
Formal Specification and Verification of a Protocol for
Consistent Diagnosis in Real-Time Embedded Systems

Raul Barbosa and Johan Karlsson
Department of Computer Science and Engineering

Chalmers University of Technology
SE-412 96 Göteborg, Sweden

Email: {rbarbosa, johan}@ce.chalmers.se

Abstract—This paper proposes a membership protocol for
fault-tolerant distributed systems and describes the usage of for-
mal verification methods to ascertain its correctness. The protocol
allows nodes in a synchronous system to maintain consensus
on the set of operational nodes, i.e., the membership, in the
presence of omission failures and node restarts. It relies on nodes
observing the transmissions of other nodes to detect failures.
Consensus is maintained by exchanging a configurable number
of acknowledgements for each node’s message. Increasing this
number makes the protocol resilient to a greater number of
simultaneous or near-coincident failures. We used the SPIN model
checker to formally verify the correctness of the membership
protocol. This paper describes how we modeled the protocol and
presents the results of the exhaustively verified model instances.

I. INTRODUCTION

A fault-tolerant system must be equipped with the means
to detect and recover from faults, so that it can be dependable
even under faulty circumstances. To achieve this, a key factor
is the ability to diagnose faults and activate the appropriate
isolation, reconfiguration and reinitialization mechanisms. In
distributed systems, the two primary goals of the recovery
process are to isolate any faulty nodes and to reconfigure
the system according to the remaining nodes in operation.
Thus, working nodes must maintain a consensus on the nodes
that should, and those that should not, participate in service
delivery. The algorithms designed to provide this consensus
are usually known as processor-group membership agreement
protocols or, for short, membership protocols, where the word
membership refers to the set of working nodes.

This paper proposes a membership protocol intended to
serve as a building block for dependable real-time systems.
Such systems play an increasing role in the support of safety-
critical functions in, for example, automotive and aerospace
applications. The protocol is suitable for synchronous systems,
where it is executed in a sequence of rounds. It is especially
designed for systems using time-triggered communication,
where nodes broadcast periodically according to a predefined
round-robin order, i.e., the message schedule also progresses in
rounds. This method is adopted by communication standards
such as FlexRay [1], TTCAN [2], or TTP [3] for scheduling
static real-time traffic. Among other factors, the design of
protocols for such systems is constrained by the limited
amount of bandwidth available, the failure assumptions and
non-functional requirements such as reliability and availability.

We assume a generalized omission failure model where
send/receive omissions can be either transient or permanent.
The goal is to model systems where nodes communicate, in the
presence of non-malicious faults, through a broadcast channel.
The proposed membership protocol relies on nodes observing
the periodic transmissions of other nodes to detect failures.
Independent observations are unreliable and consensus on the
membership (consistent diagnosis of failures) is achieved by
exchanging a configurable number of acknowledgements for
each node’s message. Each sending node piggybacks k flags to
its message so as to confirm or refute having received the mes-
sages from its predecessors, in the order of broadcast, that are
in the membership. Increasing k makes the protocol resilient to
a greater number of simultaneous or near-coincident failures
but imposes a higher tax on the communication bandwidth.
For this reason, the balance between protocol resilience and
overhead can be adjusted, at design time, for each system.
We expect this feature to be useful in improving the cost-
effectiveness of real-time embedded systems.

A challenge in the development of distributed algorithms
is to ensure that they are free from design faults. Over the
past years, formal methods have become an attractive way to
increase the confidence in that a design is fault-free. We used
SPIN [4] – a well established model checker for distributed
software systems – to formally verify the correctness of the
protocol. Model checking tools work on models of the system,
which can be built before the actual implementation takes
place. Thus, one of the advantages of model checking is the
ability to find design faults at early development stages. This
paper describes how we modeled the membership protocol and
the set of correctness properties. We present the results of the
protocol configurations that were exhaustively verified.

II. SYSTEM MODEL AND ASSUMPTIONS

We consider a distributed system composed of a set of
processing nodes linked by a synchronous broadcast channel.
Nodes have their clocks tightly synchronized and execute
a deterministic round-based schedule. In each round, nodes
transmit a fixed amount of traffic in their pre-allocated trans-
mission slots. For the membership protocol, it is sufficient
to count time in terms of transmission slots. We assume the
existence of a reliable start-up mechanism and accurate clock
synchronization mechanisms [5] to maintain the system’s

978-1-4244-1995-1/08/$25.00 ©2008 IEEE. 216

synchrony. We assume that nodes can identify the “current”
slot number and, therefore, the sender of each message. This
assumption can be implemented, for example, by introducing
unique message IDs to identify the sender or by using unique
message lengths that act as implicit message IDs.

A. Failure Modes
A failure occurs when a node does not receive an expected

message. In our system model, we assume that faults lead to
send/receive omission failures. Such omissions can be either
transient or permanent, resulting in four failure modes:
• Permanent sending failure. Prevents all messages sent by

a node from reaching all other nodes; this class of failures
models node crashes, as well as permanent outgoing link
and outgoing network connection failures.

• Permanent receiving failure. Prevents a node from receiv-
ing any messages; this models permanent incoming link
and incoming network connection failures.

• Transient sending failure. Prevents a single message from
reaching any of its intended receivers; this class of
failures models transient disturbances affecting a sending
node or the network that either prevent a message from
being sent or corrupt a message during transmission.

• Transient receiving failure. Prevents a single message
from reaching one of its intended receivers; this class
of failures models transient disturbances of a receiving
node, its incoming link or its connection to the network.

The protocol allows all nodes to diagnose such failures
in a consistent manner. The first three failure modes lead to
exclusion of the faulty node, while transient receiving failures
do not. This feature is intended for systems where each node
executes multiple tasks. In the event of a transient receiving
omission, only a subset of the tasks is likely to be affected.
Thus, excluding the entire node from service delivery would
disable correctly functioning parts of the system. To support
this, nodes must be designed to tolerate omissions.

B. Node Restarts
The membership protocol provides the means for a restarted

node to be included in the membership again. In fault-tolerant
systems, the available redundancy decreases as permanent
failures occur. Thus, restarting previously failed nodes and
including them in the set of working nodes is key to ensuring
sustainable delivery of service. When a failed node is able to
restart, after a downtime period, we assume that fundamental
data such as the communication schedule is undamaged.
Furthermore, we assume that the node is able to synchronize
itself with the active nodes and attempt to send messages.

III. THE MEMBERSHIP PROTOCOL

This section specifies the membership protocol. For simplic-
ity, we divide the explanation into three sub-protocols which,
combined, achieve consensus on membership changes, i.e.,
exclusion of failed nodes and inclusion of restarted nodes.
The three sub-protocols are: agreement on exclusion, inclusion
ordering and agreement on inclusion. We begin by introducing
the notation used in the remainder of the paper.

A. Notation and Definitions

Let N denote the set of processing nodes {N1, N2, . . . ,
Nn}, ordered by the round-based schedule, where n is the
number of nodes. Each node Ni maintains a local view νi(s) of
the membership set, where s ∈ N and νi(s) ⊆ N . Intuitively,
νi(s) is the view of the membership that node Ni has at the
synchronous time-point s (at the end of transmission slot s).

The membership protocol relies on the periodic messages
sent by each node to piggyback a sequence of acknowledge-
ments. Each node will append k acknowledgement flags to
its message, confirming (or refuting) the reception of each of
the previous k messages from the nodes in the membership.
An inclusion flag (i-flag) is also appended to each message to
allow restarted nodes to be included in the membership. The
periodic messages therefore respect the following format:

message = 〈data, ack1, · · · , ackk, i-flag〉.

The data field contains the payload of the message, which we
ignore in this protocol specification. The ack flags, as well as
the i-flag, are Booleans that can be represented by a single bit.
The three sub-protocols describe how the ack flags and the i-
flag are set in response to certain events. The protocol responds
message reception, loss and sending events. These three events
are mutually exclusive, i.e., in any given transmission slot a
node will either receive, lose or send a message.

In our protocol a node is said to be sponsoring node Nj if
it acknowledges, using one of its ack flags, the last message
from Nj . Under normal conditions each node will have k
sponsors (and will be sponsoring k nodes). If, in a given
slot s, the membership set contains ns nodes and ns ≤ k, a
node should not sponsor itself. In this special case, each node
will be sponsoring its ks = ns − 1 membership predecessors
in order of transmission; otherwise, ks = k. The predicate
lastSponsor(Ni, Nj) is defined as true if and only if node Ni

is sponsoring Nj but the immediate successor of Ni in the
membership is not. Intuitively, this states whether Ni is the
last node to acknowledge the previous message from Nj .

We define a failure report as a message that has all flags (ack
flags and i-flag) set to false. This special message is sent by
nodes when they exclude themselves from the membership,
i.e., when they wish to inform other nodes that they have
failed. We define an inclusion request as a message that has
all ack flags set to false and the i-flag set to true. This message
is sent by nodes attempting inclusion in the membership.

The predicate failure(Ni, s) is defined as true (in slot s)
if and only if node Ni suffers a failure, of any kind, in slot
s. When a specific failure mode is to be addressed, we use
the predicates failureps(Ni, s), failurepr(Ni, s), failurets(Ni, s)
and failuretr(Ni, s). The predicate restart(Ni, s) is defined as
true if and only if node Ni has restarted in slot s.

B. Agreement on Exclusion

Each node holds a membershipView set, representing its
view of the membership. At the end of slot s, νi(s) equals the
membershipView of node Ni. This set can be conveniently
represented as a Boolean array containing n elements. We

217

membershipView: Local view of the membership set;1
presentNodes: Local view of the set of present nodes;2
currentRound: Cyclic round counter (from 1 to 3n+4);3
nextIFlag: This node’s i-flag on the next sent message;4

On Message Reception:5
msg: The received message;6
sid: Sending node ID (the current slot number);7
if Nsid ∈ membershipView then8

if msg.i-flag = true and currentRound > 3 then9
nextIFlag := true;10

if msg = failure-report then11
Remove Nsid from presentNodes;12

Add acknowledged nodes to presentNodes;13
exclusionDecision(sid);14

else if correctInclusionRequest(msg) then15
nextIFlag := true;16

inclusionDecision(sid, currentRound);17

On Message Loss:18
sid: Sending node ID (the current slot number);19
if Nsid ∈ membershipView then20

Remove Nsid from presentNodes;21
exclusionDecision(sid);22

inclusionDecision(sid, currentRound);23

On Message Sending:24
sid: This node’s ID (the current slot number);25
if Nsid ∈ membershipView then26

Build msg acknowledging the sponsored nodes;27
if 1 ≤ currentRound ≤ 3 or nextIFlag = true then28

msg.i-flag := true;29
else30

msg.i-flag := false;31

send (msg);32
Remove Nsid from presentNodes;33
exclusionDecision(sid);34
inclusionDecision(sid, currentRound);35

else36
send (failure-report);37

Algorithm 1. Pseudo-code of the protocol.

assume that the start-up mechanism supplies the set of initially
active nodes, i.e., νi(0), to the membership service of each
node. The goal of the membership protocol is to ensure
consensus on membership changes occurring after start-up.

The two events that trigger the reactive part of the mem-
bership protocol are message receptions and message losses.
In line 5 of Algorithm 1 a message is received and stored
in the msg variable. The message sender is the owner of the
current slot, represented by the sid variable. In line 18 a
message loss event is reported (the slot ends and no message
is received). The active part of the protocol is triggered by a
message sending event. We use a “pull” convention to model
message sending, i.e., the lower layers request a message from
the membership service at a node’s sending slot. This is done
after line 24, where the msg variable, representing the message
about to be transmitted, is built (ack flags and i-flag) and sent.

Agreement on exclusion requires nodes to keep track of the

On Exclusion Decision:1
sid: The current slot number;2
if ∃Nj : Nj /∈ presentNodes and lastSponsor (Nsid,3
Nj) then

Remove Nj from membershipView;4

if the last ks−1 membership messages were lost then5
Remove Nself from membershipView;6

On Inclusion Decision:7
sid: The current slot number;8
currentRound: The current round number;9
if nextIFlag = true then10

local nextSlot := (sid mod n) + 1;11
local nextRound := currentRound;12
if nextSlot = 1 then13

nextRound++;14

if nextRound = (nextSlot × 3 + 3) then15
Add NnextSlot to membershipView;16
Add NnextSlot to presentNodes;17
nextIFlag := false;18

Algorithm 2. Decision procedures.

received messages and their acknowledgements. A convenient
way to do this is for each node to have a presentNodes
set. This set is used to gather evidence that either a message
or one of its acknowledgements has been received, from
the sending node or from its sponsors, respectively. The
presentNodes set is initialized with the same contents as
the membershipView.

In Algorithm 1, the presentNodes set is updated at four
different locations. One location is line 21, when a message
from Nsid, a node in the membership, is lost. That node is
removed from the presentNodes set. Though an expected
message from that node was lost, an acknowledgement might
be received from one of its sponsors. Thus, the node is kept
in the membershipView until its last sponsor broadcasts. A
second location is line 13. When a message is received from a
membership node, the nodes that are positively acknowledged
by that message are added to the presentNodes set. A third
location is line 12, when a failure report is received from a
node in the membership – this node will be excluded once
its last sponsor broadcasts. Last, a node removes itself from
the presentNodes set upon message sending (in line 33).
This is done to ensure that each node receives at least one
acknowledgement for its own message; if this does not happen,
the node suffered either a sending failure or a permanent
receiving failure and must exclude itself from the membership.

A given node Nj will be removed from the membership
view of Ni if and only if Ni does not receive a message from
Nj nor any positive acknowledgement for that message from
any sponsor of Nj . Node Ni removes Nj from the membership
immediately after the sending slot of the last sponsor of
Nj . This is achieved by calling the exclusionDecision
procedure at several locations in Algorithm 1. The pseudo-
code for this procedure is shown in Algorithm 2.

The exclusionDecision procedure (line 1 of Algo-

218

rithm 2) has two main functions. First, it excludes the nodes
that are not in the presentNodes set by the time their last
sponsor has broadcasted (line 4). This may be a self-exclusion
of a node that does not receive any positive acknowledgement
for its own message. Second, it handles self-exclusion of nodes
that have suffered permanent receiving failures. In line 6 a
node removes itself from its membership view when the ks−1
messages from the preceding nodes in the membership have
been lost. As we will describe later in the paper, the protocol is
resilient to f < ks− 1 failures in any two consecutive rounds
of communication; if a node loses ks − 1 expected messages,
then it concludes that it cannot receive any messages.

C. Inclusion Ordering

The protocol establishes a cyclic order that nodes must
follow to attempt inclusion in the membership. The goal is
to ensure that there are never two inclusions being executed
at the same time. Ensuring inclusion ordering only requires
nodes to agree upon the value of a cyclic counter of rounds.
This cyclic round counter determines which node can join the
membership in a given round. For this purpose we define an
inclusion cycle as a sequence of rounds where every node has
three dedicated inclusion rounds. The length of every such
inclusion cycle is 3n+4 rounds, where n is the number of
nodes. The round counter is therefore incremented by 1 each
time a new round begins; if the value of the counter is 3n+4,
the next value is 1 (a new inclusion cycle begins).

Agreement on the round number is kept by the membership
nodes as the communication schedule progresses, by updating
the currentRound variable. A failed node is, however,
unable to determine the round number unless active nodes
explicitly signal it. The protocol supplies the round number
to restarting nodes through a simple algorithm which uses the
i-flag of the nodes in the membership.

During the first 3 rounds of an inclusion cycle, all sending
nodes set their i-flag to true; on the fourth round their i-flag
is set to false. This is done in lines 28 to 31 of Algorithm 1.
The following 3n rounds of each inclusion cycle constitute the
inclusion rounds, where nodes can send inclusion requests and
join the membership. On every third inclusion round, nodes
set their i-flag to false (done in line 31 of Algorithm 1). This
method guarantees that the i-flag is set to false during, at least,
one out of any three consecutive rounds. The only exception
occurs intentionally during the first 3 rounds, where the i-
flag is always set to true. Any restarting node synchronizes
its round counter with the membership nodes by listening to
their messages on the network. When the i-flags are observed
to be true in three consecutive rounds, a restarting node sets
its currentRound variable to 3. We note that receiving one
message where the i-flag is true in each of those three rounds
is enough to detect the start of an inclusion cycle.

D. Agreement on Inclusion

The procedure for agreement on node inclusion starts when
a given node Nr synchronizes its round counter with the
membership nodes. During the inclusion cycle, described in

the previous section, node Nr has one dedicated round to send
its inclusion request: round 3r+2. No other node will send an
inclusion request in this round since node IDs are unique.

An inclusion request is a special type of message which
does not include the regular data payload sent by membership
nodes. Instead, the message should include the membership
view of the restarted node, acquired by listening to the ongoing
messages, so that all other nodes are able to confirm that a
successful inclusion is taking place. The concern here is that
failures during restart would lead to a node being included in
the membership without agreeing on the membership state.

A given node Nr will be included in the membership if it
sends an inclusion request in round 3r+2 with a correct view
of the membership. Since Nr is not in the membership, all
receiving nodes perceive the message as an inclusion request
(line 15 of Algorithm 1). Normal messages can therefore be
distinguished from inclusion requests without any additional
message fields. Any nodes that receive an inclusion request
compare their view to the restarting node’s view (also in
line 15). If the views are equal then the inclusion request
is correct and the inclusion will be acknowledged by setting
the i-flag to true in the next message to be sent (line 16
of Algorithm 1). When a correct inclusion request or its
acknowledgement (through the i-flag) is received, the restarted
node is included in the membership in round 3r+3. The
inclusion is completed in lines 15 to 18 of Algorithm 2.

Failures during inclusion attempts may prevent a restarted
node from joining the membership. The restarting node may
obtain an incorrect view of the membership; a sending failure
may prevent the inclusion request from reaching the member-
ship nodes. In these cases the inclusion will be unsuccessful
and the restarted node must detect this condition and attempt
inclusion in the next inclusion cycle. To achieve this, the node
must verify if at least one received message contains the i-flag
set to true, acknowledging its successful inclusion. If not, the
restarting node must attempt inclusion at a later point in time.

E. Protocol Properties

The membership protocol ensures membership consensus
if no more than f < ks − 1 failures occur in any two
consecutive communication rounds. Under normal conditions,
as we discussed earlier, ks = k, where k is the number of
acknowledgement flags on each message. The value k can be
set to any number between 3 and n−1. For the protocol to
work there must be, at any time, at least 3 membership nodes
not subject to failures. This is the minimum required number
of nodes; the nodes that are fault-free can vary with time.

We specify a set of correctness properties which must hold
during the execution of the protocol. We consider four safety
properties, that ensure nothing wrong happens throughout the
execution, and two liveness properties, that ensure something
useful will eventually happen during the execution:

• Agreement. Any two non-faulty nodes have the same view
of the membership: ∀s,∀Ni, Nj ∈ N : (¬∃s′ : s′ <
s∧(failure(Ni, s

′)∨failure(Nj , s
′)) =⇒ νi(s) = νj(s)).

219

• Integrity. Any two nodes – faulty or non-faulty – that
include themselves in their own view of the membership
have the same view of the membership: ∀s,∀Ni, Nj ∈
N : Ni ∈ νi(s) ∧Nj ∈ νj(s) =⇒ νi(s) = νj(s).

• Accuracy. Fault-free nodes only exclude faulty ones from
the membership: ∀s,∀Ni, Nj ∈ N : Ni /∈ νj(s) ∧
(¬∃s′ : s′ < s ∧ failure(Nj , s

′)) =⇒ ∃s′′ : s′′ <
s ∧ failure(Ni, s

′′).
• Self-exclusion. A node excluded by fault-free nodes

also excludes itself from its view of the membership:
∀s,∀Ni, Nj ∈ N : (¬∃s′ : s′ < s ∧ failure(Nj , s

′)) =⇒
(Ni /∈ νj(s) =⇒ Ni /∈ νi(s)).

• Exclusion liveness. A node that suffers a sending failure
(transient or permanent) or a permanent receiving fail-
ure is eventually excluded from the views of fault-free
nodes: ∀Ni ∈ N ,∃s : failurets(Ni, s) ∨ failureps(Ni, s) ∨
failurepr(Ni, s) =⇒ ∃s′ : s′ > s ∧ (∀Nj ∈ N : (∃s′′ :
s′′ < s′ ∧ failure(Nj , s

′′) ∨Ni /∈ νj(s′)).
• Inclusion liveness. A restarted node is eventually in-

cluded in the membership if no failures occur: ∀Nr ∈
N ,∃s : restart(Nr, s) ∧ (∀Ni ∈ N ,¬∃s′ : s′ > s ∧
failure(Ni, s

′)) =⇒ ∃s′′ : s′′ > s ∧ (∀Nj ∈ N : (∃s′′′ :
s′′′ < s′′ ∧ failure(Nj , s

′′′)) ∨Nr ∈ νj(s′′)).
The agreement and accuracy properties pertain to the be-

haviour of non-faulty nodes. Integrity, however, refers also to
nodes that have been affected by failures. The self-exclusion
property ensures that nodes are notified of their exclusion from
the membership. The liveness properties help to guarantee
that the system makes useful progress. A limitation of these
liveness properties is that they are unbounded in time.

F. Integration with Node-Level Fault Tolerance

It is worth emphasizing an important feature of the protocol:
it can be integrated with node-level fault tolerance mecha-
nisms, i.e., error detection and recovery mechanisms executed
locally at each node. First, it allows node-level error detection
mechanisms to notify the membership service that an error
prevents a node from producing correct results. To achieve
this, the node must exclude itself from its membership view
upon internal error detection. In Algorithm 1, when the node is
about to send a message, it checks whether or not it belongs to
the membership. If it does not, a failure report is sent (line 37).
This ensures that nodes exhibit a fail-reporting behaviour.

Second, the protocol is capable of providing accurate self-
exclusion information to node-level recovery mechanisms.
When such mechanisms exist, they can access a node’s view
of the membership (locally available for each node) to check
whether that node has been excluded from service delivery
by the remaining working nodes. This feature allows nodes
to rapidly trigger local recovery procedures upon faults that
affect their ability to provide service at the system-level.

IV. FORMAL VERIFICATION OF THE PROTOCOL

Model checking is a process for verifying whether a model
fulfills a given specification. A model is an abstract description
of a system, written in a formal modeling language. The

system’s specification is a set of properties, or logical formulæ,
which the system is expected to satisfy. Model checking tools
accept a model and its specification as input. Their output is
either “valid”, when the model is correct, or a counterexample,
i.e., a case where the correctness properties are violated.

SPIN is an explicit state model checker. It builds a graph of
the reachable system states; each vertex explicitly represents
a global system state and each edge represents a possible
state transition. Verifying a property consists of checking
that it holds in all vertices reachable from the initial system
state. Explicit model checkers are affected by the well known
problem of state-space explosion. As a model grows, so does
the number of possible global states. Visiting all reachable
states often becomes a computationally expensive problem.

A. The PROMELA Modeling Language

The formal modeling language accepted by SPIN is called
PROMELA. The PROMELA language is appropriate for defining
finite-state transition systems. Concurrent processes can be
specified using inter-process communication via global vari-
ables (to model shared memory) or via message channels that
can be synchronous or asynchronous. We used synchronous
channels in order to model a synchronous system.

B. Modeling the Broadcast Channel

The PROMELA language does not provide broadcast chan-
nels. There are, nevertheless, many simple ways to model
broadcast channels, using the existing point-to-point channels.
We defined a broadcast process that has one incoming channel
and n outgoing channels. The broadcast process notifies events
to nodes by sending messages to their individual channels:
mtype = {MSG_RECEPTION, MSG_LOSS, MSG_SENDING};

typedef message {
bool ack[K];
bool i-flag

};

chan toNetwork = [0] of {mtype, message};
chan toNode[N] = [0] of {mtype, message};

The broadcast process consists of a simple do loop that i)
reports a message sending event to the owner of the current
slot, ii) waits for the node to send its message and iii)
distributes the message to all other nodes. The PROMELA code
for the broadcast process is the following (note that the for
macro is replaced by a do loop during pre-processing):
do
:: failureInjector();

toNode[currentSlot] ! MSG_SENDING(DUMMY_MSG);
toNetwork ? msgType(msg);
for(i,0,N)

if
:: i != currentSlot ->

if
:: !failureTS && !failurePS[currentSlot]

&& !failureTR[i] && !failurePR[i] ->
toNode[i] ! msgType(msg)

:: else ->
toNode[i] ! MSG_LOSS(DUMMY_MSG)

fi;
timeout

220

:: else -> skip
fi

rof(i,0,N);
currentSlot = (currentSlot + 1) % N

od;

C. Modeling the Processing Nodes

Modeling the protocol from the viewpoint of membership
nodes respects the structure of Algorithm 1. Each node is a
PROMELA process that responds to the events notified by the
broadcast process:

do
:: toNode[nodeID] ? nMsgType(nMsg) ->

if
:: nMsgType == MSG_RECEPTION ->

/* On Message Reception */
:: nMsgType == MSG_LOSS ->

/* On Message Loss */
:: nMsgType == MSG_SENDING ->

/* On Message Sending */
fi

od;

We prevent any interleaving of instructions among node
processes. This abstraction is valid since the system is syn-
chronous and the nodes only access their local state (there is
no concurrency among nodes). In PROMELA, we specify this
by using the timeout statement, which blocks the broadcast
process until each receiving node completes processing the
message reception/loss event, before distributing the message
to the next node. The more commonly used atomic state-
ments accomplish a similar effect. Algorithms 1 and 2 are, in
essence, a compact version of our PROMELA code.

D. Modeling Failures

Failures are modeled by having the broadcast process call a
failure injection routine at the beginning of each new transmis-
sion slot. We abstract away failures occurring at intermediate
steps of the execution. This abstraction is valid since the im-
pact of failures that occur during a slot is the same of failures
that occur at the start of the slot. We can use this abstraction to
limit the number of possible interleavings of failure injection
instructions with protocol execution instructions.

We use three Boolean arrays and one Boolean variable
to keep track of which type of failure affects each node.
The failure injection routine consists of a non-deterministic
set of actions that update these arrays, according to the
above-described failure assumptions. The code below begins
by clearing the previous transient failures. Failures are then
injected at non-deterministic points in time, affecting, e.g.,
nodes N1 and N3 (the nodes with indices i=0 and i=2).

for(i,0,N)
failureTR[i] = false

rof(i,0,N);
failureTS = false;
do
:: failureCounter < MAX_FAILURES &&

failuresThisRound + failuresLastRound < F ->
if :: i=0 :: i=2 fi;
if
:: i == currentSlot -> failureTS = true
:: failureTR[i] = true

:: failurePS[i] = true
:: failurePR[i] = true
fi;
failuresThisRound++;
failureCounter++

:: break
od;

E. Modeling Restarts

We abstracted away some of the independent restart process
of nodes in order to provide SPIN with a model verifiable
within reasonable time/memory constraints. The restart is
non-deterministic, i.e., a node may or may not be restarted.
However, nodes are only restarted on the round before they
may attempt inclusion (in the inclusion cycle). This limits
the amount of possible restarts to a minimum which allows
safety properties to be verified, while retaining most of the
information concerning liveness.

The model was restricted to restarting nodes that are failed
from start-up, i.e., in the initial system state the working nodes
already excluded the restarting nodes from the membership.
Furthermore, we abstracted the possible ways in which a node
obtains a wrong membership state. Our criterion was to allow
line 15 of Algorithm 1 to be executed with the two possible
outcomes: either the message contains the correct membership
view or not. This way we abstract away the numerous wrong
membership views. Our main concern with these restrictions
was to ensure that the safety properties, as well as exclusion
liveness, maintained their complete meaning.

F. Specifying the Properties

One way of checking properties in SPIN is to use assertions.
This method is appropriate for specifying invariant properties.
We placed assertions at the end of each slot to verify the safety
properties, which should hold at all synchronous time-points.
The agreement property was specified in the following way
(the other safety properties are specified in a similar manner):
for(i,0,N) /* Find a non-faulty node Nj */

if
:: !faulty[i] -> j = i; break
:: else -> skip
fi

rof(i,0,N);
for(i,0,N) /* Non-faulty nodes agree with Nj */

if
:: !faulty[i] ->

for(p,0,N)
assert(localView[i].view[p] ==

localView[j].view[p])
rof(p,0,N)

:: else -> skip
fi

rof(i,0,N);

Regarding the liveness properties, we used SPIN’s LTL
(Linear Temporal Logic) manager to specify the appropriate
LTL formulas. We verified that a faulty node is eventu-
ally excluded by fault-free nodes, i.e., exclusion liveness:
�(node failure → ♦node exclusion). We also verified that
a restarted node is eventually included in the membership if
no failures occur, i.e., inclusion liveness: �(node restart →
♦(node inclusion || restart failure)).

221

We verified the two liveness properties simultaneously, by
providing the LTL manager with their conjunction. SPIN
creates a never claim which consists of a negation of the LTL
formula. The verification process consists of checking that
there is no possible execution matching the negated formula.

G. Parametrization of the Model
Due to the well known problem of state-space explosion, we

limited the size of the model in diverse ways. We introduced a
set of parameters that limit the complexity of the verification
process by restricting the total number of nodes n, the number
of sponsors per node k (and the associated maximum value
f=k−2), the total number of failures that occur during the
execution, the nodes that are subject to failures and the nodes
that can restart. Thus, we were required to verify many
different instances of the model, i.e., verify the model for many
different combinations of parameters. This does not provide a
complete proof of correctness but increases our confidence in
that the protocol is free from design faults.

V. VERIFICATION RESULTS

The correctness of various model instances was checked
by executing a large set of verifications. These were done
using SPIN version 4.3.0 running on a 3.20 GHz Pentium R©

4 CPU with 1 GB of RAM. We made extensive use of two
advanced reduction algorithms provided by SPIN: state-vector
compression and minimized automaton encoding. These two
techniques have the potential to reduce the memory required
for storing the state-space of large models, while the runtime
of the verification process can be expected to increase.

Table I summarizes the results of the verified protocol con-
figurations. Given n nodes where t are affected by faults and r
can restart, we verified all combinations of fallible/restartable
nodes by generating Cn

t × Cn
r combinations of model param-

eters. We created a small tool that generates model instances
automatically and verifies them using SPIN. The fifth row of
Table I, for example, gathers the results of verifying a system
with 7 nodes where 2 nodes are fallible; we verified C7

2 = 21
model instances, where each instance took an average of 2.1
hours to be exhaustively verified.

A. Discussion
In total, 181 instances of the model were exhaustively

verified during 8 days of continuous computation. The protocol
configurations shown in Table I were chosen to cover distinct
values of parameters n and k for which the model is verifiable.
We attempted to verify larger models (e.g., 6 nodes where 3
may fail) which eventually consumed all the available memory.
No errors were found during those partial verifications.

We only verified systems with a single restartable node. We
don’t expect this to limit the validity of the analysis because
there is no concurrency among nodes attempting inclusion.
The protocol is designed for each restarted node to wait for its
turn in the inclusion cycle before sending the inclusion request.
We checked this by asserting that an inclusion request from a
given node Nr leads to an inclusion decision being completed
during round 3r+3 (a sanity check).

VI. RELATED RESEARCH

In this paper we address the group membership problem
for synchronous systems. The seminal work presented in [6]
was followed by many solutions for systems relying on syn-
chronous communication. The problem has also been widely
studied in the context of asynchronous systems, e.g., [7]. More
recently, the group membership problem has been clarified [8]
and the design of membership services has been improved with
respect to modularity [9] and configurability [10].

Closely related to our line of research – where systems are
characterized by their reduced bandwidth and strict depend-
ability requirements – is the TTP communication protocol [3].
It includes a membership service which was formally verified
in [11]. The protocol provides agreement under the assumption
that there is, at most, a single failure in any two consecutive
rounds. Our protocol, in contrast, is able to cope with multiple
simultaneous or near-coincident failures. Furthermore, TTP
requires the membership state to be periodically broadcasted
to support node inclusion. In our approach, nodes recover the
membership state by listening on the network.

In [12], a solution that isolates TTP’s membership protocol
from the CRC mechanisms was presented and formally veri-
fied. It uses a single acknowledgement bit to implement agree-
ment on exclusion, whereas our approach imposes a minimum
overhead of three bits to implement a similar functionality.
However, their scheme does not provide inclusion capabilities
and, in fact, our sub-protocols for inclusion ordering and
agreement on inclusion can be used with their solution, as
well as TTP’s, to provide a resilient restart process. This would
require adding only the i-flag to their message format.

The protocols proposed in [13] and [14] require nodes to
send the complete membership vector along with all periodic
broadcasts. The drawback of this approach is that the overhead
grows quadratically with the number of nodes. An approach
to minimize the effect of this problem is to send the mem-
bership vector only when there are membership changes [15].
This method is viable in networks that provide event-driven
scheduling in addition to the static schedule. In comparison
to these protocols, our protocol can be configured with the
maximum value k = n−1 to achieve a similar degree of fault
tolerance, thereby requiring the same bandwidth. However,
the value k can be decreased, providing a trade-off between
resilience and communication overhead.

The membership protocol proposed in this paper builds
upon the principle that the resilience to failures should be
adjustable to the available resources. This principle is also used
in our previous work [16]. In the new protocol, agreement on
inclusion is achieved by ordering the inclusion requests. This,
unlike its predecessor, ensures that the inclusion process is
fault-tolerant under our failure assumptions. The algorithms
also differ in the way acknowledgements are handled, to sup-
port new conditions for self-exclusion. Moreover, our previous
work only gives an informal specification of the solution,
whereas this paper focuses on the formal specification and
verification of the protocol using model checking.

222

Properties n k No. Failures Fallible Nodes Restartable Nodes No. Instances Avg. No. States Avg. Memory Avg. Time

Safety

4 3 4 Any single node – 4 4.97× 105 33.1 MB 17 s
5 4 2 Any single node Any single node 5× 5 = 25 3.99× 107 56.7 MB 35 min
6 3 2 Any single node Any single node 6× 6 = 36 3.54× 107 46.3 MB 41 min
6 5 3 Any two nodes – C6

2 = 15 1.08× 108 253.8 MB 2.0 h
7 4 3 Any two nodes – C7

2 = 21 1.11× 108 166.9 MB 2.1 h

Liveness

4 3 4 Any single node – 4 3.60× 105 31.6 MB 13 s
5 4 2 Any single node Any single node 5× 5 = 25 2.85× 107 46.6 MB 28 min
6 3 2 Any single node Any single node 6× 6 = 36 2.48× 107 41.6 MB 30 min
6 5 3 Any two nodes – C6

2 = 15 1.46× 108 128.8 MB 3.8 h

TABLE I
EXHAUSTIVELY VERIFIED PROTOCOL CONFIGURATIONS.

VII. CONCLUSIONS

This paper presented a membership protocol intended to
serve as a building block for real-time embedded systems.
The protocol is suitable for synchronous systems, where it
is executed in a sequence of rounds of communication. It
is especially appropriate for time-triggered networks such as
FlexRay, TTCAN or SAFEbus, which don’t have membership
services. From the design perspective, our protocol tolerates
a configurable number of simultaneous or near-coincident
failures. This provides the system designer with the ability to
adjust the resilience of the protocol to the available resources.
Moreover, it supports inclusion of restarted nodes under the
same failure assumptions, thereby extending previous research.

Another important feature of this protocol is that it can
be integrated with node-level fault tolerance mechanisms. For
one, it allows node-level error detection mechanisms to notify
the membership service of faults that prevent a node from
producing correct results. In this case, the usual approach is
to ensure fail-silence. In contrast, our protocol can send a
failure report upon error detection. The practical outcome of
this strategy is that node failures are not interpreted by other
nodes as communication failures. We conjecture that this has a
positive impact on the protocol’s failure-resilience. Moreover,
the protocol is capable of providing accurate self-exclusion
information to node-level recovery mechanisms. This feature
allows nodes to rapidly trigger local recovery when they are
excluded from service delivery by the remaining nodes.

We formalized the protocol and its properties in the
PROMELA language, which we could verify using the SPIN
tool. The exhaustively verified protocol configurations con-
tribute substantially to our confidence in that the protocol
obeys its correctness properties. As a model checker, SPIN has
the advantage of being able to pinpoint design flaws at early
development stages. On the other hand, explicit model check-
ers face the well known problem of state-space explosion. In
our case, this effect is partly due to the highly combinatorial
nature of failures. For this reason, a major effort was put into
creating an efficient model which was successfully verified for
configurations of up to seven processing nodes.

ACKNOWLEDGEMENTS

The authors wish to thank Professor Bengt Jonsson for his
valuable comments and for his guidance on formal verification

using SPIN. The work of Raul Barbosa has been supported
by the Portuguese Fundação para a Ciência e a Tecnologia
through doctoral grant SFRH/BD/18126/2004. The project was
partly supported by the Saab Endowed Professorship.

REFERENCES

[1] J. Berwanger et al., “FlexRay: The communication system for advanced
automotive control systems,” SAE Transactions, vol. 110, no. 7, pp.
303–314, 2001.

[2] T. Führer, B. Müller, W. Dieterle, F. Hartwich, R. Hugel, and M. Walther,
“Time triggered communication on CAN (Time Triggered CAN -
TTCAN),” Robert Bosch GmbH, Tech. Rep., 2000.

[3] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceedings
of the IEEE, vol. 91, no. 1, pp. 112–126, Jan. 2003.

[4] G. J. Holzmann, The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley Professional, 2003.

[5] V. Claesson, H. Lönn, and N. Suri, “An efficient TDMA start-up and
restart synchronization approach for distributed embedded systems,”
IEEE Trans. Parallel Distrib. Syst., vol. 15, no. 8, pp. 725–739, 2004.

[6] F. Cristian, “Agreeing on who is present and who is absent in a syn-
chronous distributed system,” in Proceedings of the 18th International
Symposium on Fault-Tolerant Computing (FTCS-18), 1988, pp. 206–211.

[7] M. Franceschetti and J. Bruck, “A group membership algorithm with a
practical specification,” IEEE Transactions on Parallel and Distributed
Systems, vol. 12, no. 11, pp. 1190–1200, Nov. 2001.

[8] A. Schiper and S. Toueg, “From set membership to group membership:
A separation of concerns,” IEEE Transactions on Dependable and
Secure Computing, vol. 3, no. 1, pp. 2–12, 2006.

[9] M. A. Hiltunen and R. D. Schlichting, “A configurable membership
service,” IEEE Trans. on Computers, vol. 47, no. 5, pp. 573–586, 1998.

[10] M. Serafini, A. Bondavalli, and N. Suri, “Online diagnosis and recovery:
On the choice and impact of tuning parameters,” IEEE Transactions on
Dependable and Secure Computing, vol. 4, no. 4, pp. 295–312, 2007.

[11] H. Pfeifer, “Formal verification of the TTP group membership algo-
rithm,” in FORTE/PSTV 2000, IFIP TC6 WG6.1 Joint International
Conference on Formal Description Techniques for Distributed Systems
and Communication Protocols (FORTE XIII) and Protocol Specification,
Testing and Verification (PSTV XX), Pisa, Italy, Oct. 2000, pp. 3–18.

[12] S. Katz, P. Lincoln, and J. Rushby, “Low-overhead time-triggered group
membership,” LNCS, vol. 1320, pp. 155–169, 1997.

[13] P. D. Ezhilchelvan and R. de Lemos, “A robust group membership
algorithm for distributed real-time systems,” in Proceedings of the Real-
Time Systems Symposium, Dec. 1990, pp. 173–181.

[14] K. H. Kim, H. Kopetz, K. Mori, E. Shokri, and G. Grünsteidl, “An
efficient decentralized approach to processor-group membership mainte-
nance in real-time LAN systems: The PRHB/ED scheme,” in Symposium
on Reliable Distributed Systems (SRDS’92), Oct. 1992, pp. 74–83.

[15] V. Rosset, P. Souto, and F. Vasques, “A group membership protocol
for communication systems with both static and dynamic scheduling,”
in Proceedings of the 6th IEEE International Workshop on Factory
Communication Systems (WFCS’06), Jun. 2006, pp. 22–31.

[16] R. Barbosa and J. Karlsson, “Flexible, cost-effective membership agree-
ment in synchronous systems,” in Proceedings of the 12th IEEE Pacific
Rim International Symposium on Dependable Computing (PRDC’06),
Riverside, California, USA, Dec. 2006, pp. 105–112.

223

