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Abstract 
This paper presents a framework called GOOFI (Generic Object-Oriented Fault 
Injection) for experimental dependability validation of embedded computer systems 
using fault injection. GOOFI is designed to be adaptable to various target systems and 
different fault injection techniques and is highly portable between different host 
platforms since it relies on the Java programming language and a SQL compatible 
database. The most recent version of the framework supports four different techniques 
for fault injection. They are software implemented fault injection, scan-chain 
implemented fault injection and fault injection via two on-chip debug interfaces known 
as BDM (Background Debug Mode) and Nexus (a recently introduced standard 
interface). Work has also been started on adding support for simulation based fault 
injection in VHDL models as well as function-level models.  

1. Introduction 
 Embedded computer systems are increasingly being used to protect large investments 

or human lives. Validating the dependability of such systems is an essential part of the 
design process. Fault injection [1], which is a way of accelerating the occurrences of 
faults in the system, has become an important method for system engineers to 
experimentally validate the dependability of computer systems. The main purpose of 
fault injection is to evaluate and debug the error detection and recovery mechanisms in 
computer systems. 

Fault injection can be used at various abstraction levels depending on the information 
available about the system and at which stage of the design process the method is 
applied. Fault injection techniques can be divided into simulation-based and physical 
techniques depending on whether faults are injected into a model of a system, or into an 
actual physical system or prototype. The advantage of simulation-based fault injection 
is that it can be used early in the development process before the actual system is 
available which facilitates early discovery of design deficiencies. Physical fault 
injection is important since it allows the actual implementation of the system to be 
tested. 
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So far, most fault injection tools have been developed with a specific fault injection 
technique in mind targeting a specific system, and using a custom designed user 
interface. Extending such tools with new fault injection techniques, or porting the tool 
to new target systems is usually a cumbersome and time-consuming process.    

However, a few recent tools have addressed the issues of extension and portability to 
different target systems. NFTAPE [2] is a recent fault injection tool that relies on 
available lightweight fault injectors, triggers, monitors and other components to 
facilitate porting the tool to new target systems as well as adapting it for different fault 
injection techniques. The Xception tool [3] is implemented using a modular design, and 
has recently been extended to include different types of fault injection techniques.  

We have developed a fault injection framework called GOOFI (Generic Object-
oriented Fault Injection), which can be used to perform fault injection campaigns using 
different fault injection techniques on different target systems. A major objective of the 
framework is to provide a user-friendly fault injection environment with a graphical 
user interface and an underlying generic architecture that assists the user when adapting 
the tool to new target systems and new fault injection techniques. GOOFI is highly 
portable between different host platforms, since it is implemented using the Java 
programming language and all data is saved in a SQL compatible database. 
Furthermore, an object-oriented approach was chosen which increases the extensibility 
and maintainability of the framework. 

An early version of GOOFI was first presented in [4]. This paper presents the latest 
version of the GOOFI framework, where different fault injection techniques can be 
added as plug-ins, and additional tools such as an error distribution classification tool 
and a database visualization tool also are provided. In particular, a plug-in for fault 
injection via the Nexus [5] on-chip debug interface with support for pre-injection is 
presented in detail. Pre-injection is an analysis technique that is applied before any fault 
injection is performed to focus the injection to specific parts of the fault space and 
thereby reduce the time and effort of validating dependable systems by fault injection 
[6]. Post-injection is another analysis technique in which the results from fault injection 
experiments are used to predict the outcome of other experiments in order to speed up 
the validation process.  

The remainder of the paper is organized as follows. An overview of different fault 
injection techniques is presented in Section 2. The architecture of GOOFI is described 
in Section 3. Section 4 shows how to use the framework with Nexus-based fault 
injection on a MPC565 microcontroller. Section 5 describes the pre-injection analysis 
and Section 6 presents related work on fault injection tools. Finally, conclusions and 
future extensions to the framework are presented in Section 7. 
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2. Fault injection techniques 
 As fault injection has become widely used as an experimental dependability vali-

dation method, many different techniques for injecting faults have been developed. This 
section gives an overview of the most common techniques. The various fault injection 
techniques can be characterized according to different properties. One such property is 
reachability, expressing the ability of the fault injection technique to reach possible 
fault locations in the system. Another property is controllability, with respect to space 
and time, denoting the ability to control where and when the faults are injected among 
the reachable locations. Repeatability denotes the ability to accurately repeat a single 
fault injection experiment while reproducibility refers to the ability to statistically 
reproduce the results of several experiments for a given set-up. Intrusiveness relates to 
the level of undesired impact the fault injection technique may have on the behavior of 
the target system and can be divided into space and time properties. In order to achieve 
experiments corresponding to faults in the real world, it is important that the intrusion is 
low. Intrusiveness in time relates to the temporal overhead caused by the fault injection 
technique while intrusiveness in space relates to the hardware/software overhead. Other 
properties include flexibility, denoting the ease of changing fault injection targets in the 
system, effectiveness with respect to the ability to activate and exercise various fault 
handling mechanisms in the system and efficiency with respect to the amount of time 
and effort needed to conduct the experiments. Another important property is 
observability, which refers to the ability to provide means for observing and measuring 
the effects of faults in the system. 

2.1 Simulation-based fault injection 
In simulation-based fault injection, faults are injected in a simulation model of the 

computer system. This technique is often applied in the early design phases to allow test 
and validation of error handling techniques before a physical prototype is available. 
This allows design faults to be detected at an early stage which may reduce the cost for 
correcting such faults. Controllability and observability are typically high in simulation-
based fault injection while the efficiency is quite low since there is often considerable 
time overhead for performing the simulations. Simulation-based fault injection can be 
made either at the electrical (transistor) level, logic (gate) level or function (algorithm) 
level depending on the abstraction level employed when simulating the system. The 
efficiency is generally higher for higher abstraction levels while the reachability is 
lower. Faults may be injected using additional components (saboteurs), via alteration of 
the simulation model (mutants) or through built-in simulator commands. The 
intrusiveness is obviously much higher in the first case compared to the latter. 
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2.2 Physical fault injection 
 Physical fault injection techniques are applied on actual implementations or 

prototypes of systems during later phases in the development process. There are two 
main categories of physical techniques; those that rely mainly on hardware for 
performing the fault injection, and those that rely on software, i.e., software-
implemented fault injection (SWIFI). While the observability and controllability can be 
more limited for physical techniques than for simulation-based techniques, the 
efficiency is often higher. Another advantage of physical techniques is that the actual 
implementation of the system is validated instead of a system model. 

One of the most common hardware-based techniques is pin-level fault injection. In 
this technique, faults are injected by setting the logical values of the pins of digital 
circuits to 0 or 1 (stuck-at) or inverting the current value (inversion). Other common 
fault models include bridging, when several pins of the circuit are interconnected and 
open connection, when the faulted pin is essentially tri-stated. There are two main 
strategies used for injecting faults on the pins: forcing and insertion. Pin-level forcing 
uses probes that are applied on the pins and associated equipotential lines. Insertion uses 
transistor switches connected to the pins of the integrated circuits to provide isolation 
from the rest of the system. 

Another physical fault injection technique is radiation based fault injection. This 
technique injects Single Event Upsets (bit-flips) in integrated circuits by exposing them 
to high energy particles. Energetic heavy-ion beams which are able to penetrate 
vulnerable regions of integrated circuits can be generated using cyclotrons (particle 
accelerators). Another, more cost-effective technique for generating SEUs (Single Event 
Upsets) relies on the use of heavy-ions emitted from a Cf-252 source [7]. 

The recent advancements in programmable circuit technologies have promoted the 
use of FPGAs1 for fault injection. [8] describes how circuit descriptions may be 
automatically added to synthesizable designs targeted for FPGAs for injecting faults. 
The method combines the advantages of simulation-based fault injection, such as high 
controllability and observability, with the advantages of physical fault injection, such as 
small temporal overhead. Methods of injecting permanent faults by mutations and 
reprogramming of FPGAs have also been presented [9]. 

The Scan-chain implemented fault injection (SCIFI) is a physical technique which 
injects faults via scan-chains, i.e., built-in logic conforming to the IEEE 1149.1 
standard. Such built-in test logic is used for testing and on-chip debugging of 
microprocessors and other VLSI circuits. The SCIFI technique provides better 
reachability, observability and controllability than many other physical techniques since 
the technique allows faults to be injected and observed both on the boundary pins and in 
the internal state elements (latches and flip-flops) of the circuits. The intrusiveness is 
also lower for SCIFI than for many other physical techniques since the faults are 
injected using the test logic already available in the system. In order to use the SCIFI 
                                                 

1 Field-Programmable Gate Arrays 
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technique efficiently, detailed information about the scan-chains is required. This 
information is often only accessible to chip designers and third party debug vendors. 
The implementation of a SCIFI tool may then have to rely on the use of an existing 
debugger which may have limitited access to the scan-chains.  

Other types of on-chip debug techniques exist beside those based on IEEE 1149.1. 
Background Debug Mode (BDM) is a proprietary technique from Motorola which has 
been successfully exploited for fault injection in [10]. As for the SCIFI technique, the 
intrusiveness is low for BDM fault injection. However, the technique is limited to 
Motorola devices through the use of the proprietary BDM port. On-chip debugging 
techniques supporting real-time tracing such as the IBM RISCTrace and the Nexus 
standard [5] are other viable alternatives for fault injection as they feature minimal time 
overhead for injecting faults and observing the system as the system does not need to be 
halted. 

Other physical fault injection techniques which have been introduced use power 
supply disturbances, electromagnetic interference and laser beams. Power supply 
disturbances can be injected by introducing voltage sags on the power supply lines to 
integrated circuits [11]. The electromagnetic interference (EMI) technique uses probes 
or plates connected to a burst generator placed above the target circuits of the target 
system to inject the faults [12]. Laser fault injection uses laser beams on the parts of 
VLSI circuits sensitive to SEUs to inject faults [13].  

2.3 Software-implemented fault injection 
An increasingly popular technique is software-implemented fault injection (SWIFI) 

which uses additional software for injecting faults into physical systems and thus 
provides a cheaper and more flexible way of injecting faults than most other physical 
techniques. However, the effects of physical faults may not always be properly 
emulated due to a lack of reachability and knowledge of how faults generated by 
software correspond to actual physical faults. The various SWIFI techniques can be 
divided into pre-runtime injection and runtime injection techniques. 

In pre-runtime injection, faults are injected by manipulating the software before it is 
downloaded to the target system. The major advantage of this technique is that the level 
of time related intrusiveness can be kept low since the faults are injected without the 
need to stop or divert the program execution.  

Runtime injection involves adding the software necessary for performing the fault 
injection in a pre-runtime initialization step and to use this software during a runtime 
fault injection step. Runtime injection uses interrupts or breakpoints to divert the 
program execution to the software that injects the faults. This approach allows faults to 
be injected not only in the software code but in all parts of the system reachable by the 
software (memory, CPU registers etc.). The disadvantage is the time overhead induced 
by handling interrupts and breakpoints. 
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2.4 Hybrid fault injection 
Several techniques using combinations of some of the fault injection techniques 

mentioned above have been proposed. One example is given in [14] where SWIFI is 
combined with simulation based techniques which perform the actual fault injection. 
This hybrid fault injection technique, also known as mixed-mode fault injection, allows 
the advantages of both SWIFI and simulation based fault injection to be utilized, i.e. the 
actual target system may be executed at full speed except during the injection of a fault 
when a simulator providing detailed access to the target system is used instead. 

3. Overview of GOOFI 
The objectives of GOOFI are to provide i) a user-friendly fault injection environment 

and ii) support for adaptation to new target systems and new fault injection techniques. 
To achieve the first goal, the GOOFI graphical user interface has been designed to be 
more or less self-explaining and that fault injection experiments with different fault 
injection plug-ins are carried out in a similar way. The second goal is achieved by 
providing a plug-in based framework.  

New techniques and target systems are added through the GOOFI plug-in interface. A 
major advantage of this architecture is that a new plug-in can be added to GOOFI 
without the need of a regression test2 since the old system will not be affected by bugs 
in the added plug-in. GOOFI does not have to be recompiled when a new plug-in is 
added and the new plug-in will automatically be found when GOOFI is restarted. The 
target systems and fault injection techniques that GOOFI currently supports are: 

 
• The microcontroller MPC565 from Motorola with Nexus-based fault injection 
• The microprocessor HC12 from Motorola with BDM-based fault injection 
• The microprocessor Thor Rad Hard from Saab Ericsson Space with scan-chain 

implemented fault injection (SCIFI) 
• The microprocessor MC68340 from Motorola with software-implemented fault 

injection (SWIFI) 
 
Figure 1 shows the GOOFI tool with different plug-ins and how GOOFI may 

communicate with a target system and an environment simulator (an optional program 
emulating the target system environment). In the GOOFI framework, the target system, 
the environment simulator and the database that stores information and results from the 
experiment can be located within the host computer or connected via a network. 

                                                 
2 Regression testing is applied to modified software to provide confidence that the 

changed parts behave as intended and that the unchanged parts have not been 
adversely affected by the modifications. 



Technical Report No. 05-07 
 

7 

 

Figure 1. GOOFI overview. 

GOOFI supports the implementation of new plug-ins by supplying a plug-in template, 
which is a partly implemented plug-in, and documentation on how to develop a 
complete GOOFI fault injection plug-in. Each plug-in must implement a set of functions 
that are called by the GOOFI framework. For example, GOOFI can extract campaign 
data from all plug-ins and control each plug-in to open, start and stop fault injection 
campaigns (a campaign is a set of experiments). The plug-in should also adhere to the 
database design given in the database template (see Section 4.6). 

When support for a new fault injection technique is implemented using a plug-in 
template, software code for communicating with the target system (i.e. a 
microcontroller or microprocessor) has to be added to the template. To do this the 
programmer has to follow the documentation3 while using the plug-in template. The 
support given by GOOFI for the plug-in developer not only simplifies the work but also 
ensures that all plug-ins have a similar look (e.g. tree structures). The plug-in is 
compiled separately and placed in the plug-in directory to be automatically found when 
GOOFI restarts. 

 
 
 
 
 
 
 
 

                                                 
3 The documentation consists of a Software Requirements Specification (SRS) and a 

Software Design Specification (SDS). 
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4. The GOOFI MPC565 Nexus plug-in 
This section describes the usage of a Nexus-based fault injection plug-in implemented 

using the GOOFI framework for a specific target system built around the MPC565 
microcontroller. A detailed description of this set-up can be found in [15]. Here, we 
provide an overview of the conceptual design of the MPC565 Nexus plug-in and 
describe the main functionality supporting the four major phases of a fault injection 
campaign: the configuration, set-up, fault injection and analysis phase. 

4.1 Conceptual design of the MPC565 Nexus plug-in 
The conceptual design and the data flow of the set-up used for the MPC565 Nexus 

plug-in are shown in Figure 2. The GOOFI plug-in controls a commercial debugging 
environment called winIDEA [16] and uses its built-in script functionality to inject 
faults and observe the behavior of the system through a Nexus standard interface. A 
MySQL [17] database is used for storing the information required for conducting the 
fault injection experiments as well as the results of the experiments. 
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Figure 2. Conceptual design of the MPC565 Nexus plug-in set-up. 
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The development board used as target system is the phyCORE-MPC565 [18]. 
MPC565 is one of the first microcontrollers to implement the Nexus standard interface. 
The Nexus debug interface can be used to observe and manipulate register and memory 
contents and for creating real-time traces of the program and data flow. The interface 
implemented for the MPC565 is described in [19]. The board has several different I/O 
features implemented beside Nexus, which is useful if the design should be extended 
with additional peripheral hardware. 

 
Some of the features are: 
 
• 32-Bit Motorola MPC565 PowerPC microcontroller on an advanced PCB layout 
• UART port: two RS-232 transceivers for channel A and B, also configurable as 

TTL  
• CAN port: Three on-chip CAN controllers, two 82C251 CAN transceivers for 

channel A and B; also configurable as TTL  
• JTAG/BDM/Nexus interfaces  
• 40 to 56 MHz clock frequency 
• 2 MB external SRAM, 1 MB external Flash memory and 1 MB on chip Flash 

memory 
 
The winIDEA debugger communicates with the Nexus interface of the development 

board by using the iSYSTEM’s iC3000 [20] active emulator. Features offered by 
iC3000 are: 

 
• BDM, OnCE4 and JTAG interface support  
• Four hardware breakpoints and an unlimited number of software breakpoints  
• On-chip and in-system flash programming  
• Multiple voltage support (2V, 3V, 5V)  
• Multi processor support  
• Universal Serial Bus (USB) and serial (COM) high speed PC interfaces  
• Ethernet (TCP/IP) interface 
• Source level debugging for C and assembly code.  

 
winIDEA itself does not include a compiler, so in order to compile C code to a 

PowerPC executable an external compiler is needed. The Tasking compiler v 2.1 for 
PowerPC from Altium [21] is used. 

 
 
 
 

                                                 
4 OnCE is an emulation method where the processor’s operation is entirely controlled 

through a specific port.  
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4.2 Configuration phase 
The configuration phase involves adapting the tool to the target system. GOOFI uses 

tree structures in the graphical user interface to aid the user in the definition of a fault 
injection campaign during the set-up phase (see Section 4.3). From these trees, locations 
to observe and inject faults in can be selected. The user must create these tree structures 
in the configuration phase by providing information about the target processor (e.g. 
accessible registers) and the target application (e.g. where the application is located in 
memory). 

The information about the target processor is independent of the target application. 
For the MPC565 Nexus plug-in, a textual description (Register info in Figure 3) of the 
MPC565 registers is downloaded into the plug-in database table RegisterInfo (see 
Section 4.6) when the database is created for the first time. The registers are grouped 
and defined by: <block name>; <register name>; <read mask>; <write mask>. For 
example, only some specific bits in the MPC565 special purpose register XER (Integer 
Exception Register) are readable and writable and therefore defined as: Special Purpose 
Registers; XER; 0xFC00007F; 0xFC00007F. 

Information about where the code and data segments of the application should be 
located in memory must be defined in the linker file (Sample.ind in Figure 3). The 
Tasking compiler uses this information together with the start-up code5, and the target 
application source code, to produce the executable (ELF file) and the Memory map. The 
memory map file contains information about the different memory segments used by 
the target application, e.g. at which address interval the program code is located. It also 
contains information about memory addresses, and names, of data variables in the target 
application. 

By using the register description stored in the plug-in database together with the 
memory map, GOOFI can create trees showing information about the target system (as 
in Figure 5). 

The processor must be initialized before the executable file can be downloaded, 
which is done by a script (MPC565.ini in Figure 3). This script initializes registers 
containing necessary information for the processor about connected peripheral devices 
(e.g. size and timing parameters of external memory), and enables the memory to be 
used (e.g. internal flash or external RAM). The commands in this file are executed by 
winIDEA/iC3000 before the executable ELF file is downloaded to the MPC565 
development board. For programs located in the on-board flash memory, the 
initialization performed in this script must be done from the application running on the 
development board instead. The Fault injection script is used in the fault injection phase 
(see Section 4.4) and controls winIDEA to carry out the fault injection experiments 
defined in the set-up phase (see Section 4.3). 

 
                                                 

5 The start-up code configures the stack and heap before the main method of the 
application is called. 
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Figure 3. The MPC565 Nexus plug-in configuration set-up. 
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4.3 Set-up phase 
The set-up phase is used for setting up fault injection campaigns and generally 

involves three steps. In the first step, the user has to enter data about the campaign in the 
campaign setup tab of the plug-in window, see Figure 4. Then, specific information 
about where and when faults should be injected are defined in the fault injection setup 
tab. Finally, the registers and memory positions that the user wants to observe are 
defined in the observation setup tab. These steps are described in more detail in the 
following subsections. 

4.3.1 Campaign set-up 
From the menus in the GUI, fault injection campaigns can be configured by starting 

the corresponding plug-in for a chosen target system and fault injection technique. In 
Figure 4, the MPC565 Nexus plug-in has been chosen.  
 

 

 
Figure 4. Campaign set-up. 
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After selecting the path to the winIDEA workload project and workload (the target 
system executable), via the file system browser, the output variables from the workload 
has to be selected via a tree structure listing the memory addresses and the 
corresponding variable names in the program. 

The campaign name, the number of experiments in the campaign and the time-out 
value for the experiments must also be entered. A fault injection experiment can be 
terminated when a time-out value has been reached, an error has been detected or the 
execution of the workload ends, whichever comes first.  The workload may consist of a 
program that either terminates or is executed as an infinite loop. 

A fault injection campaign requires a reference run (fault-free run), described in 
Section 4.4. A reference run from an earlier campaign can be reused by pressing the 
Select button to the right of Use Saved PC Trace. The user can select a reference run 
from a campaign using the same workload and settings as the one being configured. 
When the campaign is saved, the PC trace (the values of the program counter logged 
during the execution of the reference run) and logged registers from the old reference 
will be copied to a new reference experiment belonging to the new campaign. 

The user can choose between three fault injection modes: 
 

• Normal – User-selected memory is saved after each control loop and user-
selected registers are saved at the end of the execution. 

• Normal and Trace – The program flow is saved in addition to the Normal mode. 
• Detailed – The program flow and user-selected registers and memory locations 

are saved after each executed instruction. 
 
The user may also choose if a pre-injection analysis should be carried out to prevent 

injection of faults that are overwritten or never activated by the system (see Section 5). 
The user can also choose whether to inject single or multiple bit-flip faults. The 
selections made by the user in the set-up phase are stored in the database table 
CampaignData. During the set-up phase, the user may also modify already stored 
campaign data created for earlier fault injection campaigns by open a defined campaign, 
change the contents and save the campaign by a new name.    
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4.3.2 Fault injection set-up 
By clicking the fault injection setup tab in Figure 5 the user can select where and 

when the faults should be injected. 
 

 

Figure 5. Fault injection setup. 

 
The tree shows all registers and memory positions in which faults can be injected. 

The user can select to inject faults in registers at the bit level and in memory words. 
Multiple selections can be made by clicking the left mouse button and holding down the 
Shift key. 

The code range, used to decide which instructions that are executed when faults may 
be injected (corresponding to the time interval for fault injection), is set to Full Range 
by default, allowing faults to be injected during execution of any instruction. This range 
can be changed by pressing the Select button. The window in Figure 6 will appear and 
allowing the code range to be selected. By double clicking on a name of a function in 
the source code, the assembly code representing the function will be shown.  

The loop breakpoint (data exchange BP) is also selected in this window by pressing 
the Set Loop Breakpoint button. This address identifies where the workload should stop 
its execution and log user-selected memory locations and registers. For control 
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applications, this address identifies a specific location in the control loop. The 
breakpoint address can also be entered in the Data Exchange BP field in the window 
shown in Figure 5. 

 
  

 
Figure 6. Window for selecting breakpoints and address intervals for fault 

injection. 

 
If the workload is a control application, the Continue after BP should be enabled. The 

number of control loops that should be executed is entered in the Control Loops field 
and the control loop interval during which faults may be injected should be entered in 
the Loops for FI field.  

In certain cases it may be useful to use the Start Point. When this alternative is 
selected, the PC trace will start when this point has been reached. For example, if main 
is specified as a Start Point, the initialization6 of the processor will not be included in 
the PC trace which may decrease the time the reference run takes. The start point should 
be a function name defined in the workload. 

If a single function is used for the fault injection range, the Short PC Vector might be 

                                                 
6 Configuration of the stack pointer, initialization of the heap and other necessary 

initializations of the processor before control is passed to the application. 
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useful. If this is selected, only a PC trace of the selected range will be included in the 
reference. If No is selected, the PC trace will include all instructions executed during the 
control loops selected for fault injection. 

4.3.3 Observation set-up 
From the GUI in Figure 7 the user selects the locations to observe from a tree. The 

selected registers and memory positions will be logged at the selected loop breakpoint 
(the Data Exchange BP in Figure 5) in the fault injection set-up. 

 
 

 
Figure 7. Observation setup. 
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4.4 Fault injection phase 
Fault injection experiments are defined as scripts which are executed by winIDEA. 

The scripts are created by GOOFI based on a script template. The template is designed 
primarily for handling typical control algorithms, i.e. software that runs in an infinite 
loop and calculates new output each loop. However, the script is generic and can thus be 
used with applications which are not running eternally. 

A GOOFI fault injection campaign requires one reference run (fault-free run) in 
which necessary information is collected, e.g. the program flow as a program counter 
(PC) trace, and to store the contents of the user-selected memory and registers. This 
information is later compared with the experimental results to derive dependability 
measures such as error detection coverage. The reference run is illustrated in Figure 8. 
 

 
Figure 8. Reference run procedure. 

 
A PC trace is needed in order to decide when a fault should be injected and to allow 

fault injection experiments to be repeated. The precise time and location of the fault 
injection must be determined and these two parameters are translated to the parameters 
listed below. 

 
• Control loop index 
• Breakpoint address 
• Number of breakpoint invocations within the control loop 
• The fault injection location 

 
The control loop index is specific for control applications which execute in cycles. It 

defines the loop during which a fault should be injected. For applications that do not 
execute in loops, the control loop index is always set to one. The breakpoint address 
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specifies the breakpoint position inside the control loop and the number of breakpoint 
invocations specifies the number of times this breakpoint should be reached before fault 
injection. When the user selected breakpoint has been reached, the instruction at the 
breakpoint address has not yet been executed. Thus, the fault injection occurs before the 
user selected breakpoint instruction executes.  

A typical fault injection experiment running in normal operation mode can be 
represented in four major steps as described in Figure 9. 
 

 
Figure 9. Fault injection procedure for normal mode. 
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4.5 Analysis phase 
The logged data is analyzed in the analysis phase in order to obtain various 

dependability measures. The kind of measures obtainable depends on the target system. 
There are two tools included in the GOOFI tools menu that supports analysis of the 
experiments; an error distribution classification tool and a database visualization tool. 

4.5.1 The Error Distribution tool 
The Error Distribution tool classifies experiments in a campaign into the appropriate 

type of error and stores this information in the database table ErrorDistribution. This 
data can be used to create the distribution of errors and the distribution of exceptions for 
errors that have been detected. Experiments are classified into one of the following 
three types of errors: 

 
• Non-effective – The fault had no effect during the time the experiment 

elapsed. 
• Detected – The hardware mechanisms of the processor has caught the error. 
• Undetected – No hardware mechanisms have been triggered but the output 

from the system is incorrect. 
 
An error distribution can be created by selecting ErrorDistribution under the Tools 

menu in GOOFI. The window in Figure 10 will appear showing the progress and the 
percentage of each type of error. This information is updated after each classified 
experiment. Incorrect Experiments are experiments that stopped before a fault was 
injected. 
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Figure 10. The Error Distribution tool. 

4.5.2 The Database Visualization tool 
The Database Visualization tool is a general tool to communicate with MySQL 

databases and is started from the Tools menu in GOOFI. The main feature with this tool 
is that experiment results can be analyzed visually. Figure 11 shows a tree view of a 
database containing measured sensor values from a jet engine, a user entered SQL 
query, the result table and a graphical representation of the result table. 
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Figure 11. The Database Visualization tool. 

4.5.3 Repeating experiments 
During the analysis phase, some interesting result may require a more detailed 

investigation. Therefore, it is possible to repeat an experiment by selecting the Repeat 
Experiment from the GOOFI menu. This will create a new fault injection campaign 
which can be configured as usual but certain values can not be modified. A campaign 
that repeats an experiment does not need a new PC trace and the reference run will 
therefore only run the control loops and log the user-selected observable registers and 
memory locations. New campaigns can be configured based on the configuration for an 
existing experiment. Selecting Open instead of Repeat in the Repeat Experiment 
window will load a campaign based on the selected experiment. A new campaign can 
now be configured as usual. 
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4.6 The GOOFI database 
A model of the GOOFI database used by the MPC565 Nexus plug-in is shown in 

Figure 12. All plug-ins creates and uses their own database and GOOFI can extract 
campaign information from all databases and e.g. create database backups. 

 
Figure 12. The GOOFI plug-in database. 
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Figure 12, contd. The GOOFI plug-in database. 
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5. Extending GOOFI to support pre-injection analysis 
A problem commonly observed during fault injection campaigns is that not all faults 

fulfill the purpose of disturbing the system. Often 80-90% of randomly injected faults 
are not activated. A fault placed in a register just before the register is written or faults 
that are injected into unused memory locations are examples of faults with no 
possibility of activation. In most tools the location and the time for fault injection are 
chosen randomly from the complete fault-space, which is typically extremely large. The 
statistical implication of this is that the cost of obtaining appropriate confidence levels 
of the dependability measures becomes unnecessarily high. 

The resources (registers and memory) available in computers are, usually, greater 
than what the applications executed require. This fact motivates a fault injection 
optimization strategy in which faults are injected only in used resources. 

Avoiding unused memory regions might be done manually by analyzing the memory 
map of the application and choosing the segments (stack, heap, etc.) as valid locations 
for fault injection. This approach is quite simple but does not consider the way 
resources are used along the time dimension. The following graph of the memory reads 
by a jet engine controller [22] during one control loop of execution clearly illustrates 
this fact. 
 

 
Figure 13. Memory read accesses for a Motorola MPC565 based  jet 

engine controller (1 control loop – 11028 memory accesses). 

 
Reducing the fault-space to the memory segments presented in the graph increases 

the probability of fault activation. Further optimization would be achieved by 
considering only the memory locations within these segments that are actually used. Not 
only are the available resources greater than the needs of the application but the 
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segments are also over-dimensioned. Reducing the granularity to the level of individual 
memory locations would yield better results, although it would be even better to use 
techniques that consider the dynamic usage of the resources. 

During the past years two main classes of analysis techniques for reducing the cost of 
validating dependable systems by fault injection have been studied – pre-injection 
analysis and post-injection analysis. Post-injection analysis [23] aims at predicting the 
outcome of fault injection experiments using the results from other experiments. Pre-
injection analysis uses knowledge of program flow and resource usage to choose the 
location and time where faults should be placed, before any experiment is performed. 

The GOOFI tool currently supports a pre-injection technique [24] for the MPC565 
Nexus plug-in. The technique is briefly presented in the following subsections. 

5.1 Optimization input 
In order to determine the optimized fault-space it is necessary to gather information 

about the code of the application and the computer system executing it. More precisely, 
the input required by the method is: 

 
• Assembly code of the application 
• The Program Counter (PC) trace over time 
• The values of the General Purpose Registers before each memory read access7 
• The definition of which resources are read by each assembly instruction 

 
In our experimental setup, the assembly code is textual information obtained by 

disassembling the executable (ELF) binaries of the application, processed automatically 
by the optimization program. The Program Counter trace and the values of the General 
Purpose Registers (GPRs) are stored during the execution of the reference run. Even 
though the values of the GPRs are only required before each memory access, they were 
stored for every instruction executed to simplify implementation. The effective address 
of each memory read access is calculated with the GPR values. The definitions of which 
resources are read by each assembly instruction were obtained from Motorola’s RISC 
CPU Reference Manual [19]. 

 
 
 
 
 
 
 

                                                 
7 The values of the GPRs are required to calculate the effective address for memory 

read instructions. 
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5.2 Optimization output 
The resulting output (the optimized fault-space) consists of a list of possible locations 

and times for fault injection. Each element in the optimized fault-space contains the 
following information: 
 

• Control loop index 
• Breakpoint address 
• Number of breakpoint invocations within the control loop 
• The fault injection location 

 
The control loop index is specific for control applications which execute in cycles. It 

defines the loop during which a fault should be injected. For applications that do not 
execute in loops, the control loop index is always set to one. The breakpoint address 
specifies the breakpoint position inside the control loop and the number of breakpoint 
invocations specifies the number of times this breakpoint should be reached before fault 
injection. 

5.3 Performing the optimization 
Using the Program Counter trace over time, the disassembled code of the application 

is parsed to obtain the sequence of assembly instructions executed. Each of the 
instructions is then analyzed in order to determine which resources the instruction reads. 
The pseudo-code for this procedure is presented in Figure 14. 
 
 

FOREACH pc_value IN program_counter_trace DO 

control_loop_index � current_control_loop () 

breakpoint_invocation � breakpoint_invocations_count (pc_value) 

instruction � instruction_at_code_address (pc_value) 

instruction_read_list ���� resources_read_by_instruction (instruction) 

FOREACH resource IN instruction_read_list DO 

useful_fault � [control_loop_index, pc_value, breakpoint_invocation, resource] 

store_in_database (useful_fault) 

ENDFOREACH 

ENDFOREACH 

Figure 14. Pseudo-code for the optimization procedure. 
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The most important stage (shown in bold in the pseudo-code) is the identification of 
the resources read by each instruction. To accomplish this, the first step is to find the 
definition on the list matching the given instruction. This is done by matching the 
opcode and the operands. Then, by examining the possible assembly constructs, the 
symbols available in the read list of the definition are replaced by the resources actually 
read by the given instruction. Figure 15 illustrates this process. 
 
 

 
Figure 15. Example of the optimization procedure. 

 
The instruction at address 39DE8 adds R10 to R11 and stores the result in R5. The 

definition for this instruction is found in the table and the read list contains rA and rB, 
respectively, R10 and R11. Since these are the two resources read by this instruction, 
two new lines are inserted into the fault locations for code address 39DE8 (the control 
loop and the internal loop are assumed to hold the values specified). 

The second instruction, at address 39DEC, fetches the memory word addressed by the 
effective address (R6) + 24 and stores it in R7. Its definition in the table specifies rA 
and MEM32(d+rA), respectively, R6 and the 32-bit word at 10008+24, as being read. 
These two resources are then inserted into the list of fault locations. 

 
 

                                                 
8 The value of R6 is obtained during the reference run. 
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6. Related work on fault injection tools 
This section gives an overview of some of the many tools which have been developed 

for injecting faults in computer systems. The presented tools are also compared with the 
GOOFI tool. 

6.1 Simulation-based fault injection tools 
 One tool for injecting faults using electrical level simulations is FOCUS [25]. 

FOCUS has been used for validating a digital jet-engine controller installed in the 
Boeing 747 and 757 aircrafts. The tool uses a hierarchical simulation environment for 
tracing the impact of transient faults (modeled as current sources) caused by lightning 
effects, electrical power surges etc. 

Common modeling languages for developing logic level simulation models of 
systems are the Very high-speed integrated circuit Hardware Description Language 
(VHDL) and Verilog. A methodology for injecting faults using logic level simulations 
is demonstrated by the MEFISTO (Multilevel Error and Fault Injection Simulation 
TOol) [26]. MEFISTO injects faults by either modifying VHDL models of systems with 
mutations or adding saboteurs, or by using VHDL simulator commands for 
manipulating signal and variable values in the models. A post-injection analysis 
technique called path-based error coverage prediction (PBECP) has also been 
implemented in MEFISTO [23]. The PBECB technique predicts the error coverage for a 
specified input sequence based on fault injection data obtained for another input 
sequence.  

The simulation based fault injector VERIFY (VHDL-based Evaluation of Reliability 
by Injecting Faults efficientlY) is presented in [27]. The tool uses an extension of 
VHDL for describing faults correlated to a component, enabling hardware 
manufacturers which provide the design libraries to express their knowledge of the fault 
behavior of their components. Multi-threaded fault injection which utilizes checkpoints 
and comparison with a golden run is used for faster simulation of faulty runs. 
Unfortunately the tool is not compatible with current VHDL simulators since the VHDL 
language has to be modified. VFIT (VHDL-based Fault Injection Tool)  [28] is another 
logic level simulation based fault injection tool with features similar to those of 
MEFISTO. 

ALIEN [29] is another logic level tool implemented for the VHDL language. In 
contrast to many other such tools, ALIEN relies solely on mutations of VHDL models 
to inject faults. 

The DEPEND tool [30] is an example of a function level simulation tool that has 
been used for studying the effects of correlated errors and errors with various latencies 
on a TMR system similar to Tandem Integrity S2. Functional fault models representing 
manifestations of faults at lower levels are used, e.g. memory bit-flips or CPU register 
errors. 
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6.2 Physical fault injection tools 
Pin-level fault injection experiments have been conducted on a computerized 

interlocking system for railway control applications and the ESPRIT Delta-4 distributed 
system, using the MESSALINE tool [31]. This study demonstrated the usability of the 
technique for pointing out design/implementation deficiencies and characterizes the 
behavior of systems in the presence of faults despite limitations such as inadequate fault 
selection, synchronization problems, testbed efforts etc. Another pin-level forcing tool 
is the Advanced Fault InjecTion (AFIT) tool [32] which supports the injection of faults 
at a frequency of up to 40 MHz. 

The RIFLE tool [33] is a pin-level insertion tool which uses dedicated logic that 
intercepts the pins of the target device to inject faults and to record the effects of the 
faults. 

The FIST (Fault Injection system for Study of Transient fault effects) tool presented 
in [7] uses radiation induced fault injection on the MC6809E CPU. FIST uses heavy-ion 
radiation from a Cf-252 source to inject the faults and the golden chip technique, in 
which the target circuit operates synchronously with a reference circuit, not subjected to 
fault injection, to detect fault occurrences. Error recording is performed using a logic 
analyzer. 

In [12] an electromagnetic interference (EMI) tool is presented and a comparison of 
the EMI technique with radiation induced fault injection, pin-level forcing and SWIFI is 
made showing that these techniques are complementary, i.e., they generate, to a large 
extent, different types of errors. 

A laser fault injection (LFI) tool is described in [13]. The fault injection locations are 
identified using a CAD tool layout of the circuit under test and a high precision (0.1 
µm) transition table is used for directing the laser beam on the sensitive locations. 
Obviously, this requires detailed knowledge of the design of the circuit under test. 

Several fault injection tools based on on-chip debugging hardware have also been 
developed. FIMBUL (Fault Injection and Monitoring using BUilt-in Logic) is a SCIFI 
tool based on the IEEE 1149.1 standard hardware. The tool is presented in [34] where it 
is compared with the simulation based fault injection tool MEFISTO. The comparison 
shows that the SCIFI technique can be more than 100 times faster than simulation based 
fault injection and yet produce similar results. The tool has also been used to investigate 
the effects of varying the system input on fault injection results. The tool implements a 
post-injection analysis technique which uses results from fault injection experiments 
with a single input sequence to identify other input sequences to the system which give 
high, medium or low error coverage [35].  

In [10], a tool based on the Motorola proprietary BDM debug hardware is presented. 
The tool relies on a pre-injection analysis technique called fault-list collapsing [6] to 
identify and eliminate from the complete list of injectable faults, several classes of 
faults which do not have any effect on the target system or which are equivalent to other 
faults.   

A Nexus-based fault injection tool is INERTE (Integrated NExus-based Real-time 
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fault injection Tool for Embedded systems) [36] which has been used for dependability 
validation of a diesel engine electronic control unit [37]. 

6.3 Software implemented fault injection tools 
A pre-runtime SWIFI tool called DOCTOR (integrateD sOftware fault injeCTiOn 

enviRonment) which uses generation of synthetic workloads for system dependability 
evaluation is presented in [38]. Transient, intermittent or permanent faults can be 
injected into memory, communication or CPU. The tool has been used for evaluating 
the HARTS real-time distributed system. Faults injected into memory and 
communication subsystems can be injected during runtime while faults injected into the 
CPU are modeled via alteration of the executable workload image using a pre-runtime 
approach. 

One of the earliest examples among the large number of SWIFI tools that have been 
developed is FIAT (Fault Injection-based Automated Testing) [39]. The tool uses 
additional software for injecting faults into user application code and data during 
runtime.  

FERRARI [40], a Fault and ERRor Automatic Real-time Injector, is another runtime 
SWIFI tool which injects faults using UNIX process handling system calls. Here, a fault 
injection process spawns the target workload process that executes in a special trace 
mode enabling the injection of transient and permanent faults by the parent process.  

The Xception tool [3] uses the debugging and monitoring features of the PowerPC 
processor to enable spatial, temporal and data manipulation fault triggers. The tool 
facilitates low intrusion on the target system since most of the fault injection software is 
running on an external host which only requires software for handling the exceptions to 
be added to the system. A variant called RT-Xception [41] features an upper bound for 
the maximum number of executed instructions in the fault injection code, which makes 
the execution time for each fault injector predictable and thus applicable for real-time 
systems. The most recent version of Xception is a commercially available tool 
implemented using a modular design supporting different types of fault injection 
techniques.  

The MAFALDA (Microkernel Assessment by Fault injection Analysis for Design 
Aid) tool [42], which also uses processor debugging facilities for injecting both 
transient and permanent faults during runtime, has been used for investigating the 
benefits of adding fault containment wrappers (extra software for checking calls and the 
results of the calls) for micro kernels.  

FIRE (Fault Injection using a REflective architecture) [43] uses reflective 
programming in C++ to inject and monitor object-oriented software. The user decides 
whether the target software should be monitored, fault injected or both. Using a special 
pre-processor, additional objects are created in the source code, so called meta-level 
objects. These are compiled together with the original source code enabling the target 
software to be manipulated at runtime. A similar tool for the Java programming 
language, called Jaca [44], has also been developed.  
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In [45], the SWIFI tool ProFI (Processor Fault Injection tool) is presented. The tool is 
able to inject transient, intermittent and permanent faults on a MC 68000-based add-in 
card running the A/Rose OS plugged into a Macintosh computer. Faults are injected 
using a trace routine executed after each machine instruction of the application program. 

[46] presents a SWIFI tool called FTAPE (Fault Tolerance And Performance 
Evaluator) which is used on two prototypes of TMR-based Tandem machines running a 
synthetic workload. Bit-flips and stuck-at faults are injected into CPU registers and 
memory. The tool is also used for injecting disk errors to evaluate the mirrored disk 
system of the Tandem computers.  

The BOND tool [47] is an agent-based SWIFI tool which uses a fault injection agent 
for injecting transient and intermittent bit-flip faults into the applications of a Windows 
NT PC and a logger agent for monitoring the effects of the faults. 

6.4 Hybrid fault injection tools 
In [48], the hybrid fault injection tool LIVE is presented which uses pin-level forcing 

or generates interrupts to activate software fault injection procedures (SWIFI). The tool 
has been used to evaluate a computer based railway control system based on the 
Motorola 68040 CPU. 

The NFTAPE tool [2] specifically addresses the issues of extension and portability to 
different target systems. NFTAPE relies on lightweight fault injectors, triggers, 
monitors and other components to facilitate porting to different target systems as well as 
adapting it to different fault injection techniques.  

6.5 Overview of fault injection tools 
 Table 1 gives an overview of some characteristics of the fault injection tools 

presented in this section. 
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Table 1. Overview of fault injection tools. 
Fault injection tool Year Fault injection 

techniques 
supported 

Target systems Fault models/ 
strategies 

Support for 
adding new 
target 
systems 

Support for 
adding new 
fault injection 
techniques 

Built-in pre-
injection 
analyses  

Built-in 
post-
injection 
analyses 

AFIT 1997 pin-level 
forcing 

FASST, TTP/C semi-permanent 
(stuck-at) 

yes no none none 

ALIEN 2003 logic level 
simulation 

VHDL models permanent 
(mutation) 

yes no none none 

BDM 1999 BDM MC68332 transient 
(single bit-flips) 

no no fault-list 
collapsing 

none 

BOND 2003 runtime SWIFI Windows NT 4.0 
OS PC 

transient, 
intermittent  
(bit-flips) 

no no none none 

DEPEND 1997 function level 
simulation 

Tandem Integrity 
S2 

transient yes no none none 

DOCTOR 1993 SWIFI HARTS, 
VxWorks 

transient, 
intermittent, 
pseudo-permanent 

yes no none none 

EMI 1993 EMI MARS transient, 
intermittent 

yes no none none 

FERRARI 1992 SWIFI Unix workstation transient, 
pseudo-permanent 

no no none none 

FIAT 1988 runtime SWIFI IBM RT PC transient 
(bit-flips) 

no no none none 

FIMBUL 1998 SCIFI Thor transient  
(bit-flips) 

no no none execution 
profile 

FIRE 2000 runtime SWIFI Unix workstation transient, 
intermittent, 
pseudo-permanent  

no no none none 

FIST 1989 radiation 
induced 

MC6809, 
MC68020, 
MC68070 

transient 
(bit-flips) 

yes no none none 

FOCUS 1989 electrical level 
simulation 

HS1602 transient  yes no none none 

FTAPE 1995 runtime SWIFI Tandem S2,  
Tandem TMR, 
Tandem Duplex 

transient 
(bit-flips, 
disk errors) 

yes no none none 

GOOFI 2001 SCIFI, BDM,  
Nexus,  
runtime 
SWIFI 

Thor Rad Hard, 
HC12,  
MPC565, 
MC68340 

transient  
(bit-flips) 

yes yes OFFSET none 

INERTE 2003 Nexus MPC565 transient 
(single bit-flips) 

no no none none 

JACA 2002 runtime SWIFI Java Virtual 
Machines 

transient, 
intermittent, 
pseudo-permanent 

yes no none none 

LFI 1997 laser 32-bit RISC CPU transient 
(single bit-flips) 

yes no none none 

LIVE 1996 pin-level 
forcing, SWIFI 

MC68HC11, 
MC68302, 
MC68332, 
MC68360, 
MC68040 

transient 
(bit-flips), 
pseudo-permanent 
 

yes no none none 

MAFALDA 1999 runtime SWIFI Chorus ClassiX 
PC 

transient 
(single bit-flips) 

yes no none none 

MEFISTO 1994 logic level 
simulation 

VHDL models of 
DP32, ERC32, 
Thor, etc. 

transient 
(saboteurs, 
simulator 
commands), 
permanent 
(mutation) 

yes no none path-based 
error 
coverage 
prediction 

MESSALINE 1990 pin-level 
forcing, 
pin-level 
insertion 

PAI, Delta-4, 
MARS 

semi-permanent 
(stuck-at, bridging, 
inversion,open 
connection) 

yes no none none 

NFTAPE 2000 SWIFI, logic 
level 
simulation, pin-
level 

VHDL models, 
Myrinet LAN, 
Unix workstation 

transient, 
intermittent, 
permanent 

yes yes none none 

PROFI 1993 runtime SWIFI MC68000 pseudo-permanent no no none none 
RIFLE 1991 pin-level 

insertion 
MC680X0, 
Intel 286/386 

semi-permanent 
(stuck-at, bridging, 
inversion,open 
connection) 

yes no none none 

VERIFY 1997 logic level 
simulation 

VHDL model of 
DP32 

transient, 
intermittent, 
permanent 
(model extensions) 

yes no none none 

VFIT 2000 logic level 
simulation 

VHDL models transient and 
intermittent 
(saboteurs, 
commands), 
permanent 
(mutation) 

yes no none none 

XCEPTION 1995 runtime SWIFI, 
SCIFI, 
pin-level 
forcing 

PowerPC, Intel 
Pentium, SPARC 

transient 
(bit-flips) 

yes yes none none 
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7. Conclusion and future work 
This paper describes the GOOFI (Generic Object-Oriented Fault Injection) 

framework. GOOFI is implemented in the Java language to support maintainability and 
portability between different host platforms. All data used by the framework is stored in 
a portable SQL-database. GOOFI provides a plug-in based framework which facilitates 
the addition of new fault injection techniques as well as adaptation to new target 
systems. The target systems and fault injection techniques that GOOFI currently 
supports are: 

 
• The microcontroller MPC565 from Motorola with Nexus-based fault injection 
• The microprocessor HC12 from Motorola with BDM-based fault injection 
• The microprocessor Thor Rad Hard from Saab Ericsson Space with scan-chain 

implemented fault injection (SCIFI) 
• The microprocessor MC68340 from Motorola with software-implemented fault 

injection (SWIFI)  
 
The current version of GOOFI can be improved and extended in several ways. We are 

currently working on the following extensions: 
       
     • Support for additional fault models such as software bugs, intermittent and 

permanent faults 
     • Additional fault triggers such as access of certain data values, execution of 

branch instructions or subprogram calls, when task switches occur, or at specific 
times determined by a real-time clock 

     • A general data analysis tool supporting all plug-ins 
• Simulation-based fault injection (both VHDL models via Modelsim [49] and 

function-level models via Simics [50]) 
• Further improvements to the framework by e.g. moving required functionality 

from a plug-in to the GOOFI framework to further simplify the development of 
a new GOOFI plug-in 

• Design of our own hardware/software environment supporting the Nexus 
standard 

• And, of course, extending support for new target systems and fault injection 
techniques via development of new plug-ins 
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