, we considered
projects that are well-established and at the same time large
enough to contain a reasonable number of issue reports,
with sizes varying from thousands of lines of code (LoC) to
several million, including software systems such as Firefox,
TensorFlow, MariaDB and Elasticsearch, which are broadly
used nowadays. We consider the selected projects to be repre-
sentative due to their intrinsic different natures, complexity
and sizes. For instance, Firefox is a WEB browser, while
TensorFlow is a ML platform. In contrast, MariaDB is a

TABLE I: Criteria considered to create the BugHub dataset.

Topic Requirement

Projects Different sizes and natures

Programming language Widely-used technologies

Issue tracking system Commonly-adopted tools

Issue reports type Bug- and non-bug-related

Severity Different levels

Completeness As many attributes as possible

Filters As necessary to ensure correctness

Minimum number of issues As necessary to provide robustness

database engine and Elasticsearch is an open search and
analytics solution. Among the projects we gathered data from,
one of the smallest is Apache CXF, with about 6.800 lines of
code, while some of the largest ones are listed in Table II. The
full list of projects included in the dataset can be found in [7].

As programming languages, we considered common tech-
nologies, including Go, Java, JavaScript / TypeScript, PHP,
Rust, Nix, C/C++, Python, C#, DM, Dart, Perl and Scala.
These are key technologies nowadays. For example, applica-
tions such as the Minecraft game and IntelliJ IDE are written
in Java, while Facebook and Slack use PHP. In addition, a
great number of software systems and frameworks are created
based on Python, such as Django and Salt.

The projects included in the dataset are supported by three
issue tracking systems: Jira, BugZilla and GitHub. Jira [8]
is an issue tracking software intended to support bug tracking
and agile project management. It is adopted by big organi-
zations and software communities, such as Apache Software
Foundation and Reddit. BugZilla [9] is a web-based issue
tracker widely used by organizations like Mozilla and Red Hat.
Finally, GitHub [10] is a platform for software development
and version control that includes an issue tracking system. It is
used by a wide number of software development communities
and companies such as Microsoft and Red Hat.

Regarding the types of reports, part of the dataset is labelled
as bug- and non-bug-related issues (further details below),
although fine-grained types can be found for several projects,
such as the ones managed in GitHub, where different labels are
used to categorise the issue reports. For example, Kubernetes,
a well-known GitHub project, uses labels to categorise their
issue reports as bug, feature, documentation and support. In
terms of severity, several levels can be observed, such as
blocker, critical, major, normal, minor, trivial and a few more.

TABLE II: Some of the biggest projects in the BugHub dataset.

Project Language Issues Bugs Non-bugs LoC

Firefox C/C++ 25423 18607 6816 25,300,000

Mozilla Core C/C++ 164708 128608 36100 20,300,000

NextCloud Server PHP 15392 10821 4571 9,110,000

Roslyn C# 10248 8290 1958 5,900,000

MariaDB Server C/C++ 11746 9855 1891 4,280,000

Kibana TypeScript 13680 11461 2219 3,230,000

Tensorflow C/C++ 6546 4912 1634 3,090,000

QGis C/C++ 24080 20543 3537 2,190,000

Godot C/C++ 23727 21105 2622 1,590,000

MongoDB Server C/C++ 28641 13730 14911 1,590,000

Spring Framework Java 12734 4440 8294 1,420,000

Elasticsearch Java 20026 9605 10421 1,200,000

Bazel Java 3283 2110 1173 1,110,000

Mozilla NSS C/C++ 6493 4144 2349 1,080,000

Symfony PHP 16759 11602 5157 1,030,000

SeaMonkey C/C++ 9946 8765 1181 1,020,000
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To ensure completeness, we collected all available attributes
supported by each issue tracking system, as those can be
important for future research using the BugHub dataset. To
improve the trustworthiness of the samples classified as bugs
and non-bugs, we used filters to consider only reports that
match FIXED and RESOLVED cases, thus ensuring that they
were previously adequately analysed by the developers.

To make the dataset representative and heterogeneous, we
considered only projects that have a minimum number of
issues available in the corresponding issue tracking system.
We name this parameter as n and analysed different values
for it. Considering that the bug versus non-bug categorisation
is typically the basis for the automatic classification of issue
reports, we investigated the literature to understand the dimen-
sionality used for such purpose, which refers to the number
of features or attributes obtained from plain text to create
ML-based models. As studies in this context typically adopt
between 100 and 150 dimensions (e.g., [11], [12]), we decided
that 1,000 issues per class would be a reasonable amount of
reports to consider (a number 6 to 10 times greater than the
usually adopted dimensionality).

B. Dataset details

To create the BugHub dataset, we opted for using Jira,
BugZilla and GitHub as source of information, as they are
widely used by well-known projects and provide public REST
APIs that are powerful and well-documented. The acquisition
process, run between April 2021 and May 2023, resulted in
2,462,666 unique issue reports from 93 projects (i.e., 34 from
Jira, 8 from BugZilla and 51 from GitHub) being processed.
As mentioned before, such projects are of different categories,
including (but not limited to) operating systems, programming
languages, issue tracking systems, mail clients, HTTP servers,
web browsers, etc.

From the 2,462,666 samples in the dataset, 1,419,886 are
labelled as bug or non-bug. These are particularly useful for
automatic classification processes. The dataset also contains
941,905 samples divided into several different severity levels,
including blocker, critical, major, normal, minor and trivial.
These samples are particularly a handful for creating ML
models to perform automatic prioritization of issue reports. To
support triage, labelled samples are assigned to the developers
who worked on the issue report solution. The unlabelled
samples in the dataset (1,042,780) are intended to train un-
supervised ML algorithms and word-embedding-based models
and are also helpful for anomaly detection.

As shown in Figure 1, not all samples are categorized as
bugs and non-bugs, and some are not classified according
to their criticality. This is to ensure that classified samples
are correctly labelled. In fact, most samples in the dataset
labelled as bugs/non-bugs refer to fixed and resolved issue
reports, given that these are the ones that have been reviewed
by developers (ensuring that they are correctly classified).
Furthermore, samples from GitHub are classified using tags
that can be defined by each project team. This means that
each project may use a different taxonomy for identifying bugs

and non-bugs and for defining criticality. In some cases, it
is difficult to be sure about what each tag represents, which
creates uncertainties in labeling the samples. We decided not
to label such samples but still include them in the dataset.

Fig. 1: Number of issue reports in each category.

In terms of programming language, the BugHub dataset
includes widely used technologies such as Java, Python, Go,
PHP and C/C++, with this last one being a combination
of C and C++ (as these share many similarities). We also
considered JavaScript and TypeScript as one single language
(JS/TS), given that most projects based on these technologies
usually adopt both of them. Figure 2 shows the distribution of
issue reports in the dataset by programming language. The x
axis represents the log2 numberofissues, while the number
in each bar represents the total amount of samples in the
corresponding programming language. The Figure indicates
that C/C++ projects are the ones contributing with more
reports to the dataset, followed by JS/TS, Go, Java, Python
and Rust.

Fig. 2: Number issue reports per programming language.

Figure 3 shows the overall amount of bug- and non-bug-
related reports per programming language (considering only
the samples labeled as bug/non-bug). As shown, projects
tend to have fewer issues not related to software defects in
comparison to the ones related to bugs. In general, C/C++ and
Java are the programming technologies that appear associated
with a higher number of samples in this part of the dataset.

Concerning the severity of the issue reports, Figure 4 shows
the amount of samples in each of the main levels, which
refer to projects extracted from both Jira and BugZilla (as
mentioned before, GitHub uses a different method to define
priorities). As shown, normal severity is the one where most
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Fig. 3: Total of issue reports per programming language.

issue reports lie, as this is the default level found in most
projects. However, a relatively high number of issue reports
is categorised as critical and major, while blocker is the level
associated with fewer samples.

Fig. 4: Volume of issue reports per severity level.

The dataset is publicly available as a relational database
dump (i.e., a .sql compressed file) [7]. It contains a table
with issue reports from BugZilla labelled with severity levels
and another table with unlabeled samples from GitHub. More
importantly, there is a table with the reports collected from
Jira, BugZilla and GitHub that are categorized as bugs and
non-bugs. In this table, issue reports from Jira are also labelled
with priorities. Finally, the dump contains a series of functions
to export all data categorized as bug- and non-bug-related,
according to each particular issue tracking system. The views
and functions are included in the dump file to allow for simple
and effective ways of exploring and exporting the data.

III. CASE STUDIES: AUTOMATIC CLASSIFICATION OF
ISSUE REPORTS

In this section, we present three case studies on the au-
tomatic classification of issue reports using ML, with the
following objectives:

• Case study 1: Investigate if the dataset can be used to
analyse which content from the issue reports (i.e., titles
vs. detailed description) is best suitable to create models
for automatic classification of issue reports.

• Case study 2: Understand if the dataset would support
experiments to reach solid conclusions when studding the
performance of different classifiers in this context.

• Case study 3: Investigate how well ML performs on the
automatic classification of issue reports when handling
data not involved in the training process.

A. Motivation and Methodology

Software defects (the so-called bugs) constitute a signif-
icant threat to the safety and reliability of software systems.
Although bugs are reported in a large scale daily in many soft-
ware projects, not all issues registered are related to software
defects. In fact, the literature shows that more than 30% of
all issue reports submitted as bugs to open-source projects are
actually non-bug-related, instead of requests associated with
software defects [1].

In the last few years, ML-based approaches have been
proposed to automatically classify issue reports into bug-
and non-bug-related, or other fine-grained categories. The
proposed methods (e.g., [13] and [14]) are mainly based on
supervised learning, which means that they depend on labelled
issue reports for training the algorithms. However, achieving
reasonable performance is challenging when handling the au-
tomatic classification of issue reports, mostly due to difficulties
in acquiring reliable data to build models.

Our case studies focus on critical aspects related to the
automatic classification of issue reports using ML, with the
primary objective of assessing the usefulness and quality of
the BugHub dataset. The following design decisions drive the
case studies:

• Data: We use a subset of the BugHub dataset containing
over 660,000 issue reports labelled as bug- and non-
bug-related (detailed in [15]). This subset includes data
extracted from 52 projects developed in 10 different
programming languages, supported by Jira, BugZilla and
GitHub tracking systems.

• Text preprocessing: We used techniques widely-used in
Natural Language Processing (NLP) problems, namely
tokenization, stop-words removal and lemmatization [16].

• Feature generation: We opted for a bag-of-word (BoW)
approach, weighted by term-frequency with inverse docu-
ment frequency (TF-IDF) [17] as this approach is widely
used in this context.

• Dimensionality reduction: We adopted chi-squared
method , which is a ranking technique [18] that require
less processing power than others.

• Performance assessment: We decided to use F-measure
[19], which is the harmonic mean between precision and
recall, as it is a suitable metric for analysing results from
imbalanced testing.

We adopted the following general practices. We randomly
select 70% of the data for training and the remaining 30%
for testing the models. For training, we use balanced data,
while imbalanced samples are used for testing (i.e., the original
proportion among classes as it appears in the dataset). We
execute 30 train/test repetitions for each experiment to study
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how the results may vary. To analyse the results, we resort
to visual observation and statistical testing. To check the
assumptions for applying parametric tests, we use two different
methods: i) a Shapiro–Wilk test, to check whether the results
follow a normal distribution or not; and ii) Levene’s and
Fligner-Killeen test to verify if the variance is similar among
the samples being tested. As our results do not fulfil the
requirements to carry out parametric tests, we use a pairwise
version of the Wilcoxon rank sum test with p-values adjusted
by the Bonferroni method with a typical value of α = 0.05,
for formal hypothesis testing [20].

B. Case Study 1: Titles vs. Descriptions

In this case study we investigate which content from the
issue reports is best suitable to train the models. We analyse
whether using the full textual description produces better
results than using titles. To avoid the curse of dimensionality,
a common problem when using BoW approaches, we also
analyse what would be the most appropriate number of fea-
tures (i.e., dimensions) to use. For our experiments, we opted
for using the Logistic Regression (LR), as hyperparameter
optimization is not a critical issue for such a classifier. We
also resorted to the 52 projects contained in the subset of
issue reports mentioned previously.

To investigate the ideal number of dimensions, we trained
LR models with both titles and descriptions, adopting the
following number of dimensions: {50, 100, 150, 200, 250,
..., 500}. Figure 5 shows the resulting mean F-measures. By
looking at the chart, it can be seen that the performance
of the models varies more expressively between 50 and 250
dimensions. When the number of dimensions grows to more
than 250, differences in the F-measure seem to be smaller.
Also noticeable in the figure are the error bars, which are
relatively large as the models reach different F-measure values
depending on the project (e.g., for 250 dimensions, the F-
measure of models from Spring-boot project is about 0.83 in
some cases, while models from Firefox are associated with a
mean F-measure of 0.57).

Fig. 5: Mean F-measure by number of dimensions.

After a visual analysis, we compared each dimension with
the others above through a formal hypothesis testing proce-
dure, to find out if the F-measure values vary significantly with
the increasing number of dimensions. As a result, we found
out that there are no statistically significant differences in
the performance of models built based on 250 dimensions
and those created by using a higher number of dimensions,
for both titles and descriptions.

A further investigation was conducted to analyse the reasons
behind our findings. The importance of each term in the BoW
reveals that a small amount of words is frequently connected
to a higher relevance in the feature selection process, before
the model creation. We noticed that the average weight of
the first 250 selected words is about 30% higher than the
scores of the words in the range going from 250 to 500
dimensions. We can highlight one example extracted randomly
from our experiments carried out with project AngularJS, in
which we rank a set of terms extracted from titles by their
TF-IDF weights . We then observed that the bi-grams properly
handle and implement detach lie in two of the first positions
and are associated with scores of 7.8 and 3.3, respectively.
In contrast, the term group appears in position 255, with a
weight of only 0.2. In our analysis, models built based on 250
dimensions leverage the most important terms. Thus, adding
more features is not helpful for a significant performance
improvement. Instead, many models using more than 250
dimensions suffer performance losses as they become too
adapted to their training sets.

We then proceeded to a different test, in which the objective
was to verify whether using titles leads to better performance
than resorting to descriptions or vice-versa. We used the F-
measures obtained with 250-dimension models, according to
the results of the previous hypothesis testing procedure. We
statistically compared both contents and as a result, we ob-
served that F-measure values are not significantly different
whether using titles or descriptions. Figure 6 shows the
data tested. We can observe that, although the descriptions
are associated with a higher mean F-measure, the interquartile
F-measure values for titles lie in a similar position.

When analysing the reasons behind such a result, we

Fig. 6: Performance comparison - titles vs. descriptions.
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observed that a few terms present in titles are connected
to elevated importance in the decision process. In contrast,
most words in descriptions have no relevance to the models.
As descriptions are usually longer than titles, they require
more processing power and might not be the best suitable
choice to create models for the automatic classification of
issue reports. When focusing on the weights given by TF-
IDF method to each word, it becomes clear that terms from
titles are about 20% higher than terms in descriptions. In
practice, performance losses that would occur due to the small
number of words present in titles are compensated by the
strong weights their terms tend to have, leading models built
based on titles to a performance that is comparable to that
achieved by models created by using descriptions.

This case study allows us to assess the quality of the
BugHub dataset in different ways. First, the heterogeneity of
the data is imperative to achieve effective results, as using
projects of different natures, sizes and complexities rein-
forces the reliability and representativity of the experiments.
Secondly, the reasonable number of issue reports used is
imperative to reach solid conclusions, as using a small amount
of samples may not be enough to represent the variety of real
scenarios we come across in this context. Lastly, using issue
reports that have been previously analysed by developers to
guarantee their correctness is the basis for conducting not only
this type of study but also future research in this field.

C. Case Study 2: Performance of Classifiers

Our objective in this case study is to verify if the sam-
ples from the BugHub dataset meet the requirements to
investigate which algorithm is capable of producing models
that present an overall higher performance when facing the
automatic classification of issue reports. We selected five
well-known algorithms: Random Forest (RF), an ensemble
classifier; Naıve Bayes (NB), which is a Bayesian classifier;
Support Vector Machine (SVM), a maximal-margin classifier;
k-Nearest Neighbor classifier (k-NN), known to be a lazy
learner; and Logistic Regression (LR), a probabilistic approach
[21]. To conduct the experiments for this research question,
we resorted to the full subset mentioned in Subsection III-A,
which includes 52 projects as heterogeneous as possible in
terms of nature.

To carry out our experiments, for each of the five algorithms,
we executed 30 train/test sequences per project. Thus, we
ended up with 7,800 resulting F-measures to be analysed (i.e.,
1,560 outcomes per algorithm). Figure 7 presents a visual
comparison of the results. To verify whether the differences
in the F-measures were significant or not, we applied the
usual statistical procedures comparing each algorithm with the
remaining four. Based on our results, we concluded that the
performance reached by SVM, RF and LR classifiers is
not significantly different from each other, while NB and
KNN models tend to perform poorly in comparison to the
remaining algorithms.

Although we are presenting a summarized version of our
results, we believe that it is enough to demonstrate the

Fig. 7: F-score comparison between algorithms.

utility of the dataset. The aforementioned case study allowed
us to conclude that issue reports from the BugHub dataset
are heterogeneous and representative enough to reach solid
conclusions when assessing the performance of models built
to perform automatic classification of issue reports. In general,
this type of study requires data that can reflect as much as
possible real case scenarios, which implies using samples from
projects that are intrinsically different in many aspects, such
as programming languages, sizes, objectives, issue tracking
systems used to support them and so on.

D. Case Study 3: Cross-project Classification

The main objective of this case study is to assess if projects
in the BugHub dataset can be used for experiments targeting
the investigation of how well ML algorithms can carry out
the automatic classification of issue reports when handling
data not involved in the training. To achieve such a purpose,
we adopted five projects written in a common programming
language (Java) and supported by the same tracking system
(GitHub). We do so to prevent possible fluctuations in the per-
formance due to the use of different programming languages
and issue trackers. For this case study, we used the following
projects: Bazel, Elasticsearch, Netty, Spring Boot and Spring
Framework. We used Support Vector Machine (SVM) as a
classifier to provide us with the needed results.

To create a baseline, we started by building models trained
and tested with issue reports coming from the same project.
To avoid bias towards large software systems, we extracted the
same amount of issue reports from each project. Concretely,
the following procedure was followed for each system: first,
2,000 reports were randomly selected and divided into the
previously defined proportion for training/testing (i.e., 1,400
samples for training and the remaining for testing). We also
ensure that classes are balanced in the training set (i.e., 50%
bugs and 50% non-bugs).

Figure 8 shows the F-measure values obtained when training
and testing with data from the same project. As demonstrated,
the performance of the models seems to differ from project to
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Fig. 8: Results for training and testing with the same project.

project. Spring Boot is the system from which the algorithms
reach higher scores, and Netty is the software associated with
lower F-measures. We resort to statistical procedures to verify
whether the differences in the F-measure values are significant
or not. The results indicate that they are significantly different
between the projects. In summary, we can state that even when
using projects written in the same programming language and
supported by the same issue tracking system, performance
varies significantly.

In the next step, we trained models using data from four
projects and tested them with the remaining one. We refer to
this procedure as cross-project classification. Considering that
we were using five projects and we ran 30 train/test sequences
per testing project, we ended up with 150 sets of results. This
number is not different from what we had in the experiments
previously conducted in the first part of the case study. We start
the procedure by randomly selecting 6,000 issue reports from
the four projects (i.e., 1,500 samples per project, balanced into
50% bug- and 50% non-bug-related). From the fifth project
(used as a testing project), a random selection of 600 samples
(keeping the original proportion of each class) is then carried
out. By doing so, we follow a round-robin manner, passing
each of the five projects to the testing phase.

Figure 9 shows the F-measure resulting from SVM for each
testing project. When comparing it with Figure 8, we can see
the same pattern, although some differences can be noticed
in the shape that represents the F-measures distribution of
the projects. We resort to the usual statistical methods to
test whether the F-measure values are significantly different
according to the testing project or not. Results support the
claim that when performing cross-project classification, the
performance of the models varies significantly depending on
the testing project.

The final step in the case study was to compare results from
cross-project classification with those obtained when training
and testing with issue reports from the same project (i.e., the

Fig. 9: Cross-project classification with SVM.

first part of the case study). This is basically a comparison
of pairs of projects shown in Figures 9 and 8, as differences
can be complicated to distinguish visually. The usual statis-
tical methods indicated significant differences in two cases:
Elasticsearch and Bazel projects. Yet, for the remaining three
projects, differences in the F-measures were not statistically
significant. Based on our results, we can conclude that the
performance reached by the models when performing cross-
project classification may not always be significantly different
from the performance of models trained and tested with issue
reports from the same project.

To explain our results, we analysed the terms kept during the
feature selection process in each project. Then we compared
the selected terms among all projects. Our analysis revealed
that the amount of selected words which are shared between
any two projects written in the same programming language
and supported by the same issue tracking system is on average,
9%. This means that only a few terms are simultaneously
relevant for two random projects. Our findings support the
idea that, in theory, increasing the number of projects in the
training set might result in higher performance, as long as
the same programming language and the same issue tracking
system are respected.

This case study was conducted by using five different
projects from the BugHub dataset holding particular charac-
teristics (i.e., programming language and tracking system).
Besides the importance of such similarities, this type of
investigation also requires projects which are different in
some aspects, such natures and complexities. The dataset
showed itself sufficiently heterogeneous to allow us to choose
projects meeting the requirements for our experiments. This
was possible due to the large amount of samples included in
the dataset with similarities and differences, indicating that it
is capable of supporting a reasonable number of studies related
not only to cross-project classification but also to the use of
ML to automate processes in software defect management.
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IV. LIMITATIONS AND THREATS TO VALIDITY

BugHub is a broad and heterogeneous dataset; however, it
has some limitations, namely regarding size and variety. We
discuss such limitations in the following paragraphs.

A set of criteria were established to create the dataset. Al-
though the set is diverse, we may have missed relevant criteria,
we may have included less relevant ones, or may have under-
achieved some of the identified ones. Indeed, understanding
to what extent a criterion is achieved or not is quite difficult,
as current literature is scarce on this kind of information. The
important properties to reach were approached in discussion
with experienced researchers, but most of all, the supporting
infrastructure allows for updates.

From the 2,462,666 unique samples included on it, the
amount of samples marked with bug or non-bug is 1,419,886, a
number which we still intend to increase in the future. Of the
1,419,886 million issue reports, 927,737 samples have been
marked with FIXED and RESOLVED by the corresponding
project developers. The remaining 492,149 were not marked
with FIXED and RESOLVED at the time of collection, which
means they had not been (at that moment) analyzed by
developers. In turn, this means that our dataset may benefit
from being updated in the future so that these reports are
replaced by updated versions confirmed by developers.

BugHub contains a reasonable number of issue reports
marked with different severity levels (i.e., a total of 941,905).
However, this particular set has reports extracted from only Jira
and BugZilla. The dataset may benefit from further variety.

We developed a tool named ITSDataCollector to automate
the data acquisition process (available at [7]). The tool can be
used to overcome the limitations presented in this section. For
instance, whenever new issue reports are added to a project,
the tool can be easily used to update the database with the
new data. It is prepared to collect new issue reports as it keeps
control information in the database, allowing it to start from
the last sample gathered from a specific project.

Regarding threats to the validity of our case studies, to
avoid the curse of dimensionality, we adopted the chi-squared
method for feature selection. For hyperparameter optimization,
we ran the optimization several times using random samples
from different projects. To ensure randomization, in each
train/test sequence, we chose a number of samples lower than
the total of examples available. To avoid bias and noise, we
carried out each train/test 30 times. Regarding data quality,
we used preprocessing techniques that were already tested
in previous studies. To guarantee data representativity, we
acquire at least 1,000 examples per class in each project we
used. Finally, we highlight that our case studies resulted in
much more information that is not presented here due to the
limited space.

V. CONCLUSION

This paper described a dataset comprising about 2,4 million
issue reports, gathered from various tracking systems and
including different projects written in several programming
languages. We showed how the dataset can be useful for

research in issue classification by using it in three different
scenarios. The dataset is now publicly available at [7] for open
use in future research in the classification of issue reports, in
various dimensions (e.g., prioritization, triage).

In future work, we will further extend the dataset and
address limitations related to unreviewed reports. We also
intend to use it for creating machine learning models for
severity classification of issue reports.
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