

An Overview of GOOFI - A Generic
Object-Oriented Fault Injection
Framework

JONNY VINTER
JOAKIM AIDEMARK
DANIEL SKARIN
RAUL BARBOSA
PETER FOLKESSON
JOHAN KARLSSON

Technical Report No. 05-07

Department of Computer Science and Engineering
Division of Computer Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden, 2005

1

An Overview of GOOFI - A Generic Object-Oriented
Fault Injection Framework

Jonny Vinter, Joakim Aidemark, Daniel Skarin, Raul Barbosa,

Peter Folkesson and Johan Karlsson
Department of Computer Science and Engineering

Chalmers University of Technology
412 96 Göteborg, Sweden

{vinter, aidemark, skarin, rbarbosa, peterf, johan}@ce.chalmers.se

Abstract
This paper presents a framework called GOOFI (Generic Object-Oriented Fault
Injection) for experimental dependability validation of embedded computer systems
using fault injection. GOOFI is designed to be adaptable to various target systems and
different fault injection techniques and is highly portable between different host
platforms since it relies on the Java programming language and a SQL compatible
database. The most recent version of the framework supports four different techniques
for fault injection. They are software implemented fault injection, scan-chain
implemented fault injection and fault injection via two on-chip debug interfaces known
as BDM (Background Debug Mode) and Nexus (a recently introduced standard
interface). Work has also been started on adding support for simulation based fault
injection in VHDL models as well as function-level models.

1. Introduction
 Embedded computer systems are increasingly being used to protect large investments

or human lives. Validating the dependability of such systems is an essential part of the
design process. Fault injection [1], which is a way of accelerating the occurrences of
faults in the system, has become an important method for system engineers to
experimentally validate the dependability of computer systems. The main purpose of
fault injection is to evaluate and debug the error detection and recovery mechanisms in
computer systems.

Fault injection can be used at various abstraction levels depending on the information
available about the system and at which stage of the design process the method is
applied. Fault injection techniques can be divided into simulation-based and physical
techniques depending on whether faults are injected into a model of a system, or into an
actual physical system or prototype. The advantage of simulation-based fault injection
is that it can be used early in the development process before the actual system is
available which facilitates early discovery of design deficiencies. Physical fault
injection is important since it allows the actual implementation of the system to be
tested.

An Overview of GOOFI - A Generic Object-Oriented Fault Injection Framework

2

So far, most fault injection tools have been developed with a specific fault injection
technique in mind targeting a specific system, and using a custom designed user
interface. Extending such tools with new fault injection techniques, or porting the tool
to new target systems is usually a cumbersome and time-consuming process.

However, a few recent tools have addressed the issues of extension and portability to
different target systems. NFTAPE [2] is a recent fault injection tool that relies on
available lightweight fault injectors, triggers, monitors and other components to
facilitate porting the tool to new target systems as well as adapting it for different fault
injection techniques. The Xception tool [3] is implemented using a modular design, and
has recently been extended to include different types of fault injection techniques.

We have developed a fault injection framework called GOOFI (Generic Object-
oriented Fault Injection), which can be used to perform fault injection campaigns using
different fault injection techniques on different target systems. A major objective of the
framework is to provide a user-friendly fault injection environment with a graphical
user interface and an underlying generic architecture that assists the user when adapting
the tool to new target systems and new fault injection techniques. GOOFI is highly
portable between different host platforms, since it is implemented using the Java
programming language and all data is saved in a SQL compatible database.
Furthermore, an object-oriented approach was chosen which increases the extensibility
and maintainability of the framework.

An early version of GOOFI was first presented in [4]. This paper presents the latest
version of the GOOFI framework, where different fault injection techniques can be
added as plug-ins, and additional tools such as an error distribution classification tool
and a database visualization tool also are provided. In particular, a plug-in for fault
injection via the Nexus [5] on-chip debug interface with support for pre-injection is
presented in detail. Pre-injection is an analysis technique that is applied before any fault
injection is performed to focus the injection to specific parts of the fault space and
thereby reduce the time and effort of validating dependable systems by fault injection
[6]. Post-injection is another analysis technique in which the results from fault injection
experiments are used to predict the outcome of other experiments in order to speed up
the validation process.

The remainder of the paper is organized as follows. An overview of different fault
injection techniques is presented in Section 2. The architecture of GOOFI is described
in Section 3. Section 4 shows how to use the framework with Nexus-based fault
injection on a MPC565 microcontroller. Section 5 describes the pre-injection analysis
and Section 6 presents related work on fault injection tools. Finally, conclusions and
future extensions to the framework are presented in Section 7.

Technical Report No. 05-07

3

2. Fault injection techniques
 As fault injection has become widely used as an experimental dependability vali-

dation method, many different techniques for injecting faults have been developed. This
section gives an overview of the most common techniques. The various fault injection
techniques can be characterized according to different properties. One such property is
reachability, expressing the ability of the fault injection technique to reach possible
fault locations in the system. Another property is controllability, with respect to space
and time, denoting the ability to control where and when the faults are injected among
the reachable locations. Repeatability denotes the ability to accurately repeat a single
fault injection experiment while reproducibility refers to the ability to statistically
reproduce the results of several experiments for a given set-up. Intrusiveness relates to
the level of undesired impact the fault injection technique may have on the behavior of
the target system and can be divided into space and time properties. In order to achieve
experiments corresponding to faults in the real world, it is important that the intrusion is
low. Intrusiveness in time relates to the temporal overhead caused by the fault injection
technique while intrusiveness in space relates to the hardware/software overhead. Other
properties include flexibility, denoting the ease of changing fault injection targets in the
system, effectiveness with respect to the ability to activate and exercise various fault
handling mechanisms in the system and efficiency with respect to the amount of time
and effort needed to conduct the experiments. Another important property is
observability, which refers to the ability to provide means for observing and measuring
the effects of faults in the system.

2.1 Simulation-based fault injection
In simulation-based fault injection, faults are injected in a simulation model of the

computer system. This technique is often applied in the early design phases to allow test
and validation of error handling techniques before a physical prototype is available.
This allows design faults to be detected at an early stage which may reduce the cost for
correcting such faults. Controllability and observability are typically high in simulation-
based fault injection while the efficiency is quite low since there is often considerable
time overhead for performing the simulations. Simulation-based fault injection can be
made either at the electrical (transistor) level, logic (gate) level or function (algorithm)
level depending on the abstraction level employed when simulating the system. The
efficiency is generally higher for higher abstraction levels while the reachability is
lower. Faults may be injected using additional components (saboteurs), via alteration of
the simulation model (mutants) or through built-in simulator commands. The
intrusiveness is obviously much higher in the first case compared to the latter.

An Overview of GOOFI - A Generic Object-Oriented Fault Injection Framework

4

2.2 Physical fault injection
 Physical fault injection techniques are applied on actual implementations or

prototypes of systems during later phases in the development process. There are two
main categories of physical techniques; those that rely mainly on hardware for
performing the fault injection, and those that rely on software, i.e., software-
implemented fault injection (SWIFI). While the observability and controllability can be
more limited for physical techniques than for simulation-based techniques, the
efficiency is often higher. Another advantage of physical techniques is that the actual
implementation of the system is validated instead of a system model.

One of the most common hardware-based techniques is pin-level fault injection. In
this technique, faults are injected by setting the logical values of the pins of digital
circuits to 0 or 1 (stuck-at) or inverting the current value (inversion). Other common
fault models include bridging, when several pins of the circuit are interconnected and
open connection, when the faulted pin is essentially tri-stated. There are two main
strategies used for injecting faults on the pins: forcing and insertion. Pin-level forcing
uses probes that are applied on the pins and associated equipotential lines. Insertion uses
transistor switches connected to the pins of the integrated circuits to provide isolation
from the rest of the system.

Another physical fault injection technique is radiation based fault injection. This
technique injects Single Event Upsets (bit-flips) in integrated circuits by exposing them
to high energy particles. Energetic heavy-ion beams which are able to penetrate
vulnerable regions of integrated circuits can be generated using cyclotrons (particle
accelerators). Another, more cost-effective technique for generating SEUs (Single Event
Upsets) relies on the use of heavy-ions emitted from a Cf-252 source [7].

The recent advancements in programmable circuit technologies have promoted the
use of FPGAs1 for fault injection. [8] describes how circuit descriptions may be
automatically added to synthesizable designs targeted for FPGAs for injecting faults.
The method combines the advantages of simulation-based fault injection, such as high
controllability and observability, with the advantages of physical fault injection, such as
small temporal overhead. Methods of injecting permanent faults by mutations and
reprogramming of FPGAs have also been presented [9].

The Scan-chain implemented fault injection (SCIFI) is a physical technique which
injects faults via scan-chains, i.e., built-in logic conforming to the IEEE 1149.1
standard. Such built-in test logic is used for testing and on-chip debugging of
microprocessors and other VLSI circuits. The SCIFI technique provides better
reachability, observability and controllability than many other physical techniques since
the technique allows faults to be injected and observed both on the boundary pins and in
the internal state elements (latches and flip-flops) of the circuits. The intrusiveness is
also lower for SCIFI than for many other physical techniques since the faults are
injected using the test logic already available in the system. In order to use the SCIFI

1 Field-Programmable Gate Arrays

Technical Report No. 05-07

5

technique efficiently, detailed information about the scan-chains is required. This
information is often only accessible to chip designers and third party debug vendors.
The implementation of a SCIFI tool may then have to rely on the use of an existing
debugger which may have limitited access to the scan-chains.

Other types of on-chip debug techniques exist beside those based on IEEE 1149.1.
Background Debug Mode (BDM) is a proprietary technique from Motorola which has
been successfully exploited for fault injection in [10]. As for the SCIFI technique, the
intrusiveness is low for BDM fault injection. However, the technique is limited to
Motorola devices through the use of the proprietary BDM port. On-chip debugging
techniques supporting real-time tracing such as the IBM RISCTrace and the Nexus
standard [5] are other viable alternatives for fault injection as they feature minimal time
overhead for injecting faults and observing the system as the system does not need to be
halted.

Other physical fault injection techniques which have been introduced use power
supply disturbances, electromagnetic interference and laser beams. Power supply
disturbances can be injected by introducing voltage sags on the power supply lines to
integrated circuits [11]. The electromagnetic interference (EMI) technique uses probes
or plates connected to a burst generator placed above the target circuits of the target
system to inject the faults [12]. Laser fault injection uses laser beams on the parts of
VLSI circuits sensitive to SEUs to inject faults [13].

2.3 Software-implemented fault injection
An increasingly popular technique is software-implemented fault injection (SWIFI)

which uses additional software for injecting faults into physical systems and thus
provides a cheaper and more flexible way of injecting faults than most other physical
techniques. However, the effects of physical faults may not always be properly
emulated due to a lack of reachability and knowledge of how faults generated by
software correspond to actual physical faults. The various SWIFI techniques can be
divided into pre-runtime injection and runtime injection techniques.

In pre-runtime injection, faults are injected by manipulating the software before it is
downloaded to the target system. The major advantage of this technique is that the level
of time related intrusiveness can be kept low since the faults are injected without the
need to stop or divert the program execution.

Runtime injection involves adding the software necessary for performing the fault
injection in a pre-runtime initialization step and to use this software during a runtime
fault injection step. Runtime injection uses interrupts or breakpoints to divert the
program execution to the software that injects the faults. This approach allows faults to
be injected not only in the software code but in all parts of the system reachable by the
software (memory, CPU registers etc.). The disadvantage is the time overhead induced
by handling interrupts and breakpoints.

An Overview of GOOFI - A Generic Object-Oriented Fault Injection Framework

6

2.4 Hybrid fault injection
Several techniques using combinations of some of the fault injection techniques

mentioned above have been proposed. One example is given in [14] where SWIFI is
combined with simulation based techniques which perform the actual fault injection.
This hybrid fault injection technique, also known as mixed-mode fault injection, allows
the advantages of both SWIFI and simulation based fault injection to be utilized, i.e. the
actual target system may be executed at full speed except during the injection of a fault
when a simulator providing detailed access to the target system is used instead.

3. Overview of GOOFI
The objectives of GOOFI are to provide i) a user-friendly fault injection environment

and ii) support for adaptation to new target systems and new fault injection techniques.
To achieve the first goal, the GOOFI graphical user interface has been designed to be
more or less self-explaining and that fault injection experiments with different fault
injection plug-ins are carried out in a similar way. The second goal is achieved by
providing a plug-in based framework.

New techniques and target systems are added through the GOOFI plug-in interface. A
major advantage of this architecture is that a new plug-in can be added to GOOFI
without the need of a regression test2 since the old system will not be affected by bugs
in the added plug-in. GOOFI does not have to be recompiled when a new plug-in is
added and the new plug-in will automatically be found when GOOFI is restarted. The
target systems and fault injection techniques that GOOFI currently supports are:

• The microcontroller MPC565 from Motorola with Nexus-based fault injection
• The microprocessor HC12 from Motorola with BDM-based fault injection
• The microprocessor Thor Rad Hard from Saab Ericsson Space with scan-chain

implemented fault injection (SCIFI)
• The microprocessor MC68340 from Motorola with software-implemented fault

injection (SWIFI)

Figure 1 shows the GOOFI tool with different plug-ins and how GOOFI may

communicate with a target system and an environment simulator (an optional program
emulating the target system environment). In the GOOFI framework, the target system,
the environment simulator and the database that stores information and results from the
experiment can be located within the host computer or connected via a network.

2 Regression testing is applied to modified software to provide confidence that the

changed parts behave as intended and that the unchanged parts have not been
adversely affected by the modifications.

Technical Report No. 05-07

7

Figure 1. GOOFI overview.

GOOFI supports the implementation of new plug-ins by supplying a plug-in template,
which is a partly implemented plug-in, and documentation on how to develop a
complete GOOFI fault injection plug-in. Each plug-in must implement a set of functions
that are called by the GOOFI framework. For example, GOOFI can extract campaign
data from all plug-ins and control each plug-in to open, start and stop fault injection
campaigns (a campaign is a set of experiments). The plug-in should also adhere to the
database design given in the database template (see Section 4.6).

When support for a new fault injection technique is implemented using a plug-in
template, software code for communicating with the target system (i.e. a
microcontroller or microprocessor) has to be added to the template. To do this the
programmer has to follow the documentation3 while using the plug-in template. The
support given by GOOFI for the plug-in developer not only simplifies the work but also
ensures that all plug-ins have a similar look (e.g. tree structures). The plug-in is
compiled separately and placed in the plug-in directory to be automatically found when
GOOFI restarts.

3 The documentation consists of a Software Requirements Specification (SRS) and a

Software Design Specification (SDS).

Database
 Database

 Database

 IPC Network

Target System

Workload

 Environment

Simulator

HOST COMPUTER

 Bus

Database
Communication

GUI

 Environment

Simulator

Target System

Workload

Database
 Database

 Database

GOOFI

Plug-in

Fault Injection
Engine

An Overview of GOOFI - A Generic Object-Oriented Fault Injection Framework

8

4. The GOOFI MPC565 Nexus plug-in
This section describes the usage of a Nexus-based fault injection plug-in implemented

using the GOOFI framework for a specific target system built around the MPC565
microcontroller. A detailed description of this set-up can be found in [15]. Here, we
provide an overview of the conceptual design of the MPC565 Nexus plug-in and
describe the main functionality supporting the four major phases of a fault injection
campaign: the configuration, set-up, fault injection and analysis phase.

4.1 Conceptual design of the MPC565 Nexus plug-in
The conceptual design and the data flow of the set-up used for the MPC565 Nexus

plug-in are shown in Figure 2. The GOOFI plug-in controls a commercial debugging
environment called winIDEA [16] and uses its built-in script functionality to inject
faults and observe the behavior of the system through a Nexus standard interface. A
MySQL [17] database is used for storing the information required for conducting the
fault injection experiments as well as the results of the experiments.

������

����	
����

��������

�����

�����������������

����
����

��� ���

���!"�����

#$�%&%

��'���"!���

(���	�

#)�*+

���������

���,-

����������

,�'����!����

#$�%&%

��'���"!���

(���	�

�-.

���"��������

���

���

��� ���

/�����

���

/�����

��!!��	�0�����"�

���������	�

,+������

����

�������

���

����
���

���	
���

Figure 2. Conceptual design of the MPC565 Nexus plug-in set-up.

Technical Report No. 05-07

9

The development board used as target system is the phyCORE-MPC565 [18].
MPC565 is one of the first microcontrollers to implement the Nexus standard interface.
The Nexus debug interface can be used to observe and manipulate register and memory
contents and for creating real-time traces of the program and data flow. The interface
implemented for the MPC565 is described in [19]. The board has several different I/O
features implemented beside Nexus, which is useful if the design should be extended
with additional peripheral hardware.

Some of the features are:

• 32-Bit Motorola MPC565 PowerPC microcontroller on an advanced PCB layout
• UART port: two RS-232 transceivers for channel A and B, also configurable as

TTL
• CAN port: Three on-chip CAN controllers, two 82C251 CAN transceivers for

channel A and B; also configurable as TTL
• JTAG/BDM/Nexus interfaces
• 40 to 56 MHz clock frequency
• 2 MB external SRAM, 1 MB external Flash memory and 1 MB on chip Flash

memory

The winIDEA debugger communicates with the Nexus interface of the development

board by using the iSYSTEM’s iC3000 [20] active emulator. Features offered by
iC3000 are:

• BDM, OnCE4 and JTAG interface support
• Four hardware breakpoints and an unlimited number of software breakpoints
• On-chip and in-system flash programming
• Multiple voltage support (2V, 3V, 5V)
• Multi processor support
• Universal Serial Bus (USB) and serial (COM) high speed PC interfaces
• Ethernet (TCP/IP) interface
• Source level debugging for C and assembly code.

winIDEA itself does not include a compiler, so in order to compile C code to a

PowerPC executable an external compiler is needed. The Tasking compiler v 2.1 for
PowerPC from Altium [21] is used.

4 OnCE is an emulation method where the processor’s operation is entirely controlled

through a specific port.

An Overview of GOOFI - A Generic Object-Oriented Fault Injection Framework

10

4.2 Configuration phase
The configuration phase involves adapting the tool to the target system. GOOFI uses

tree structures in the graphical user interface to aid the user in the definition of a fault
injection campaign during the set-up phase (see Section 4.3). From these trees, locations
to observe and inject faults in can be selected. The user must create these tree structures
in the configuration phase by providing information about the target processor (e.g.
accessible registers) and the target application (e.g. where the application is located in
memory).

The information about the target processor is independent of the target application.
For the MPC565 Nexus plug-in, a textual description (Register info in Figure 3) of the
MPC565 registers is downloaded into the plug-in database table RegisterInfo (see
Section 4.6) when the database is created for the first time. The registers are grouped
and defined by: <block name>; <register name>; <read mask>; <write mask>. For
example, only some specific bits in the MPC565 special purpose register XER (Integer
Exception Register) are readable and writable and therefore defined as: Special Purpose
Registers; XER; 0xFC00007F; 0xFC00007F.

Information about where the code and data segments of the application should be
located in memory must be defined in the linker file (Sample.ind in Figure 3). The
Tasking compiler uses this information together with the start-up code5, and the target
application source code, to produce the executable (ELF file) and the Memory map. The
memory map file contains information about the different memory segments used by
the target application, e.g. at which address interval the program code is located. It also
contains information about memory addresses, and names, of data variables in the target
application.

By using the register description stored in the plug-in database together with the
memory map, GOOFI can create trees showing information about the target system (as
in Figure 5).

The processor must be initialized before the executable file can be downloaded,
which is done by a script (MPC565.ini in Figure 3). This script initializes registers
containing necessary information for the processor about connected peripheral devices
(e.g. size and timing parameters of external memory), and enables the memory to be
used (e.g. internal flash or external RAM). The commands in this file are executed by
winIDEA/iC3000 before the executable ELF file is downloaded to the MPC565
development board. For programs located in the on-board flash memory, the
initialization performed in this script must be done from the application running on the
development board instead. The Fault injection script is used in the fault injection phase
(see Section 4.4) and controls winIDEA to carry out the fault injection experiments
defined in the set-up phase (see Section 4.3).

5 The start-up code configures the stack and heap before the main method of the
application is called.

Technical Report No. 05-07

11

Figure 3. The MPC565 Nexus plug-in configuration set-up.

An Overview of GOOFI - A Generic Object-Oriented Fault Injection Framework

12

4.3 Set-up phase
The set-up phase is used for setting up fault injection campaigns and generally

involves three steps. In the first step, the user has to enter data about the campaign in the
campaign setup tab of the plug-in window, see Figure 4. Then, specific information
about where and when faults should be injected are defined in the fault injection setup
tab. Finally, the registers and memory positions that the user wants to observe are
defined in the observation setup tab. These steps are described in more detail in the
following subsections.

4.3.1 Campaign set-up
From the menus in the GUI, fault injection campaigns can be configured by starting

the corresponding plug-in for a chosen target system and fault injection technique. In
Figure 4, the MPC565 Nexus plug-in has been chosen.

Figure 4. Campaign set-up.

Technical Report No. 05-07

13

After selecting the path to the winIDEA workload project and workload (the target
system executable), via the file system browser, the output variables from the workload
has to be selected via a tree structure listing the memory addresses and the
corresponding variable names in the program.

The campaign name, the number of experiments in the campaign and the time-out
value for the experiments must also be entered. A fault injection experiment can be
terminated when a time-out value has been reached, an error has been detected or the
execution of the workload ends, whichever comes first. The workload may consist of a
program that either terminates or is executed as an infinite loop.

A fault injection campaign requires a reference run (fault-free run), described in
Section 4.4. A reference run from an earlier campaign can be reused by pressing the
Select button to the right of Use Saved PC Trace. The user can select a reference run
from a campaign using the same workload and settings as the one being configured.
When the campaign is saved, the PC trace (the values of the program counter logged
during the execution of the reference run) and logged registers from the old reference
will be copied to a new reference experiment belonging to the new campaign.

The user can choose between three fault injection modes:

• Normal – User-selected memory is saved after each control loop and user-
selected registers are saved at the end of the execution.

• Normal and Trace – The program flow is saved in addition to the Normal mode.
• Detailed – The program flow and user-selected registers and memory locations

are saved after each executed instruction.

The user may also choose if a pre-injection analysis should be carried out to prevent

injection of faults that are overwritten or never activated by the system (see Section 5).
The user can also choose whether to inject single or multiple bit-flip faults. The
selections made by the user in the set-up phase are stored in the database table
CampaignData. During the set-up phase, the user may also modify already stored
campaign data created for earlier fault injection campaigns by open a defined campaign,
change the contents and save the campaign by a new name.

An Overview of GOOFI - A Generic Object-Oriented Fault Injection Framework

14

4.3.2 Fault injection set-up
By clicking the fault injection setup tab in Figure 5 the user can select where and

when the faults should be injected.

Figure 5. Fault injection setup.

The tree shows all registers and memory positions in which faults can be injected.

The user can select to inject faults in registers at the bit level and in memory words.
Multiple selections can be made by clicking the left mouse button and holding down the
Shift key.

The code range, used to decide which instructions that are executed when faults may
be injected (corresponding to the time interval for fault injection), is set to Full Range
by default, allowing faults to be injected during execution of any instruction. This range
can be changed by pressing the Select button. The window in Figure 6 will appear and
allowing the code range to be selected. By double clicking on a name of a function in
the source code, the assembly code representing the function will be shown.

The loop breakpoint (data exchange BP) is also selected in this window by pressing
the Set Loop Breakpoint button. This address identifies where the workload should stop
its execution and log user-selected memory locations and registers. For control

Technical Report No. 05-07

15

applications, this address identifies a specific location in the control loop. The
breakpoint address can also be entered in the Data Exchange BP field in the window
shown in Figure 5.

Figure 6. Window for selecting breakpoints and address intervals for fault

injection.

If the workload is a control application, the Continue after BP should be enabled. The

number of control loops that should be executed is entered in the Control Loops field
and the control loop interval during which faults may be injected should be entered in
the Loops for FI field.

In certain cases it may be useful to use the Start Point. When this alternative is
selected, the PC trace will start when this point has been reached. For example, if main
is specified as a Start Point, the initialization6 of the processor will not be included in
the PC trace which may decrease the time the reference run takes. The start point should
be a function name defined in the workload.

If a single function is used for the fault injection range, the Short PC Vector might be

6 Configuration of the stack pointer, initialization of the heap and other necessary

initializations of the processor before control is passed to the application.

An Overview of GOOFI - A Generic Object-Oriented Fault Injection Framework

16

useful. If this is selected, only a PC trace of the selected range will be included in the
reference. If No is selected, the PC trace will include all instructions executed during the
control loops selected for fault injection.

4.3.3 Observation set-up
From the GUI in Figure 7 the user selects the locations to observe from a tree. The

selected registers and memory positions will be logged at the selected loop breakpoint
(the Data Exchange BP in Figure 5) in the fault injection set-up.

Figure 7. Observation setup.

Technical Report No. 05-07

17

4.4 Fault injection phase
Fault injection experiments are defined as scripts which are executed by winIDEA.

The scripts are created by GOOFI based on a script template. The template is designed
primarily for handling typical control algorithms, i.e. software that runs in an infinite
loop and calculates new output each loop. However, the script is generic and can thus be
used with applications which are not running eternally.

A GOOFI fault injection campaign requires one reference run (fault-free run) in
which necessary information is collected, e.g. the program flow as a program counter
(PC) trace, and to store the contents of the user-selected memory and registers. This
information is later compared with the experimental results to derive dependability
measures such as error detection coverage. The reference run is illustrated in Figure 8.

Figure 8. Reference run procedure.

A PC trace is needed in order to decide when a fault should be injected and to allow

fault injection experiments to be repeated. The precise time and location of the fault
injection must be determined and these two parameters are translated to the parameters
listed below.

• Control loop index
• Breakpoint address
• Number of breakpoint invocations within the control loop
• The fault injection location

The control loop index is specific for control applications which execute in cycles. It

defines the loop during which a fault should be injected. For applications that do not
execute in loops, the control loop index is always set to one. The breakpoint address

An Overview of GOOFI - A Generic Object-Oriented Fault Injection Framework

18

specifies the breakpoint position inside the control loop and the number of breakpoint
invocations specifies the number of times this breakpoint should be reached before fault
injection. When the user selected breakpoint has been reached, the instruction at the
breakpoint address has not yet been executed. Thus, the fault injection occurs before the
user selected breakpoint instruction executes.

A typical fault injection experiment running in normal operation mode can be
represented in four major steps as described in Figure 9.

Figure 9. Fault injection procedure for normal mode.

Technical Report No. 05-07

19

4.5 Analysis phase
The logged data is analyzed in the analysis phase in order to obtain various

dependability measures. The kind of measures obtainable depends on the target system.
There are two tools included in the GOOFI tools menu that supports analysis of the
experiments; an error distribution classification tool and a database visualization tool.

4.5.1 The Error Distribution tool
The Error Distribution tool classifies experiments in a campaign into the appropriate

type of error and stores this information in the database table ErrorDistribution. This
data can be used to create the distribution of errors and the distribution of exceptions for
errors that have been detected. Experiments are classified into one of the following
three types of errors:

• Non-effective – The fault had no effect during the time the experiment

elapsed.
• Detected – The hardware mechanisms of the processor has caught the error.
• Undetected – No hardware mechanisms have been triggered but the output

from the system is incorrect.

An error distribution can be created by selecting ErrorDistribution under the Tools

menu in GOOFI. The window in Figure 10 will appear showing the progress and the
percentage of each type of error. This information is updated after each classified
experiment. Incorrect Experiments are experiments that stopped before a fault was
injected.

An Overview of GOOFI - A Generic Object-Oriented Fault Injection Framework

20

Figure 10. The Error Distribution tool.

4.5.2 The Database Visualization tool
The Database Visualization tool is a general tool to communicate with MySQL

databases and is started from the Tools menu in GOOFI. The main feature with this tool
is that experiment results can be analyzed visually. Figure 11 shows a tree view of a
database containing measured sensor values from a jet engine, a user entered SQL
query, the result table and a graphical representation of the result table.

Technical Report No. 05-07

21

Figure 11. The Database Visualization tool.

4.5.3 Repeating experiments
During the analysis phase, some interesting result may require a more detailed

investigation. Therefore, it is possible to repeat an experiment by selecting the Repeat
Experiment from the GOOFI menu. This will create a new fault injection campaign
which can be configured as usual but certain values can not be modified. A campaign
that repeats an experiment does not need a new PC trace and the reference run will
therefore only run the control loops and log the user-selected observable registers and
memory locations. New campaigns can be configured based on the configuration for an
existing experiment. Selecting Open instead of Repeat in the Repeat Experiment
window will load a campaign based on the selected experiment. A new campaign can
now be configured as usual.

An Overview of GOOFI - A Generic Object-Oriented Fault Injection Framework

22

4.6 The GOOFI database
A model of the GOOFI database used by the MPC565 Nexus plug-in is shown in

Figure 12. All plug-ins creates and uses their own database and GOOFI can extract
campaign information from all databases and e.g. create database backups.

Figure 12. The GOOFI plug-in database.

Technical Report No. 05-07

23

Figure 12, contd. The GOOFI plug-in database.

An Overview of GOOFI - A Generic Object-Oriented Fault Injection Framework

24

5. Extending GOOFI to support pre-injection analysis
A problem commonly observed during fault injection campaigns is that not all faults

fulfill the purpose of disturbing the system. Often 80-90% of randomly injected faults
are not activated. A fault placed in a register just before the register is written or faults
that are injected into unused memory locations are examples of faults with no
possibility of activation. In most tools the location and the time for fault injection are
chosen randomly from the complete fault-space, which is typically extremely large. The
statistical implication of this is that the cost of obtaining appropriate confidence levels
of the dependability measures becomes unnecessarily high.

The resources (registers and memory) available in computers are, usually, greater
than what the applications executed require. This fact motivates a fault injection
optimization strategy in which faults are injected only in used resources.

Avoiding unused memory regions might be done manually by analyzing the memory
map of the application and choosing the segments (stack, heap, etc.) as valid locations
for fault injection. This approach is quite simple but does not consider the way
resources are used along the time dimension. The following graph of the memory reads
by a jet engine controller [22] during one control loop of execution clearly illustrates
this fact.

Figure 13. Memory read accesses for a Motorola MPC565 based jet

engine controller (1 control loop – 11028 memory accesses).

Reducing the fault-space to the memory segments presented in the graph increases

the probability of fault activation. Further optimization would be achieved by
considering only the memory locations within these segments that are actually used. Not
only are the available resources greater than the needs of the application but the

Technical Report No. 05-07

25

segments are also over-dimensioned. Reducing the granularity to the level of individual
memory locations would yield better results, although it would be even better to use
techniques that consider the dynamic usage of the resources.

During the past years two main classes of analysis techniques for reducing the cost of
validating dependable systems by fault injection have been studied – pre-injection
analysis and post-injection analysis. Post-injection analysis [23] aims at predicting the
outcome of fault injection experiments using the results from other experiments. Pre-
injection analysis uses knowledge of program flow and resource usage to choose the
location and time where faults should be placed, before any experiment is performed.

The GOOFI tool currently supports a pre-injection technique [24] for the MPC565
Nexus plug-in. The technique is briefly presented in the following subsections.

5.1 Optimization input
In order to determine the optimized fault-space it is necessary to gather information

about the code of the application and the computer system executing it. More precisely,
the input required by the method is:

• Assembly code of the application
• The Program Counter (PC) trace over time
• The values of the General Purpose Registers before each memory read access7
• The definition of which resources are read by each assembly instruction

In our experimental setup, the assembly code is textual information obtained by

disassembling the executable (ELF) binaries of the application, processed automatically
by the optimization program. The Program Counter trace and the values of the General
Purpose Registers (GPRs) are stored during the execution of the reference run. Even
though the values of the GPRs are only required before each memory access, they were
stored for every instruction executed to simplify implementation. The effective address
of each memory read access is calculated with the GPR values. The definitions of which
resources are read by each assembly instruction were obtained from Motorola’s RISC
CPU Reference Manual [19].

7 The values of the GPRs are required to calculate the effective address for memory

read instructions.

An Overview of GOOFI - A Generic Object-Oriented Fault Injection Framework

26

5.2 Optimization output
The resulting output (the optimized fault-space) consists of a list of possible locations

and times for fault injection. Each element in the optimized fault-space contains the
following information:

• Control loop index
• Breakpoint address
• Number of breakpoint invocations within the control loop
• The fault injection location

The control loop index is specific for control applications which execute in cycles. It

defines the loop during which a fault should be injected. For applications that do not
execute in loops, the control loop index is always set to one. The breakpoint address
specifies the breakpoint position inside the control loop and the number of breakpoint
invocations specifies the number of times this breakpoint should be reached before fault
injection.

5.3 Performing the optimization
Using the Program Counter trace over time, the disassembled code of the application

is parsed to obtain the sequence of assembly instructions executed. Each of the
instructions is then analyzed in order to determine which resources the instruction reads.
The pseudo-code for this procedure is presented in Figure 14.

FOREACH pc_value IN program_counter_trace DO

control_loop_index � current_control_loop ()

breakpoint_invocation � breakpoint_invocations_count (pc_value)

instruction � instruction_at_code_address (pc_value)

instruction_read_list ���� resources_read_by_instruction (instruction)

FOREACH resource IN instruction_read_list DO

useful_fault � [control_loop_index, pc_value, breakpoint_invocation, resource]

store_in_database (useful_fault)

ENDFOREACH

ENDFOREACH

Figure 14. Pseudo-code for the optimization procedure.

Technical Report No. 05-07

27

The most important stage (shown in bold in the pseudo-code) is the identification of
the resources read by each instruction. To accomplish this, the first step is to find the
definition on the list matching the given instruction. This is done by matching the
opcode and the operands. Then, by examining the possible assembly constructs, the
symbols available in the read list of the definition are replaced by the resources actually
read by the given instruction. Figure 15 illustrates this process.

Figure 15. Example of the optimization procedure.

The instruction at address 39DE8 adds R10 to R11 and stores the result in R5. The

definition for this instruction is found in the table and the read list contains rA and rB,
respectively, R10 and R11. Since these are the two resources read by this instruction,
two new lines are inserted into the fault locations for code address 39DE8 (the control
loop and the internal loop are assumed to hold the values specified).

The second instruction, at address 39DEC, fetches the memory word addressed by the
effective address (R6) + 24 and stores it in R7. Its definition in the table specifies rA
and MEM32(d+rA), respectively, R6 and the 32-bit word at 10008+24, as being read.
These two resources are then inserted into the list of fault locations.

8 The value of R6 is obtained during the reference run.

An Overview of GOOFI - A Generic Object-Oriented Fault Injection Framework

28

6. Related work on fault injection tools
This section gives an overview of some of the many tools which have been developed

for injecting faults in computer systems. The presented tools are also compared with the
GOOFI tool.

6.1 Simulation-based fault injection tools
 One tool for injecting faults using electrical level simulations is FOCUS [25].

FOCUS has been used for validating a digital jet-engine controller installed in the
Boeing 747 and 757 aircrafts. The tool uses a hierarchical simulation environment for
tracing the impact of transient faults (modeled as current sources) caused by lightning
effects, electrical power surges etc.

Common modeling languages for developing logic level simulation models of
systems are the Very high-speed integrated circuit Hardware Description Language
(VHDL) and Verilog. A methodology for injecting faults using logic level simulations
is demonstrated by the MEFISTO (Multilevel Error and Fault Injection Simulation
TOol) [26]. MEFISTO injects faults by either modifying VHDL models of systems with
mutations or adding saboteurs, or by using VHDL simulator commands for
manipulating signal and variable values in the models. A post-injection analysis
technique called path-based error coverage prediction (PBECP) has also been
implemented in MEFISTO [23]. The PBECB technique predicts the error coverage for a
specified input sequence based on fault injection data obtained for another input
sequence.

The simulation based fault injector VERIFY (VHDL-based Evaluation of Reliability
by Injecting Faults efficientlY) is presented in [27]. The tool uses an extension of
VHDL for describing faults correlated to a component, enabling hardware
manufacturers which provide the design libraries to express their knowledge of the fault
behavior of their components. Multi-threaded fault injection which utilizes checkpoints
and comparison with a golden run is used for faster simulation of faulty runs.
Unfortunately the tool is not compatible with current VHDL simulators since the VHDL
language has to be modified. VFIT (VHDL-based Fault Injection Tool) [28] is another
logic level simulation based fault injection tool with features similar to those of
MEFISTO.

ALIEN [29] is another logic level tool implemented for the VHDL language. In
contrast to many other such tools, ALIEN relies solely on mutations of VHDL models
to inject faults.

The DEPEND tool [30] is an example of a function level simulation tool that has
been used for studying the effects of correlated errors and errors with various latencies
on a TMR system similar to Tandem Integrity S2. Functional fault models representing
manifestations of faults at lower levels are used, e.g. memory bit-flips or CPU register
errors.

Technical Report No. 05-07

29

6.2 Physical fault injection tools
Pin-level fault injection experiments have been conducted on a computerized

interlocking system for railway control applications and the ESPRIT Delta-4 distributed
system, using the MESSALINE tool [31]. This study demonstrated the usability of the
technique for pointing out design/implementation deficiencies and characterizes the
behavior of systems in the presence of faults despite limitations such as inadequate fault
selection, synchronization problems, testbed efforts etc. Another pin-level forcing tool
is the Advanced Fault InjecTion (AFIT) tool [32] which supports the injection of faults
at a frequency of up to 40 MHz.

The RIFLE tool [33] is a pin-level insertion tool which uses dedicated logic that
intercepts the pins of the target device to inject faults and to record the effects of the
faults.

The FIST (Fault Injection system for Study of Transient fault effects) tool presented
in [7] uses radiation induced fault injection on the MC6809E CPU. FIST uses heavy-ion
radiation from a Cf-252 source to inject the faults and the golden chip technique, in
which the target circuit operates synchronously with a reference circuit, not subjected to
fault injection, to detect fault occurrences. Error recording is performed using a logic
analyzer.

In [12] an electromagnetic interference (EMI) tool is presented and a comparison of
the EMI technique with radiation induced fault injection, pin-level forcing and SWIFI is
made showing that these techniques are complementary, i.e., they generate, to a large
extent, different types of errors.

A laser fault injection (LFI) tool is described in [13]. The fault injection locations are
identified using a CAD tool layout of the circuit under test and a high precision (0.1
µm) transition table is used for directing the laser beam on the sensitive locations.
Obviously, this requires detailed knowledge of the design of the circuit under test.

Several fault injection tools based on on-chip debugging hardware have also been
developed. FIMBUL (Fault Injection and Monitoring using BUilt-in Logic) is a SCIFI
tool based on the IEEE 1149.1 standard hardware. The tool is presented in [34] where it
is compared with the simulation based fault injection tool MEFISTO. The comparison
shows that the SCIFI technique can be more than 100 times faster than simulation based
fault injection and yet produce similar results. The tool has also been used to investigate
the effects of varying the system input on fault injection results. The tool implements a
post-injection analysis technique which uses results from fault injection experiments
with a single input sequence to identify other input sequences to the system which give
high, medium or low error coverage [35].

In [10], a tool based on the Motorola proprietary BDM debug hardware is presented.
The tool relies on a pre-injection analysis technique called fault-list collapsing [6] to
identify and eliminate from the complete list of injectable faults, several classes of
faults which do not have any effect on the target system or which are equivalent to other
faults.

A Nexus-based fault injection tool is INERTE (Integrated NExus-based Real-time

An Overview of GOOFI - A Generic Object-Oriented Fault Injection Framework

30

fault injection Tool for Embedded systems) [36] which has been used for dependability
validation of a diesel engine electronic control unit [37].

6.3 Software implemented fault injection tools
A pre-runtime SWIFI tool called DOCTOR (integrateD sOftware fault injeCTiOn

enviRonment) which uses generation of synthetic workloads for system dependability
evaluation is presented in [38]. Transient, intermittent or permanent faults can be
injected into memory, communication or CPU. The tool has been used for evaluating
the HARTS real-time distributed system. Faults injected into memory and
communication subsystems can be injected during runtime while faults injected into the
CPU are modeled via alteration of the executable workload image using a pre-runtime
approach.

One of the earliest examples among the large number of SWIFI tools that have been
developed is FIAT (Fault Injection-based Automated Testing) [39]. The tool uses
additional software for injecting faults into user application code and data during
runtime.

FERRARI [40], a Fault and ERRor Automatic Real-time Injector, is another runtime
SWIFI tool which injects faults using UNIX process handling system calls. Here, a fault
injection process spawns the target workload process that executes in a special trace
mode enabling the injection of transient and permanent faults by the parent process.

The Xception tool [3] uses the debugging and monitoring features of the PowerPC
processor to enable spatial, temporal and data manipulation fault triggers. The tool
facilitates low intrusion on the target system since most of the fault injection software is
running on an external host which only requires software for handling the exceptions to
be added to the system. A variant called RT-Xception [41] features an upper bound for
the maximum number of executed instructions in the fault injection code, which makes
the execution time for each fault injector predictable and thus applicable for real-time
systems. The most recent version of Xception is a commercially available tool
implemented using a modular design supporting different types of fault injection
techniques.

The MAFALDA (Microkernel Assessment by Fault injection Analysis for Design
Aid) tool [42], which also uses processor debugging facilities for injecting both
transient and permanent faults during runtime, has been used for investigating the
benefits of adding fault containment wrappers (extra software for checking calls and the
results of the calls) for micro kernels.

FIRE (Fault Injection using a REflective architecture) [43] uses reflective
programming in C++ to inject and monitor object-oriented software. The user decides
whether the target software should be monitored, fault injected or both. Using a special
pre-processor, additional objects are created in the source code, so called meta-level
objects. These are compiled together with the original source code enabling the target
software to be manipulated at runtime. A similar tool for the Java programming
language, called Jaca [44], has also been developed.

Technical Report No. 05-07

31

In [45], the SWIFI tool ProFI (Processor Fault Injection tool) is presented. The tool is
able to inject transient, intermittent and permanent faults on a MC 68000-based add-in
card running the A/Rose OS plugged into a Macintosh computer. Faults are injected
using a trace routine executed after each machine instruction of the application program.

[46] presents a SWIFI tool called FTAPE (Fault Tolerance And Performance
Evaluator) which is used on two prototypes of TMR-based Tandem machines running a
synthetic workload. Bit-flips and stuck-at faults are injected into CPU registers and
memory. The tool is also used for injecting disk errors to evaluate the mirrored disk
system of the Tandem computers.

The BOND tool [47] is an agent-based SWIFI tool which uses a fault injection agent
for injecting transient and intermittent bit-flip faults into the applications of a Windows
NT PC and a logger agent for monitoring the effects of the faults.

6.4 Hybrid fault injection tools
In [48], the hybrid fault injection tool LIVE is presented which uses pin-level forcing

or generates interrupts to activate software fault injection procedures (SWIFI). The tool
has been used to evaluate a computer based railway control system based on the
Motorola 68040 CPU.

The NFTAPE tool [2] specifically addresses the issues of extension and portability to
different target systems. NFTAPE relies on lightweight fault injectors, triggers,
monitors and other components to facilitate porting to different target systems as well as
adapting it to different fault injection techniques.

6.5 Overview of fault injection tools
 Table 1 gives an overview of some characteristics of the fault injection tools

presented in this section.

An Overview of GOOFI - A Generic Object-Oriented Fault Injection Framework

32

Table 1. Overview of fault injection tools.
Fault injection tool Year Fault injection

techniques
supported

Target systems Fault models/
strategies

Support for
adding new
target
systems

Support for
adding new
fault injection
techniques

Built-in pre-
injection
analyses

Built-in
post-
injection
analyses

AFIT 1997 pin-level
forcing

FASST, TTP/C semi-permanent
(stuck-at)

yes no none none

ALIEN 2003 logic level
simulation

VHDL models permanent
(mutation)

yes no none none

BDM 1999 BDM MC68332 transient
(single bit-flips)

no no fault-list
collapsing

none

BOND 2003 runtime SWIFI Windows NT 4.0
OS PC

transient,
intermittent
(bit-flips)

no no none none

DEPEND 1997 function level
simulation

Tandem Integrity
S2

transient yes no none none

DOCTOR 1993 SWIFI HARTS,
VxWorks

transient,
intermittent,
pseudo-permanent

yes no none none

EMI 1993 EMI MARS transient,
intermittent

yes no none none

FERRARI 1992 SWIFI Unix workstation transient,
pseudo-permanent

no no none none

FIAT 1988 runtime SWIFI IBM RT PC transient
(bit-flips)

no no none none

FIMBUL 1998 SCIFI Thor transient
(bit-flips)

no no none execution
profile

FIRE 2000 runtime SWIFI Unix workstation transient,
intermittent,
pseudo-permanent

no no none none

FIST 1989 radiation
induced

MC6809,
MC68020,
MC68070

transient
(bit-flips)

yes no none none

FOCUS 1989 electrical level
simulation

HS1602 transient yes no none none

FTAPE 1995 runtime SWIFI Tandem S2,
Tandem TMR,
Tandem Duplex

transient
(bit-flips,
disk errors)

yes no none none

GOOFI 2001 SCIFI, BDM,
Nexus,
runtime
SWIFI

Thor Rad Hard,
HC12,
MPC565,
MC68340

transient
(bit-flips)

yes yes OFFSET none

INERTE 2003 Nexus MPC565 transient
(single bit-flips)

no no none none

JACA 2002 runtime SWIFI Java Virtual
Machines

transient,
intermittent,
pseudo-permanent

yes no none none

LFI 1997 laser 32-bit RISC CPU transient
(single bit-flips)

yes no none none

LIVE 1996 pin-level
forcing, SWIFI

MC68HC11,
MC68302,
MC68332,
MC68360,
MC68040

transient
(bit-flips),
pseudo-permanent

yes no none none

MAFALDA 1999 runtime SWIFI Chorus ClassiX
PC

transient
(single bit-flips)

yes no none none

MEFISTO 1994 logic level
simulation

VHDL models of
DP32, ERC32,
Thor, etc.

transient
(saboteurs,
simulator
commands),
permanent
(mutation)

yes no none path-based
error
coverage
prediction

MESSALINE 1990 pin-level
forcing,
pin-level
insertion

PAI, Delta-4,
MARS

semi-permanent
(stuck-at, bridging,
inversion,open
connection)

yes no none none

NFTAPE 2000 SWIFI, logic
level
simulation, pin-
level

VHDL models,
Myrinet LAN,
Unix workstation

transient,
intermittent,
permanent

yes yes none none

PROFI 1993 runtime SWIFI MC68000 pseudo-permanent no no none none
RIFLE 1991 pin-level

insertion
MC680X0,
Intel 286/386

semi-permanent
(stuck-at, bridging,
inversion,open
connection)

yes no none none

VERIFY 1997 logic level
simulation

VHDL model of
DP32

transient,
intermittent,
permanent
(model extensions)

yes no none none

VFIT 2000 logic level
simulation

VHDL models transient and
intermittent
(saboteurs,
commands),
permanent
(mutation)

yes no none none

XCEPTION 1995 runtime SWIFI,
SCIFI,
pin-level
forcing

PowerPC, Intel
Pentium, SPARC

transient
(bit-flips)

yes yes none none

Technical Report No. 05-07

33

7. Conclusion and future work
This paper describes the GOOFI (Generic Object-Oriented Fault Injection)

framework. GOOFI is implemented in the Java language to support maintainability and
portability between different host platforms. All data used by the framework is stored in
a portable SQL-database. GOOFI provides a plug-in based framework which facilitates
the addition of new fault injection techniques as well as adaptation to new target
systems. The target systems and fault injection techniques that GOOFI currently
supports are:

• The microcontroller MPC565 from Motorola with Nexus-based fault injection
• The microprocessor HC12 from Motorola with BDM-based fault injection
• The microprocessor Thor Rad Hard from Saab Ericsson Space with scan-chain

implemented fault injection (SCIFI)
• The microprocessor MC68340 from Motorola with software-implemented fault

injection (SWIFI)

The current version of GOOFI can be improved and extended in several ways. We are

currently working on the following extensions:

 • Support for additional fault models such as software bugs, intermittent and

permanent faults
 • Additional fault triggers such as access of certain data values, execution of

branch instructions or subprogram calls, when task switches occur, or at specific
times determined by a real-time clock

 • A general data analysis tool supporting all plug-ins
• Simulation-based fault injection (both VHDL models via Modelsim [49] and

function-level models via Simics [50])
• Further improvements to the framework by e.g. moving required functionality

from a plug-in to the GOOFI framework to further simplify the development of
a new GOOFI plug-in

• Design of our own hardware/software environment supporting the Nexus
standard

• And, of course, extending support for new target systems and fault injection
techniques via development of new plug-ins

Acknowledgements
We would like to thank the master thesis students working with the GOOFI tool

under our supervision; Stefan Nilsson and Erik Nordström for the implementation of the
HC12/BDM plug-in and Ruyin Lai for the work on the first version of the plug-in
architecture. Thanks are also due to Nasser Mahmoudi and Peter Gunnarsson for

An Overview of GOOFI - A Generic Object-Oriented Fault Injection Framework

34

implementing vital parts of new GOOFI plug-ins and Sven-Arne Andréasson of the
Department of Computer Science and Engineering at Chalmers for his valuable
comments on Object-Oriented analysis and design. This work was supported by NFFP,
VINNOVA, ARTES and the Swedish Foundation for Strategic Research (SSF).

References
[1] R.K. Iyer, Experimental evaluation. Special Issue of Proc. Twenty-Fifth Int.

Symp. on Fault-Tolerant Computing, 1995. pp. 115-130.

[2] D.T. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and R.K. Iyer. "NFTAPE: a
framework for assessing dependability in distributed systems with lightweight
fault injectors", in Proceedings of IPDS 2K: IEEE International Computer
Performance and Dependability Symposium. Chicago, IL, USA. 27-29 March,
2000. pp. 91-100.

[3] J. Carreira, H. Madeira, and J.G. Silva, Xception: a technique for the
experimental evaluation of dependability in modern computers. IEEE
Transactions on Software Engineering, 1998. 24(2): pp. 125-136.

[4] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson. "GOOFI: generic object-
oriented fault injection tool", in Proceedings International Conference on
Dependable Systems and Networks. Göteborg, Sweden. 1-4 July, 2001. pp. 83-
88.

[5] IEEE-ISTO, The Nexus 5001 Forum™ Standard for a Global Embedded
Processor Debug Interface. 1999. pp. 9-10.

[6] A. Benso, M. Rebaudengo, L. Impagliazzo, and P. Marmo. "Fault-list collapsing
for fault-injection experiments", in Proceedings of the 1998 Reliability and
Maintainability Symposium. Anaheim, CA, USA. 19-22 January, 1998. pp. 383-
388.

[7] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo, Using
Heavy-Ion Radiation to Validate Fault-Handling Mechanisms. IEEE Micro,
1994. 14(1): pp. 8-23.

[8] P. Civera, L. Macchiarulo, M. Rebaudengo, M.S. Reorda, and M. Violante, An
FPGA-based approach for speeding-up fault injection campaigns on safety-
critical circuits. Journal of Electronic Testing: Theory and Applications, 2002.
18(3): pp. 261-271.

[9] R. Leveugle. "Fault injection in VHDL descriptions and emulation", in The
IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems.
Yamanashi, Japan. 25-27 October, 2000. pp. 414-419.

Technical Report No. 05-07

35

[10] M. Rebaudengo and M. Sonza Reorda. "Evaluating the fault tolerance
capabilities of embedded systems via BDM", in Proceedings 17th IEEE VLSI
Test Symposium. Dana Point, CA, USA. 25-29 April, 1999. pp. 452-457.

[11] J. Karlsson, U. Gunneflo, P. Liden, and J. Torin. "Two fault injection techniques
for test of fault handling mechanisms", in Proceedings. International Test
Conference 1991 (IEEE Cat. No.91CH3032-0). Nashville, TN, USA. 26-30
October, 1991. pp. 140-149.

[12] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, and G.H. Leber,
Comparison of physical and software-implemented fault injection techniques.
Computers, IEEE Transactions on, 2003. 52(9): pp. 1115-1133.

[13] J.R. Samson, Jr., W. Moreno, and F. Falquez. "A technique for automated
validation of fault tolerant designs using laser fault injection (LFI)", in
Proceedings of 28th International Symposium on Fault Tolerant Computing.
Munich, Germany. 23-25 June, 1998. pp. 162-167.

[14] J. Guthoff and V. Sieh. "Combining software-implemented and simulation-
based fault injection into a single fault injection method", in Twenty Fifth
International Symposium on Fault Tolerant Computing. Digest of Papers.
Pasadena, CA, USA. 27-30 June, 1995. pp. 196-206.

[15] D. Skarin, J. Vinter, P. Folkesson, and J. Karlsson, Implementation and usage of
the GOOFI MPC565 Nexus fault injection plug-in. Technical Report No. 04-08,
Department of Computer Engineering, Chalmers University of Technology,
Göteborg, Sweden, 2004.

[16] iSYSTEM, http://www.isystem.com, October 11th, 2004.

[17] MySQL AB, http://www.mysql.com, October 11th, 2004.

[18] PHYTEC Technology Holding Company,
http://www.phytec.com/sbc/32bit/pc565.htm, October 11th, 2004.

[19] Motorola, MPC565/MPC566 User's Manual. 2003.

[20] iSYSTEM AG,
http://www.isystem.com/Products/Emulators/iC3000/ic3000_overview.htm,
October 11th, 2004.

[21] Altium Limited, http://www.altium.com/tasking/products/ppc/index.html,
October 11th, 2004.

[22] J. Vinter, O. Hannius, T. Norlander, P. Folkesson, and J. Karlsson.
"Experimental dependability evaluation of a fail-bounded jet engine control
system for unmanned aerial vehicles", in Proceedings International Conference

An Overview of GOOFI - A Generic Object-Oriented Fault Injection Framework

36

on Dependable Systems and Networks. Yokohama, Japan. June 28 - July 1,
2005.

[23] J. Aidemark, P. Folkesson, and J. Karlsson, Path-based error coverage
prediction [microprocessors]. Journal of Electronic Testing: Theory and
Applications, 2002. 18(3): pp. 343-349.

[24] R. Barbosa, J. Vinter, P. Folkesson, and J. Karlsson. "Assembly-level pre-
injection analysis for improving fault injection efficiency", in Proceedings of the
Fifth European Dependable Computing Conference (EDCC-5). Budapest,
Hungary. 20-22 April, 2005.

[25] G.S. Choi and R.K. Iyer, FOCUS: an experimental environment for fault
sensitivity analysis. Computers, IEEE Transactions on, 1992. 41(12): pp. 1515-
1526.

[26] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson. "Fault injection into
VHDL models: the MEFISTO tool", in Proceedings of IEEE 24th International
Symposium on Fault Tolerant Computing. Austin, TX, USA. 15-17 June, 1994.
pp. 66-75.

[27] V. Sieh, O. Tschache, and F. Balbach. "VERIFY: evaluation of reliability using
VHDL-models with embedded fault descriptions", in Proceedings of IEEE 27th
International Symposium on Fault Tolerant Computing. Seattle, WA, USA. 24-
27 June, 1997. pp. 32-36.

[28] D. Gil, J.C. Baraza, J. Gracia, and P. Gil. "VHDL simulation-based fault
injection techniques", in Fault injection techniques and tools for embedded
systems reliability evaluation, Boston: Kluwer Academic, 2003.

[29] C. Robach and M. Scholive. "Simulation-based fault injection and testing using
the mutation technique", in Fault injection techniques and tools for embedded
systems reliability evaluation, Boston: Kluwer Academic, 2003.

[30] K.K. Goswami, DEPEND: a simulation-based environment for system level
dependability analysis. IEEE Transactions on Computers, 1997. 46(1): pp. 60-
74.

[31] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.C. Fabre, J.C. Laprie, E. Martins,
and D. Powell, Fault injection for dependability validation: a methodology and
some applications. IEEE Transactions on Software Engineering, 1990. 16(2):
pp. 166-182.

[32] P. Gil, J.C. Baraza, D. Gil, and J. Serrano. "High speed fault injector for safety
validation of industrial machinery", in EWDC-8 (8th European Workshop on
Dependable Computing). Experimental validation of dependable systems.
Chalmers University of Technology, Göteborg, Sweden, April 1997.

Technical Report No. 05-07

37

[33] H. Madeira, M. Rela, F. Moreira, and J.G. Silva. "RIFLE. A general purpose
pin-level fault injector", in Proceedings of the 1st European Dependable
Computing Conference (EDCC-1). Berlin, Germany. 4-6 October, 1994. pp.
199-216.

[34] P. Folkesson, S. Svensson, and J. Karlsson. "A comparison of simulation based
and scan chain implemented fault injection", in Proceedings of 28th
International Symposium on Fault Tolerant Computing. Munich, Germany. 23-
25 June, 1998. pp. 284-293.

[35] P. Folkesson and J. Karlsson. "Considering workload input variations in error
coverage estimation", in Proceedings of the Third European Dependable
Computing Conference (EDCC-3). Prague, Czech Republic. September, 1999.
pp. 171-188.

[36] P. Yuste, D. De Andres, L. Lemus, J.J. Serrano, and P. Gil. "INERTE:
Integrated NExus-based Real-Time fault injection tool for Embedded systems",
in Proceedings of the International Conference on Dependable Systems and
Networks. San Francisco, CA, United States. 22-25 June, 2003. pp. 669.

[37] J.-C. Ruiz, P. Yuste, P. Gil, and L. Lemus. "On benchmarking the dependability
of automotive engine control applications", in Proceedings International
Conference on Dependable Systems and Networks. Florence, Italy. June 28 -
July 1, 2004. pp. 857-866.

[38] H. Seungjae, K.G. Shin, and H.A. Rosenberg. "DOCTOR: an integrated
software fault injection environment for distributed real-time systems", in
Proceedings of 1995 IEEE International Computer Performance and
Dependability Symposium. Erlangen, Germany. 24-26 April, 1995. pp. 204-213.

[39] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki, J. Barton, R.
Dancey, A. Robinson, and T. Lin. "FIAT - fault injection based automated
testing environment." in FTCS-18: Eighteenth International Symposium on
Fault-Tolerant Computing, Digest of Papers. Tokyo, Japan. 27-30 June, 1988.
pp. 102-107.

[40] G.A. Kanawati, N.A. Kanawati, and J.A. Abraham, FERRARI: a flexible
software-based fault and error injection system. IEEE Transactions on
Computers, 1995. 44(2): pp. 248-260.

[41] J.C. Cunha, M.Z. Rela, and J.G. Silva. "Can software implemented fault-
injection be used on real-time systems?" in Proceedings of EDCC-3: Third
European Dependable Computing Conference. Prague, Czech Republic. 15-17
September, 1999. pp. 209-226.

An Overview of GOOFI - A Generic Object-Oriented Fault Injection Framework

38

[42] F. Salles, M. Rodriguez, J.-C. Fabre, and J. Arlat. "MetaKernels and fault
containment wrappers", in Fault-Tolerant Computing, 1999. Digest of Papers.
Twenty-Ninth Annual International Symposium on, 1999. pp. 22-29.

[43] E. Martins and A.C.A. Rosa. "A fault injection approach based on reflective
programming", in Proceedings of International Conference on Dependable
Systems and Networks (includes FTCS 30 30th Annual International Symposium
on Fault Tolerant Computing and DCCA 8). New York, NY, USA. 25-28 June,
2000. pp. 407-416.

[44] E. Martins, C.M.F. Rubira, and N.G.M. Leme. "Jaca: a reflective fault injection
tool based on patterns", in Proceedings International Conference on Dependable
Systems and Networks. Washington, DC, USA. 23-26 June, 2002. pp. 483-487.

[45] T. Lovric and K. Echtle. "ProFI: Processor fault injection for dependability
validation", in IEEE Int. Workshop on Fault and Error Injection for
Dependability Validation of Computer Systems. Göteborg, Sweden, 1993.

[46] T.K. Tsai and R.K. Iyer. "Measuring fault tolerance with the FTAPE fault
injection tool", in Proceedings of Joint Conference PERFORMANCE TOOLS
'95 and MMB '95. Heidelberg, Germany. 20-22 September, 1995. pp. 26-40.

[47] A. Baldini and P. Prinetto. "Bond: An agents-based fault injector for Windows
NT", in Fault injection techniques and tools for embedded systems reliability
evaluation, Boston: Kluwer Academic, 2003.

[48] A.M. Amendola, L. Impagliazzo, P. Marmo, and F. Poli. "Experimental
evaluation of computer-based railway control systems", in Fault-Tolerant
Computing, 1997. FTCS-27. Digest of Papers., Twenty-Seventh Annual
International Symposium on, 1997. pp. 380-384.

[49] Mentor Graphics, http://www.model.com, October 11th, 2004.

[50] Virtutech Inc., http://www.virtutech.com, October 11th, 2004.

