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Abstract

This thesis deals with principles and techniques of fault tolerance for distributed
embedded systems. A layered approach is taken to achieve high dependability
by structuring error detection and recovery mechanisms into three layers. The
first layer consists of mechanisms implemented in hardware, either at the circuit
or the micro-architectural level. Many integrated circuits, especially micropro-
cessors, are provided with such mechanisms in order to mask transient hardware
faults and to detect permanent ones. To prevent software faults and hardware
faults not captured at the hardware layer from causing node failures, it is desir-
able to introduce node-layer mechanisms. While they may depend on hardware
support such as memory protection, they are mostly implemented in software.
For this second layer, the thesis proposes techniques for building robust op-
erating systems, addressing software and hardware faults in a comprehensive
manner. The goal is to guarantee the integrity of tasks in a multithreaded en-
vironment by preventing undesired interactions among tasks and by providing
them with recovery services. Some of these techniques were added to an exist-
ing real-time kernel and assessed experimentally. To this end, an experimental
platform, with an associated fault injection tool, was developed. Following a
methodology for fault removal, the tool revealed two design flaws in the kernel
extension. Even though the goal of node-layer mechanisms is to make computer
nodes highly dependable, nodes may still fail. This motivates the development of
system-layer mechanisms that can deal with node failures. Accordingly, the the-
sis investigates methods for distributed redundancy management and proposes
a protocol for guaranteeing consistent diagnosis of node failures in synchronous
systems. Due to its importance as a building block, the protocol was formally
verified using model checking. An important goal of the proposed framework
and the associated node-layer and system-layer mechanisms is to reduce the
cost of fault tolerance in distributed embedded systems.
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CHAPTER 1

Introduction

We often depend on a computer system without being aware of its ex-
istence. Whether it is our mobile phone or the airplane we’re flying,
there’s frequently a part of our life which we trust directly or indirectly
to a computer. Naturally, we expect product developers to weigh the
consequences of a failure against the cost of reducing the risk of such an
event. Thus, we are willing to pay for reliability and safety along with
the functional benefits of a system.

From the designer’s viewpoint, dependability and functional features
impose conflicting requirements. The constant demand for improved
functionality increases hardware and software complexity – a major ob-
stacle to creating dependable systems. Nevertheless, society craves for
new products with enhanced customer value. The increased dependence
placed on computers – a steady trend in most economic sectors (trans-
portation, health, finance, telecommunication, etc.) – demands strict at-
tention to their reliability, availability, safety and other attributes of
dependability.

In critical applications, computers are usually embedded into the de-
vices they control. Users seldom perceive the presence of these computers
and their operation is limited to the scope of the application. Though
most embedded systems are unlikely to harm anyone, their failure can

1



2 CHAPTER 1. INTRODUCTION

sometimes be extremely harmful. A faulty system can cause great hu-
man and economic losses in avionics control, air and rail traffic control,
telecommunications and industrial applications. Due to the distributed
nature of these applications, embedded computer systems are usually
distributed as well. Thus, the concerns with faults and errors go beyond
a single computer node. Moreover, embedded systems are often expected
to function correctly for a number of years, possibly without maintenance
or repair. Fault tolerance is fundamental to assure that those systems
are trustworthy.

This thesis deals with principles and techniques of fault tolerance
for distributed embedded systems. The overall goal is to improve the
cost-effectiveness and flexibility of such systems by developing an ar-
chitectural framework and supporting services which allow both critical
and non-critical functions to be executed on the same processor node.
The framework provides a model for implementing fault tolerance using
a layered approach which combines hardware-, node- and system-layer
mechanisms.

The core idea is to ensure that processor nodes can handle a ma-
jority of the errors themselves, without any involvement of the other
nodes in the system. Thus, the mechanisms at the hardware and node
layers should jointly allow a node to detect and recover from errors au-
tonomously. However, even with such mechanisms in place, the possi-
bility of node failures cannot be disregarded completely. System-layer
mechanisms are therefore provided to deal with errors that cannot be
corrected by the nodes themselves. These mechanisms are also neces-
sary for dealing with errors that occur in the communication network.
While all three layers are important for achieving fault tolerance, the
main contributions of this thesis focus on the node and system layers.

The hardware layer consists of mechanisms implemented in hardware
at the circuit and micro-architectural levels. Techniques such as pipeline
flushing and instruction retry can be used for masking transient hard-
ware faults transparently to the software. With the increasing scale of
integration, we can also expect that more integrated circuits will uti-
lize on-chip redundancy techniques for tolerating permanent hardware
faults, although such techniques are not widely used today. The pro-
posed framework relies on the existence of hardware mechanisms, but
assumes that their fault coverage is imperfect, and hence there is the
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possibility for hardware faults to affect program execution.

Regarding the node layer, the thesis investigates techniques for build-
ing robust operating systems capable of guaranteeing the integrity of
tasks in a multithreaded environment. The goals are to facilitate com-
posability within computer nodes, by preventing undesired interactions
among software components, and to detach recovery mechanisms from
applications, so as to promote reusability of fault tolerance services. One
guiding principle is to tolerate, in a comprehensive manner, software and
hardware faults affecting application processes.

An existing real-time kernel was extended with the objective of exper-
imentally assessing these techniques. To this end, an experimental plat-
form, with an associated fault injection tool, was developed and used for
testing the implementation. Following a methodology for fault removal,
which consists in focusing fault injection experiments according to the
properties that are to be verified, the tool exposed two vulnerabilities in
the kernel extension.

With respect to the system layer, the thesis investigates redundancy
management techniques for distributed real-time systems. Two primary
goals of a system-layer recovery are to isolate any faulty nodes and to
reconfigure the remaining working nodes. Thus, the working nodes must
maintain a consensus on the nodes that should, and those that should
not, participate in service delivery. This key service is provided by a
group membership protocol which serves as a building block for system-
layer fault tolerance. The proposed protocol was formally verified using
model checking.

The verification of fault tolerance is one of the facets of this thesis.
The motivation for this is that mechanisms that provide fault tolerance
have the potential to generate severe failure modes when poorly designed,
even though they are created for improving system dependability. This
means that they should be thoroughly verified using appropriate meth-
ods. To this end, fault injection was used for testing the robustness
of the kernel extension, whereas model checking was chosen for formally
verifying the correctness of the design of the group membership protocol.

The remainder of the thesis is organized in eight chapters. Chapter 2
describes the dependable computing background and sets the architec-
tural framework. The node layer is addressed first, starting with a discus-
sion in Chapter 3 on requirements and techniques for safely integrating
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functions in critical environments. Chapter 4 addresses the construction
of fault-tolerant operating systems for embedded applications. Chap-
ter 5 focuses on improving the efficiency of fault injection by reducing
the number of experiments required for assessing node-layer mechanisms.
System-layer issues are discussed in Chapter 6, which proposes methods
for distributed redundancy management, and in Chapter 7, which de-
scribes the formal verification of the group membership protocol using
model checking. Chapter 8 unifies the building blocks proposed in the
other chapters by looking into interoperability between fault tolerance
layers. Finally, the conclusions are presented in Chapter 9.



CHAPTER 2

The Architectural Framework

This chapter introduces the architectural framework for layered fault
tolerance in distributed systems. First, some background to the field of
dependable computing is given, followed by a description of the frame-
work and the contributions of the thesis.

2.1 Terminology

Safety can be defined as “a property of a system that it will not endan-
ger human life or the environment” [1]. According to the taxonomy of
dependable and secure computing [2], a system is the basic entity which
interacts with other systems (i.e., hardware, software, humans or the
physical world). Systems always interact by providing and/or receiving
some service. A system is safety-critical if safety cannot be ensured when
it fails to provide correct service.

Product developers must therefore be thorough in addressing the de-
pendability of safety-critical systems. Generally speaking, a system is
dependable if one can assure that the frequency and the consequences
of its failure are adequate for a particular application. However, as-
surance and adequacy are often subjective terms. Figure 2.1 shows the
dependability tree. The figure was adapted from [2] by including only the

5



6 CHAPTER 2. THE ARCHITECTURAL FRAMEWORK

attributes of interest for dependability. The following sections describe
the threats, attributes and means to attain dependability.

Figure 2.1: The dependability tree.

2.1.1 Faults, Errors and Failures

The threats to dependability are faults, errors and failures. The relation-
ship between these threats is:

• A failure occurs when the delivered service deviates from what is
considered correct.

• An error is an incorrect system state that may affect the external
behaviour, thereby causing a failure.

• A fault is the adjudged or hypothesized cause of an error [2].

Faults can have diverse origins and may be classified into three partially
overlapping groups:

• Development faults are introduced in the system during the devel-
opment phase. These include software bugs, hardware production
defects, etc.
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• Physical faults include all hardware faults. These can be caused,
for instance, by physical deterioration, design flaws or by external
disturbances.

• Interaction faults are all faults that originate outside the system.
These faults are usually the result of human action or physical
interference during the system’s use phase.

A service failure occurs when the delivered service deviates from the
correct service. The service failure modes characterize the different ways
in which failures are manifested. Failures can be described in terms of
four characteristics:

• The failure domain distinguishes between content failures and tim-
ing failures. A service can fail in respect to content and timing
simultaneously.

• The detectability of a failure describes whether or not the service
failure is signaled to service users.

• The consistency of failures refers to the way users perceive failures.
A failure is consistent when all users observe the same failure. If
any two users observe different results from a component, then the
failure is inconsistent.

• The consequences of a failure can range from minor to catastrophic
and therefore grade the impact that a failure can have in the com-
plete system.

Faults, errors and failures form a causality chain, where a failure of
one component may cause a fault in another component. Understand-
ing the failure modes of all components is essential to ensure the cost-
effectiveness of fault tolerance mechanisms. Knowing, for instance, the
consistency of failures in a distributed system determines the complexity
of the communication algorithms. If the nodes can produce inconsistent
failures then the Byzantine generals result [3] dictates that 3f+1 nodes
must participate and f+1 communication rounds must be completed to
tolerate f faulty nodes. On the other hand, if the nodes are known to ex-
hibit only consistent failures, simple majority voting among 2f+1 nodes
suffices to ensure agreement with f faulty nodes.
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2.1.2 Dependability Attributes

According to Figure 2.1 there are five main attributes of dependability.
The reliability of a component describes its ability to provide correct
service continually, for a given period of time [4]. If X is a random
variable which represents the lifetime of a component, then the reliability
function for that component is

R(t) = P (X > t).

The availability of a system is also important in many situations. It
describes the on-demand probability of correct service. A system that
can be repaired after a failure will have, at least, two states: functional
and failed. The availability at time t is therefore

A(t) = Pfunctional(t).

Availability is often represented by a number (e.g., stating that a system
is available 99.999% of the time). This number reports the steady-state
availability, which is the expected fraction of time that the system would
be available after an infinite operation time. Thus,

A = lim
t→∞
A(t).

Safety describes the absence of catastrophic failures. In addition to
the functional and failed states, some systems are able to find a safe
state even under faulty conditions. A train which stops in the event of a
fire is an example of a system capable of safe shutdown. Airplanes and
satellites are examples of systems which do not have this property. The
safety function is thus

S(t) = Pfunctional(t) + Psafe-state(t).

It should be emphasized that we consider the dependability attributes
from the probabilistic (or quantitative) point of view. However, it is also
viable to use the same concepts qualitatively. Safety, for instance, can be
attained without the assignment of probability figures. This is typical in
a standard-following industry, where safety is ensured by using state-of-
the-art development methods. Doing so ensures that the product is as
safe as possible at the time of development.
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2.1.3 The Means to Dependability

The means to attain dependability consist of methods and techniques
to achieve the previously described attributes of dependability. The de-
pendability tree in Figure 2.1 classifies those means into four groups.

• Fault prevention is applied during the development phase to pre-
vent the occurrence of faults. Development faults are prevented
through good development processes such as software testing, for-
mal methods, hardware design rule checking, etc. Physical faults
are prevented by protecting the hardware, usually via radiation
shields, increasing the signal-to-noise ratio, etc. Interaction faults
are commonly prevented by controlling the users’ access to the sys-
tem.

• Fault tolerance techniques are the means to allow a system to pro-
vide correct service even when faults occur. Such techniques use
diverse forms of redundancy to detect and recover from faults. To
identify erroneous conditions, one can use hardware redundancy,
software redundancy, time redundancy or information redundancy.
The subsequent recovery process relies on the remaining fault-free
parts of the system to correct the errors and prevent them from
reappearing.

• Fault removal is applied during the development and use phases
of a system. During development, fault removal consists in verify-
ing the correctness of the system and validating the specification.
During the use phase of a system, fault removal is applied either
by corrective or preventive maintenance. It usually requires human
intervention to replace faulty units or to correct software defects.

• Fault forecasting methods provide assurance with respect to fre-
quency and consequences of faults. These methods combine quali-
tative evaluation of failure consequences, e.g., conducting a Failure
Modes and Effects Analysis (FMEA), with quantitative techniques
such as Markov models to measure the attributes of dependability.
Essentially, qualitative analysis defines, for instance, the safe states
and quantitative analysis evaluates the probability of remaining in
those states.
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2.2 System Model

The structural elements of the architectural framework are nodes, net-
works, services and tasks. A node is essentially a computer with a proces-
sor, memory and i/o interfaces which provide the access to the network
and peripherals (e.g., storage, sensors and actuators). Each node is able
to support the execution of multiple tasks.

A task is a computer program, which consists of code, data and all
the information relevant to its execution. In the operating systems liter-
ature a task is referred to as a process or a thread [5]. Tasks are logically
grouped into services when they collaborate in providing a system func-
tion. In a car a service can, for example, implement a brake-by-wire
function, whereas in an aircraft a service can implement an autopilot
function.

Tasks that jointly provide a service can be distributed across different
nodes by using the network for information exchange. Different services
are also allowed to exchange information, thus creating dependencies
among services. The definition of service is therefore only introduced to
reason about the dependability of a given function (which may depend
on other functions). Figure 2.2 depicts the structure of the system. It
should be noted that a complete system can include several networks of
processing nodes, which form independent clusters.

Figure 2.2: Structural elements of the architectural framework.
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2.3 Layered Fault Tolerance

In the distributed system depicted in Figure 2.2 fault tolerance can be
viewed as a set of mechanisms that provide error detection and recovery.
Those mechanisms can be structured into three different layers, based on
where they are implemented and what parts of the system they involve:

• Hardware-layer mechanisms provide the basic fault tolerance im-
plemented in hardware. Most hardware units include some forms
of fault tolerance. Examples are the ability of most microproces-
sors to detect exceptional conditions (e.g., invalid instructions and
erroneous memory accesses), cache protection with parity checks
and main memory protection with error-correcting codes (ECCs).
Triple modular redundant (TMR) logic at the transistor-level [6] is
an example of a more advanced hardware-layer technique.

• Node-layer mechanisms are executed locally in a computer node.
Additional hardware or software is used to detect errors and, if
possible, recover from them. Executing, for example, a task twice
allows transient errors to be detected; triplicated time-redundant
execution of a task and voting provides effective transient error
masking. Other examples of node-layer fault tolerance techniques
include checkpointing, watchdog timers, runtime assertions, etc.

• System-layer techniques aim at tolerating node failures and com-
munication network failures. They rely on the use of redundant
nodes. These can operate in static redundancy, which uses major-
ity voting, or in dynamic redundancy, which utilizes error detection
and reconfiguration.

It is important to realize that these layers are not working in isolation
from one another. Fault tolerance mechanisms often require different lay-
ers to cooperate. To exemplify, consider a fault in one of the tasks of
a brake-by-wire system. A memory access outside its memory address
space may be detected at the hardware layer by a Memory Management
Unit (MMU). An exception is raised and, at the node layer, the excep-
tion handling routine can delete the faulty task. This, in turn, causes
the node to exhibit a silent failure. At the system layer all remaining
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fault-free nodes detect the omission and may switch to an alternate brak-
ing algorithm which takes into account that one of the wheel nodes is
not braking. This allows the system to provide degraded service while
remaining in a safe state by preventing the car from moving sideways.
This exemplifies a scenario where mechanisms at all layers cooperate to
tolerate a fault.

To minimize the cost of fault tolerance, it is important to find an
appropriate combination of fault tolerance mechanisms at the different
layers, even when there is no explicit cooperation among them. In theory
one should try to ensure that distinct fault tolerance mechanisms don’t
overlap, i.e., they should not detect or handle the same faults. This
is often difficult to ensure in practice. A second guideline is that the
lower fault tolerance layers should restrict the failure modes exhibited to
the upper layers. This restriction aims at simplifying the fault tolerance
mechanisms by allowing only increasingly benign failure modes to be
observed at each layer. With respect to the characteristics of the fail-
ure modes, signaled failures are more benign than unsignaled failures;
consistent failures are more benign than inconsistent failures; and so on.

The second guideline is important since the cost of handling com-
plex failure modes at the upper layers is much higher than detecting and
handling them earlier in the causality chain. An activated fault causes
an error, which may cause a failure; this failure may then cause a fault
in another component. Allowing, for instance, nodes to exhibit incon-
sistent failures requires complex Byzantine agreement algorithms at the
system layer. Therefore, a majority of the errors should be handled at
the hardware and node layers in order to minimize the likelihood of in-
consistent failure modes. Figure 2.3, adapted from [7] and similar to
the one portrayed in [8], illustrates the three layers of fault tolerance
mechanisms.

Figure 2.3 shows a possible combination of failure modes observed
at the different layers. It should be noted that the figure is intended
to depict the layers where faults are treated. Thus, the figure does not
indicate that development, physical and interaction faults occur at the
hardware layer. A fault is assumed to occur anywhere in the system.
The fundamental design decisions are where (i.e., at which layer) and
how to detect and recover from them.
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Figure 2.3: Layered fault tolerance for distributed embedded systems.

2.4 Objectives

A hardware fault, such as a Single Event Upset (SEU) in an integrated
circuit, may be detected by mechanisms of the system layer by using, for
example, a TMR configuration. This is, however, a costly approach to
fault tolerance. Mechanisms of the system layer are likely to exclude an
entire node from the set of operational nodes (i.e., the processor-group
membership) in order to prevent the fault from being re-activated. A
more cost-efficient combination of fault tolerance mechanisms would first
attempt to mask errors at the node layer. This could be achieved with
hardware redundancy [9] or with software and time redundancy [10].

This thesis aims to study methods that allow the task to be the ele-
mentary unit of failure. However, hardware faults have the potential to
disrupt entire nodes. Thus, system-layer mechanisms must also be pro-
vided to detect and recover from errors that cannot be handled locally
at the nodes. The overall goal of the thesis is to develop and validate a
set of mechanisms that support a cost-effective implementation of fault
tolerance in distributed real-time systems. Those mechanisms are char-
acterized by the following features:
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• Achieve fault tolerance with a layered approach, which combines
hardware-layer, node-layer and system-layer mechanisms.

• Ensure strong fault containment within nodes by using robust par-
titioning among tasks to tolerate software development faults.

• Allow both critical and non-critical functions to be executed on the
same processing node.

• Provide redundancy at the node layer to tolerate a majority of
the transient hardware faults. The principal concern here is to
use mostly software, time and information redundancy, in order to
minimize the hardware redundancy and thereby the system cost.

• Provide redundancy and consensus mechanisms at the system layer
to tolerate node failures and network failures.

• Support time-triggered execution for critical tasks and event-driven
execution for non-critical tasks and recovery mechanisms.

2.5 Main Contributions

The main contributions of this thesis focus on the node and system layers.
An overview of the contributions of each chapter is presented below.

• Chapter 3 examines the requirements of partitioned systems in the
light of declassification – a computer security notion that we found
useful for specifying partitioning requirements. Moreover, it sur-
veys the existing mechanisms for safely integrating functions in
critical environments and presents a probabilistic analysis of the
reliability of federated and integrated architectures.

• Chapter 4 describes Secern – an approach for implementing parti-
tioning and fault tolerance in real-time kernels. Several fault toler-
ance mechanisms were implemented as extensions to the µC/OS-II
kernel. We developed a fault injection tool with the goal of ex-
perimentally assessing these mechanisms and conducted a series of
preliminary tests. In addition to the mechanisms implemented in
the extended real-time kernel, Secern includes a lightweight mech-
anism for checkpointing and rollback recovery of real-time tasks.
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The lightweight checkpointing scheme allows applications to save
snapshots to main memory while providing them with a service for
locking the checkpoint area using memory protection. We used the
Spin model checker to verify the design of this mechanism.

• Chapter 5 describes a pre-injection analysis technique aimed at re-
ducing the cost of fault injection campaigns. The technique elimi-
nates faults that have no possibility of activation by using knowl-
edge of program flow and resource usage, before any faults are
injected. The chapter compares the results of selecting faults ran-
domly with those obtained when using the pre-injection analysis.

• Chapter 6 proposes a group membership protocol for guarantee-
ing consistent views of failures and restarts among nodes in a dis-
tributed system. The protocol is intended to serve as a building
block of distributed redundancy management for time-triggered
systems. It provides designers with the ability to configure the
reliability of the protocol according to the available resources. Fur-
thermore, the protocol supports inclusion of restarted nodes under
the same failure assumptions as exclusion.

• Chapter 7 describes the usage of the Spin model checker to formally
verify the correctness of the group membership protocol. The chap-
ter specifies the correctness properties and describes the Promela
models of the protocol and the time-triggered communication chan-
nel. Moreover, it presents the results of the exhaustively verified
protocol configurations.

• Chapter 8 unifies the building blocks presented in the other chap-
ters by considering the issue of interoperability between fault tol-
erance layers. In addition to extending the protocol with support
for nodes that execute multiple tasks, the chapter shows that using
fail-report instead of fail-silent semantics improves the reliability of
the group membership protocol.





CHAPTER 3

Separation of Integrated Functions

Embedded systems have traditionally been implemented by dedicating
a computer node to each software component or function. This archi-
tecture, which is usually referred to as federated, has the advantage of
providing clear fault containment boundaries in the design. Each soft-
ware component executes independently on its own processor and re-
source sharing is reduced to message passing through a communication
infrastructure. The need for fault tolerance is satisfied with the intro-
duction of redundant computer systems as well as redundant networks.
This approach makes it simple to contain hardware and software faults
in the processor where they originate.

The main drawback of federated architectures is that they lead to a
proliferation of hardware as the number of functions grows. The trend
to increase the number of subsystems, designed to add new and enhance
existing features, demands a large number of microcontrollers – one per
major function. The consequence of such designs is the reliability and
cost problems currently faced by the manufacturers of embedded systems.
The use of many independent computer systems increases the cost of
acquisition, space and maintenance, as well as the power consumption.
Moreover, a larger number of hardware units leads to a higher fault rate,
that may reduce the system’s reliability.

17
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To address these problems, there are several initiatives underway aim-
ing at simplifying the sharing of computer resources among different func-
tions in distributed real-time systems. Examples of such initiatives are
the development of the Integrated Modular Avionics (IMA) concept [11]
and the ARINC 653 standard [12] for the aerospace industry; and the
AUTOSAR project [13] launched by the automotive industry. One goal
of these initiatives is to integrate different functions and software compo-
nents into a common hardware platform with few but powerful processing
elements. Such integrated architectures have a great potential to reduce
cost and improve reliability, since they require fewer hardware compo-
nents than federated architectures. Furthermore, these initiatives favour
the integration of Commercial Off-The-Shelf (COTS) software in order
to reduce development and maintenance costs.

However, to achieve these improvements, it is necessary to equip the
system with robust partitioning mechanisms. Such mechanisms prevent
faults in the design of one function from disrupting the operation of other
coexisting functions. Robust partitioning mechanisms should therefore
ensure fault containment within nodes – between different application
processes, and between the application processes and the operating sys-
tem. These mechanisms must prevent processes from writing into each
other’s memory space – spatial partitioning – as well as ensuring that
there is no interference in the time domain – temporal partitioning –,
which encompasses both task scheduling and concurrency control.

This chapter examines the requirements for robust partitioning and
identifies existing approaches to provide a computing platform which
achieves those requirements. Section 3.1 provides a probabilistic analy-
sis to understand the impact of integrated architectures on a system’s
reliability. Section 3.2 identifies the requirements for partitioning and
Section 3.3 discusses the existing mechanisms to fulfill those require-
ments. Section 3.4 summarizes the main conclusions.

3.1 Theoretical Motivation

In this section we analyze the effort necessary to assure the reliability
of federated and integrated architectures. In our probabilistic analysis,
the main assumption is that hardware and software components have a
failure rate and that in order to reduce it, the development effort has
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to be increased. Furthermore, we assume that the development process
follows a standard that assigns criticality levels to components. Setting
a lower target failure rate implies a higher criticality level which, in turn,
requires a higher development effort.

If a processing node does not contain robust partitioning mechanisms
then all its software is required to be developed and certified at the
criticality ceiling of that node. The criticality ceiling of a node is the
criticality level of the most critical software running on it. Since a fault
in less critical software can cause a failure of the most critical function,
its criticality must be raised to that of the most critical function.

The problem with this approach is that, without partitioning, the
failure rate of the less critical software must be decreased to zero in
order to ensure that the reliability of the most critical software remains
as high as if the two tasks were running on two distinct nodes. In fact,
there are only three possibilities to assure the reliability of the most
critical software resulting from the integration of less critical software:

1. Reduce the failure rate of the less critical software to zero.

2. Decrease not only the failure rate of the less critical software but
also the failure rate of the most critical task to a suitable level.

3. Equip the node with partitioning mechanisms that provide 100%
coverage of application errors.

Clearly, there is no process by which we can ensure that the failure
rate of software is zero. Decreasing the failure rate of highest criticality
software would require even more strict development processes than those
available today. Hence the most promising approach is to develop a
computing platform with robust partitioning mechanisms that contain
faults in the faulty partitions, even if all software is of the same criticality.

It is also viable to combine the different integration possibilities in
situations where partitioning exists but is not 100% effective. Moving
from a federated architecture to an integrated one will require either very
strong partitioning mechanisms or a higher development effort to prevent
failures from occurring in the first place. As we will see next, there is
a trade-off between development effort and partitioning effort, which
allows an integrated system to be built with, for instance, 99% effective
partitioning mechanisms (by assuring a slightly lower task failure rate).
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It should be emphasized that we are referring to the effectiveness of
the partitioning mechanisms in terms of error detection and assume that
detected errors are handled correctly. Thus, we define the error detection
coverage of the partitioning mechanisms as the conditional probability

c = P (partitioning is not violated | partition has failed).

If λ partition failures occur every year, then the rate at which such
failures result in partitioning violations is λ(1− c). Thus, if partitioning
mechanisms are only 99% effective (c = 0.99) and, for instance, λ = 10−6

failures/year, partitioning violations would occur at a rate of 10−8 per
year.

An orthogonal problem to partitioning coverage is the failure rate
introduced by the partitioning mechanisms themselves. The partitioning
mechanisms must be implemented in either software or hardware. Both
approaches have the potential to add new failure modes and increase
the existing failure rate. An example would be the failure of a memory
protection mechanism which prevented fault-free tasks from accessing
their own memory spaces. The partitioning failure rate must therefore
be reduced to a suitable degree through strict development processes.
Clearly, we would like the failure rate of the partitioning mechanisms to
be as low as possible and their coverage as high as possible. These are,
however, two separate issues.

In following sections we derive continuous-time Markov models to
compare the reliability of federated and integrated architectures. The
goal is to compare the two design alternatives with regards to their
resilience to hardware and software faults. We consider two different
benchmarks in this analysis: 1-out-of-n-resilient systems and 2-out-of-n-
resilient systems.

Definition 1. A system is said to be f-out-of-n-resilient if it can can
tolerate the failure of any f components from a total of n components.
For short, we call these systems f-resilient unless n is relevant.

The rationale for using 1- and 2-resilient systems as benchmarks is to
capture the non-functional requirements of safety-critical systems. Such
systems are designed to compensate for errors by having enough redun-
dancy to mask errors or to enter a degraded mode of operation in the
event of a failure.
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However, if we consider 0-resilient systems, which cannot tolerate the
failure of any component, it is simple to draw the conclusion that feder-
ated architectures are less reliable than the integrated approach. By us-
ing less hardware, the overall hardware failure rate of integrated systems
is lower. Assuming that the software is the same in both architectures,
the resilience to software failures is the same (no failures are tolerated).
Thus, we turn to studying 1- and 2-resilient systems, for which less is
known a priori. We begin by modeling federated and integrated systems
with respect to hardware failures.

3.1.1 Modeling Hardware Failures

We consider the problem of integrating two or more tasks (software
components), which were previously granted their independent hardware
units, into a single one. These tasks compose a 1-resilient or a 2-resilient
system – we will discuss both cases. The symbol λhf denotes the failure
rate of each hardware unit in a federated system, which we assume to be
constant during the useful life period.

In federated systems, each task has one dedicated hardware unit.
Each hardware unit is a Fault Containment Region (FCR) and there are
n such units, failing at a λhf rate. Figures 3.1 and 3.2 show the state
transition diagrams of 1- and 2-resilient federated systems, respectively,
which have the following states:

State 0 – The n hardware units are functioning correctly;

State 1 – One hardware unit has failed and the remaining n − 1 are
functional;

State 2 – A second hardware unit has failed (a 2-resilient system toler-
ates the second failure whereas a 1-resilient system does not);

State F – This state represents a system failure (the third failure in a
2-resilient system or the second failure in a 1-resilient system).

Let R(t) denote the system’s reliability, i.e., the probability that
the system is functional in [0, t]. We derive the reliability of the two
federated systems by finding P0(t), P1(t) and P2(t) in the Markov model
of Figure 3.2, where PS(t) is the probability of being in state S at time
t. The reliability, regarding hardware failures, of the 1-resilient federated
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Figure 3.1: State transition dia-
gram, regarding hardware failures,
for a 1-out-of-n-resilient federated
system.

Figure 3.2: State transition dia-
gram, regarding hardware failures,
for a 2-out-of-n-resilient federated
system.

system is Rhf-1r(t) = P0(t) + P1(t) and the reliability of the 2-resilient
system is Rhf-2r(t) = P0(t) + P1(t) + P2(t). From Figure 3.2 we obtain
the transition rate matrix

Q =











−nλhf nλhf 0 0
0 −(n− 1)λhf (n− 1)λhf 0
0 0 −(n− 2)λhf (n− 2)λhf

0 0 0 0











.

We know that P̄ ′(t) = P̄ (t) ·Q and P̄ (0) =
[

1 0 0 0
]

, so we obtain
the system of differential equations

P ′0(t) = −nλhfP0(t),

P ′1(t) = nλhfP0(t)− (n− 1)λhfP1(t),

P ′2(t) = (n− 1)λhfP1(t)− (n− 2)λhfP2(t),

P ′F (t) = (n− 2)λhfP2(t),

which can be solved by applying the Laplace transform. We omit this
step and present the reliability functions of the federated systems:

Rhf-1r(t) = (1− n)e−nλhf t + ne−(n−1)λhf t, (3.1)

Rhf-2r(t) =
n2 − 3n+ 2

2
e
−nλhf t+n(2−n)e−(n−1)λhf t+

n(n− 1)
2
e
−(n−2)λhf t.

(3.2)
In integrated systems, multiple tasks share the same hardware unit,

which is vulnerable to failures – each hardware unit is a FCR with re-
spect to hardware faults. We analyze two alternative integrated systems:
one where all tasks share a hardware unit with no redundancy and one
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where the hardware unit and the tasks are replicated using Dual Modu-
lar Redundancy (DMR) with perfect error detection. Figures 3.3 and 3.4
show the state transition diagrams for the two integrated systems. The
symbol λhi denotes the failure rate of each hardware unit.

Figure 3.3: State transition dia-
gram, regarding hardware failures,
for a 1- or 2-resilient integrated
non-DMR system.

Figure 3.4: State transition dia-
gram, regarding hardware failures,
for a 1- or 2-resilient integrated
DMR system.

The integrated non-DMR system has an exponentially distributed
reliability

Rhi(t) = e−λhi t (3.3)

and the integrated DMR system’s reliability can be obtained by replacing
n with 2 in Equation (3.1), giving

Rhi-dmr(t) = 2e−λhi t − e−2λhi t. (3.4)

The plots in Figure 3.5 compare, using Equations (3.1) through (3.4),
the reliability of federated and integrated systems with respect to hard-
ware failures.

The first conclusion one can draw from Figure 3.5 is that the reli-
ability of federated systems decreases substantially with the number of
hardware units. Increasing the number of hardware units from 5 to 10
leads to more than a three-fold increase in unreliability (1−R(t)), both
for 1-resilient and 2-resilient federated systems, over the considered pe-
riod of time. Hence, integrated architectures are a promising alternative
by reducing the number of hardware parts.

The second and perhaps most important conclusion is that integrated
architectures are not beneficial in all situations. It is only when the
number of hardware units exceeds a certain threshold – between 5 and
10 – that we can benefit from integration. This number has already been
surpassed by the industry as there can be as many as 70 processors in a
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Figure 3.5: Comparison of federated and integrated systems regarding
hardware failures.

high-end road vehicle and 50 in a modern airplane, with the consequent
penalty in safety and reliability.

Third, considering the 2-resilient federated system, a non-DMR in-
tegrated system is not competitive with respect to reliability. In other
words, there is a price to pay – in reliability – for using less hardware.
Hence, structural redundancy is needed to protect integrated systems
against hardware failures. As we can see from the plot of the integrated
DMR system, redundancy helps in providing a similar level of reliability
to that of the most resilient federated system.

Sensitivity of Integrated Systems to Hardware Parameters

Figure 3.5 compares the different designs when the hardware failure rate
of integrated systems is 30% higher than the assumed 10−6 failures/h
for federated systems. There are several reasons for this. For one, inte-
grated systems require more powerful microcontrollers, built using more
recent manufacturing processes. This makes the hardware more sensitive
to both transient and permanent faults [14]. Moreover, those microcon-
trollers are likely to be more complex, potentially increasing the failure
rate. Finally, since several tasks are running on a processor, its load is
likely greater – a factor which is known to increase fault activation [15].
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However, there is no evidence that the failure rate will only be 30%
higher. Figure 3.6 shows how the reliability of the two integrated systems
(DMR and non-DMR) is affected when the failure rate increases to 2.0×
10−6 failures/h.
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Figure 3.6: Sensitivity of integrated systems to hardware failure rate.

One can draw the conclusion, from Figure 3.6, that the hardware fail-
ure rate is one of the determinant factors for the resilience of integrated
architectures. When the failure rate increases by ∼54%, from 1.3× 10−6

to 2.0× 10−6 failures/h, the unreliability of the system increases by ap-
proximately the same factor.

3.1.2 Modeling Software Failures

This section focuses the reliability assessment regarding software failures.
We apply continuous-time Markov modeling [4] to compare the federated
architecture with the integrated architecture. We explicitly use software
failure rates as transition rates in our models. Most software reliability
modeling techniques [16] use software failure rates to predict reliability
and number of faults (i.e., bugs) in software systems. Moreover, it is
commonly assumed that the software failure rate is proportional to the
number of faults in the system. Under these assumptions, predicting
the number of software faults can be done before software deployment.
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An approach is to use field failure data from previous releases or prod-
ucts [17].

However, the statistical approach to software reliability assessment
is not always used in practice. The DO-178B [18] standard for avionics
software development does not require the assignment of a failure rate for
software of any level of criticality. Instead, this approach aims to assure
a high level of confidence that the software is free from faults. This is
usually achieved by using the best existing systems engineering practices.
Reference [19] scrutinizes the differences between the statistical and the
perfectionist approach, and clarifies the relationship between statements
of software failure rates and about software correctness.

We assume the existence of a software failure rate in order to rea-
son about the dependability of the two architectures. Furthermore, we
assume that reducing the failure rate of a software component implies
setting a higher criticality level (and therefore a greater development
effort). The IEC 61508 [20] international standard for functional safety
defines four Safety Integrity Levels (SILs) for safety-related functions. To
each range of failure probabilities corresponds an integrity level. Lower
probabilities of failure (specified either in terms of probability of failure
per hour or probability of failure on demand) impose higher integrity
levels. (Note that the converse is not true, i.e., development at a cer-
tain integrity level does not guarantee the target failure rate.) Under
these assumptions we can relate the development effort to the software
failure rate. Thus, we can compare the development effort in the two
architectures by comparing the failure rates of their components.

In federated systems, each hardware unit is a FCR also for software
failures. We are assuming that all tasks are functionally independent and
that the only pathways for fault propagation result from shared resources
– inexistent in the modeled federated systems. There are n tasks which
have a failure rate of λsf failures/h. Figures 3.7 and 3.8 show the state
transition diagrams of 1- and 2-resilient federated systems, respectively,
which have the following states:

State 0 – The n tasks are functioning correctly;

State 1 – One task has failed and the remaining n− 1 are functional;

State 2 – A second task has failed (a 2-resilient system tolerates the
second failure whereas a 1-resilient system does not);
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State F – This state represents a system failure (the third software
failure in a 2-resilient system or the second software failure in a
1-resilient system).

Figure 3.7: State transition dia-
gram, regarding software failures,
for a 1-out-of-n-resilient federated
system.

Figure 3.8: State transition dia-
gram, regarding software failures,
for a 2-out-of-n-resilient federated
system.

The state transition diagrams for federated systems concerning soft-
ware failures are equal to those in Figures 3.1 and 3.2, derived for hard-
ware failures. Thus, Equations (3.1) and (3.2) give us also the reliability
of 1- and 2-resilient federated systems regarding software failures, by re-
placing λhf with λsf . This similarity between the effects of software and
hardware faults made it possible for airplane and car manufacturers to
assume that software is fault-free; they could implicitly take software
faults into account by assuming a conservative hardware failure rate and
obtain safe reliability estimates for the entire system.

Unfortunately, the same cannot be said for integrated architectures.
To enable resource sharing among multiple tasks, robust partitioning
mechanisms should enforce temporal and spatial protection. There are,
therefore, two new parameters which influence the resilience of integrated
systems: the software failure rate introduced by the partitioning mecha-
nisms themselves, denoted by λpm , and their coverage.

The state-transition diagrams for integrated systems are shown in
Figures 3.9 and 3.10. They have the same states as federated systems
but there are direct transitions to the failed state: a fault which is not
contained by the partitioning mechanisms (with probability 1 − c) or a
failure of the partitioning mechanisms.

One can immediately draw the conclusion that the reliability func-
tions, concerning software, of integrated and federated systems are equal
when the coverage of the partitioning mechanisms is perfect (c = 100%)
and the failure rate of the partitioning mechanisms is zero (λpm = 0).
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Figure 3.9: State transition dia-
gram, regarding software failures,
for a 1-out-of-n-resilient integrated
system.

Figure 3.10: State transition dia-
gram, regarding software failures,
for a 2-out-of-n-resilient integrated
system.

Thus, if the software failure rate of tasks is the same, integrated systems
can only be less resilient than federated systems. Since software faults
are design faults, redundancy (e.g., using a DMR configuration) does
not increase the reliability. To achieve that, one would have to consider
decreasing the software failure rate of the tasks or using design diversity
– both options are costly and demand a greater development effort. The
alternative endorsed by ongoing efforts such as AUTOSAR and IMA is
to place the development effort into designing reusable platforms that
provide robust partitioning.

Sensitivity of Integrated Systems to Software Parameters

The same technique used to determine P0(t), P1(t) and P2(t) in the
Markov models of the preceding section (hardware failures) can be ap-
plied to Figures 3.9 and 3.10. We obtain the reliability of 1-resilient
integrated systems with respect to software failures

Rsi-1r(t) = (1− nc)e−(nλsi+λpm)t + nce−((n−1)λsi+λpm)t (3.5)

and the reliability of 2-resilient integrated systems regarding software
failures

Rsi-2r(t) =
n(n− 1)c2 − 2nc+ 2

2
e−(nλsi+λpm)t +

nc(1− nc+ c)e−((n−1)λsi+λpm)t +
n(n− 1)c2

2
e−((n−2)λsi+λpm)t .(3.6)
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To understand the sensitivity of integrated systems to the coverage
of partitioning mechanisms we fix λpm = 0, λsi = 10−6 failures/h and
compare systems with 5 and 10 tasks with a coverage of 99% and 95%.
Figures 3.11 and 3.12 show the resulting reliability curves for 1- and
2-resilient systems, respectively.
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Figure 3.11: Sensitivity of in-
tegrated systems to the cover-
age of partitioning mechanisms (1-
resilient systems with λsi = 10−6

failures/h and λpm = 0).
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Figure 3.12: Sensitivity of in-
tegrated systems to the cover-
age of partitioning mechanisms (2-
resilient systems with λsi = 10−6

failures/h and λpm = 0).

We can conclude from Figure 3.11 that 1-resilient systems are some-
what sensitive to variations of the coverage of partitioning mechanisms –
a 4% decrease in covered faults results in a 5-20% increase of unreliabil-
ity. Regarding Figure 3.12, we can draw the conclusion that 2-resilient
systems are very sensitive to the coverage factor. The same 4% decrease
in coverage leads to an increase of ∼50% in unreliability for 2-out-of-
10-resilient systems and a ∼160% increase in unreliability for 2-out-of-5-
resilient systems. The greater sensitivity of 2-resilient systems is due to
the fact that c appears as a squared factor in Equation (3.6).

The other parameter is λpm – the failure rate potentially introduced
by faults in the software designed to detect errors, isolate faulty partitions
and recover the system through rollback, rollforward or compensation.
To understand the impact of this parameter we fix c = 99%, λsi = 10−6

failures/h and compare systems with 5 and 10 tasks with λpm = 10−7

failures/h (an order of magnitude lower than each individual task) and
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λpm = 10−6 (the same failure rate as one task). Figures 3.13 and 3.14
show the sensitivity of integrated systems to the software-related failure
rate of partitioning mechanisms.

0 2 4 6 8 10
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time (years)

R
el

ia
bi

lit
y

 

 

1−out−of−5−resilient, λ
pm

 = 10−7

1−out−of−5−resilient, λ
pm

 = 10−6

1−out−of−10−resilient, λ
pm

 = 10−7

1−out−of−10−resilient, λ
pm

 = 10−6

Figure 3.13: Sensitivity of in-
tegrated systems to the failure
rate of partitioning mechanisms (1-
resilient systems with λsi = 10−6

failures/h and c = 99%).
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Figure 3.14: Sensitivity of in-
tegrated systems to the failure
rate of partitioning mechanisms (2-
resilient systems with λsi = 10−6

failures/h and c = 99%).

Figure 3.13 shows that when λpm increases from 10−7 to 10−6 fail-
ures/h, the unreliability of the system increases by 25-100% in 1-resilient
systems and by 130-200% in 2-resilient systems, depending on the num-
ber of tasks, over the considered period of time. This is a significant
impact on the system’s reliability, justified by the fact that a failure of
the partitioning mechanisms may disrupt all partitions on a hardware
unit. Hence, a great development effort must be placed into avoiding
design faults in platforms supporting integrated systems.

3.2 Requirements for Partitioning

So far, we have discussed partitioning in abstract terms. We see it as
a set of mechanisms that behaves like a firewall, preventing faults from
propagating among components. We have implicitly assumed that tasks
are executing according to a model and that partitioning would be un-
necessary if the tasks always behaved according to this model. The task
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model may include, for instance, a deadline which must be met in ev-
ery execution. Furthermore, one may schedule tasks according to their
priorities and design them to call a DelayUntil primitive to release the
CPU as soon as their computations are finished. When all tasks follow
this model we are trusting them to complete their execution and call the
DelayUntil primitive on time.

The main reason for using partitioning is that the arguments collected
during the certification of one component only assess its ability to provide
correct service – which includes calling the DelayUntil primitive on
time. For cost reasons, it would be ineffective to gather the same amount
of dependability arguments for a non-critical function as for a critical
function. Thus, the DelayUntil primitive must be replaced by a stronger
mechanism. One such mechanism should allow the critical task to provide
correct service even if the non-critical task crashes or enters an infinite
loop.

The main requirement for partitioning is to ensure that fault-free
partitions are always able to provide correct service, regardless of which
software executes in other partitions. However, this requirement may
be too strong, since it would be necessary to take into account all pos-
sible program behaviors to ensure that a partition remains fault-free in
all cases. A thorough argumentation on the informal requirements for
partitioning, as well as a comparison between partitioning and computer
security, can be found in an excellent report by J. Rushby [21].

In recent years, the relation between dependability and computer se-
curity has been clarified. We can view dependability and security as two
distinct concepts which share common attributes and are often interde-
pendent [2]. Researchers have realized that many systems are not secure
unless they are dependable, and vice versa. Examples of such systems are
network firewalls, which must be highly available to be secure, and com-
puter systems in power plants, which must be secured against malicious
interaction faults to be dependable.

Security research can make a relevant contribution to the partition-
ing problem, mainly with modeling techniques and with the requirements
specification. Security is often concerned with controlling the informa-
tion flow among tasks:

• Confidentiality is a system’s ability to prevent the flow of sensitive
information to unauthorized partitions.
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• Integrity is the ability to protect sensitive information from being
modified by unauthorized partitions.

The dependability field is mostly concerned with integrity rather than
confidentiality. Consequently, one of the major goals of partitioning is
to assure the integrity of partitions. In this context, fault propagation is
the type of information flow that partitioning aims to prevent. Thus, the
development of partitioned systems can directly benefit from the research
in the field of computer security.

Conventional federated architectures assure the integrity of the dif-
ferent subsystems by using dedicated processing nodes – a basic form of
partitioning. When those processing nodes are interconnected and co-
operate via message exchange, the network is a potential path for fault
propagation. Thus, federated architectures require some mechanisms to
provide partitioning among nodes. Examples of such techniques are the
electrical isolation of hardware components at the hardware layer; bus
guardians at the node layer to prevent untimely network accesses; and
redundancy management mechanisms at the system layer to detect and
isolate faulty nodes from the system.

The conventional partitioning mechanisms are also necessary when
building integrated architectures. A permanent hardware fault in a node,
for instance, should not propagate to other processing nodes. Addition-
ally, however, integrated architectures demand finer-grained partitioning
mechanisms at the node layer. These mechanisms should ensure the in-
tegrity of individual tasks or, possibly, groups of tasks running on the
same node.

The partitioning mechanisms should, ideally, provide a level of fault
containment among tasks comparable to that of federated architectures.
One way to model this is to identify the externally visible behavior of the
system when all tasks are running in isolation [22]. When moving the
same system to an integrated architecture it is required that no new be-
haviors are introduced. This notion of noninterference [23] was originally
introduced by security researchers.

Noninterference is an information flow policy which specifies that
the actions of an entity (e.g., a user, a task or a database) should have
no observable effects on other entities. Checking that such a property
holds throughout the execution of all tasks requires a clear definition of
“observable effects” and a clear model of the possible “actions”. A formu-
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lation of noninterference that can be helpful for the verification process
is based on the determinism of the observations [24]. Under this formu-
lation the actions of a high-level entity are deemed nondeterministic. If
the observations of the lower-level entities are deterministic then they
are independent of higher-level entities. The direction of noninterference
can be reversed to assure that there is no information flow in neither
direction.

A similar line of thought is applied in [25], where task isolation is
achieved by ensuring invariant system performance. The formulation of
invariant performance guarantees that the software components’ execu-
tion after integration is exactly the same as it was in isolation. A system
with invariant performance is required to (i) execute the operations of
each task at precisely defined times (unvarying schedule) and (ii) ensure
noninterference.

However, for most applications invariant performance is too restric-
tive to be useful – one must be able to predict which task is executing
during each processor cycle. Simple noninterference properties are also
too strong and restrictive for real-world applications. This follows from
the common notion of task deadline in hard real-time systems: a task
should always complete before its deadline. Invariant performance im-
plies that tasks are always completed exactly at their deadline; nonin-
terference implies that a task’s completion is totally independent of any
other tasks. In other words, there would be information flow from a
failed task to other tasks if the resulting spare cycles could be reclaimed
by those tasks.

For these reasons, well-established scheduling algorithms such as Ear-
liest Deadline First (EDF) and Rate-Monotonic Scheduling (RMS) [26]
are not valid options when ensuring invariant performance or plain non-
interference. In fact, most real-world approaches to partitioning at the
node layer have used time-triggered cyclic schedules. This rules out, for
instance, the possibility of integrating low-criticality background tasks
which use the spare processor cycles to provide additional features (e.g.,
monitoring tasks). We therefore require more flexible policies than non-
interference to apply event-driven scheduling in partitioned systems.

There are several advantages in using event-driven scheduling instead
of time-triggered approaches, even though time-triggered scheduling fa-
cilitates the verification process in many ways [27]. Using event-driven
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scheduline, sporadic and aperiodic tasks are favoured with more efficient
resource utilization; the average response time of such tasks is also im-
proved by avoiding event-polling waiting times. Furthermore, there is
usually no reason to prevent tasks from early completion – the real prob-
lem is to ensure that they never complete too late. Thus, the models
derived from noninterference must be extended with integrity policies
that control the information flows instead of ruling them out.

These issues have also been identified in the field of computer security,
where there is an ongoing effort to devise less restrictive information
flow policies [28]. For practical reasons information is often disclosed
intentionally. Web servers, for instance, reveal the family/version of their
software without compromising any sensitive information. The notion of
declassification [29] has been proposed to model those intentional flows.
Information is declassified or downgraded by providing intentional leaks.
The resulting declassification channels are then expected to be robust,
i.e., only the intended information should be released.

According to [30], declassification has four dimensions that describe
intentional information release: what can be released, when and where
can it be released, and who can release it. Since we are focusing on
the integrity of partitions (not their confidentiality) our concern is that
information might change due to faults in other partitions, rather than
it being released. Thus, for partitioned systems, the four dimensions
describe what information can be modified, when and where can it be
modified, and who can modify it. These dimensions can be used to
characterize the requirements of partitioning mechanisms:

• Spatial partitioning mechanisms should ensure the integrity of the
information in each partition, i.e., memory address space, storage
space, messages on the network, private i/o devices, etc. Pure non-
interference is often required for information such as private data
structures or code. The communication network, however, exem-
plifies a structural element that is shared among several partitions.
The access to the network is therefore declassified in order to allow
several partitions to communicate. In doing so, the system designer
must carefully specify when may each partition access the network
(e.g., using time-triggered scheduling).

• Temporal partitioning mechanisms should ensure that the response
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time requirements of non-faulty partitions are satisfied. This indi-
cates that the interference among partitions, in the time domain,
must be controlled, rather than ruled out. There are numerous
issues that may arise when using, for example, memory caches and
Direct Memory Access (DMA) for copying memory. Furthermore,
recovery procedures consume some time when a partition error is
detected. The response time analysis must therefore take into ac-
count faulty scenarios.

3.3 Mechanisms for Partitioning

This section identifies existing approaches to fulfill the requirements for
partitioning. We examine the topics of spatial and temporal partitioning
separately.

3.3.1 Spatial Partitioning

In multitasking environments, preventing the tasks from writing into
each other’s memory space is fundamental. The concern is that, if the
memory spaces are not isolated, a failed task may hinder the correct
execution of other tasks. Closing this pathway for fault propagation is
an issue for spatial partitioning mechanisms. In computer architecture
and operating systems literature [31, 32] this is usually referred to as
memory protection. It can employ either software, hardware or a mix
of both to allocate memory to different processes and ensure that they
cannot access memory outside their own areas.

The most common method for memory protection is paging. In the
simplest version of paging the memory is divided into fixed-size frames.
Each process page is allowed to occupy any such frame. Additionally, it
is possible for every process to access its memory through a contiguous
virtual address space which aggregates all pages. The page size deter-
mines the amount of internal fragmentation, i.e., the memory wasted
when a process page is smaller than the fixed page size. Small page
sizes are often desired in order to reduce internal fragmentation. How-
ever, since the operating system must maintain the information of which
pages belong to a process in a page table, a small page size results in more
overhead due to large process page tables. A common page size is 4KB.
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However, most memory protection designs allow multiple (simultaneous)
page sizes to avoid the drawbacks of fixed-size pages. Depending on the
actual design the page sizes can be, for instance, powers of 4KB (4, 16,
64, etc.).

Another common memory protection scheme is segmentation. Seg-
mentation allows programs to allocate unequally sized portions of mem-
ory in the form of segments. The segments may also be dynamic in
order to handle growing/shrinking data structures. Since processes may
occupy several segments a memory access must specify the segment num-
ber and an offset within that segment. This scheme has the advantage
of reducing the internal fragmentation at the expense of increasing the
complexity of many aspects of the operating system’s design.

Currently, there are numerous techniques to implement memory pro-
tection, which can be broadly classified into two categories: software
techniques and hardware techniques (which most often require software
control).

Hardware Techniques

Hardware-based memory protection by means of a MMU is an established
feature of desktop and server computers [32]. The MMU is a gateway be-
tween processor and memory with many important features. It provides
memory protection by restricting programs to memory accesses within
specified areas. When a program accesses another program’s memory
area, an exception is raised and the control is handed over to the operat-
ing system, which may then stop the erroneous (or malicious) program.
Address translation allows all programs to have the same logical address
space, whilst their code and data can be located in convenient real ad-
dresses.

A key component in providing efficient address translation is the
Translation Look-aside Buffer (TLB) – a small and very fast cache which
holds recently used entries. Each entry contains the physical page num-
ber, the real page number and the permissions of the currently run-
ning process (read, write and execute rights for both supervisor and user
mode). Each entry may additionally include a dirty bit to identify pages
which have been written to, the caching policy for the page, and other in-
formation which depends on the actual hardware. Whenever an effective
address is matched against a TLB entry (cache hit), the page number
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is found immediately and the real address can be formed. Otherwise,
if a TLB miss occurs, the table must be updated with an entry for the
missing page. In some architectures this process is done entirely by the
hardware whereas in others an exception is generated, requiring the op-
erating system’s software to update the TLB. In any case, TLB misses
incur severe performance penalties.

Some systems make use of virtual memory – the ability to store some
pages in memory and others is disk [31]. When a TLB entry describes
a virtual page which has no physical memory allocated, a page fault will
be signaled by the MMU. The operating system must then handle this
request by loading the appropriate page from disk (possibly by swapping
out an existing page and saving it to disk). A page fault may also indicate
a faulty process which should be stopped. Virtual memory allows every
process to run as if the entire memory was contiguous and unlimited. In
a 32-bit processor, for instance, each process is able to address 4GB of
memory.

Furthermore, some MMUs offer cache control mechanisms. This fea-
ture allows the operating system to decide whether or not a page is
cacheable. It may also be possible to specify that a page should always
be kept in cache. This feature may prove useful in real-time systems by
retaining the pages which belong to critical tasks in the cache. The re-
sponse times of these tasks will be deterministic as there will be no cache
misses. Nevertheless, memory caches are usually small when compared
to the size of main memory. Thus, cache entries should only be locked
when the cost of cache misses is not acceptable.

Although virtual memory by means of the MMU is the de facto
method for memory protection in desktop and server computers, it is
less frequently used in embedded real-time systems. In order to reduce
the cost and the energy consumption of the CPU, most embedded micro-
controllers lack the hardware support for advanced memory management.
Furthermore, MMUs impose time overhead and make it more difficult to
determine the Worst-Case Execution Time (WCET) of programs.

However, Freescale’s MPC5554 [33] is an example of a recently intro-
duced embedded microcontroller equipped with an MMU which provides,
among other capabilities, memory protection. For real-time applications,
it is possible to effectively disable address translation (and virtual mem-
ory) by using a one-to-one mapping between virtual and real addresses.
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Moreover, one can ensure that the TLB always contains the page entries
of the process that is currently running. This approach brings determin-
ism and low-overhead to memory accesses, while ensuring that memory
access violations are detected. If all pages of a process have an entry in
the TLB and a TLB miss occurs, then the process is accessing memory
outside its own area.

Some embedded microcontrollers such as Freescale’s MPC565 [34]
and ARM’s ARM946E-S [35] are equipped with a Memory Protection
Unit (MPU). An MPU does not translate virtual addresses but provides
basic memory access control in a way similar to an MMU. Depending
on the actual processor model, the address space can be partitioned
into at most eight segments of data and eight segments of code. Every
segment has a minimum size of 4KB and can grow, by a power of 2, up to
4GB. This may lead to internal fragmentation and, consequently, wasted
memory.

MPUs can be useful in embedded real-time applications since they
only provide simple memory protection. MMUs, on the other hand,
provide many other features designed for high average throughput that,
when enabled, make worst-case execution time estimations unacceptable.
However, the number of segments supported by common MPUs is lower
than the number of TLB entries in common MMUs. This makes it possi-
ble to use an MMU as an MPU. The converse is not possible, as MMUs
provide other useful features such as cache control. In fact, even virtual
address translation can be of use for fault tolerance purposes. A viable
approach is to store multiple copies of data in memory and switch trans-
parently to another physical address space when an error is detected.

Software Techniques

A number of software techniques to prevent unauthorized memory ac-
cesses has been devised in the past. Some involve the use of run-time
checks to ensure that every memory access is safe, whereas others aim
at proving safety via static code analysis. Generally speaking, software
techniques for partitioning are all which do not use specialized hardware
and attempt to provide the same level of memory protection.

One such technique is called intended segment analysis [36]. This
technique provides segment protection by inserting run-time checks be-
fore memory accesses to detect segmentation violations. The run-time
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checks are inserted at compile-time by an automatic tool which is inde-
pendent of the programming language.

In order to detect all segmentation violations it would be required
to place a run-time check for each memory reference, with a few trivial
exceptions (sequential instruction fetches starting in a valid point, con-
stant pointers, etc.). However, the performance of this baseline method,
also evaluated in [36], is quite poor. The execution time overhead was
found to average 60%, the code size overhead was, on average, 6% and
the energy consumption overhead was estimated to an average of 48%.

Consequently, the authors devised a set of optimizations, derived
from compiler theory, which improved the performance dramatically. The
optimizations include, for instance, checking only the reference which
dominates multiple accesses to the same address (subsequent accesses
do not require checking). The optimized solution was found to have
an average overhead of 0.72% in execution time, 3.6% in code size and
0.44% in energy consumption. One noteworthy point is that, while the
average code size overhead is 3.6%, one of the eight benchmarks yielded
an overhead of 25%.

Another method for software memory protection is to use safe pro-
gramming languages such as Cyclone [37]. Cyclone is a dialect of C
which imposes some restrictions to ensure that all operations are safe.
The restrictions include ensuring safe type-casts and unions, mandatory
pointer initialization, inserting run-time bound checks to prevent seg-
mentation faults, etc. In order to regain the restricted features provided
by standard C some extensions are provided by Cyclone.

The Cyclone compiler performs a static code analysis to ensure safety.
Under certain conditions the static analysis cannot guarantee that the
code is safe but the insertion of run-time checks will ensure the detection
of all errors. If neither the static analysis nor the run-time checks can
ensure safety, the compiler will reject the program – which may be written
in standard C. The programmer then needs to rewrite the program in
order for the compiler to verify its safety. The authors estimate that, if
the original C code is safe, porting legacy code to Cyclone requires 8%
of the code to be modified [38, 37].

The overhead of using the Cyclone compiler depends on the number of
run-time checks that are required to ensure safety. This number depends
on the performance of the static analysis in avoiding the run-time checks.
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When comparing the execution time of the original C code to the Cyclone
code, the estimated overhead was on average 30%, with a maximum of
150%. Conceptually speaking, it would be possible to optimize the run-
time checks with techniques such as the ones used in the intended segment
analysis method. Nonetheless, there is a cost associated to porting legacy
code to Cyclone, which is often impractical for the industry to support.

A similar approach is taken by the Control-C programming language
[39], which is a restricted subset of C designed to guarantee memory
safety without run-time checks. The semantic restrictions required by
Control-C (e.g., strong typing, restricted array operations and manda-
tory pointer initialization) allow the compiler to verify the code en-
tirely by static analysis, thereby avoiding run-time bounds checking and
garbage collection. Although Control-C has the same drawback as Cy-
clone – porting legacy code is expensive and only practical if the origi-
nal code is written in C – there is no run-time overhead. Furthermore,
Control-C may conceptually be used as a tool which checks C programs
that are then compiled and linked with standard C compilers.

Safe-C [40] and CCured [41] are program transformation techniques.
This type of technique transforms the source code of a program into
another program, in the same language, which has run-time checks. Safe-
C applies a simple set of transformations to C code in order to provide
complete error coverage. The method is not limited to C and can, in
theory, be applied to any language. The implementation presented in
[40] was benchmarked for pointer-intensive programs. The execution
time overhead ranged from 130% to 540% while the code size overhead
was estimated to 100%. Nonetheless, the benchmarks were compiled
with no compiler optimizations enabled. Thus, by using techniques such
as the ones in intended segment analysis [36] the overhead should be
reduced significantly.

CCured, on the other hand, attempts to prove memory safety first
through static analysis (by enforcing strong types). When the C code
does not comply to the CCured type system, run-time checks are used
to ensure error detection. The performance of this method is heavily
dependent on the amount of run-time checks needed when the static
analysis fails. The authors benchmarked CCured with a large set of
widely used programs and found run-time overheads ranging from 0 to
87%. This overhead can be improved with compiler optimizations.
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Hardware Mechanisms vs. Software Mechanisms

The main advantage of software techniques is their flexibility in providing
unlimited memory segments of arbitrary sizes. Moreover, less is required
from the hardware, hence microcontroller costs and power consumption
are reduced. On the other hand the execution time and code size over-
heads of run-time checks can be significant. There is also an additional
cost associated with changing compilers (which often requires costly cer-
tification processes) as well as changing programming languages.

Hardware mechanisms also introduce some overhead. However, this
overhead is clearly lower than in software mechanisms and easier to model
(e.g., by including context switching overhead in WCET analysis). Fur-
thermore, hardware techniques are systematic in which they can be devel-
oped once and used for a long period of time with no additional concerns.
Thus, the application programming effort is not directly influenced by
the partitioning mechanisms. However, there is an added complexity to
the microcontrollers which support hardware memory protection. This
results not only in higher cost of acquisition and power consumption
but also in higher hardware failure rates as well. Furthermore, the most
common hardware mechanisms are designed for desktop and server ap-
plications, where some internal fragmentation and a moderate page fault
rate are acceptable. In common processors the MMU can hold up to 32
entries in the TLB with a minimum page size of 4KB.

Both hardware and software techniques have the potential to achieve
very high or even perfect error detection coverage for software faults
(bugs) that cause erroneous memory access attempts. Unless a design
fault affects the memory protection mechanisms no process will be able
to access outside its own address space.

However, hardware faults can affect the partitioning mechanisms and
thereby cause the whole node to fail. This is true whether the mecha-
nisms are implemented in software or in hardware. A transient fault
affecting the MMU can result in corrupted memory addresses. A sim-
ilar fault affecting a software run-time check can have the same effect.
Hence, it is not a straightforward issue to determine whether or not soft-
ware mechanisms are more vulnerable to hardware faults than hardware
mechanisms.

Hardware faults must therefore be handled by executing programs on
redundant computers. The number of redundant units necessary is intu-
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itively lower in integrated architectures than in federated architectures.
Thus, the development of memory protection mechanisms facilitates the
integration of functions, which in turn facilitates the design of hardware-
fault handling mechanisms. This is the case whether memory protection
is implemented through software or hardware.

However, hardware memory protection mechanisms can be designed
to mask transient hardware faults. TMR and other methods can be ap-
plied to the MMU or MPU hardware. This approach is taken in the
LEON processors [6], which are able to tolerate SEUs. Consequently,
spatial partitioning through hardware can be extended to handle hard-
ware faults.

3.3.2 Temporal Partitioning

For real-time applications it is fundamental for each task to complete be-
fore a certain deadline. When multiple processes compete for the same re-
sources (e.g., processor and i/o devices) one must ensure that no process
can cause resource starvation. Resource starvation occurs when one or
more processes are denied access to the shared resources. Such processes
may never complete their execution. In general, partitioning requires
the software in one partition not to disrupt the timeliness of software
in other partitions. This means that, in addition to spatial partitioning
mechanisms, one needs to develop temporal partitioning mechanisms as
well.

An answer to temporal partitioning is to use well known scheduling
algorithms such as RMS and EDF scheduling [26]. In [42] the four main
approaches for scheduling are discussed in detail. The approaches are:
static table-driven scheduling, static preemptive scheduling, dynamic
planning-based scheduling and dynamic best-effort scheduling. These
scheduling approaches are discussed in the context of IMA in [21].

However, the existing models of partitioning (discussed in Section 3.2)
impose some restrictions on the applicability of the classical scheduling
results. An example of this is noninterference. When a task completes
its execution earlier than expected it will interfere with other tasks in the
temporal domain (they will start executing earlier than expected). This
suggests that noninterference in the temporal domain should be relaxed
by using the notion of declassification. The main requirement would be
to ensure that tasks are unable to hinder other tasks from fulfilling their
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response time requirements.
If this policy is accepted, then one can use RMS or EDF to schedule

partitions as long as there are mechanisms to ensure that a task cannot
execute for more than its assumed WCET. The literature is mostly
concerned with analyzing the schedulability of tasks assuming that they
release the CPU after having executed for, at most, their WCET. In
a partitioned environment this assumption must be implemented in a
suitable way. Thus, event-driven scheduling requires several complex
mechanisms that are avoided using time-triggered scheduling. Moreover,
there are timeliness issues related with concurrent accesses to data items.
This issue is solvable through concurrency control techniques [43].

An interesting result obtained using the RMS policy is that there
is a non-trivial utilization bound for fault-tolerant scheduling [44]. Re-
executing failed tasks, while maintaining the RMS priority assignment, is
schedulable for a single fault if the processor utilization does not exceed
0.5. This is an improvement over the trivial bound of ln(2)/2 ≈ 0.346.

The existing practical approaches to partitioning try to avoid any
type of interference, even if benign. A two-level scheduler such as the one
presented in [45] is a common paradigm. Under this scheme partitions
are executed in a cyclic time-triggered schedule. The individual tasks
within each partition are then executed with static (RMS) or dynamic
(EDF) priority scheduling.

Time-triggered scheduling of tasks can make the Worst-Case Re-
sponse Time (WCRT) analysis overly pessimistic. In a scenario where
external interrupts are being used to serve a network controller, an inter-
rupt servicing partition A might occur during the execution of partition
B. Thus, the execution time of any task in partition B must take into
account the frequency at which interrupts for partition A may occur.
Nevertheless, time-triggered systems are easier to verify, which is cru-
cial for avionics and automotive systems. In general, the choice between
time-triggered and event-driven scheduling depends on each specific ap-
plication.

3.4 Summary and Discussion

This chapter presented an analysis of robust partitioning methods. It
discussed the requirements for partitioning and the existing mechanisms
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to implement partitioned systems. Furthermore, it analyzed the devel-
opment effort necessary to ensure that integrated and federated archi-
tectures are equally dependable. The goal of the probabilistic analysis
was to determine which factors affect the reliability of integrated archi-
tectures, rather than making an accurate estimation of reliability. This
allows us to draw some conclusions by triangulating results for the de-
velopment of integrated systems. If a conclusion is motivated both by
probabilistic analysis and by qualitative arguments, it gains more solid
support.

To assure the reliability of integrated architectures, a fundamental
design decision is whether to use robust partitioning mechanisms or to
increase the development effort for all functions. There is a cost asso-
ciated to both options. Partitioning mechanisms add complexity to the
system, thereby increasing the development effort for the entire platform;
the other option is to increase the development effort for individual func-
tions, which is costly when the number of functions grows. There is a
trade-off between the two choices. However, partitioned systems have
the additional advantage of facilitating incremental certification, i.e., to
certify a system once and upgrade it with new features without the need
for complete re-certification.

When the robust partitioning option is chosen, it is beneficial to seg-
regate all integrated functions. This includes separating functions of
the highest criticality from each other. In this chapter we concluded
this through probabilistic analysis. Furthermore, the same conclusion
is apparently motivated by the perfectionist approach (procedure-based
software development). If the emphasis is on using the best available
systems engineering practices, then partitioning (or some other type of
protection among functions) should always be introduced.

Without careful analysis, one must assume that partitioning mech-
anisms provide limited or no protection against hardware faults. Thus,
structural hardware redundancy is required to protect the system against
hardware faults. However, integrated architectures are expected to re-
quire less hardware from a functional perspective, leading to a lower
overall hardware failure rate. Consequently, integrated architectures are
likely to demand less structural redundancy than federated architectures.

Hardware mechanisms for spatial partitioning have a clear advantage
over software mechanisms. First, spatial partitioning through software
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requires the costly introduction of new tools in the tool-chain (compiler,
linker, etc.). Second, the code containing, for instance, runtime checks
will be interleaved with the application code. Thus, it may be difficult to
persuade certifying authorities that the same object code contains dis-
tinct criticality levels for the application and for the spatial partitioning
mechanisms.

There is a large set of design choices available for temporal parti-
tioning. In principle, both event-driven and time-triggered execution
can fulfill the requirements of partitioning. Time-triggered scheduling of
tasks can make the response time analysis overly pessimistic, and is less
flexible than event-driven execution. Nevertheless, time-triggered sys-
tems are easier to verify, which is crucial for high-integrity systems. This
provides a strong motivation for using time-triggered scheduling in sys-
tems where verification is crucial. However, there are also advantages in
using event-driven scheduling. Thus, the choice between time-triggered
and event-driven scheduling depends on each specific application.





CHAPTER 4

Robust Operating Systems

Operating systems are often used for managing critical infrastructures
ranging from server rooms to embedded devices, as well as crucial user
information on desktop computers. Given that a failure of such comput-
ers can have serious consequences, the operating systems must be reliable
in the presence of faults. Moreover, they should provide comprehensive
error detection and recovery services to hosted applications, so that the
system as a whole can be dependable.

This chapter discusses ideas on the design of fault-tolerant operat-
ing systems for embedded applications. The principal objectives are to
facilitate composability within computer nodes, by preventing undesired
interactions among software components that share hardware resources,
and to detach recovery mechanisms from applications, so as to promote
reusability of fault tolerance services. The ideas are grouped into a con-
cept named Secern, meaning to separate (components from each other
and fault tolerance from functionality).

The discussion alternates between the themes of design, implementa-
tion and verification; and addresses the detection, isolation and recovery
of errant application processes. In the design, the purpose of the oper-
ating system is to create a partitioned environment which can be shared
by multiple real-time tasks, possibly with distinct levels of criticality
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and uneven reliability. Moreover, to ensure sustainable service delivery,
the operating system is designed to aid hosted applications with error
recovery.

One of the guiding principles is to tolerate both software and hard-
ware faults (affecting application processes) in a comprehensive manner.
The avionics industry, on one end of the spectrum, claims to produce
software of the highest quality, by applying the best engineering prac-
tices, and is mostly concerned with tolerating hardware faults. On the
other end, developers of desktop and server applications regard hardware
faults as an issue of the past, easily solvable through redundancy, and
center their attention on software faults. One can argue that these two
mind-sets pose a dependability threat, since they don’t take a holistic
view of the problem.

Regarding the implementation of Secern, this chapter describes an
extension to µC/OS-II intended for experimentally assessing techniques
for building robust operating systems. Reusing an existing code base,
instead of creating a new solution, has the advantage of making the re-
sults more general and focusing the development effort on fault tolerance
mechanisms. However, the trade-off is that many design decisions are in-
herited and may require adaptation to circumstances differing from the
original purpose, thereby requiring some verification effort.

We conducted series of preliminary tests of the implemented mecha-
nisms using fault injection. A new fault injection plug-in was developed
for the GOOFI tool [46, 47], aiming to provide robustness testing for
partitioned systems. The plug-in targets the Freescale MPC5554 mi-
croprocessor, which is the central element of the experimental platform
supported by the present version of Secern. The set of experiments de-
scribed in this chapter explore the capabilities of the MPC5554 plug-in
for testing the robustness of Secern.

The experiments are conducted according to a methodology of fo-
cused fault injection, whose main objective is fault removal, i.e., diagnosis
and correction of design faults. It consists of setting up finely controlled
experiments in accordance with the system properties that are to be
verified. This methodology was applied for verifying that the partition-
ing mechanisms are able to isolate faulty applications. The experiments
exposed two vulnerabilities in the system: one related to configuration
management, where some memory pages were marked as writable for all
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processes while they should be read-only; and one related to an inherited
design decision regarding context switches which is not appropriate for
partitioned systems. Although an exhaustive evaluation of Secern is
outside the scope of the thesis, these experiments demonstrate the po-
tential of fault injection as a technique for fault removal in partitioned
systems.

In addition to the mechanisms included in the extended real-time ker-
nel, Secern includes an approach to checkpointing and rollback recov-
ery of real-time tasks named lightweight checkpointing. The lightweight
checkpointing scheme allows applications to save snapshots of their state
to main memory while providing them with a service for locking the
checkpoint area using memory protection. We used the Spin model
checker to verify that the scheme is able to guarantee the integrity of
the checkpoints.

4.1 SECERN: An Extension to µC/OS-II

The trend to integrate multiple functions in a single hardware platform
has created the need for building strong fault containment around soft-
ware components. Initiatives such as the standard interface for avionics
applications [12] and the AUTOSAR project [13] aim at defining the
software infrastructures and, particularly, the operating systems that
support this level of fault containment. Since those initiatives target
safety-critical systems, a fundamental concern is to ensure that resource
sharing can be accomplished in a safe and reliable manner.

We have implemented an experimental prototype of Secern by ex-
tending the µC/OS-II real-time kernel [48]. The kernel is DO-178B certi-
fiable [18] and its source code is well documented and freely available for
academic purposes, making it a suitable choice for our implementation.
It lacks support for isolating applications from one another and from the
operating system, which makes it appropriate for experimentally assess-
ing the Secern concept.

The extended version of the kernel runs on a computer board fea-
turing a Freescale MPC5554 microprocessor [33], based on the Pow-
erPC architecture. The processor core includes an MMU which provides,
among other services, memory protection. The hardware-specific layer of
µC/OS-II was implemented by creating a board support package contain-
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ing low-level code and macros. The kernel was then extended according
to the design principles which are described next.

4.1.1 Design Principles of SECERN

One of the key modifications to µC/OS-II is the distinction between
processes and threads, where each process owns a private address space
that groups together one or more execution threads. Each process acts
as a container which is usually called a partition in IMA terminology.
The architecture of Secern is depicted in Figure 4.1.

Figure 4.1: µC/OS-II extended with Secern.

The private address space of each process is protected by the mem-
ory management hardware, which lies between the processor core and the
memory. Instructions always generate virtual addresses that are trans-
lated by the MMU to physical addresses before the memory operation is
performed. During this process, the MMU checks that the application
process which is executing has the appropriate access rights – read, write
or execute permission for user- and kernel-mode instructions. This fea-
ture is used to enforce the appropriate access permissions on all memory
pages. For simplicity, a direct mapping is set between virtual and physi-
cal addresses, i.e., in practice, no use is made of the address translation
feature.

Memory protection is a standard feature of desktop and server com-
puters. However, it is seldom used in embedded real-time systems. One
reason for this is that microcontrollers are usually not equipped with
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the necessary hardware, in order to reduce cost and power consumption.
Another reason is the variation in execution time imposed by memory
protection and address translation, which is usually optimized for per-
formance rather than predictability.

Typical implementations of memory management hardware make use
of a TLB for improving the performance of address translation and mem-
ory protection. A TLB is a very fast cache which contains a small number
of entries; each entry specifies the virtual and physical addresses where
a memory page starts, the size of the page and the access rights. This
cache reduces the time overhead of the MMU but there is a large penalty
for memory accesses which are not matched by any TLB entry. In this
case, which is called a TLB-miss, a processor exception is raised to al-
low the system software to update the TLB. This may become an issue,
since interrupts are generally unwanted in real-time systems and make
it more difficult to determine the Worst-Case Response Time (WCRT)
of applications.

To deal with this problem, the memory protection routines of Secern
are designed to update the TLB during context switches. The approach
is to insert in the TLB the pages that belong to a process before running
that process, thereby preventing TLB-misses. This, in turn, simplifies
the response time analysis of of hard real-time tasks. Nevertheless, this
method adds an overhead to context switches. Measurements on the time
necessary to perform a full context switch (from the first instruction of
the context switch handler to the first instruction of the next process)
are presented in Figure 4.2.

The measurements shown in Figure 4.2 were taken on the MPC5554
processor, which has a 32-entry TLB. Since the kernel requires some
pages to be permanently listed in the TLB (to avoid TLB-misses when
handling kernel calls and other interrupts) the plot shows the overhead of
switching context to a process containing up to 24 pages. The number of
instructions executed grows proportionally to the number of pages and,
consequently, so does the context switch time.

The time needed for a full context switch without updating any TLB
entries is slightly below 10 µs (for saving the numerous PowerPC context
registers, updating kernel structures and loading the registers of the next
task). Considering a typical embedded application, requiring between 4
and 8 pages of memory, context switching would take between 31 and



52 CHAPTER 4. ROBUST OPERATING SYSTEMS

Figure 4.2: Context switching time measurements.

53 µs. This overhead should be carefully examined when considering
performance demands, as it is common for real-time operating systems to
switch context in less than 10 µs. Nevertheless, when memory protection
is used, this increased time is a trade-off rather than a penalty. Without
updating the TLB, a process may cause one TLB-miss for each page in
the worst case. This is more expensive than doing the update during
context switches and generates some execution time jitter.

Introducing memory protection has implications on the design of the
system call interface, since it rules out the use of the branch and link
instruction for calling system services. Instead, service requests are made
through the system call interrupt. This process is made transparent to
applications by implementing the low-level details in a system library –
a common approach in operating system designs.

The system call mechanism is used by applications to request kernel
services and to reach device drivers. For this reason, it must be robust
in order to prevent application errors from propagating to other parts
of the system. This is often a problem, as experimental studies have
shown that many operating systems contain vulnerabilities in functions
provided by the system call interface [49], e.g., crashing the system when
given exceptional input parameters.

Another problem is that the system call mechanism must be able to
enforce access policies, in order to control the services that each partition
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has the right to access. Some authors propose the usage of sandboxing as
the means to protect the system call mechanism [50, 51]. This technique
consists of interposing the access to system calls with a filter that enforces
a given policy. For real-time kernels, this technique must be implemented
as efficiently as possible.

We took a simple approach to implementing system call protection.
The kernel provides the partition’s ID to the system call handler. The
caller ID can be checked by the drivers and by any kernel services to
enforce an access policy. It is also possible to check the parameters to
the system call interface and report an error of the partition that executed
the call. This would act as an additional error detection mechanism.

4.1.2 Error Detection and Fault Handling

In addition to memory protection and checking the system caller ID, our
kernel extension makes use of processor exceptions to detect errors and
allows application-specific checks to notify the kernel of errors. Many
techniques for creating application-specific checks are available in the
literature and the kernel provides the means for such checks to report
errors. When one of these error detection mechanisms is triggered, the
error is handled by one of two central exception handlers:

• Recoverable condition. The detected error is confined to a single
process (i.e., partition) and it is possible to delete that process
and continue executing. In this case, Secern deletes all threads
belonging to the process and resumes execution. Here, it would be
possible for the kernel to interact with the system layer by replacing
its output with an error code.

• Unrecoverable condition. An error is detected and it may be caused
by a hardware problem or by a fault in the operating system itself.
The currently implemented version enters an infinite loop but there
are several other possibilities. It would be possible, for instance,
to restart the kernel, check the consistency of the hardware and
restart all tasks. In any case, the entire processor node is affected
by this error and the kernel should interact with the system layer
by sending a failure report.
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4.1.3 Scheduler

One of the limitations of our extension to µC/OS-II is that it does not in-
troduce mechanisms for temporal partitioning. µC/OS-II has a priority-
based preemptive scheduler that executes always the task with the high-
est priority which is ready to run. This means that a high priority task
may prevent lower priority tasks from executing, if it fails to release the
CPU on time. On the other hand, this ensures that the highest priority
task is never disturbed by any other task.

A possible way of achieving temporal partitioning would be to intro-
duce time-triggered scheduling in Secern. This is the option favoured
by the ARINC 653 specification. To achieve time-triggered execution of
tasks, we would have to add a table to the kernel defining the cyclic sched-
ule. A simple implementation to enforce that schedule could be made
by adding the necessary code to a user-definable hook which is called by
µC/OS-II at every time tick – the OSTimeTickHook() function.

It would be possible to use the OSTimeTickHook() function to change
the priority of each task according to the predefined cyclic schedule. At
every time tick, the function would check which task should be running
at that point in the schedule. Then, using the OSTaskChangePrio()

function provided by µC/OS-II, it would ensure that the task gets the
highest priority. This method would effectively implement time-triggered
scheduling in Secern.

We would be trusting the scheduler of µC/OS-II to execute the high-
est priority task at each point in time. Thus, this approach would allow
us to reuse as much code as possible from the original version of µC/OS-
II. To verify that this approach works, the setup was configured to run
two tasks. Both tasks execute an infinite loop where they read some in-
put, perform a computation, write the output and release the CPU. We
then focused on the highest priority task to ensure that it would produce
its results regardless of the computations of the low priority task. These
tests were made using the fault injection tool that is described next.

4.2 Robustness Testing for Partitioned Systems

We have extended the GOOFI tool [46, 47] with support for injecting
faults into the Freescale MPC5554 microprocessor. The new fault in-
jection plug-in is based on an existing plug-in which provides support
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Figure 4.3: Evaluation platform for µC/OS-II and Secern.

for the MPC565 processor (the plug-in used in Chapter 5). The ex-
perimental setup consists of a desktop computer, with GOOFI and the
winIDEA development environment, controlling an MPC5554 develop-
ment board [52]. The development board includes an on-board Nexus
debugger. Figure 4.3 depicts the experimental platform.

The MPC5554 fault injection plug-in is capable of injecting bit-flips
into processor registers and memory locations. It allows the user to
define a range of code addresses where the execution can be stopped for
injecting a fault. In each fault injection experiment the tool selects one
random address to set a breakpoint. Once this breakpoint is reached,
the tool randomly chooses a resource (register or memory location) and
one of its bits to inject the bit-flip.

Other fault injection plug-ins for GOOFI, like the one used in Chap-
ter 5, collect the sequence of instructions executed in a fault-free exper-
iment to create a program trace. This is a time-consuming procedure,
since the processor needs to be stepped in order to determine the se-
quence of values of the program counter register. Due to the large num-
ber of instructions executed by the kernel, the application processes, the
idle task and other system tasks, the stepping process for the reference
experiment would take too much time.

To deal with this, the tool allows fault injection experiments to be
made without a program trace. This is achieved by choosing a random
address from the entire range of user-defined addresses. Since that ad-
dress might not be reached once the program executes, there are a num-
ber of experiments in which a fault is never injected and the outcome is
exactly the same as that of a fault-free experiment. Such experiments
are simply discarded during analysis and classification.

To provide fault injection for a partitioned environment, the tool is
capable of monitoring the execution of the operating system and collect
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the output of multiple tasks. The user can define the output address of
multiple workloads, so that the results produced by tasks can be collected
and classified. Moreover, the tool can set breakpoints for monitoring the
activation of the two central exception handlers described in the previous
section, in order to monitor the operating system. The activation of
breakpoints and the output data are saved to a database for analysis.

One limitation of the tool is that the user may only define one single
address as the output address of tasks. This limitation is related to the
fact that there are only four hardware breakpoints available for monitor-
ing the execution. We use one for the output of tasks, one for the fault
injection breakpoint and two for monitoring the operating system. This
limitation can be partially circumvented by setting the output break-
point to the output address of the task with the highest frequency. This
way, we sample all values produced by all tasks, although some samples
are repeated.

We used this way of collecting the output of tasks in our experi-
ments. Since there is only one point of the execution when the output is
collected, we can only monitor the timing behaviour of one task at a time.
We consider two options for a future improvement of the tool. First, we
can measure the output time externally, by making the tasks write their
results to an output port and reading the values using another develop-
ment board or a desktop computer. Second, we can use a much greater
number of software breakpoints than hardware breakpoints to monitor
the execution. This would require an investigation on whether software
breakpoints add some intrusiveness to the fault injection process.

Regarding the workloads used as operating system tasks, we use cyclic
programs that execute some computations on input data and delay them-
selves until the next iteration. Figure 4.4 shows the typical structure of
the main routine of a workload thread. The output breakpoint can be
set to the address before the call to OSTimeDlyUntil().

We used two different workloads in our tests: a wavelet transform and
an altimeter function. The first workload applies a wavelet transform to
an array of input data and produces an output array containing the
result. The altimeter function reads a simulation of pressure values and,
for each sample, produces an estimation of the altitude.
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void thread(void *pdata)

{

INT32U start_time, period = 20;

start_time = OSTimeGet();

while(TRUE)

{

getInput();

computeOutput();

OSTimeDlyUntil(start_time += period);

}

}

Figure 4.4: Main routine of a workload thread.

4.3 Focused Fault Injection

One may conduct fault injection experiments with the purpose of fault
forecasting or fault removal. Fault forecasting experiments aim to es-
timate diverse measures of dependability and to gain a better under-
standing of how a system (or one particular component) will behave in
the presence of real faults. Such experiments are useful for comparing
alternative components with regards to their dependability, for identify-
ing a system’s dependability bottlenecks, for characterizing a system’s
dependability, etc.

The goal of fault removal experiments is to identify flaws in the design
or implementation of a component or a system, so that they can be
corrected. To achieve this, one places the focus of experimentation on
exercising specific parts of the system with suitable types of faults (which
the system is designed to tolerate). This form of fault injection is suitable
for testing fault tolerance mechanisms and is therefore helpful for the
verification of computer systems.

The most frequent objective of fault injection practitioners is fault
forecasting. Researchers often adopt this method for experimentally val-
idating new techniques, e.g., by determining the coverage provided by
an error-detecting mechanism or the effectiveness of a recovery strategy.
Taking a broader perspective, there have been research efforts to pro-
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mote the use of measurement theory for estimating dependability [53]
and to define methods for benchmarking the dependability of computer
systems [54]. Dependability benchmarks aim, among other things, to
guide the development effort (e.g., by finding weaknesses in the archi-
tecture) and to assist buyers in deciding among competing off-the-shelf
components.

Nevertheless, fault removal is also vital for many, if not most, buyers
of off-the-shelf software. Consider an example where a system integrator
intends to use a COTS operating system for building a given applica-
tion. The selection process is influenced by numerous factors, including
technical findings – such as results of dependability benchmarks – and
management decisions – based on each vendor’s credentials, guarantees
in terms of long term support, cost issues, etc. We can identify two risks
here. First, the selected operating system might not be the most de-
pendable among the available choices. Second, regardless of the choice,
it may require adaptation to a specific hardware platform and it could
contain design or implementation defects. Consequently, system integra-
tors would be interested in coming back to suppliers with problematic
test cases that require attention.

In this chapter we adopt fault injection as the means to find such
test cases. We are interested in finding and removing vulnerabilities in
Secern – particularly those related to partitioning. To this end, we be-
gin by describing a methodology for fault removal in partitioned systems
and then present the results of fault injection experiments targeting our
experimental platform.

4.3.1 Methodology

A fault injection experiment with the objective of fault removal has two
principal outcomes: either the system fails to cope with the fault that is
injected (e.g., the operating system crashes) or the service provided by
the system is classified as correct. This classification requires sufficient
data to be collected during the experiments, so that we can determine
whether or not the system fails to handle any faults. If so, those faults
can be regarded as counterexamples, i.e., scenarios where one or more
system properties are violated.

Naturally, the faultload must be representative of faults that the sys-
tem is required to tolerate. On the one hand we wish to test systems ex-
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tensively, in order to identify as many existing defects as possible. On the
other hand all counterexamples should be meaningful, i.e., they should
only locate actual defects rather than calling our attention to situations
which the system is not supposed to handle. To achieve this, we adopt a
methodology of focusing fault injection experiments in accordance with
the system properties that are to be verified.

The concept of focused fault injection has been used in the past for
testing distributed systems [55]. We take a conceptually similar approach
targeting the verification of node-layer fault tolerance mechanisms. Our
goal is to verify that Secern prevents application errors from propagat-
ing to the operating system and to other applications. We are therefore
searching for vulnerabilities in the software related to partitioning mech-
anisms, e.g., the low-level code that controls the hardware. Nevertheless,
one should not exclude the possibility of finding hardware design faults
such as those reported by Intel [56], affecting the MMU of recent micro-
processors. The fault injection experiments were designed by taking the
following steps:

• Configure the workloads in a relevant manner. We configured the
system to execute two processes, each one with a single thread.
The two threads executed, in an infinite loop, a data processing
routine and released the CPU until the next iteration. The tasks
executed with sufficient frequency to force context switches among
them at intermediate points of the execution (of the low priority
thread).

• Inject faults that mimic application errors. The tool injected bit-
flips in the context registers (i.e., processor registers that are saved
during context switches) of the lowest priority task. Bit-flips are
not representative of software faults. Nevertheless, they are rep-
resentative of faults that the system must handle. The tool was
configured to inject faults during the execution of any instruction
of the low priority thread.

• Collect sufficient data to classify experiments. During each exper-
iment we collected the output of both tasks and monitored the
activation of the two central exception handlers described earlier
(to infer whether the operating system had crashed).



60 CHAPTER 4. ROBUST OPERATING SYSTEMS

• Classify the outcome of the experiments. We analyzed the data re-
sulting from the experiments in order to check if partitioning had
been violated in any way. First, the output of the high priority task
was compared to that of a fault-free reference experiment. Any dif-
ference in the result would indicate a partitioning violation. Sec-
ond, the activation of the unrecoverable exception handler would
indicate that the operating system had crashed. Third, experi-
ments where the execution ended at a different instruction address
than the expected one would be caused by an undetected system
crash.

• Examine experiments that expose counterexamples. Faults that
cause the operating system to crash, the high priority task to pro-
duce wrong output or the high priority task to be deleted are clas-
sified as partitioning violations. For these experiments one must
examine the fault which was injected (the instruction where the
bit-flip was injected and the resource affected), since it exemplifies
a situation which is not properly handled. Essentially, the question
is to understand what led a fault injected in the low priority thread
to affect other parts of the system.

• If necessary, instrument the code and document test cases. We can
manually instrument the code of the threads to mimic as closely
as possible a fault that exposes a counterexample. This serves, in
our case, as a way of validating the fault injection tool. Moreover,
a system integrator verifying a COTS operating system would pre-
fer to send a test case consisting of an example program, instead
of sending the fault injection tool and the fault definition to the
supplier of the operating system.

4.3.2 Results

We present the results of a campaign consisting of 284 fault injection
experiments, where both threads executed the wavelet workload. In our
setup it takes 1min 12s to run a reference experiment, to collect the
results of a fault-free execution. Each fault injection experiment takes,
in average, 1min 25s. Since we do not collect the program trace (i.e., the
sequence of instructions executed during the reference experiment), we



4.3. FOCUSED FAULT INJECTION 61

must set the fault injection breakpoint without being certain that it will
be reached.

Table 4.1 shows that the fault injection breakpoint was reached, in
this set of experiments, in 67 occasions. In the remaining 217 experiments
the fault injection breakpoint was not reached and this means that no
fault was injected.

No. of Experiments Breakpoint Reached Breakpoint Not Reached

284 67 (23.6%) 217 (76.4%)

Table 4.1: Activation of the fault injection breakpoint.

We analyzed the 67 experiments where a bit-flip was actually injected
to determine whether it was correctly handled. As explained earlier, the
classification process takes into account the activation of the centralized
exception handlers (recoverable and unrecoverable) and the output of the
tasks to determine whether or not the fault was handled. In this case we
consider only the output of the high priority task, since we are injecting
faults in the low priority task. Table 4.2 shows the classification of the
fault injection experiments.

Experiments
Operating System High Priority Task

Operational Crashed Correct
Output

Wrong
Output

Deleted

67 66 1 64 3 (2+1) 0

Table 4.2: Outcome of the fault injection experiments.

As we can see in Table 4.2, the operating system crashed once and
the high priority task produced wrong results in three occasions. One
of the wrong outputs occurred in the same experiment where the oper-
ating system crashed (which made it impossible for the task to continue
executing). Thus, we found three experiments where the system failed
to handle a fault in the context of the low priority task. One fault led
the entire operating system to a crash and two faults caused the high
priority task to produce incorrect results. These faults must therefore be
examined since they expose flaws in the system.
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The Context Switch Flaw

The fault that led the operating system to a crash was injected into
processor register R1, which is the stack pointer. At a certain point
of the execution of the low priority task, a bit-flip changed the stack
pointer from 40007F0816 to 44007F0816. In practice, this meant that
R1 no longer pointed to the top of the thread’s stack and now pointed
to an unused memory address.

We used the debugging environment to manually inject a similar fault
and observe the sequence of events that then took place. Rather than
using the stack pointer, the low priority task was executing a part of the
main loop when a context switch occurred. At this point, the µC/OS-
II kernel started to save the context of the task to the top of its stack
– the approach that it is designed to take. The problem was that the
stack pointer no longer pointed to the correct address. Thus, the kernel
attempted to write the context of the task to address 44007F0816. This
memory area was unused and therefore not listed in the TLB, thus caus-
ing a TLB-miss. In our design, a TLB-miss caused by kernel code is an
unrecoverable condition.

The code of the low priority task was manually instrumented to ex-
ecute correctly for two seconds, corrupt the stack pointer and enter an
infinite loop (to wait for a context switch). Figure 4.5 shows the instru-
mented code.

This fault showed that our extension to µC/OS-II failed to provide
perfect partitioning due to an inherited design decision. Since µC/OS-II
saves the context of tasks on the top of their own stack, it is possible for
a task to corrupt the stack pointer and cause the kernel to write onto an
erroneous memory location.

There are numerous possible solutions to remove this partitioning de-
fect. We chose to add a stack pointer check during context switches. The
task control block of all tasks (a kernel structure which stores important
task information) contains the location and size of each task’s stack. We
added a check to verify, before saving the context, that R1 points to a
memory location in the task’s stack and that there is enough space to
write all context registers. After modifying the context switching code
we executed the test case in Figure 4.5 to verify that the flaw had been
removed.
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void thread(void *pdata)

{

INT32U start_time, period = 20;

start_time = OSTimeGet();

while(TRUE)

{

if(start_time > 200) // two seconds after startup

{

// set R1 (the stack pointer) to 0x44007F08

__asm__ __volatile__ (" lis %R1, 17408 ");

__asm__ __volatile__ (" addi %R1, %R1, 32520 ");

while(TRUE){}

}

getInput();

computeOutput();

OSTimeDlyUntil(start_time += period);

}

}

Figure 4.5: Manual instrumentation of the low priority thread to corrupt
the stack pointer and wait for a context switch.
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The Configuration Error

The two experiments that caused the high priority task to produce wrong
results injected a fault into registers R6 and R29. These faults were
injected at a point of the execution where these registers were being used
to calculate memory addresses for write operations. The instructions that
executed after that attempted to write into a page which was shared by
the two tasks, containing code and data belonging to a floating point
library.

The issue here was that there were several pages erroneously con-
figured with write permission for all tasks. The initialization sequence
inserts into the TLB the pages that are listed permanently (kernel and
shared libraries). An inspection of this sequence revealed that the pages
were configured with full permissions for all tasks, even though they
should be only readable and executable. In this case, a test case would
be as simple as instrumenting the code of the low priority thread to write
into those addresses. This configuration error was solved by giving only
read and execute permissions on the library pages to all tasks.

4.3.3 Limitations

These experiments demonstrate the potential of fault injection as a tech-
nique for fault removal in partitioned systems. However, we would have
to conduct many more experiments to exhaustively test the mechanisms
included in the extended real-time kernel. Moreover, a limitation of these
experiments is that we only observed the output of the high priority task
in the value domain, i.e., the time when task produced its output was not
monitored. Thus, temporal partitioning was only examined indirectly,
by monitoring whether the high priority task produced correct results at
some point in time (although the exact time was not measured).

We have tested the robustness of the implementation in the presence
of bit-flips in the context of one process. Even though this is a type
of fault that the system must tolerate, bit-flips in CPU registers and
main memory are only representative of transient hardware faults. An
exhaustive test of the kernel extension would certainly take into account
software faults. These can be injected using software fault emulation
operators [57, 58].
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4.4 Recovering Errant Applications

As we have argued thus far, operating systems must be resilient to appli-
cation errors and should prevent those errors from propagating to other
applications. This guiding principle assures us that healthy applications
are always capable of providing correct service to their users. However, it
is also crucial to recover applications that have failed, in order to ensure
that service losses do not accumulate over time and lead to redundancy
exhaustion. Accordingly, one should judge the dependability of an oper-
ating system not only for its resilience to errors but also for the services
it provides to hosted applications with regards to error recovery.

To this end, we can make use of a vast multitude of error handling
techniques available in the literature. Our goal here is to combine several
such techniques into a set of operating system services that support appli-
cation recovery from both software and hardware errors. The challenge is
that the recovery flow usually depends on whether the error was caused
by hardware or software. This is generally hard to diagnose. Consider an
example where the memory management hardware raises an exception
indicating an erroneous memory access; it may have been caused by a
missing pointer initialization in the software but also by corruption of a
pointer due to a transient hardware fault. In this case it is difficult to
choose, for instance, whether to rollback and retry the operation or to
transfer control to a user-mode exception handler.

4.4.1 A Comprehensive Recovery Strategy

Let us assume that application errors can be detected by the operating
system even though their cause is unknown. Our proposal is to consider
at first that an error is caused by a transient hardware fault. To cope
with these, applications take frequent checkpoints and attempt rollback
recovery upon error detection. When the cause is indeed a transient
hardware fault, there’s a high chance that it will vanish after rolling
back. A suitable checkpointing technique is proposed in Section 4.5.

However, if an error is detected again after the rollback – before
the next checkpoint is taken –, then we diagnose it as being caused by
a software fault. At this point, the operating system should transfer
control to an application-specific exception handler, where the designer
can decide what should be done. There are several classical software
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fault tolerance techniques which may be appropriate for this stage:

• Design diversity may be applied by developing alternate versions
of a program [59] and switching among them when an error is de-
tected. Since only one version is executed at a time, this approach
is similar to the well known recovery blocks [60] technique. The
main difference is that we rely on concurrent error detection mech-
anisms rather than acceptance tests to trigger the version switch.
Effective design diversity requires version independence, i.e., un-
correlated errors among versions. Ideal independence is hard to
achieve and caution is advised by several experimental studies [61],
but in most cases design diversity can increase the reliability of a
system.

• Data diversity can be effective for some systems [62]. This method
consists of re-executing the same program with a slightly different
input. It is realistic to assume that production software only fails
for a small fraction of the input space. Thus, if an error is detected,
one can make a small change to the input (either explicitly or, for
example, by reading another sensor value) and execute the program
again. This technique is not as costly as design diversity, since it
only requires a single version of the software.

• Restarting the faulty task may also be sufficient and appropriate
for some cases. This is a simple form of software rejuvenation [63]
triggered in reaction to error detection. It is the simplest of the
three possibilities listed here and, nevertheless, the one which may
be applicable in most scenarios.

One must also consider the case when an error is detected a third
time, i.e., when both recovery attempts fail. Such cases may be caused
by permanent hardware faults which prevent an application from exe-
cuting correctly. Under such circumstances, the application should be
terminated in order to ensure fail-silence and to constrain resource con-
sumption.

An alternative which deserves future examination is to make use of
the inherent hardware redundancy available in multi-core processors. In
the future we can expect multi-core processors to be used in embedded
systems. Thus, we can make use of the available redundancy for im-
proving system dependability. When both recovery attempts fail, it is
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beneficial to try to execute the same application on one of the remaining
cores. The advantage is that some permanent hardware faults, such as
those related to ageing, may be tolerated as part of the recovery strategy.

This approach assumes implicitly that core failures are to some ex-
tent independent. At the present moment there is little empirical evi-
dence available to support this assumption. However, it is reasonable to
presume that there will be a certain degree of isolation between cores
belonging to the same integrated circuit. If both critical and non-critical
tasks are being executed on the same multi-core processor, ensuring that
the critical ones can execute on a healthy core is likely to increase a
system’s dependability.

4.5 Lightweight Checkpoints

Checkpointing and rollback recovery is a way of tolerating transient hard-
ware faults at the node layer. Checkpointing involves taking regular
snapshots of the system state and storing them in a safe place (some-
times called stable storage). When an error is detected, the system rolls
back to a fault-free state by restoring the most recent valid checkpoint.
While checkpointing and rollback is widely used in applications such as
database systems and transaction processing, it is less frequently used
for embedded real-time systems. The main reason for this is the time
overhead generated when a rollback recovery is made and when taking
the checkpoints.

In real-time systems, the correctness of a computation depends not
only on the resulting value but also on the timeliness of the result. Thus,
unlike general-purpose applications, the goal of checkpointing in real-
time systems is to guarantee that critical deadlines are met even when
errors occur. If checkpoints are sufficiently frequent, the amount of re-
computation required after an error may be small enough to complete
the execution before the deadline expires. However, taking checkpoints
increases the execution time in fault-free cases. For this reason, in real-
time systems the checkpoint interval can’t be arbitrarily small and the
checkpointing mechanism must have a low overhead.

One way to reduce the overhead is to store only fundamental data
at each checkpoint. The ability to identify these data depends on the
checkpoint level, i.e., whether it is done by the kernel, by a user-mode
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library or by the application itself [64]. In general, only the application
designer can determine which structures are fundamental. Hence, check-
pointing can be efficiently implemented at the application-level, with the
additional advantage of having no overhead in calls to external code.
This approach is therefore attractive for real-time systems.

However, implementing checkpoint and recovery functions increases
the development cost of applications. Furthermore, applying this method
correctly is often non-trivial, even in uniprocessors. One reason for this is
error detection latency, i.e., the amount of time between the occurrence
of an error and its detection. During that time interval the application
may save a corrupted checkpoint and then recovery is only successful
by restoring an older non-corrupted checkpoint. Due to this problem
we must introduce a delay between storing a checkpoint and considering
it to be reliable. Another reason is the difficulty in establishing rea-
sonable assumptions on the failure modes of applications. A transient
hardware fault may, for example, corrupt a pointer and cause an applica-
tion to overwrite any previous checkpoints. Consequently, the integrity
of application-level checkpoints must be assured through careful design.

We propose a lightweight checkpointing technique for real-time em-
bedded systems. It allows applications to checkpoint their state inde-
pendently but provides the means for them to lock checkpoints using
memory protection. The method ensures the integrity of checkpoints for
a broad class of application failure modes and takes error detection la-
tency into account. The goal is to provide the level of reliability required
by high-integrity applications and meet the needs of real-time systems.

4.5.1 Context and Applicability

Many applications can be made fault-tolerant by checkpointing small
amounts of state information (e.g., control algorithms [65, 66]). Likewise,
device drivers may recover transparently from failures by retrieving state
information lost during a crash [67], thereby requiring a reliable mecha-
nism for guaranteeing the integrity of driver checkpoints. To achieve this,
we advocate a clear separation of concerns: each application (or driver)
should be responsible for taking checkpoints, while a platform service
assures their integrity. In this section we describe the design of one such
service and show how it can be implemented on modern microprocessors.

One main concern in designing this operating system service is to en-
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sure its real-time performance. The overhead should be as low as possible
and each call to the service should be bounded in time, so that it can
be used by real-time tasks. By reducing the overhead of checkpointing
we can improve fault tolerance, since we are allowed to take checkpoints
more frequently. Our approach requires only a very small system call
to be made after each checkpoint in order to lock that checkpoint using
memory protection.

We assume that main memory is sufficiently reliable to be used as sta-
ble storage for an embedded system. Given that main memory is usually
protected with error-correcting codes, we can assume that checkpoints
are safe when stored in main memory. In general, the DRAM cells used
to build memory chips can be considered very reliable [68]. Moreover,
even if a fault affects a checkpoint directly in memory, we assume that
the probability of another near-coincident fault causing an application
to rollback (to the corrupted checkpoint) is negligible.

4.5.2 Failure Modes and Error Detection Latency

Our checkpointing scheme addresses only faults directly affecting the ap-
plications. Errors affecting the operating system or the checkpointing
service may be detected but we provide no means to recover from them.
Typically, a real-time kernel executes less than 5% of the time [48]. Dur-
ing the remaining time the processor is either idle or running applications.
It is therefore likely for a transient hardware fault to affect only the con-
text of a single application. We assume that errors affecting the entire
computing platform can be handled by other fault tolerance mechanisms
(possibly those implemented at the system layer).

We assume that application errors can be detected within a bounded
amount of time. Most error detection mechanisms take some time to
discover and flag application errors [69]. There is, nonetheless, strong
empirical evidence showing that the vast majority of detectable errors is
detected within a bounded time interval. An example is the high success
ratio of recoveries achieved through low-level checkpointing and rollback
in high-end mainframe microprocessors [70, 71]. Implementing effective
error detection is fundamental to ensure the success of the recovery pro-
cess. Thus, if some errors remain latent for more time than expected,
we can only give probabilistic guarantees that a successful recovery will
eventually happen.
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Error detection latency introduces problems in any scheme for check-
pointing and rollback recovery. During the time between an error and
its detection an application may save an incorrect state. To recover from
this type of failure one must restore an older checkpoint. Due to this
problem we must maintain, at any time, several past checkpoints and
consider each one to be unreliable until the maximum error detection
latency has passed after its creation. There is, naturally, a limit on the
number of checkpoints that can be maintained in an embedded system.

The integrity of application-level checkpoints is strongly dependent
on the failure modes of applications, i.e., their behaviour in faulty cir-
cumstances. Since we assume that applications write their own snapshots
to main memory, there is a concern that an errant application may over-
write all previous checkpoints before the error is detected. We make no
direct assumptions on the failure modes of applications. We assume only
that the memory area where a checkpoint is stored can be locked from
the application by using memory protection.

4.5.3 Assuring the Integrity of Checkpoints

The fundamental requirement on the integrity of checkpoints is that an
application should always rollback to a correct checkpoint upon error de-
tection. Since, under our assumptions, an errant application may over-
write the checkpoint area before the error is detected, we introduce a
lock() system call that prevents any further writing to that area. Once
a checkpoint is locked, it may be considered reliable after an amount of
time equal to the maximum error detection latency has passed. Until
then, we have to assume that an error may have occurred before the
lock() call was made.

At some point, the application should take another checkpoint with-
out overwriting the previous one. The concern here is that an error may
occur precisely when a checkpoint is being taken. For this reason, it is
common practice to have at least two checkpoint areas and switch be-
tween them [64]. We can make the switch transparent to applications
by mapping the logical checkpoint area (in the virtual address space)
to a different set of physical addresses. Each application keeps a single
pointer to the logical checkpoint area and the lock() function makes the
switch by replacing one physical checkpoint area with another.

In our case, however, two checkpoints are not sufficient to ensure that
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at least one of them is correct. An error may cause the application to
checkpoint an incorrect state, call the lock() function and overwrite the
second checkpoint area. Note that this sequence of events may occur for
any arbitrarily small error detection latency.

To deal with this problem, we opted for having three checkpoints and
imposing a minimum time between calls to the lock() function. The three
checkpoints are used in a round-robin manner, where a lock() call always
locks the most recent checkpoint and unlocks the oldest checkpoint. By
having a minimum locking interval greater than the error detection la-
tency, we can ensure that an error can affect at most the two most recent
checkpoints. We can formulate this property as the following theorem.

Theorem 4.1. If the minimum locking interval is greater than the max-
imum error detection latency, then, when an error is detected (and roll-
back is triggered) the oldest of three checkpoints is correct.

Proof. Let δ denote the minimum locking interval and ǫ denote the max-
imum error detection latency. By definition of ǫ, an error detected at
time t occurs within [t− ǫ, t]. Clearly, in this time interval of length ǫ,
at most one lock operation can be executed, since δ > ǫ. So we have two
cases: in [t− ǫ, t], either the lock operation was not executed or it was
executed exactly once.

If one lock operation was executed, then at most two checkpoints
may have been affected – the most recent and the previous one. If no
lock operations were executed, then the error may have affected the most
recent checkpoint, but none of the other two. In either case the oldest of
three checkpoints is correct.

The theorem makes two implicit assumptions. The first is that all
checkpoints contain a correct state when the first error occurs. All check-
pointing schemes make this or a similar assumption which can be imple-
mented, in our case, by taking three checkpoints at start-up. This means
that an error occurring early in a program’s execution will bring the com-
putation back to its start. The second assumption is that error detection
causes the execution of the errant application to stop immediately. Since
error detection is handled by the operating system, this can be imple-
mented by transferring the execution to the checkpointing service, which
will in turn call the application’s exception handler.
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This theorem shows that using three checkpoints is sufficient, un-
der our assumptions, to ensure the integrity of checkpoints. However,
it abstracts away most of the details involved in creating a practical
implementation of our lightweight checkpointing scheme. The following
sections elaborate on the necessary implementation details to create an
operating system service and describe the usage of model checking to ver-
ify its correctness, thereby increasing our confidence in that all details
are taken into account.

4.5.4 Implementation Aspects

The checkpoint service must allow applications to allocate memory for
the checkpoint areas, so that they can save state snapshots. In real-
time embedded systems this operation is usually done statically by the
linker. However, it is also feasible to introduce a system call for allocating
checkpoint areas. In this chapter we adopt the static approach, which is
the one used in the implementation of Secern.

Another issue related to the configuration of the checkpointing service
is that each application must define an exception handler. The check-
point service transfers control to an application’s exception handler when
an error affecting that application is detected. The handler must be de-
fined by the application designer in order to implement a lightweight
rollback, i.e., to restore the application’s state from a stored checkpoint.
After restoring the checkpoint, the exception handler should resume the
normal execution of the application.

One important implementation detail is to ensure that the time be-
tween successive calls to the lock() function is greater than the minimum
error detection latency. There are two possibilities: one may count the
elapsed time or the number of instructions executed by an application
between two calls. Modern microprocessors provide a wide range of per-
formance counters that can be used to monitor diverse parameters of
the execution. These can be used to count the number of instructions
executed. Counting time is simpler, since we only need access to a timer,
and may provide also accurate results.

Assuming that we are counting the number of instructions, the lock()
function begins by checking whether the counter has incremented by a
programmable amount since the application made the previous call. This
implies that we must have a very accurate estimation of the maximum
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Figure 4.6: Logical checkpoint area (visible to the application) mapped
to one of three physical checkpoints.

error detection latency. A possibility to make this estimation is to use
fault injection testing. This is, however, not in the scope of this thesis.
Consequently, we assume only that this parameter can be estimated with
sufficient accuracy.

In addition to ensuring a minimum time between locks, the lock()
system call replaces the checkpoint areas in a round-robin fashion. Using
the address translation features provided by an MMU, it replaces the
mapping between the virtual addresses seen by the application with one
of three distinct sets of real addresses (containing the three physical
checkpoint areas). This way, the existence of three physical checkpoints
is invisible to applications. Each application has only a single pointer
to a logical checkpoint area which is transparently remapped to another
physical area when lock() is called. This is illustrated in Figure 4.6.

The lock operation must be atomic in order to ensure that no check-
pointing is taking place when the checkpoint areas are switched. This
issue is simple to solve since a system call is typically implemented us-
ing a CPU interrupt. In this case we know that no other instructions
will execute before the interrupt is handled, i.e., there is no concurrency
between the lock() system call and the calling application.

The worst-case execution time of the lock() system call – the only
run-time overhead introduced by our scheme – is also an important im-
plementation detail. As mentioned above, this system call begins by
checking that the maximum error detection latency has elapsed since
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the last call (either in units of time or number of instructions) and then
rotates the checkpoints. These operations are simple enough to find a
bound on the execution time. Moreover, there are no complex operations
involved, meaning that the total overhead to execute one lock() system
call can be kept as low as few microseconds. For these reasons, we expect
no difficulties in meeting the timing requirements of real-time embedded
systems.

One final issue that needs to be considered is the content of check-
points. This can be left to the application designers, since they have the
best understanding of which program structures are essential. However,
this may also be achieved by using a compiler-assisted technique [72]. In
this chapter we address only the issue of ensuring the integrity of check-
points. However, a future extension may consider making the entire
process automatic by means of tools.

4.5.5 Verification using Model Checking

We used Spin [73, 74] to verify the correctness of the design of lightweight
checkpoints. This section describes in detail the formal model of the sys-
tem, written in the Promela language. This language is formal enough
to be verified by Spin but maintains the typical constructs existing in
a programming language. Thus, the code provided in the following sec-
tions shows our programming model and helps anyone attempting an
implementation of the service to understand our scheme in detail.

Modeling the Application

In our programming model a designer stores the application state on the
checkpoint area and issues a lock() system call. This is done in the app
process, which is defined in Figure 4.7. The app process loops forever
storing the application state on the checkpoint variable, which represents
the pointer to the checkpoint area visible to the application. The appli-
cation state is abstracted as a single bit variable, named app_state, which
represents either a correct state (when its value is 1) or an incorrect state
(when its value is 0). After saving its state, thereby making a lightweight
checkpoint, the app process calls the lock() function by sending a message
to the lock channel. This channel is read by the checkpointing service in
Figure 4.9, as we describe later in this chapter.
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bit app_state = 1;

bit checkpoint = 1;

bool exception = false;

chan lock = [0] of {bit};

active proctype app() provided (!exception)

{

do

:: checkpoint = app_state;

lock!0

od

}

active proctype app_exception_handler() provided (exception)

{

do

:: app_state = checkpoint;

Lrollback:

exception = false

od

}

Figure 4.7: Application and exception handler models.
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Note that the progress of the app process is non-deterministic, i.e., it
may or may not execute any instructions. However, it will only execute
provided that no exception has occurred (i.e., when the variable exception
is false). The provided clauses force the execution of the two processes to
alternate. By setting exception to true the app process becomes blocked
and the app_exception_handler process starts executing. The exception
is raised by the checkpointing service upon error detection.

The exception handler is a very simple routine that executes only a
lightweight rollback, by setting the application state to whatever is con-
tained in the checkpoint, and returns the execution to the main body of
the application. This last part is done by setting the variable exception
to false, which blocks the exception handler and resumes the execution
of the app process. In summary, Figure 4.7 contains the Promela code
corresponding to what should be implemented by the application de-
signer.

The application’s errant behaviour is modeled through a process that
can only execute provided that the application state is incorrect (i.e.,
the value of app_state is 0) and no exception has been raised. The code
implementing this errant behaviour is shown in Figure 4.8.

active proctype app_errant()

provided (app_state == 0 && !exception)

{

do

:: checkpoint = app_state

:: lock!0

od

}

Figure 4.8: Model of the application’s errant behaviour.

According to our assumptions, the errant behaviour of an application
is non-deterministic. When an error occurs the application may overwrite
the checkpoint area and make calls to the lock() function. It may also
not execute at all, since we make no assumptions on the progress of a
faulty applications. The app_errant process executes until an exception
is raised or the application state becomes correct again. Note that the
subtle change in behaviour is modeled by making it possible for the
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app_errant process to call lock() without saving any checkpoints and vice
versa.

Modeling the Checkpoint Service

The checkpointing service provides the lock() function called by the ap-
plication. As shown in Figure 4.9, the checkpointing_service process waits
for any message to be inserted in the lock channel and implements the
functionality described earlier in this chapter. Whenever a lock() call is
made, the checkpointing service will lock the most recent checkpoint and
make the oldest one available to the application.

chan unlock = [0] of {bit};

active proctype checkpointing_service()

{

bit cp1 = 1, cp2 = 1, tmp;

do

:: atomic {

lock?_ ->

tmp = cp1;

cp1 = cp2;

cp2 = checkpoint;

checkpoint = tmp

};

Llock:

skip

:: atomic {

unlock?_ ->

checkpoint = cp1;

cp2 = cp1;

exception = true

}

od

}

Figure 4.9: Model of the checkpointing service.

In Figure 4.9, the variables cp1 and cp2 represent the two checkpoint
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areas which are invisible to the application. When the lock() system
call is made the checkpointing service swaps the areas in a round-robin
manner. Note that this is done atomically in accordance with the as-
sumptions in the previous section.

The other functionality provided by the checkpointing service is to
unlock the oldest checkpoint. To implement this, it waits for messages
arriving at the unlock channel. Such messages may only be sent by the
error detector. The response to an unlocking event is to make the oldest
checkpoint available to the application and to copy the contents of that
checkpoint (which must be correct) to all other checkpoint areas. When
the unlock call terminates, the checkpointing service raises an exception
(by setting exception to true), thereby triggering a lightweight rollback.

Modeling Error Injection and Error Detection

We defined an error_injector process that sets the app_state variable to 0
(representing an incorrect state) at any non-deterministic point in time of
the execution, provided that an error is not already active. This process
is shown in Figure 4.10.

active proctype error_injector() provided (app_state == 1)

{

do

:: app_state = 0;

Lerror:

skip

od

}

active proctype error_detector() provided (!exception)

{

do

:: (app_state == 0) -> unlock!0

od

}

Figure 4.10: Error injector and error detector processes.

The error_detector process, also shown in Figure 4.10, implements the
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error detection functionality. Whenever an erroneous state is found, the
process may place a message on the unlock channel, thereby notifying the
checkpointing process that an error has been found. This process exe-
cutes provided that no exception is being handled at the moment, as the
end result of a call to unlock is only to make the app_exception_handler
executable.

Formal Specification and Verification

Spin accepts correctness properties specified in Linear Temporal Logic
(LTL) [74]. To verify a given LTL formula Spin creates a never claim
which consists of the negation of the LTL formula. The verification
process consists of checking that there is no possible execution matching
the negated formula.

We wish to verify that, when an error is detected, the application is
able to rollback to a correct checkpoint. This property is only required
to hold if the error detection latency does not exceed the locking interval.
As observed in the proof of Theorem 4.1, this means that at most one
lock operation can be executed between an error and its detection. Thus,
we want to verify that

(rollback → correct_checkpoint)W ¬(error_injected

→ (¬lock U (lock U (¬lock U rollback)))).

The property should be read as: rollback implies correct_checkpoint,
unless more than one lock occurs between error_injected and rollback.

The first part of the formula states that correct_checkpoint is implied
by rollback. This is the fundamental property that we wish to verify.
However, it is only required to hold unless the lock() function is called
more than once before an error is detected. The symbols used in the
LTL formula were defined in Spin’s LTL manager as follows:

rollback app_exception_handler@Lrollback

correct_checkpoint checkpoint == 1

error_injected error_injector@Lerror

lock checkpointing_service@Llock
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In addition to the usual logic connectives, the above formula uses the
temporal modal operators until (U) and unless (W), also known as weak
until. Note that the weak until operator is not supported by Spin but
one can use the equivalence pW q ≡ p U q ∨ �p, which uses the operator
always (�), to circumvent this limitation.

We began by finding a counterexample that shows that two check-
points are insufficient to ensure, under our assumptions, that at least one
of them is correct. This was achieved by removing the cp2 variable from
Figure 4.9. This effectively means that the checkpointing service would
toggle between two checkpoint areas. Spin takes a very short amount of
time to find a counterexample with the following sequence of events: an
error is injected, the application makes an errant checkpoint, locks that
checkpoint and the error detector triggers a rollback recovery. In this
case there is only one lock call and the application will rollback to the
oldest checkpoint – which is incorrect.

The goal of the modeling effort was, nevertheless, to verify that our
scheme is correct when using three checkpoints. Using the code provided
in Figures 4.7 to 4.10, Spin is able to search the state space exhaustively
and confirm that the model is valid. Thus, we can have a very high
confidence in that our scheme works as intended.

4.6 Related Research

A great deal of work has been dedicated to ensuring that operating sys-
tems are resilient to internal failures. In this context, kernel extensions
such as device drivers are usually identified as a major source of prob-
lems. The microkernel approach attempts to solve this issue elegantly
by isolating kernel extensions in user-mode, where fault containment can
be more easily achieved. This design principle is used in the Minix op-
erating system [67]. There is a price to pay for the increased reliability:
obtaining an operating system service often involves full context switch-
ing and additional data copying. This performance penalty is worth the
trade-off in systems where reliability is the main concern [75].

The approach implemented in Nooks [76] uses the more common
monolithic kernel structure where extensions run in kernel-mode. It
should be emphasized that kernel-mode instructions access main mem-
ory through the memory management hardware – just like user-mode
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instructions. The difference is that user-mode execution has restricted
access to privileged registers and instructions. If we abstract from ma-
licious faults which replace instructions, device drivers can be isolated
by marking unnecessary pages as read-only during their execution. The
authors make use of this feature to implement lightweight protection
domains. Additionally, they propose the usage of wrappers to monitor
control-flow between the drivers and the kernel.

This chapter addresses the problem of checkpointing for real-time
uniprocessor systems. A central problem when using checkpointing and
rollback recovery in such systems is to ensure task schedulability. Given
a failure hypothesis and a set of real-time tasks, one must determine if all
tasks will meet their deadlines (both when errors occur and in fault-free
cases). The work presented in [77] and [78], among others, studies the
effect of checkpointing on the schedulability of fault-tolerant task sets.

An issue closely related to scheduling is the optimal checkpoint in-
terval. If checkpoints are too frequent, their combined overhead is too
high; if they are too sparse in time, recoveries may require too much
re-computation. In real-time systems, the optimal checkpoint interval
should maximize the probability of meeting deadlines when errors oc-
cur, while ensuring that deadlines can always be met in the error-free
case [79]. Most mathematical models, both for general-purpose and real-
time computing, assume not only the integrity of checkpoints but also
that errors are detected instantly. Hence, our work can be applied to
handle those assumptions.

Several existing implementations of platform services provide check-
pointing for uniprocessors. These may be offered in the form of libraries
supporting both transparent and non-transparent checkpointing, e.g., by
allowing programmers to specify which memory addresses should be ex-
cluded from the snapshots [80, 81]. Kernel- and user-level checkpointing
techniques have the advantage of making it simple to protect checkpoints
from faulty applications. However, these provide no automatic means for
dealing with error detection latency and impose the additional overhead
of calling external code, which is undesirable for real-time embedded
systems.

Error recovery in communication systems has motivated extensive
research on distributed checkpointing [82, 83]. Ensuring system-wide
consistency when determining the recovery line may lead to the domino
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effect, where a sequence of rollbacks brings all nodes to the beginning
of the computation. This problem can be solved by creating globally
coordinated checkpoints [84]. Some of the proposed schemes deal with
error detection latency [85, 86]. These assume either that at most one
checkpoint can be affected by an error or that an arbitrary number of past
checkpoints can be stored. Coordinated checkpointing complements our
scheme, since we consider uniprocessor systems and focus on protecting
the integrity of checkpoints carried out independently by applications.

4.7 Summary and Discussion

This chapter presented Secern – an approach for providing partition-
ing and fault tolerance to real-time kernels. Secern includes several
mechanisms to confine errors to the applications where they originate.
These mechanisms are necessary for creating a partitioned environment
which can be shared by multiple real-time tasks, possibly with distinct
criticality.

We implemented several of these mechanisms as extensions to the
µC/OS-II real-time kernel. The extension uses memory protection, pro-
cessor exceptions, system call policies and application-specific checks to
detect errors. These techniques were implemented taking into account
that they must respect the requirements of real-time tasks, i.e., they
must introduce low overhead and, if possible, no execution time jitter.

A new fault injection plug-in was developed for the GOOFI tool,
targeting the Freescale MPC5554 microprocessor. We conducted a se-
ries of fault injection experiments using the tool for testing the kernel
extension. These experiments were conducted according to a methodol-
ogy of focused fault injection, with the goal of diagnosing and removing
design faults. They exposed two vulnerabilities in the extended kernel.
Even though the tests are not exhaustive, they show the importance and
benefits of using fault injection for the assessment of partitioned systems.

We identified several sources of uncertainty in our fault injection ex-
periments. The first is related to the number of experiments. More
experiments are required to remove any remaining faults and progres-
sively reach confidence in that the kernel extension is fault free. Another
source of uncertainty is the representativeness of faults. A bit-flip in the
context of a single task is an example of a fault which must be tolerated
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by the kernel extension. However, it would also be necessary to emulate
software faults to verify the implementation. Lastly, the fault injection
tool might have defects. We instrumented the code of the applications
to ensure that the diagnosed flaws really existed. However, the analysis
process may have failed to classify experiments correctly. These prob-
lems are shared with any fault injection tool and usually impose that the
tool itself must be verified.

In addition to the mechanisms included in the extended real-time
kernel, this chapter proposed a technique named lightweight checkpoint-
ing. It allows the application designer to decide the content and timing
of checkpoints while providing a service for locking the checkpoint area
using memory protection. The locking makes it possible to deal with
failure modes where an application attempts to overwrite any previous
checkpoints. To deal with error detection latency, the scheme uses three
checkpoints, transparently to applications, and enforces a minimum time
between calls to the locking mechanism.

We used the Spin model checker to verify the correctness of the check-
pointing mechanism. One of the advantages of Spin is that it accepts the
Promela language, which has a syntax similar to the C programming
language. For this reason, the code provided in this chapter simplifies the
work of understanding and implementing the lightweight checkpointing
scheme.

The checkpoints are primarily intended for correcting errors caused
by transient hardware faults. This chapter discussed how a recovery
strategy can use the checkpointing mechanism to distinguish between
hardware and software faults. If an error is detected again after a roll-
back, it assumes that the cause is a software fault. If this happens, the
operating system transfers control to an application-specific exception
handler, which the application designer can use to implement recovery
for software faults.





CHAPTER 5

On the Efficiency of Fault Injection

Computer systems are increasingly being used in safety-critical applica-
tions such as aerospace or vehicular systems. To achieve the high safety
levels required by these applications, systems are designed with fault tol-
erance mechanisms in order to deliver correct service even in the presence
of faults. Faults may, for instance, occur when processors are disturbed
by high energy particles such as neutrons or heavy ions. Such particles
may sometimes interfere with the processor and cause an SEU – an error
that typically changes the state of a single bit in the system.

In order to validate the correctness and efficiency of their fault tol-
erance features, safety-critical systems must be thoroughly tested. Fault
injection has become an effective technique for the experimental depend-
ability validation of computer systems. The objective of fault injection
is to test fault tolerance mechanisms and measure system dependability
by introducing artificial faults and errors.

A problem commonly observed during fault injection campaigns is
that not all faults fulfill the purpose of disturbing the system. Often 80–
90% of randomly injected faults are not activated [87, 88]. A fault placed
in a register just before the register is written or faults that are injected
into unused memory locations are examples of faults with no possibility
of activation. In most tools the location and the time for fault injection

85
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are chosen randomly from the complete fault-space, which is typically
extremely large. The statistical implication of this is that the cost of
obtaining appropriate confidence levels of the dependability measures
becomes unnecessarily high.

To deal with this and other similar problems and to reduce the cost of
validation through fault injection, two main classes of analysis techniques
have been proposed: pre-injection and post-injection analysis [89]. Post-
injection analysis aims at predicting dependability measures using the
results of completed fault injection experiments. Pre-injection analysis
instead uses knowledge of program flow and resource usage to choose the
location and time where faults should be injected, before any experiment
is performed.

This chapter presents a pre-injection analysis technique that is appli-
cable to the injection of transient bit-flips into CPU user registers and
memory locations. The bit-flip fault model is often used in fault injec-
tion experiments to emulate the effects of single event upsets and other
transient disturbances.

The objective of the pre-injection analysis is to optimize1 the fault-
space from which the injected faults are sampled. The analysis uses
program execution information to (i) eliminate faults that have no pos-
sibility of activation and (ii) find equivalence classes among faults and
insert only one of these into the optimized fault-space. This is achieved
by applying the following rule: faults should only be placed in resources
immediately before these are read by each instruction. A bit-flip in any
resource2 will only manifest itself once this resource is read to perform an
operation. Delaying the injection of the fault until the moment just be-
fore the targeted resource is read accomplishes the two objectives stated
above. It should be noted that collapsing all faults in a given class into
a single fault in the optimized fault-space may cause a bias in the esti-
mated dependability measures (e.g., error detection coverage). One of
the objectives of this research is therefore to investigate the magnitude
of this bias.

The pre-injection analysis technique was implemented in the GOOFI

1The word optimize should not suggest that the optimal fault-space is found but
rather an improvement on the usual random approach. Further optimization is there-
fore achievable.

2In this chapter we use the word resource as a common term for CPU register,
main memory locations and other state-elements where bit-flips may occur.
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tool [46, 47], for Nexus-based fault injection [90, 88, 91], and is also
suitable for implementation in other platforms. The effectiveness of the
technique was assessed by comparing fault injection results with results
obtained by non-optimized fault injection on the same target system.
The system is based on the Freescale MPC565 [34] – a microcontroller
aimed at the automotive and other control-intensive applications based
on the PowerPC architecture. By applying assembly-level knowledge of
this architecture we identify which resources are read by each executed
instruction. This information, along with the time of the fault injections,
is used to define the optimized fault-space, which is stored in a database.
The fault injection experiments are then conducted by random sampling
of faults from the optimized fault-space.

5.1 Related Research

The resources available in computers are usually greater than the needs
of the applications executed. This fact motivates a first optimization by
injecting faults only in used resources. Yuste et al. [88] take, in their
experiments, special care to avoid placing faults in empty (i.e., not used)
memory regions. They obtained 12% effective faults and pointed out
that random sampling from an unrestricted fault-space consisting of all
possible fault locations (bits) and all time points is not a time-effective
approach.

Avoiding unused memory regions might be done manually by ana-
lyzing the memory map of the application and choosing the segments
(stack, heap, etc.) as valid locations for fault injection. This approach is
quite simple but does not consider the dynamic usage of resources along
the time dimension.

Studies conducted in the past have shown that error manifestation
(rate and effects) is affected by workload [92, 93, 15]. In [94] the concept
of failure acceleration was introduced by Chillarege and Bowen. They
achieve fault acceleration by injecting faults only on pages that are cur-
rently in use and by using a workload pushing toward the limits in CPU
and i/o capacity.

Güthoff and Sieh presented the operational-profile-based fault injec-
tion in [95]. They propose that the number of fault injections into a spe-
cific system component should be proportional to its utilization. Register
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utilization is defined as the measure of the probability that an injected
fault manifests itself as an error. Additionally, the times for fault injec-
tion are selected based on the data life-cycles. A data life-cycle starts
with the initialization of a register (write access) and ends with the last
read access before the next write access. Under the single bit-flip fault
model, faults need to be injected only within the data life-cycles, just
before each read access.

Benso et al. proposed a set of rules with the purpose of collapsing
fault-lists in [96]. The rules reduce the fault-list without affecting the
accuracy of the results of fault injection campaigns, by avoiding the in-
jection of faults for which the behavior can be foreseen.

In [97], Tsai et al. introduced a technique denominated path-based
injection. With this technique a fault is injected into a resource that will
be used by the test program, given a particular input set. After manual
derivation of the input sets, the path of execution is described in terms
of a list of executed basic blocks. For each path, faults are only injected
in the utilized resources.

Working in fault injection for testing fault-tolerant circuits, using
VHDL models, a set of techniques for speeding up campaigns is described
by Berrojo et al. in [98]. One of these techniques is named workload de-
pendent fault collapsing. During the reference run (a fault-free execution
to monitor and store a program’s normal behavior) all read and write
operations on memory elements are tracked with bit granularity. Hav-
ing this log of read and write operations on each bit of each signal, at
the circuit level, all possible bit-flips are then collapsed by (i) marking
as silent all bit-flips between an operation (either read or write) and a
write operation, and (ii) marking as equivalent all bit-flips between an
operation (either read or write) and the subsequent read operation.

Arlat et al. [99] increased the efficiency of their fault injection exper-
iments targeting the code segment by logging the control flow activated
by the workload processes. If a randomly selected address for fault injec-
tion is not part of the log (an instruction trace), then the corresponding
experiment can simply be skipped as the outcome is already known.
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5.2 Fault-space Optimization Method

For single bit-flip fault injection, we define a fault-space to be a set
of time-location pairs that determines where and when the bit-flip is
injected. The time is selected from an interval during the execution of the
workload selected for the experiment. The time granularity is based on
the execution of machine instructions, i.e., bit-flips can only be injected
between the execution of two machine instructions. The complete (non-
optimized) fault-space consists of all possible time-location pairs.

The fault-space optimization method presented in this chapter states
that faults should only be placed in a resource immediately before the
resource is read by an instruction. The following sections describe the
input needed for the analysis, the output created and the optimization
procedure.

5.2.1 Optimization Input

In order to determine the optimized fault-space it is necessary to gather
information about the code of the application and the computer system
executing it:

• Assembly code of the application;

• The Program Counter (PC) trace over time;

• The effective address of each memory read access;

• The definition of which resources are read by each assembly in-
struction.

In our experimental setup, the assembly code is textual information
obtained by disassembling the executable binaries of the application,
processed automatically by the optimization program. The Program
Counter trace and the values of the General Purpose Registers are stored
during the execution of the reference run. The effective address of each
memory read access is calculated with these values. The definitions of
which resources are read by each assembly instruction are built into the
optimization program. These were obtained from Motorola’s RISC CPU
Reference Manual [100] and are available in [101].
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5.2.2 Optimization Output

The resulting output (the optimized fault-space) consists of a list of pos-
sible locations and times for fault injection. The optimization procedure
has been adapted to both one-shot applications and control applications
executing in loops. Each element on the optimized fault-space contains
the following information:

• Control loop index;

• Breakpoint address;

• Number of breakpoint invocations within the control loop;

• The fault injection location.

The control loop index is specific for control applications which
execute in cycles. It defines the cycle during which a fault should be
injected. For applications that do not execute in loops, the control loop
index is always set to one. The breakpoint address specifies the break-
point position inside the control loop and the number of breakpoint

invocations specifies the number of times this breakpoint should be
reached before fault injection.

5.2.3 Performing the Optimization

Using the Program Counter trace over time, the disassembled code of
the application is parsed to obtain the sequence of assembly instructions
executed. Each of the instructions is then analyzed in order to deter-
mine which resources the instruction reads. The pseudo-code for this
procedure is presented in Algorithm 5.1.

The most important stage (line number 6 in the pseudo-code) is the
identification of the resources read by each instruction. To accomplish
this, the first step is to find the definition on the list matching the given
instruction. This is done by matching the opcode and the operands.
Then, by examining the possible assembly constructs, the symbols avail-
able in the read list of the definition are replaced by the resources actually
read by the given instruction. Figure 5.1 illustrates this process.

In Figure 5.1, the instruction at address 39DE816 adds R10 to R11
and stores the result in R5. The definition for this instruction is found



5.3. EXPERIMENTAL SETUP 91

programTrace: Array holding the Program Counter trace over time.1

foreach programCounter in programTrace do2

controlLoopIndex := currentControlLoop();3

breakpointInvocation := countInvocations(programCounter);4

instruction := instructionAtCodeAddress(programCounter);5

instructionReadList :=6

resourcesReadByInstruction(instruction);
foreach resource in instructionReadList do7

usefulFault := 〈 controlLoopIndex, programCounter,8

breakpointInvocation, resource 〉;
storeIntoDatabase(usefulFault);9

end10

end11

Algorithm 5.1. Pseudo-code for the optimization procedure.

in the table where the read list contains rA and rB – R10 and R11,
respectively. Since these are the two resources read by this instruction,
two new time-location pairs are added to the optimized fault-space for
code address 39DE816 (the control loop index and the internal loop count
are assumed to hold the specified values).

The second instruction, at address 39DEC 16, fetches the memory
word at the effective address (R6)+24 and stores it in R7. Its definition
in the table specifies rA and Mem32(d+rA) – R6 and the 32-bit word
at 1000+24 – as being read. The value of R6 (1000 in this example) is
collected during the reference run. The two resources, along with the
timings, are then added to the fault-space.

5.3 Experimental Setup

Figure 5.2 describes the evaluation platform used to evaluate the effec-
tiveness of the optimization technique for experiments performed on the
jet engine control software, which is one of two workloads investigated in
this chapter. The GOOFI fault injection tool controls the experiments
by using the winIDEA debugging environment in conjunction with the
iSystem’s iC3000 debugger. Faults are injected into the MPC565 mi-
crocontroller running the control software. In the case of the jet engine
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Figure 5.1: Example of the optimization procedure.

controller one computer board was used to run the jet engine control
software and one board to execute the model of the jet engine. The ex-
perimental setup used for the other workload (an implementation of the
quicksort algorithm) used only one computer board.

5.3.1 Fault Injection Tool

GOOFI is a fault injection tool developed at Chalmers University of
Technology. It provides the ability to define and conduct fault injec-
tion campaigns on a variety of microprocessors. During each campaign
GOOFI is responsible for controlling all the necessary software and hard-
ware, and storing the acquired data into a database.

A plug-in [91] has recently been developed in GOOFI which uses
the Nexus port [90] to inject faults on Freescale’s MPC565. Nexus is
an attempt to create a standard on-chip debug interface for embedded
applications. This standard is suitable to be used for fault injection [88]
since it provides read/write access to the processor’s resources and code
execution trace capture.

The pre-injection analysis technique was implemented to enhance the
existing Nexus fault injection plug-in. The target platform for the current
implementation is therefore the MPC565 microcontroller. The technique
may however be implemented for any microprocessor.
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Figure 5.2: Evaluation platform for the jet engine application.

5.3.2 MPC565 Microcontroller

The MPC565 is a microcontroller originally developed by Motorola (who
left the semiconductor market to its spin-off Freescale in 2004) that im-
plements the PowerPC instruction standard architecture. It targets the
automotive market as well as other control-intensive applications. The
complete computer system was based on the phyCORE-MPC565 [102]
development board. It includes Freescale’s MPC565 processor, which of-
fers a Nexus debug port, enabling real-time trace of program and data
flow.

To establish a connection through this port the iSystem iC3000 Ac-
tive Emulator was used to access the Nexus working environment. The
iC3000 emulator was, in its turn, controlled by GOOFI via winIDEA –
an integrated development environment offered by iSystem AG. GOOFI
and winIDEA are executing on the same host PC.

5.3.3 Workloads

Fault injection campaigns were conducted to evaluate the optimization
technique using two different workloads: a sort program using the quick-
sort algorithm and a jet engine controller. Different campaigns targeting
registers and data memory, using both optimized and non-optimized fault
selection, were carried out. The technique is fully implemented in the
sense that all the assembly instructions executed by the workloads are
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analysed and all registers and data memory locations where optimization
is achievable with this method are considered. The outcome of each fault
injection experiment was classified into one of the following categories:

• Detected error. All effective errors that are signaled by hardware
error detection mechanisms included in the processor.

• Wrong output. All effective errors that are not detected by the
processor but lead to the production of wrong results.

• Non-effective error. Errors that do not affect the system execution
during the experiment time-frame.

Quicksort

The quicksort workload is a recursive implementation of the well-known
sorting algorithm. It sorts an array containing seven double-precision
floats.

The reference run execution takes two minutes during which the pro-
cessor is being stepped and all the required data is obtained. The opti-
mization procedure takes 20 seconds to complete. Each fault injection
experiment takes less than half a minute to perform. During the exe-
cution of the reference run for this application, the MPC565 processor
executed 34 distinct assembly instructions (opcodes) and a total of 815
instructions.

Jet Engine Controller

This workload is a control application that executes in loops in order to
control a jet engine. At the end of each loop the controller has to produce
results and exchange information with the engine (sensor values from the
engine and actuator commands from the controller). It is significantly
more complex than the quicksort program, allowing the fault-space op-
timization technique to be evaluated using a real-world application.

The execution of the reference run takes almost 12 hours. The op-
timization procedure takes 10 minutes to complete. Each fault injec-
tion experiment is then performed in less than two minutes for the se-
lected configuration (number of control loops and memory locations to
be logged).
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Forty control loops of execution were logged during each experiment.
From these, ten loops (21 to 30) were chosen as possible temporal loca-
tions for fault injection (corresponding to 50ms of real-time execution of
the controller). During these ten control loops, in the reference run, the
MPC565 processor executed 231.097 instructions. A total of 88 different
assembly instructions (opcodes) were executed.

5.3.4 Fault Model and Fault Selection

The fault model applied is the single bit-flip model of the effects of tran-
sient faults. The technique assumes this model as the basis for optimiza-
tion.

The faults in the non-optimized campaigns were chosen using a uni-
form distribution. In the case of the optimized campaigns the faults are
selected randomly from the optimized fault-space itself (the list of tem-
poral and spatial locations for fault injection described in Section 3.2).
This implies that the distribution of faults in resources is proportional
to the representation of each resource in the optimized fault-space.

Microprocessor registers were selected as spatial locations for fault
injection both in the quicksort and in the jet-engine controller campaigns.
Memory locations were only targeted using the jet-engine controller. The
registers targeted in the non-optimized campaigns are the ones considered
by the optimization method:

• General Purpose Registers (32 registers of 32 bits);

• Floating Point Registers (32 registers of 64 bits);

• Link Register (32 bits);

• Condition Register (32 bits);

• Integer Exception Register (32 bits);

• Count Register (32 bits).

These constitute the User Instruction Set Architecture (UISA) regis-
ter set. User-level instructions are limited to this register set while
supervisor-level instructions have also access to the Special Purpose Reg-
isters (SPRs).
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Two limitations of winIDEA (the debugging environment) are im-
portant to mention. The floating point registers are only allowed to
be injected with faults in the least significant 32 bits. These are the
least significant bits of the 52-bit mantissa. The Floating Point Status
And Control Register (FPSCR), targeted by the optimization, is also not
available for fault injection.

The fault injection campaigns in memory targeted the stack, heap
and all other read/write and read-only data segments of the controller.
A total of 100 kB of memory were targeted as spatial locations.

The analysis of faults in the code segment was still not implemented
and was therefore not studied. The optimization is easily extendable to
support faults in the code segment by targeting, in each instruction, the
32-bit memory contents addressed by the Program Counter. This would
be equivalent to the analysis performed in [99] by using the instruction
trace.

5.4 Experimental Results

This section compares the results of random fault selection with those
obtained using the pre-injection analysis. We describe the results of
faults injected into microprocessor registers first, followed by the results
of faults injected into memory locations.

5.4.1 Fault Injection in Registers

Table 5.1 shows the distribution of the outcomes of faults in the fault
injection campaigns targeting microprocessor registers for both the quick-
sort and the jet engine controller workloads. The quicksort campaigns
include approximately the same number of experiments. For the non-
optimized jet engine controller campaign, a much higher number of ex-
periments had to be performed in order to increase the confidence in the
results.

The percentage of effective faults (either detected or producing wrong
output) increases from 5.0% using non-optimized fault selection to 47.7%
choosing faults from the optimized fault-space when targeting the quick-
sort workload. In the jet engine controller this increase is from 4.4% to
38.2%. The improvement in the effectiveness of faults is, therefore, one
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Campaign No. Exp. Non-effective Detected Wrong Output

Quicksort
Non-optimized 2739 2603 (95.0%) 83 (3.0%) 53 (2.0%)

Optimized 2791 1461 (52.3%) 744 (26.7%) 586 (21.0%)

Jet Engine Non-optimized 5708 5457 (95.6%) 200 (3.5%) 51 (0.9%)

Controller Optimized 1559 964 (61.8%) 466 (29.9%) 129 (8.3%)

Table 5.1: Distribution of outcomes of fault injection in registers.

Campaign Error detection coverage (95% confidence)

Quicksort
Non-optimized 61.0± 8.2%

Optimized 55.9± 2.7%

Jet Engine Non-optimized 79.7 ± 5.0%

Controller Optimized 78.3± 3.3%

Table 5.2: Error detection coverage estimations (faults injected in regis-
ters).

order of magnitude.
Table 5.2 shows the estimated error detection coverage obtained in

each campaign. We here define error detection coverage as the quotient
between the number of detected and the number of effective faults.

The values of the error detection coverage estimations are quite sim-
ilar whether applying non-optimized or optimized fault selection. In the
optimized campaigns the faults are only injected in the location that will
activate them (at the time that the register is read). Since no weights
are applied to reflect the length of the data life-cycle on the outcomes of
faults, it could be expected that the error detection coverage would be
skewed.

The detected errors were signaled by the exceptions provided in the
MPC565 processor. The distribution among these exceptions is presented
in Figures 5.3 and 5.4 for the quicksort campaigns, and in Figures 5.5
and 5.6 for the jet engine controller campaigns.

It is possible to observe that the detection mechanisms are activated
in a similar but not identical way for the non-optimized and the optimized
campaigns. Figures 5.3 to 5.6 provide an insight on the magnitude of the
differences between non-optimized and optimized fault selection. A brief
description follows of the most frequently activated exceptions.

• Checkstop (CHSTP) – The processor was configured to enter the
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Figure 5.3: Exception distribution in the non-optimized quicksort cam-
paign (83 faults in registers).

Figure 5.4: Exception distribution in the optimized quicksort campaign
(744 faults in registers).
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Figure 5.5: Exception distribution in the non-optimized jet engine con-
troller campaign (200 faults in registers).

Figure 5.6: Exception distribution in the optimized jet engine controller
campaign (466 faults in registers).
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checkstop state instead of taking the Machine Check Exception
(MCE) itself when the MCE occurs. CHSTP does not represent an
actual exception, but rather a state of the processor. The processor
may also be configured to take the MCE handling routine or enter
debug mode. The MCE, which, in this case, leads to the checkstop
state, is caused, for instance, when the accessed memory address
does not exist.

• Alignment Exception (ALE) – The alignment exception is triggered
under the following conditions:

– The operand of a floating point load or store instruction is not
word-aligned;

– The operand of a load or store multiple instruction is not
word-aligned;

– The operand of lwarx or stwcx. is not word-aligned;

– The operand of a load or store instruction is not naturally
aligned;

– The processor attempts to execute a multiple or string in-
struction.

• Floating-Point Assist Exception (FPASE) – This exception occurs
in the following cases:

– A floating-point enabled exception condition is detected, the
corresponding floating-point enable bit in the Floating Point
Status And Control Register (FPSCR) is set (exception en-
abled);

– A tiny result is detected and the floating point underflow ex-
ception is disabled;

– In some cases when at least one of the source operands is
denormalized.

• Software Emulation Exception (SEE) – An implementation depen-
dent software emulation exception occurs in the following cases:

– An attempt is made to execute an instruction that is not im-
plemented;
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Figure 5.7: Number of faults injected in each register (1559 faults in the
optimized jet engine controller campaign).

– An attempt is made to execute an mtspr or mfspr instruc-
tion that specifies an unimplemented Special Purpose Register
(SPR).

• External Breakpoint Exception (EBRK) – This exception occurs
when an external breakpoint is asserted.

Figure 5.7 shows the distribution of faults over the processor registers
in the optimized jet engine controller campaign (cf. Table 5.1). By using
the optimization method, the number of faults injected in a given register
is directly proportional to the number of times the register is read. The
figure clearly demonstrates the non-uniform distribution caused by the
optimization.

The stack pointer (R1 in the conventional usage of PowerPC proces-
sors) is targeted the most, followed by R12, which is used by the compiler
very often to calculate effective addresses for memory operations. Reg-
ister FR0 is also read very often in floating point calculations and the
condition register (CR) is read by all conditional jumps.
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Campaign No. Exp. Non-effective Detected Wrong Output

Jet Engine Non-optimized 6666 6532 (98.0%) 40 (0.6%) 94 (1.4%)

Controller Optimized 2658 2150 (80.9%) 166 (6.3%) 342 (12.8%)

Table 5.3: Distribution of outcomes of fault injection in memory.

Campaign Error detection coverage (95% confidence)

Jet Engine Non-optimized 29.9± 7.7%

Controller Optimized 32.7 ± 4.1%

Table 5.4: Error detection coverage estimations (faults injected in mem-
ory).

5.4.2 Fault Injection in Memory

Fault injection in memory locations was performed only for the jet engine
controller. Table 5.3 shows the distribution of the outcomes of faults for
both non-optimized and optimized fault selection.

The effectiveness of faults increases from 2.0% using non-optimized
fault selection to 19.1% choosing faults from the optimized fault-space.
The improvement in the effectiveness of faults is one order of magnitude,
similar to that obtained for faults affecting microprocessor registers. Ta-
ble 5.4 shows the error detection coverage estimations obtained with
non-optimized and optimized fault selection.

We here observe a similar pattern to that observed for microproces-
sor registers, where the error detection coverage estimation using non-
optimized or optimized fault selection is quite similar. In this case the
estimation from the non-optimized campaign is not very accurate since
the 95% confidence interval is still wide due to the small number of ef-
fective faults (only 2% of the total).

Figures 5.8 and 5.9 show the distribution of detected errors among
the exception mechanisms for the two campaigns. Again, it is possible
to observe that the error detection mechanisms are activated in a similar
but not identical way for non-optimized and optimized campaigns.

5.4.3 Fault-space Considerations

Applying the optimization method to the fault-space of registers for the
jet engine controller resulted in the determination of 7.7 × 106 distinct



5.4. EXPERIMENTAL RESULTS 103

Figure 5.8: Exception distribution in the non-optimized jet engine con-
troller campaign (40 faults in memory).

Figure 5.9: Exception distribution in the optimized jet engine controller
campaign (166 faults in memory).
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Campaign
Size of the fault-space

(time-location pairs for bit-flips)

Jet Engine Non-optimized 5.0× 108

Controller Optimized 7.7 × 106

Ratio 1.5%

Table 5.5: Comparison of fault-space sizes (registers).

Campaign
Size of the fault-space

(time-location pairs for bit-flips)

Jet Engine Non-optimized 1.9× 1011

Controller Optimized 3.3× 106

Ratio 0.0017%

Table 5.6: Comparison of fault-space sizes (memory).

time-location pairs for bit-flips. All the targeted registers are 32-bit
registers3. The complete non-optimized fault-space of these registers is
obtained by flipping each bit of each register, for each instruction exe-
cuted. This results in a set containing over 500 million bit-flips. Table 5.5
summarizes these results.

In the case of the memory fault-space 3.3×106 possible time-location
pairs for bit-flips were determined using optimized fault selection. The
complete fault-space of memory is obtained by flipping each bit of each
memory location used by the program, for each instruction executed.
Considering a memory usage of 100 kB for data by the jet engine con-
troller, the size of the complete fault-space is near 200 billion bit-flips.

5.5 Summary and Discussion

The study presented in this chapter shows the efficiency of eliminat-
ing faults with no possibility of activation and determining equivalence
classes among faults. A comparison with traditional non-optimized fault
selection (from the complete fault-space) shows an order of magnitude
increase in the effectiveness of faults. The fault-space itself is reduced

3Floating Point Registers are 64-bits long, limited by the used version of winIDEA
to the least significant 32-bits.
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two orders of magnitude for the registers and four to five orders of mag-
nitude for the memory. Even though these fault-spaces are still quite
large when targeting the complete execution of programs, the exhaus-
tive evaluation of small enough subroutines against all possible bit-flips
becomes possible.

All faults targeting the same bit of a given resource, before this re-
source is read, are considered equivalent. This way, only one representa-
tive of these faults is injected. To obtain an accurate estimation of the
error detection coverage (or any other dependability measure) it would
be necessary to apply a weight corresponding to the number of faults
in each equivalence class. However, the error detection coverage esti-
mated by the optimized fault selection is found to be quite similar to the
coverage estimated by non-optimized fault selection.

Even though activation of faults is ensured by the optimization tech-
nique (activation in the sense that the faulty resources are always uti-
lized) not all faults result in effective errors. Even though the optimiza-
tion increases the percentage of effective errors, a majority of the acti-
vated faults (both in registers and memory) is still non-effective. This
occurs either when the data is used in a non-sensitive way by the code, or
when the error remains latent within the time frame of the experiment.

There are several advantages in injecting faults in real-time, i.e., with-
out stopping the target processor. Furthermore, it would be interesting
to inject faults into a set of tasks instead of isolated applications (e.g., to
test partitioning mechanisms). For such an experimental setup it would
be interesting to use the optimization tool in real-time, without executing
a fault-free experiment (golden run). The valid locations for fault injec-
tion would be chosen on-demand once the time point for fault injection
had been defined.

The outcome of a fault is highly dependent on the targeted resource.
Faults in some registers were observed to have a greater tendency to cause
wrong output while faults in other registers cause detected errors more
frequently. This motivates a possible evolution in fault selection by using
the results of previous fault injection experiments to select the faults that
should be injected next (a combination of pre-injection and post-injection
analysis). It would be possible to achieve a faster evaluation of specific
error detection mechanisms by injecting faults in the resources that are
more likely to activate them.
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Even though activation of faults is ensured by the optimization tech-
nique (activation in the sense that the faulty resources are always uti-
lized) a majority of faults results in non-effective errors. An interesting
topic for further studies would be to investigate which activated faults
are non-effective and to find the reasons for this.



CHAPTER 6

Distributed Redundancy Management

A fault-tolerant system must be equipped with the means to detect and
recover from faults, so that it can be dependable even under faulty cir-
cumstances. To achieve this, a key factor is the ability to diagnose faults
and activate the appropriate isolation, reconfiguration and reinitializa-
tion mechanisms. In distributed systems, two primary goals of the recov-
ery process are to isolate any faulty nodes and to reconfigure the system
according to the remaining nodes in operation. Thus, working nodes
must maintain a consensus on the nodes that should, and those that
should not, participate in service delivery. The algorithms designed to
provide this consensus are usually known as processor-group membership
agreement protocols or, for short, membership protocols, where the word
membership refers to the set of working nodes.

This chapter proposes a membership protocol intended to serve as a
building block for distributed redundancy management. The protocol is
suitable for synchronous systems, where it is executed in a sequence of
rounds. It is especially designed for systems using time-triggered commu-
nication, where nodes broadcast periodically according to a predefined
round-robin order, i.e., the message schedule progresses in rounds. This
method is adopted by communication standards such as FlexRay [103],
TTCAN [104] or TTP [105] for scheduling static real-time traffic. Among

107
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other factors, the design of protocols for such systems is constrained by
the limited amount of available bandwidth, the failure assumptions and
non-functional requirements such as reliability and availability.

We assume a generalized omission failure model where send/receive
omissions can be either transient or permanent. The goal is to model
systems where nodes communicate, in the presence of accidental faults,
through a broadcast channel. The proposed membership protocol relies
on nodes observing the periodic transmissions of other nodes to detect
failures. Independent observations are unreliable and consensus on the
membership (consistent observation of failures and repairs) is achieved by
exchanging a configurable number of acknowledgements for each node’s
message.

Each sending node piggybacks k Boolean flags to its message so as
to confirm or refute having received the messages from its predeces-
sors, in the order of broadcast, that are in the membership. Increasing
k makes the protocol resilient to a greater number of simultaneous or
near-coincident failures but imposes a higher tax on the communication
bandwidth. For this reason, the balance between protocol resilience and
overhead can be adjusted, at design time, for each particular system.
We expect this feature to be useful in improving the cost-effectiveness of
real-time embedded systems.

To prevent redundancy exhaustion, it is essential to repair faulty
nodes and allow them to join the group again. After handling an error
locally (by employing backward or forward recovery) the node begins by
retrieving the global state, which includes, particularly, the membership
state. An important problem here is that the membership state is con-
stantly changing – at least potentially – as failures occur. Furthermore,
the nodes that are operating correctly must observe the recovery in a
consistent manner. For these reasons, inclusion of nodes in the member-
ship is designed to guarantee that all nodes include the repaired node or
none of them does, and that the repaired node is only reintegrated if it
agrees with the membership state.

In this thesis we consider group membership for systems relying on
synchronous communication, where messages are transmitted within a
known amount of time and nodes have a global notion of time. The mem-
bership problem in such systems was first described with detail in [106]
and [107], addressing specific synchrony premises. Group membership
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agreement is one of many consensus problems, which are at the core of
fault tolerance for distributed systems [108].

6.1 System Model and Assumptions

We consider a distributed system composed of a set of processing nodes
linked by a synchronous broadcast channel. We assume that the network
has either a bus or a star topology. Processor nodes have their clocks
tightly synchronized and execute a deterministic round-based schedule.
In each communication round, nodes transmit a fixed amount of traffic
in their pre-allocated transmission slots. For the membership protocol,
it is sufficient to count time in terms of transmission slots.

We assume the existence of a reliable start-up mechanism and accu-
rate clock synchronization mechanisms [109, 110] to maintain the sys-
tem’s synchrony. Nodes can identify the “current” slot number and,
consequently, the sender of each message. This can be implemented, for
example, by introducing unique message IDs to identify the sender or by
using unique message lengths that act as implicit message IDs.

Each node has a single dedicated transmission slot in every com-
munication round, which it uses to broadcast its messages. Processing
nodes are assumed to be fail-silent, i.e., either correct results or no re-
sults are produced, or fail-reporting, i.e., either the correct result or a
failure report, specifying the causes of failure, is produced. (The term
fail-signaling is sometimes used instead of fail-reporting.)

Under fault-free conditions, a node will always send a message in its
transmission slot. The physical link ensures that the message is delivered
to all other nodes (i.e., the receiving nodes). Under these circumstances,
a failure occurs when a node does not receive an expected message. Such
an event may be caused by a failure of the sending node, a failure of the
receiving node, a network failure or a combination of these.

We assume that failures can occur in the nodes, their incoming and
outgoing links (protocol processors which provide the interface to the
network), and the network itself. To simplify the discussion about the
kind of failures our protocol can handle, we map these failure types into
four different failure modes according to their persistence – permanent
or transient – and whether they affect the sending side or the receiving
side.
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6.1.1 Failure Modes

In our system model, a transient failure is assumed to affect a single
message. If several consecutive messages are lost, for instance, due to
electromagnetic interference on the network, then we consider this as
a case of multiple transient failures. Permanent failures remain in the
system until it is repaired, and may affect one node, its outgoing or
incoming link, or a point-to-point connection between a node and the
hub if the network has a star topology. (A permanent failure of a non-
redundant bus network will lead to a failure of the entire system, and
is thus not relevant for our membership protocol.) For the protocol,
any failure with a duration greater than two communication rounds is
considered permanent.

Regarding the impact on the system, we assume that faults lead to
sending/receiving omission failures. Thus, one failure prevents one node
either from sending or from receiving messages. A situation where some
nodes receive a message correctly and two or more nodes receive the
message incorrectly is assumed to occur only in the presence of multiple
failures. Such cases can be dealt with by configuring the protocol appro-
priately. Table 6.1 shows how the different types of component failures
are mapped to the four failure modes.

Component failures Permanent Transient

Sending node
Permanent sending

omission
Transient sending

omission
Outgoing link
Network (outgoing)

Network (incoming)
Permanent receiving

omission
Transient receiving

omission
Incoming link
Receiving node

Table 6.1: Mapping of component failures to failure modes.

The protocol allows all nodes to diagnose such failures in a consistent
manner. The first three failure modes in Table 6.1 lead to exclusion of
the faulty node, while transient receiving omissions do not. This feature
is intended for systems where each node executes multiple tasks. In
the event of a transient receiving omission, only a subset of the tasks
is likely to be affected. Thus, excluding the entire node from service
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delivery would disable correctly functioning parts of the system.
Other authors have also recognized the disadvantages of isolating

nodes that suffer transient failures. In [111], a count-and-threshold strat-
egy is adapted to a diagnostic protocol in order that faulty nodes are only
isolated after exceeding a certain threshold on the number of transient
failures. Their work, as well as ours, requires applications to be designed
to tolerate omissions (or outages).

6.1.2 Rationale

The rationale for this failure model is to have a clear definition of what
we mean by a failure, as we express the fault tolerance capabilities of
our protocol in terms of the number of simultaneous or near-coincident
failures the protocol can cope with. As previously explained, the num-
ber of simultaneous or near-coincident failures under which the protocol
maintains agreement on the membership depends on the number of ac-
knowledgement bits used.

From the viewpoint of healthy nodes, a failure of the sending node
means missing at least one message from this node or receiving at least
one failure report. In any of these cases the failure will be consistently
detected by all healthy nodes. The same can be assumed when an outgo-
ing link failure of the sending node occurs. These two failure types can
therefore be classified as sending failures.

On the other hand, when a receiving node suffers a transient failure
it will miss a single message. A transient incoming link failure will also
have the same consequence. These failures are classified as transient
receiving omissions. When the incoming link of a single node becomes
permanently faulty we classify it as a permanent receiving omission.

To model communication failures we must consider the topology of
the network [112]. We assume that the network is based either on a bus
topology or a star topology. Our protocol can be used with both re-
dundant and non-redundant networks. Common examples of redundant
networks are duplicated buses or duplicated stars. The protocol may be
used with other topologies as well but we restrict our analysis to these
two, which are very common, since the first step is to clearly define the
failure model. On a different network topology it may be necessary to
model failures in a different way, thereby requiring changes to the way
we express the fault tolerance capabilities of the protocol.
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The network failure model is supported by the following analysis: We
assume that applying structural redundancy will allow single transient
faults to be masked by the physical layer. When the network uses a bus
topology it is reasonable to assume that the probability of an error caus-
ing some nodes to receive the correct message while other nodes receive
a corrupted version, is negligible. If this assumption does not hold (e.g.,
slightly-off-failures are a concern), then the number of acknowledgement
bits must be increased to the maximum value, to guarantee that each
node acknowledges the messages from all other nodes.

When the star topology is used, network failures in the connection be-
tween the sending node and the star hub will be detected by all receiving
nodes. On the other hand, failures occurring in a receiving node’s con-
nection to the star hub will only be perceived by this node. We assume
that the hub itself will not introduce changes to this failure model. When
all nodes miss a single message due to a transient network failure we have
a transient sending omission. On the other hand, if only one receiving
node misses a single message, a transient receiving failure has occurred.
When a network failure is permanent, in a star topology, then either one
node is unable to send messages (permanent sending omission) or one
node is unable to receive messages (permanent receiving omission).

6.1.3 Node Restarts

The membership protocol provides the means for a restarted node to be
included in the membership again. In fault-tolerant systems, the avail-
able redundancy decreases as permanent failures occur. Thus, restarting
previously failed nodes and including them in the set of working nodes
is key to ensuring sustainable service delivery.

When a failed node is able to restart, after a downtime period, we
assume that fundamental data such as the communication schedule is
undamaged. Furthermore, we assume that the node is able to synchronize
itself with the active nodes, attempt to send messages and execute the
protocol’s reintegration routines.
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6.2 The Membership Protocol

This section makes a detailed description of the membership protocol.
For simplicity, we divide the explanation into three sub-protocols which,
combined, achieve consensus on membership changes, i.e., exclusion of
failed nodes and inclusion of restarted nodes. The three sub-protocols
are:

• Agreement on exclusion, which handles departure from the mem-
bership of nodes that have failed.

• Inclusion ordering, which supplies the number of the ongoing com-
munication round to restarting nodes, so that they can establish
an order of reintegration.

• Agreement on inclusion, that specifies how nodes attempt rein-
tegration and how the remaining nodes achieve agreement on a
successful inclusion.

We begin by introducing the notation and definitions used in the remain-
der of this chapter.

6.2.1 Notation and Definitions

Let N denote the set of processing nodes {N1, N2, . . . , Nn}, ordered by
the round-based schedule, where n is the number of nodes. Each node
Ni maintains a local view νi(s) of the membership set, where s ∈ N and
νi(s) ⊆ N . Intuitively, νi(s) is the view of the membership that node Ni
has at the synchronous time-point s (at the end of transmission slot s).

The membership protocol relies on the periodic messages sent by
each node to piggyback a sequence of acknowledgements. Each node will
append k acknowledgement flags to its message, confirming (or refuting)
the reception of each of the previous k messages from the nodes in the
membership. An inclusion flag (i-flag) is also appended to each message
to allow restarted nodes to be included in the membership. The periodic
messages therefore respect the following format:

message = 〈data, ack1, · · · , ackk, i-flag〉.

The data field contains the payload of the message, which we ignore
in this protocol specification. The ack flags, as well as the i-flag, are
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Booleans and can thus be represented by a single bit. The three sub-
protocols describe how the ack flags and the i-flag are set in response
to certain events. The protocol responds to message reception, loss and
sending events. These three events are mutually exclusive, i.e., in any
given transmission slot a node will either receive, lose or send a message.

A message loss may occur due to corruption of one or more bits during
transmission. In other words, it is desirable to detect corrupted messages
and discard them. To deal with this, it is common practice to protect
physical frames with checksums – redundant information added to each
message so that errors can be detected and, in some cases, corrected.
Error detection is fundamental to ensure that the membership protocol
utilizes uncorrupted information. To this end, we assume that protocol-
specific data (ack flags and i-flag) are included in the message payload
and protected with an effective checksum technique [113].

In our protocol a node is said to be sponsoring node Nj if it ac-
knowledges, using one of its ack flags, the last message from Nj . Under
normal conditions each node will have k sponsors (and will be sponsoring
k nodes). If, in a given slot s, the membership set contains ns nodes and
ns ≤ k, a node should not sponsor itself. In this special case, each node
will be sponsoring its ks = ns − 1 membership predecessors in order of
transmission; otherwise, ks = k.

We define the predicate lastSponsor(Ni, Nj) as true if and only if node
Ni is sponsoring Nj but the immediate successor of Ni in the membership
is not sponsoring Nj . Intuitively, this states whether Ni is the last node
to acknowledge the previous message from Nj .

We define a failure report as a message that has all flags (ack flags
and i-flag) set to false. This special message is sent by nodes when they
exclude themselves from the membership, i.e., when they wish to inform
other nodes that they have failed. We define an inclusion request as a
message that has all ack flags set to false and the i-flag set to true. This
message is sent by nodes attempting inclusion in the membership.

We define the predicate failure(Ni, s) as true (in slot s) if and only
if node Ni suffers a failure, of any kind, in slot s. When a specific fail-
ure mode is to be addressed, we use the predicates failureps(Ni, s), fail-
urepr(Ni, s), failurets(Ni, s) and failuretr(Ni, s). We define the predicate
restart(Ni, s) as true if and only if node Ni has restarted in transmission
slot s.
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6.2.2 Agreement on Exclusion

Each node holds a membershipView set, representing its view of the
membership. At the end of slot s, νi(s) equals the membershipView of
node Ni. This set can be conveniently represented as a Boolean array
containing n elements. We assume that the start-up mechanism supplies
the set of initially active nodes, i.e., νi(0), to the membership service of
each node. The goal of the membership protocol is to ensure consensus
on membership changes occurring after start-up.

The two events that trigger the reactive part of the membership pro-
tocol are message receptions and message losses. The active part of the
protocol is triggered by a message sending event. We use a “pull” conven-
tion to model message sending, i.e., the lower layers request a message
from the membership service at a node’s sending slot.

• In line 5 of Algorithm 6.1 a message is received and stored in the
msg variable. The message sender is the owner of the current slot,
represented by the sid variable.

• In line 18 a message loss event is reported (the slot time elapses
and no message is received). The sid variable identifies the node
which failed to send.

• A message sending event is reported in line 24, where the msg

variable, representing the message about to be transmitted, is built
(by setting the ack flags and i-flag) and sent.

Agreement on exclusion requires nodes to keep track of the received
messages and their acknowledgements. A convenient way to do this is
for each node to have a presentNodes set. This set is used to gather
evidence that either a message or one of its acknowledgements has been
received, from the sending node or from its sponsors, respectively. At
start-up, the presentNodes set is initialized with the same contents as
the membershipView.

In Algorithm 6.1, the presentNodes set is updated at four different
locations. One location is line 21, when a message from Nsid, a node in
the membership, is lost. That node is removed from the presentNodes

set. Though an expected message from that node was lost, an acknowl-
edgement might be received from one of its sponsors. Thus, the node
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membershipView: Local view of the membership set;1

presentNodes: Local view of the set of present nodes;2

currentRound: Cyclic round counter (from 1 to 3n+4);3

nextIFlag: Status of this node’s i-flag on the next sent message;4

On Message Reception:5

msg: The received message;6

sid: Sending node ID (the current slot number);7

if Nsid ∈ membershipView then8

if msg.i-flag = true and currentRound > 3 then9

nextIFlag := true;10

if msg = failure-report then11

Remove Nsid from presentNodes;12

Add acknowledged nodes to presentNodes;13

exclusionDecision(sid);14

else if sameView(msg) and currentRound = (sid× 3 + 2) then15

nextIFlag := true;16

inclusionDecision(sid, currentRound);17

On Message Loss:18

sid: Sending node ID (the current slot number);19

if Nsid ∈ membershipView then20

Remove Nsid from presentNodes;21

exclusionDecision(sid);22

inclusionDecision(sid, currentRound);23

On Message Sending:24

sid: This node’s ID (the current slot number);25

if Nsid ∈ membershipView then26

Build msg acknowledging the sponsored nodes;27

if 1 ≤ currentRound ≤ 3 or nextIFlag = true then28

msg.i-flag := true;29

else30

msg.i-flag := false;31

send (msg);32

Remove Nsid from presentNodes;33

exclusionDecision(sid);34

inclusionDecision(sid, currentRound);35

else36

send (failure-report);37

Algorithm 6.1. Pseudo-code of the membership protocol.
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is kept in the membershipView temporarily until its last sponsor broad-
casts. A second location is line 13. When a message is received from a
membership node, the nodes that are positively acknowledged by that
message are added to the presentNodes set. A third location is line 12,
when a failure report is received from a node in the membership – this
node will be excluded once its last sponsor broadcasts.

Last, a node removes itself from the presentNodes set upon message
sending (in line 33). This is done to ensure that each node receives at
least one acknowledgement for its own message; if this does not happen,
the node suffered either a sending failure or a permanent receiving failure
and must exclude itself from the membership. Note that once a node
removes itself from the presentNodes set, it will only add itself again in
line 13 if some other node acknowledges its message.

A given node Nj will be removed from the membership view of Ni
if and only if Ni does not receive a message from Nj nor any positive
acknowledgement for that message from any sponsor of Nj . Node Ni re-
moves Nj from the membership immediately after the sending slot of the
last sponsor of Nj . This is achieved by calling the exclusionDecision

procedure at several locations in Algorithm 6.1. The pseudo-code for
this procedure is shown in Algorithm 6.2.

The exclusionDecision procedure (line 1 of Algorithm 6.2) has
two main functions. First, it excludes the nodes that are not in the
presentNodes set by the time their last sponsor has broadcasted (line 4).
This may be a self-exclusion of a node that does not receive any positive
acknowledgement for its own message.

Second, it handles self-exclusion of nodes that have suffered perma-
nent receiving failures. In line 6 a node removes itself from its mem-
bership view when the ks − 1 messages from the preceding nodes in the
membership have been lost. As we will describe later in this chapter,
the protocol is resilient to f < ks − 1 failures in any two consecutive
rounds of communication; if a node loses ks− 1 expected messages, then
it concludes that it cannot receive any messages.

6.2.3 Inclusion Ordering

The protocol establishes a cyclic order that nodes must follow to attempt
inclusion in the membership. The goal is to ensure that there are never
two inclusions being executed at the same time. Ensuring inclusion or-
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On Exclusion Decision:1

sid: The current slot number;2

if ∃Nj : Nj /∈ presentNodes and lastSponsor (Nsid, Nj) then3

Remove Nj from membershipView;4

if the last ks−1 membership messages were lost then5

Remove Nself from membershipView;6

On Inclusion Decision:7

sid: The current slot number;8

currentRound: The current round number;9

if nextIFlag = true then10

local nextSlot := (sid mod n) + 1;11

local nextRound := currentRound;12

if nextSlot = 1 then13

nextRound++;14

if nextRound = (nextSlot × 3 + 3) then15

Add NnextSlot to membershipView;16

Add NnextSlot to presentNodes;17

nextIFlag := false;18

Algorithm 6.2. Decision procedures.
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dering only requires nodes to agree upon the value of a cyclic counter of
rounds. This cyclic round counter determines which node can join the
membership in a given round.

For this purpose we define an inclusion cycle as a sequence of rounds
where every node has three dedicated inclusion rounds. The length of
every such inclusion cycle is 3n+4 rounds, where n is the number of
nodes. The round counter is therefore incremented by 1 each time a new
round begins; if the value of the counter is 3n+4, the next value is 1 (a
new inclusion cycle begins).

Agreement on the round number is kept by the membership nodes as
the communication schedule progresses, by updating the currentRound

variable. A failed node is, however, unable to determine the round num-
ber unless active nodes explicitly signal it. The reason for this is that one
cannot expect nodes to execute the protocol or maintain correct state in-
formation after a crash. To deal with this problem, the protocol supplies
the round number to restarting nodes through a simple algorithm which
uses the i-flag of working nodes in the membership. This service does
not impose any additional overhead, since the i-flag is required to signal
successful reintegrations (as described in the next section).

Figure 6.1: Round number signaling by a node in the membership, using
the i-flag of its messages (one message per round).

During the first 3 rounds of an inclusion cycle, all sending nodes set
their i-flag to true; on the fourth round their i-flag is set to false. This
is done in lines 28 to 31 of Algorithm 6.1. The following 3n rounds of
each inclusion cycle constitute the inclusion rounds, where nodes can
send inclusion requests and attempt to join the membership. On every
third inclusion round, nodes set their i-flag to false (done in line 31 of
Algorithm 6.1). This method guarantees that the i-flag is set to false
during, at least, one out of any three consecutive rounds. The only
exception occurs intentionally during the first 3 rounds, where the i-flag
is always set to true. Figure 6.1 depicts the inclusion cycle by showing
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the state of a node’s i-flag on the messages sent during an inclusion cycle.
Any restarting node synchronizes its round counter with the mem-

bership nodes by listening to their messages on the network. When the
i-flags are observed to be true in three consecutive rounds, a restarting
node sets its currentRound variable to 3. We note that receiving one
message where the i-flag is true in each of those three rounds is enough
to detect the start of an inclusion cycle.

6.2.4 Agreement on Inclusion

The procedure for agreement on node inclusion starts when a given node
Nr synchronizes its round counter with the membership nodes. During
the inclusion cycle, described in the previous section, node Nr has one
dedicated round to send its inclusion request: round 3r+2. No other
node will send an inclusion request in this round since node IDs are
unique.

An inclusion request is a special type of message which does not
include the regular data payload sent by membership nodes. Instead,
the message should include the membership view of the restarted node,
acquired by listening to the ongoing messages, so that all other nodes are
able to confirm that a successful inclusion is taking place. The concern
here is that failures during restart would lead to a node being included
in the membership without agreeing on the membership state.

There is no need for explicit broadcast of the membership state by
active nodes. A restarting node listens to incoming messages and detects
which other nodes are communicating (and therefore in the membership).
It is sufficient for such a node to do this two rounds prior to sending its
inclusion request, i.e., during round 3r for node Nr. After that, the node
should start executing the agreement on exclusion sub-protocol. This
process is fault-intolerant, as a restarting node may obtain an incorrect
membership view if failures occur. However, that node will be denied
reintegration once its inclusion request is validated by the remaining
nodes.

A given node Nr will be included in the membership if it sends an
inclusion request in round 3r+2 with a correct view of the member-
ship. Since Nr is not in the membership, all receiving nodes perceive the
message as an inclusion request (line 15 of Algorithm 6.1). Normal mes-
sages can therefore be distinguished from inclusion requests without any
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additional message fields. Any nodes that receive an inclusion request
compare their view to the restarting node’s view (also in line 15). If the
views are equal then the inclusion request is correct and the inclusion
will be acknowledged by setting the i-flag to true in the next message to
be sent (line 16 of Algorithm 6.1). When a correct inclusion request or
its acknowledgement (through the i-flag) is received, the restarted node
is included in the membership in round 3r+3. The inclusion is completed
in lines 15 to 18 of Algorithm 6.2.

Failures during inclusion attempts may prevent a restarted node from
joining the membership. The restarting node may obtain an incorrect
view of the membership; a sending failure may prevent the inclusion
request from reaching the membership nodes. In these cases the inclusion
will be unsuccessful and the restarted node must detect this condition
and attempt inclusion in the next inclusion cycle. To achieve this, the
node must verify if at least one received message contains the i-flag set to
true, acknowledging its successful inclusion. If not, the restarting node
must attempt inclusion at a later point in time.

6.2.5 Integration with Node-Layer Fault Tolerance

It is worth emphasizing an important feature of the protocol: it can be
integrated with node-layer fault tolerance mechanisms, i.e., error detec-
tion and recovery mechanisms executed locally at each node. First, it
allows node-layer error detection mechanisms to notify the membership
service that an error prevents a node from producing correct results.
To achieve this, the node must exclude itself from its membership view
upon internal error detection. In Algorithm 6.1, when the node is about
to send a message, it checks whether or not it belongs to the membership.
If it does not, a failure report is sent (line 37). This ensures that nodes
exhibit a fail-reporting behaviour.

Second, the protocol is capable of providing accurate self-exclusion
information to node-layer recovery mechanisms. When such mechanisms
exist, they can access a node’s view of the membership (locally available
for each node) to check whether that node has been excluded from service
delivery by the remaining working nodes. This feature allows nodes to
rapidly trigger local recovery procedures upon faults that affect their
ability to provide service at the system layer.
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6.2.6 Tuning the Protocol

The membership protocol ensures membership consensus if no more than
f < ks − 1 failures occur in any two consecutive communication rounds.
Under normal conditions, as we discussed earlier, ks = k, where k is the
number of acknowledgement flags on each message. The value k can be
set to any number between 3 and n− 1.

For the protocol to work there must be, at any time, at least 3 mem-
bership nodes not subject to failures. This is the minimum required num-
ber of nodes; the nodes that are fault-free can vary with time. Periods
of the execution when this assumption does not hold must be properly
handled by blackout mechanisms, such as the ones used in TTP. During
temporary blackouts the nodes attempt to maintain themselves in a safe
state while monitoring the network. When other nodes start to recover
it is possible to return to a normal operating mode.

Choosing the number k of sponsors per node defines the balance
between resilience to failures and available resources – a classical trade-
off in dependable computing. The choice of k is therefore application-
dependent in the same way as choosing the strength of checksums for
embedded real-time networks [113].

The first factor that one must weigh is the expected error proba-
bility for each message (counting only errors that are uncorrectable by
the checksums). This factor is difficult to estimate. There is empiri-
cal evidence, combined with probabilistic analysis, substantiating that
several consecutive transmission slots can be affected by electromagnetic
interference [114]. The error probability in such extreme conditions is
determined by the duration of the external events and by the length of
each TDMA slot (shorter slots lead to lower error rates).

Nonetheless, in normal circumstances (assuming uncorrelated events)
the error rates can be low enough to disregard simultaneous and near-
coincident failures. The TTP/C protocol, for example, assumes at most
a single failure in two consecutive rounds. This reasoning indicates the
protocol can be safely configured with small values of k (close to 3).

If the possibility of correlated failures is to be addressed, then the
value k must increase accordingly. However, there are fundamental lim-
its on the achievable fault tolerance. An effective clique avoidance tech-
nique is to shut down nodes that view themselves as part of a sub-group
containing less than half of the total number of nodes [115]. This pre-
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vents uncoordinated and potentially hazardous actions from being taken
by minority groups that can communicate only among themselves, by
allowing only the majority clique to continue functioning. Consequently,
regardless of the number of sponsors per node, a system cannot tolerate
the failure of more than half of its nodes, meaning that reasonable values
of k should still be low even considering correlated failures.

6.3 Prototype Implementation

We have implemented the membership protocol in a prototype of a dis-
tributed system that uses time-triggered communication. The network is
based on COTS Ethernet hardware, programmed to schedule messages
according to the Time Division Multiple Access (TDMA) method. This
prototype implementation allowed us to test the feasibility and the per-
formance of the protocol. Figure 6.2 depicts our experimental setup,
which includes 6 processing nodes.

Figure 6.2: The experimental real-time Ethernet network.

The computer nodes in Figure 6.2 are Phytec’s phyCORE-MPC565
development boards [102]. Each contains a Freescale MPC565 micro-
controller, based on the PowerPC architecture. The boards include an
RJ45 socket and an Ethernet controller. Additionally, the boards include
controllers for CAN and serial communication which are unused in our
setup.

The two boards shown on the upper-left corner of Figure 6.2 are
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expanded with a custom board. We developed these expansion boards in
order to output the internal clock of the nodes and to have a 7-segment
display (for showing the number of active nodes in the membership). We
connect the clock outputs to an oscilloscope in order to measure their
synchronization. The expansion boards can be used with any processor
board (to test for slight differences among nodes). Moreover, we connect
a regular PC running Wireshark – a protocol analyzer – to the network,
in order to verify the execution of the protocol. Each board executes a
small software module that allows failure scenarios to be configured and
tested.

The experimental network is based on a star topology with a central
switch – HP’s ProCurve Switch 2324. The Ethernet controller included
in the boards runs at 10 Mbit/s (10Base-T standard). To maintain the
TDMA schedule we implemented the daisy-chain clock synchronization
algorithm [116]. This algorithm adjusts the clock of each node every time
a new message is received. The adjustment is a fraction of the difference
between the expected and the actual arrival time of a message.

6.3.1 Network Configuration

The length of Ethernet frames can vary between 64 and 1518 bytes. We
used 64-byte packets in our experiments – 46 bytes of payload data, 4
bytes for the CRC checksum and 14 bytes for the MAC header. The
MAC header identifies the source address (i.e., the message sender) and
the destination address, which is set to broadcast. With this configuration
the estimated propagation delay for the Ethernet frames was 215 µs, with
occasional variations of a few µs.

The duration of a transmission slot was configured to 400 µs for
most tests (the lower bound for this parameter is ∼250 µs in our setup),
resulting in 2.4 ms communication rounds that aim to be representative
of real-time systems. Under these conditions the daisy-chain algorithm
maintained the processor nodes synchronized within 3 µs. Table 6.2
summarizes the most important network parameters.

The membership protocol was configured to 4 sponsors per node.
Each 64-byte packet therefore included 5 bits of membership information
(4 acknowledgements and 1 i-flag).
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Parameter Value

Number of nodes 6
Transmission slot 400 µs

Communication round 2.4 ms
Reintegration cycle 52.8 ms

Packet size 64 bytes
Clock skew (measured) < 3 µs

Table 6.2: Configuration of the real-time Ethernet network and resulting
clock skew.

6.3.2 Network and Membership Performance

The nominal bandwidth of the network is 10 Mbit/s. However, real-
time communication using TDMA must take into account propagation
delays and clock skews to ensure that there are never two messages being
transmitted at the same time. This is achieved by inserting guard times
between consecutive messages. Due to these guard times, we estimate
that our experimental network can achieve a maximum bandwidth of 3.3
Mbit/s using 1518-byte packets.

In our experiments, we used 64-byte packets and transmission slots
of 400 µs, which results in a network bandwidth of 1.3 Mbit/s. This
way, we can calculate the resource usage when the protocol executes at
nearly the highest possible frequency for our setup. Since each frame
reserves 18 bytes for the header and the CRC checksum, we have, for
this configuration, 920 Kbit/s of effective bandwidth available for payload
data (which includes the membership information).

In our experiments, each message had 5 bits of piggybacked mem-
bership information and messages were sent once every 400 µs. The
bandwidth required by the membership service is therefore 12.5 Kbit/s.
Since we have 920 Kbit/s of effective bandwidth available, the member-
ship service imposes a 1.4% communication overhead. If we consider the
network’s nominal bandwidth of 10 Mbit/s, the membership’s overhead
is less than 0.2%. We emphasize that these values were obtained for
64-byte packet sizes, which provide the lowest effective bandwidth. In-
creasing the packet size would reduce the membership’s communication
overhead significantly.

A departure is detected by the group when the node’s last sponsor
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transmits its message. In the worst case, this may occur n− 1 slots after
the message is lost. Since a node may fail immediately after broadcasting
a message, it may take n slots until a message is missed by the other
nodes. The latency for agreement on exclusion is therefore (6 + 6− 1)×
400 µs = 4400 µs. This and other important latency values are shown in
Table 6.3. It should be noted that these are calculated (not measured)
values.

The worst case latency for reintegration occurs when node 6 (the last
node) wishes to be reintegrated and starts listening on round 2 of the
inclusion cycle; the node has to wait 3× 6 + 7 = 25 rounds for the next
complete delimiter pattern and then 3×6−1 = 17 rounds to be included
in the membership.

Activity Latency

Agreement on exclusion of a crashed node 4.4 ms
Fault-free inclusion from restart 100.8 ms

Recovery of the round number (included in the 100.8 ms) 57.6 ms

Table 6.3: Node departure and node reintegration latencies (worst case).

A direct implementation of our protocol requires nodes to acknowl-
edge their immediate predecessors. An important concern is therefore to
ensure that nodes have enough time to react to received/lost messages.
In our experimental setup, we have verified through extensive testing
that the nodes were able to send their acknowledgements on time. How-
ever, for systems where nodes have a long reaction time, the order of the
acknowledgements can be set in a way such that node Ni sponsors the
nodes starting at Ni−2, instead of sponsoring its immediate predecessor.

Another important aspect of the implementation of membership pro-
tocols is that the processing capacity of nodes may be very limited. For
our experimental setup, we estimate that the size of the code related to
the membership service is less than 4KB; the data structures occupy 42
bytes in memory. We measured the CPU usage with and without the
membership service enabled and observed that the CPU overhead of the
membership service is negligible.
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6.4 Related Research

This chapter addresses the group membership problem for synchronous
systems. The seminal efforts described in [106] and [107] were followed by
many solutions for systems relying on synchronous communication [117,
118, 119, 120]. More recently, the membership problem has been clari-
fied [121] and the design of membership services has been improved with
respect to modularity [122] and configurability [111].

Group membership has also been widely studied in the context of
asynchronous systems [123, 124, 125, 126, 127]. In such systems, the
challenge is in finding the best way of dealing with the well-known result
that consensus is impossible under complete asynchrony [128]. One note-
worthy approach is to make systems partly synchronous by constructing
“wormholes” [129].

Closely related to our line of research – where systems are character-
ized by their reduced bandwidth and strict dependability requirements
– is the TTP communication protocol [105]. It includes a membership
service that provides agreement under the assumption that there is, at
most, a single failure in any two consecutive rounds. Our protocol, in
contrast, is able to cope with multiple simultaneous or near-coincident
failures. Furthermore, TTP requires the membership state to be peri-
odically broadcasted to support node inclusion. In our approach, nodes
recover the membership state by listening on the network.

A solution that isolates TTP’s membership protocol from the CRC
mechanisms was presented in [118]. Their protocol uses a single acknowl-
edgement flag to ensure that faulty nodes are promptly removed from the
membership under the single failure assumption, whereas our approach
imposes a minimum overhead of three bits to implement a similar func-
tionality. However, their scheme does not provide inclusion capabilities
and, in fact, the sub-protocols that we propose for inclusion ordering and
agreement on inclusion can be used with their solution, as well as TTP’s,
to guarantee a reliable restart process. This would require adding only
the i-flag to their message format.

The protocols proposed in [130] and [117] require nodes to send the
complete membership vector along with all periodic broadcasts. The
drawback of this approach is that the overhead grows quadratically with
the number of nodes. An approach to minimize the effect of this prob-
lem is to send the membership vector only when there are membership
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changes [131, 132]. This method is viable in networks that provide event-
driven scheduling in addition to the static schedule. In comparison to
these protocols, our protocol can be configured with the maximum value
k = n−1 to achieve a similar degree of fault tolerance, thereby requiring
the same bandwidth. However, the value k can be decreased, providing
a trade-off between resilience and communication overhead.

In [133] a solution based on a variable number of sponsors is pre-
sented, but in a context unrelated to hard real-time systems. Ref. [134]
briefly and informally presents a protocol based on a variable number
of sponsors as well. In that scheme, permanent node failures lead to a
rapid decrease in the reliability of the protocol and prevent nodes from
reintegrating the membership (when none of their sponsors are work-
ing). On the other hand, reintegrating nodes is simple and does not
incur additional overhead.

6.5 Summary and Discussion

This chapter proposed a group membership protocol for guaranteeing
consistent views of failures and restarts among nodes in a distributed
system – a building block for system-layer fault tolerance. The protocol
is especially designed for systems using time-triggered communication.
From the design perspective, it tolerates a configurable number of simul-
taneous or near-coincident failures. This provides the system designer
with the ability to adjust the reliability of the protocol to the available
resources.

Moreover, the protocol supports inclusion of restarted nodes under
the same failure assumptions as exclusion. One problem in achieving
this is that, before joining the group, a restarted node must recover
the correct membership state (which may change as failures and other
restarts occur). This issue is solved by establishing a cyclic order that
nodes follow to send inclusion requests. The sub-protocols that provide
inclusion ordering and agreement on inclusion can be used to extend
other solutions existing in the literature which provide no means for
including nodes in the group.

An important feature of the protocol is that it can be integrated with
node-layer fault tolerance mechanisms. First, it is capable of providing
accurate self-exclusion information to node-layer recovery mechanisms.
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This feature allows nodes to rapidly trigger local recovery procedures
when they are excluded from service delivery by the remaining nodes.
In this situation, a node can recover independently while the remaining
working nodes continue providing service. Once the local recovery is
complete, the node may send an inclusion request and join the group.

Second, it allows node-layer error detection mechanisms, executed
locally at each node, to notify the group membership service that an error
prevents a node from producing correct results. In this case, the usual
approach is to ensure fail-silence, i.e., the node sends no more messages.
In contrast, our protocol can send a failure report upon error detection.
The practical outcome of using fail-report semantics is that node failures
are not interpreted by other nodes as communication failures. As we
show later, this has a positive impact on the protocol’s reliability.





CHAPTER 7

Formal Verification of Consistent Diagnosis

A challenge in the development of distributed algorithms is to ensure
that they are free from design faults. This is especially relevant when
designing fault tolerance mechanisms, which are introduced with the ex-
clusive goal of improving system dependability but have the potential to
generate severe failure modes when poorly designed [27]. With this in
mind, we chose to examine the correctness of our membership protocol
using model checking.

Over the past years, automated formal methods have become an at-
tractive way to increase the confidence in that a design is fault-free. We
used Spin [73, 74] – a well established model checker for distributed soft-
ware systems – to formally verify the correctness of our protocol. Model
checking tools work on models of the system, which can be built before
the actual implementation takes place. Thus, one of the advantages of
model checking is the ability to detect design faults at early development
stages.

Model checking is a process for verifying whether a model fulfills
a given specification. A model is an abstract description of a system,
written in a formal modeling language. A system’s specification is a set
of properties, or logical formulæ, which the system is expected to satisfy.
Model checking tools accept a model and its specification as input. Their

131
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output is either “valid”, when the model is correct, or a counterexample,
i.e., a case where the correctness properties are violated.

Spin is an explicit-state model checker. As such, it builds a graph
of the reachable system states; each vertex explicitly represents a global
system state and each edge represents a possible state transition. Verify-
ing a property consists of checking that it holds in all vertices reachable
from the initial system state. Explicit model checkers are affected by the
well known problem of state-space explosion. As a model grows, so does
the number of possible global states. Visiting all reachable states often
becomes a computationally expensive problem.

The rapid evolution of computers gave researchers access to enough
memory and processing power for dealing with fairly complex problems.
Paper proofs are common in the literature but may overlook special cases,
as it was the case in [118], which contained flaws subsequently discovered
using automated tools. This has led researchers to advocating the general
use of automated formal methods for verifying sensitive algorithms [135].
Due to their criticality, membership protocols have been the object of
formal verification using techniques such as model checking [136] and
theorem proving [137].

This chapter describes how we modeled the protocol and presents
the results of the exhaustively verified model instances. We begin by
specifying the correctness properties and continue by detailing the formal
models of the protocol and the time-triggered communication channel.
Finally, we discuss the results of the verification process and summarize
the main conclusions of the chapter.

7.1 Formal Specification of the Protocol

We begin by specifying the set of correctness properties which should
hold throughout the execution of the protocol. These are first expressed
using predicate logic and then translated into LTL or assertions – the
two methods for specifying properties in Spin. We consider four safety
properties, that ensure nothing wrong happens throughout the execution,
and two liveness properties, that ensure something useful will eventually
happen during the execution.

• Agreement. Any two non-faulty nodes have the same view of the
membership: ∀s,∀Ni, Nj ∈ N : ¬∃s′ : s′ < s ∧ (failure(Ni, s′) ∨
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failure(Nj , s′)) =⇒ νi(s) = νj(s).

This property specifies that the membership state should be consensual
among nodes that have never failed. Consequently, it does not constrain
the behaviour of nodes that have just failed (and are temporarily still
part of the group) nor that of nodes that have failed in the past but
recovered successfully. We therefore introduce the integrity property.

• Integrity. Any two nodes – faulty or non-faulty – that include
themselves in their own view of the membership have the same
view of the membership: ∀s,∀Ni, Nj ∈ N : Ni ∈ νi(s) ∧ Nj ∈
νj(s) =⇒ νi(s) = νj(s).

This property pertains to all nodes, including those that have failed. Note
that crashed nodes may stop executing the protocol and their notion of
membership view becomes irrelevant. Crashed nodes are assumed to be
fail-silent or fail-signaling, and we can therefore map a node’s crash to
a permanent sending omission. If a failed node is still executing the
protocol, then it will agree with the membership state until it excludes
itself from its own view (it becomes self-excluded). Otherwise, it becomes
silent in order not to cause any damage to the system.

• Accuracy. Fault-free nodes only exclude faulty ones from the mem-
bership: ∀s,∀Ni, Nj ∈ N : (¬∃s′ : s′ < s ∧ failure(Nj , s′)) ∧ Ni /∈
νj(s) =⇒ ∃s′′ : s′′ < s ∧ failure(Ni, s′′).

Naturally, it is necessary to prevent situations where a healthy node is
excluded from the group of operational nodes. This is specified by the
accuracy property. Furthermore, as we discussed in the previous chapter,
nodes that are excluded from service delivery at the system layer should
rapidly initiate node-layer recovery. To achieve this, we introduce the
self-exclusion property.

• Self-exclusion. A node excluded by fault-free nodes also excludes
itself from its view of the membership: ∀s,∀Ni, Nj ∈ N : (¬∃s′ :
s′ < s ∧ failure(Nj , s′)) =⇒ (Ni /∈ νj(s) =⇒ Ni /∈ νi(s)).

The above four safety properties define the membership view of each
node with respect to all other nodes – fundamentally, nodes either agree
on the membership state or self-diagnose as faulty. However, these safety
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properties alone do not rule out trivial solutions. If, for example, all
nodes keep all other nodes in their membership view, then these safety
properties would be trivially fulfilled. We therefore specify two liveness
properties which guarantee that the system does react to node failures
and restarts in the appropriate way.

• Exclusion liveness. A node that suffers a sending failure (tran-
sient or permanent) or a permanent receiving failure is eventu-
ally excluded from the views of fault-free nodes: ∀Ni ∈ N ,∃s :
failurets(Ni, s) ∨ failureps(Ni, s) ∨ failurepr(Ni, s) =⇒ ∃s′ : s′ >
s ∧ (∀Nj ∈ N : (∃s′′ : s′′ < s′ ∧ failure(Nj , s′′) ∨Ni /∈ νj(s′)).

• Inclusion liveness. A restarted node is eventually included in the
membership if no failures occur: ∀Nr ∈ N ,∃s : restart(Nr, s) ∧
(∀Ni ∈ N ,¬∃s′ : s′ > s∧ failure(Ni, s′)) =⇒ ∃s′′ : s′′ > s∧ (∀Nj ∈
N : (∃s′′′ : s′′′ < s′′ ∧ failure(Nj , s′′′)) ∨Nr ∈ νj(s′′)).

A limitation of these liveness properties is that they are unbounded
in time, i.e., they make no restrictions on the amount of time it should
take for excluding/including nodes. Bounded liveness is important for
real-time systems which require well-known limits on the time required
for handling errors. As we will see in the following sections, Spin pro-
vides convenient ways of specifying properties that should eventually
hold. However, placing bounds on liveness usually requires changes to
the system model in order to count the passage of time.

Another possibility is to determine the liveness bounds through test-
ing, as a complement to formal verification. One of the parameters which
is known in an experimental setup is the duration of each transmission
slot. This makes it possible to measure the actual time it takes to handle
errors and repairs.

7.2 System and Protocol Models

The formal modeling language accepted by Spin is called Promela.
The Promela language is appropriate for defining finite-state transi-
tion systems. Concurrent processes can be specified using inter-process
communication via global variables (to model shared memory) or via
message channels that can be synchronous or asynchronous. We used
synchronous channels in order to model a synchronous system.
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7.2.1 The Broadcast Channel

The Promela language does not provide broadcast channels. There are,
nevertheless, many simple ways to model broadcast channels using the
existing point-to-point channels. We defined a broadcast process that has
one incoming channel and n outgoing channels – one to each processor
node. The broadcast process notifies events to nodes by sending messages
to their individual channels. The channels and the data structures are
defined in Figure 7.1.

mtype = {MSG_RECEPTION, MSG_LOSS, MSG_SENDING};

typedef message

{

bool ack[K];

bool iFlag

};

chan toNetwork = [0] of {mtype, message};

chan toNode[N] = [0] of {mtype, message};

Figure 7.1: Data structures for the broadcast channel.

The broadcast process consists of a simple do loop that (i) reports
a message sending event to the owner of the current slot, (ii) waits for
the node to send its message and (iii) distributes that message to all
other nodes. The Promela code for the broadcast process is shown in
Figure 7.2 (note that the for macro is replaced by a do loop during
pre-processing).

7.2.2 The Processor Nodes

Each processor node has its local view of the membership state, which
can be represented as a Boolean array containing n elements. There are
n local views in the system, totaling n×n Booleans. The necessary data
structures are shown in Figure 7.3. The views of all nodes are global
variables of the model, as this is the most convenient way for specifying
the properties through assertions and LTL formulas. However, each node
accesses only its own local view.
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do

:: failureInjector();

toNode[currentSlot] ! MSG_SENDING(DUMMY_MSG);

toNetwork ? msgType(msg);

for(i,0,N) /* broadcast the message */

if

:: i != currentSlot ->

if

:: !failureTS && !failurePS[currentSlot]

&& !failureTR[i] && !failurePR[i] ->

toNode[i] ! msgType(msg) /* deliver message */

:: else ->

toNode[i] ! MSG_LOSS(DUMMY_MSG) /* failure */

fi;

timeout /* wait for the receiving node to execute */

:: else -> skip

fi

rof(i,0,N);

currentSlot = (currentSlot + 1) % N; /* next slot */

if

:: currentSlot == 0 -> /* new round */

currentRound = (currentRound + 1) % (3*N+4);

failuresLastRound = failuresThisRound;

failuresThisRound = 0 /* update failure counters */

:: else -> skip

fi

od;

Figure 7.2: The broadcast process.

typedef membershipView

{

bool view[N]

};

membershipView localView[N];

Figure 7.3: The membership views of all processor nodes.



7.2. SYSTEM AND PROTOCOL MODELS 137

Modeling the protocol from the viewpoint of membership nodes re-
spects the structure of Algorithm 6.1. Each node is a Promela process
that responds to the events notified by the broadcast process, as shown
in Figure 7.4. Algorithms 6.1 and 6.2 are, in essence, a compact version
of our Promela code.

do

:: toNode[nodeID] ? nMsgType(nMsg) ->

if

:: nMsgType == MSG_RECEPTION ->

/* On Message Reception */

:: nMsgType == MSG_LOSS ->

/* On Message Loss */

:: nMsgType == MSG_SENDING ->

/* On Message Sending */

fi

od;

Figure 7.4: Structure of the processor nodes, where the comments rep-
resent the code in Algorithms 6.1 and 6.2.

We prevent any interleaving of instructions among node processes. In
Promela, we specify this by using the timeout statement, which blocks
the broadcast process until each receiving node completes processing the
message reception/loss event, before distributing the message to the next
node. The more commonly used atomic statements accomplish a similar
effect. The reason for modeling broadcasts in this way is that the state-
space becomes significantly smaller. However, this is not the general
way of modeling synchronous broadcast channels and is only suitable for
time-triggered systems.

The difference between synchronous systems and time-triggered sys-
tems is essentially one of scheduling. A system is said to be synchronous
when it meets two conditions:

• There is an upper bound on message transmission delays.

• Processes make progress and take actions within known amounts
of time.

These two properties make it possible to synchronize processes and im-
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plement time-triggered schedules where nodes follow a predetermined
round-based order for sending their messages. Time-triggered systems
are therefore a special case of synchronous systems. The fact that nodes
make tightly synchronized progress makes it possible to verify the sys-
tem without considering arbitrary orders in the execution of instructions.
This facilitates the verification process significantly.

7.2.3 Modeling Failures

Failures are modeled by having the broadcast process call a failure injec-
tion routine at the beginning of each new transmission slot. We abstract
away failures occurring at intermediate steps of the execution. This
abstraction is possible since the impact of failures occurring during a
transmission slot is the same of failures that occur at the start of that
slot. We can use this abstraction to limit the possible interleaving of
failure injection instructions with protocol instructions.

We use three Boolean arrays and one Boolean variable to keep track
of which type of failure affects each node. The failure injection routine
consists of a non-deterministic set of actions that update these arrays,
according to the failure model described in the previous chapter. Each
of the four failure modes has a specific impact on the system:

• Permanent sending omission. None of the messages sent by a node
will reach any other node.

• Permanent receiving omission. A node will not receive messages
any longer.

• Transient sending omission. A single message from a node will not
reach any of its intended receivers.

• Transient receiving omission. A single message will not reach one
of its intended receivers.

The Boolean variable and arrays are used by the broadcast process
to determine the nodes that receive messages and those that fail to re-
ceive them. The code in Figure 7.5 begins by clearing transient failures
that affected any nodes in the previous transmission slot. Then, unless
the maximum number of failures has been reached (a parameter of the
model), failures may be injected at non-deterministic points in time. In
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Figure 7.5 there are two fallible nodes: N1 and N3 which are the nodes
with indices i=0 and i=2). As we will see later, the list of fallible nodes
is one of the parameters of the model and we have to verify one instance
of the model for each combination of fallible nodes.

for(i,0,N) /* clear previous slot’s transient failures */

failureTR[i] = false

rof(i,0,N);

failureTS = false;

do

:: failureCounter < MAX_FAILURES && /* inject a failure? */

failuresThisRound + failuresLastRound < F ->

if /* choose one of the fallible nodes */

:: i = 0

:: i = 2

fi;

if /* activate one of the four failure modes */

:: i == currentSlot -> failureTS = true

:: failureTR[i] = true

:: failurePS[i] = true

:: failurePR[i] = true

fi;

failuresThisRound++; /* increment the failure counters */

failureCounter++

:: break /* stop injecting failures (non-deterministic) */

od;

Figure 7.5: Failure injection routine (inline), called by the broadcast
process.

7.2.4 Modeling Restarts

We abstracted away some of the independent restart process of nodes
in order to provide Spin with a model verifiable within reasonable time
and memory constraints. The restart is non-deterministic, i.e., a node
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may or may not be restarted. However, nodes are only restarted on
the round before they may attempt inclusion (in the inclusion cycle).
This limits the amount of possible restarts to a minimum which allows
safety properties to be verified, while retaining most of the information
concerning liveness.

The model was restricted to restarting nodes that are failed from
start-up, i.e., in the initial system state the working nodes already ex-
cluded the restarting nodes from the membership. Furthermore, we re-
duced the possible ways in which a node obtains a wrong membership
state. Our criterion was to allow line 15 of Algorithm 6.1 to be exe-
cuted with the two possible outcomes: either the message contains the
correct membership view or not. This way we abstract away the numer-
ous wrong membership views. Our main concern with these restrictions
was to ensure that the safety properties, as well as exclusion liveness,
maintained their complete meaning.

7.2.5 Specifying the Correctness Properties

One way of checking properties in Spin is to use assertions. This method
is appropriate for specifying invariant properties. We placed assertions at
the end of each slot to verify the safety properties, which should hold at
all synchronous time-points. The agreement property was defined using
the code in Figure 7.6 (the other three safety properties are specified in
a similar manner, also at the end of each slot).

Regarding the liveness properties, we used Spin’s LTL manager to
specify the appropriate LTL formulas. We verified that a faulty node is
eventually excluded by fault-free nodes, i.e., exclusion liveness:

�(node_failure→♦node_exclusion).

Moreover, we verified that a restarted node is eventually included in the
membership if no failures occur, i.e., inclusion liveness:

�(node_restart→♦(node_inclusion || restart_failure)).

The two liveness properties were verified simultaneously, by providing
the LTL manager with their conjunction. Spin creates a never claim
which consists of the negation of the LTL formula. The verification
process consists of checking that there is no possible execution matching
the negated formula.
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for(i,0,N) /* find a non-faulty node Nj */

if

:: !faulty[i] -> j = i; break

:: else -> skip

fi

rof(i,0,N);

for(i,0,N) /* non-faulty nodes agree with Nj */

if

:: !faulty[i] ->

for(p,0,N)

assert(localView[i].view[p] == localView[j].view[p])

rof(p,0,N)

:: else -> skip

fi

rof(i,0,N);

Figure 7.6: Assertion for verifying the agreement property.

7.2.6 Parametrization of the Model

Due to the well known problem of state-space explosion, the size of the
model was limited in diverse ways. Explicit-state model checkers generate
the graph of all system states reachable from the initial state. Conse-
quently, it is computationally expensive to verify very large models. To
deal with this problem we introduced a set of parameters that limit the
complexity of the verification process by restricting the following values:

• the total number of nodes n,

• the number of sponsors per node k and the associated maximum
value f = k − 2,

• the total number of failures that may occur during the execution,

• the list nodes that are subject to failures and

• the nodes that are restartable.

Thus, it becomes necessary to verify many different instances of the
model, i.e., verify the model for many different combinations of parame-
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ters. This does not provide a complete proof of correctness but increases
our confidence in that the protocol is free from design defects.

7.3 Verification Results

The correctness of various model instances was checked by executing
a large set of verifications. These were done using Spin version 4.3.0
running on a 3.20 GHz Pentium 4 CPU with 1 GB of RAM. Two ad-
vanced reduction algorithms provided by Spin were extensively used:
state-vector compression and minimized automaton encoding. These two
techniques have the potential to reduce the memory required for storing
the state-space of large models, while the runtime of the verification pro-
cess can be expected to increase. Combined, these techniques reduced
the state-space of the largest model instances to less than 1% of their
uncompressed size, making it possible to verify models requiring more
than 30 GB using about 200 MB.

Table 7.1 summarizes the results of the verified protocol configura-
tions regarding the safety properties. Table 7.2 provides the equivalent
results for liveness properties. Each line in the tables shows the aver-
age number of states and verification time of several model instances.
The reason for this is that the fallible nodes and the restartable nodes
are parametrized as a list for each model instance. Thus, given n nodes
where t are affected by faults and r can restart, we verified all combina-
tions of fallible/restartable nodes by generating Cnt × Cnr combinations
of model parameters.

We created a small tool that generates model instances automatically,
verifies them using Spin and summarizes the results of the verification
process. The fifth row of Table 7.1, for example, gathers the results of
verifying safety properties on a system with 7 nodes where 2 nodes are
fallible; we verified C7

2 = 21 model instances, where each instance took an
average of 2.1 hours to be exhaustively verified and reached on average
1.11× 108 states.

In total, 181 instances of the model were exhaustively verified during
8 days of continuous computation. The protocol configurations shown
in Tables 7.1 and 7.2 were chosen to cover distinct values of parameters
n and k for which the model would fit in the available memory. We
attempted to verify larger models (e.g., 6 nodes where 3 of them may
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n k Failures Fallible Nodes Restartable Nodes No. Instances Avg. States Avg. Time

4 3 4 Any single node – 4 4.97× 105 17 s

5 4 2 Any single node Any single node 5× 5 = 25 3.99× 107 35 min

6 3 2 Any single node Any single node 6× 6 = 36 3.54× 107 41 min

6 5 3 Any two nodes – C6

2
= 15 1.08× 108 2.0 h

7 4 3 Any two nodes – C7

2
= 21 1.11× 108 2.1 h

Table 7.1: Exhaustively verified protocol configurations with respect to
safety properties.

n k Failures Fallible Nodes Restartable Nodes No. Instances Avg. States Avg. Time

4 3 4 Any single node – 4 3.60× 105 13 s

5 4 2 Any single node Any single node 5× 5 = 25 2.85× 107 28 min

6 3 2 Any single node Any single node 6× 6 = 36 2.48× 107 30 min

6 5 3 Any two nodes – C6

2
= 15 1.46× 108 3.8 h

Table 7.2: Exhaustively verified protocol configurations with respect to
liveness properties.

fail) which eventually consumed all the memory. No errors were found
during those partial verifications.

We only verified systems with a single restartable node. This is not
expected to limit the validity of the analysis since there are never two
inclusions being executed at the same time – there is no concurrency
among nodes attempting inclusion in the membership. The protocol is
designed for each repaired node to wait for its turn in the inclusion cycle
before sending the inclusion request. This was checked by asserting that
an inclusion request from a given node Nr in round 3r+2 leads to an
inclusion decision being completed during round 3r+3 (a sanity check).

7.3.1 Further Considerations

In general, verifying more model instances can only contribute to an
increased confidence in that a design is defect-free. Similarly to soft-
ware testing, one should choose relevant cases that can be verified within
reasonable limitations of time and computational resources. Another
important aspect is to ensure that the system model itself is a correct
representation of reality. Random simulation (available in Spin) is an ef-
fective way to test the model before attempting exhaustive verification.
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Furthermore, we believe it is good practice to attempt to verify prop-
erties which are not expected to hold. If Spin finds a counterexample
as expected, then one may inspect it to determine whether the sequence
of events had been anticipated. If no counterexamples are found, then
it most likely means that the model is inaccurate. This methodology
therefore contributes to validating the formal system model.

The Spin tool is very efficient in finding counterexamples when they
do exist, owing much to the strategy of depth-first searching the state-
space. We attempted to verify, for instance, a liveness property which
specified that if N0 fails, then N1 will eventually be excluded from the
membership. This was checked for a system with 6 nodes, with k = 4
and fallible nodes N0 and N1. Clearly, the property does not hold, as
node N1 may remain non-faulty throughout the entire computation even
though it is fallible. In this case, it took Spin 12.3 seconds to find an
appropriate counterexample. Checking the same system with respect to
the actual correctness properties takes about 7 minutes.

This efficiency in finding counterexamples for “evident” design faults
can be used to our advantage. Several protocol configurations were ver-
ified where Spin returned without completing the verification, having
ran out of memory. These executions do, however, contribute to in-
creasing the confidence in that the design is correct. Additionally, Spin
provides alternative search methods, such as bit-state hashing, for fast
partial exploration of the state-space. We opted for presenting only the
results of exhaustive verification runs, since partial verifications may fail
to discover counterexamples even when they do exist.

Ultimately, the most desirable outcome would be to check the cor-
rectness of protocol configurations that are actually used in real systems.
Since model checking only proves that the correctness properties hold
on the verified models, it may be advantageous to verify instances of
the model that match the final configuration of a system, e.g., to verify
the model for n = 10 when a real system is composed of 10 processor
nodes. If verifying such configurations exhaustively is computationally
infeasible, then at least partially verifying them would still be valuable.

To some extent, this approach is related to just-in-time certifica-
tion [138], which advocates the usage of automated formal methods at
runtime or load time. The premise is that the verification process is more
effective by deferring parts of it to the moment when the final configu-
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ration is known. Likewise, in our case it would be sensible to focus the
verification effort on a particular protocol configuration once the details
of a given architecture are settled.

7.4 Summary and Discussion

An important step in developing mechanisms for distributed redundancy
management is to ensure that they are free from design faults. Such
mechanisms are introduced in systems with the goal of improving de-
pendability but may cause severe system failures if designed incorrectly.
With this in mind, we chose to examine the correctness of our member-
ship protocol using the Spin model checker.

We formalized the correctness properties and the protocol in the
Promela language, in order to build a model which could be verified
by Spin. The exhaustively verified protocol configurations contribute
substantially to our confidence in that the protocol obeys the specified
properties. As a model checker, Spin has the advantage of being able to
pinpoint design flaws at early development stages. On the other hand,
explicit-state model checkers face the well known problem of state-space
explosion. In our case, this effect is partly caused by the highly combi-
natorial nature of failures. For this reason, a major effort was put into
creating an efficient model which was successfully verified for configura-
tions of up to seven processor nodes.

One of the main strategies for reducing the state-space was to pre-
vent instructions of nodes from being interleaved. This way of modeling
broadcast channels is applicable to time-triggered communication sys-
tems, where processor nodes operate in close synchrony – in each trans-
mission slot there is only one sender and all receivers are able to interpret
the message before the next slot. This property of time-triggered com-
munication systems can be used for simplifying the verification process,
particularly when using model checking. It is therefore not surprising
that this paradigm is used in numerous communication standards in-
tended for safety-critical applications.

One should expect any verification process to have sources of uncer-
tainty. We identified three aspects of our verification effort that create
uncertainty and therefore required consideration. First, it is important
to validate the formal model and make sure it is an accurate represen-
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tation of reality. We tested the model, as it was being built, by using
Spin’s random simulation features. Moreover, once the model was com-
plete, we ran the verification for properties that were not expected to
hold and checked that the counterexamples had been foreseen.

A second aspect is that the correctness properties must be meaning-
ful and precise in defining the behaviour of the system. This point is
related to the previous one, since writing a good specification is just as
important as building an accurate model. One limitation of our liveness
properties is that they leave the timing facet unbounded. Even though
we observed that the system reacts to failures in a timely manner – both
in the experimental setup described in the previous chapter and through
random simulation using Spin –, the liveness properties are not as strict
as the safety properties. Liveness could be effectively bounded either by
extending the formal model or through extensive testing.

Lastly, model checking proves that the protocol is correct for the
configurations that were exhaustively verified. This also increases the
confidence in that the protocol is correct for the general case but there is
some uncertainty regarding unverified configurations. Thus, in addition
to the protocol configurations which were successfully verified in this
chapter, a safe approach would be to verify model instances matching
configurations that are actually used.



CHAPTER 8

Interoperability between Layers

The issue of interoperability between layers was addressed in part by the
previous chapters. One form of interoperability is the notification of self-
exclusion provided by the system layer to the node layer. When a node
is excluded by the remaining nodes, the node also excludes itself from
its view of the membership (if it is still able to execute the protocol).
By passing this information to the node layer, a faulty node is able to
initiate local recovery and return to providing service after a downtime
period.

Another form of interoperability is fail-reporting, which consists in
sending a message that receiving nodes perceive as a signal that the node
has failed. Using fail-reporting, a node can notify the system layer that
an error was detected locally by node-layer mechanisms but transparent
recovery was not possible. In Chapter 6 we described that the protocol
gives the option to report failures, even though it is assumed that fail-
silent semantics is the normal case that the protocol must handle. In
this chapter we analyze whether using fail-report semantics is beneficial
to the protocol’s reliability.

To implement distributed redundancy management, nodes maintain
a consensus on which nodes are operational a which ones are faulty.
This service is provided by the processor-group membership protocol.

147
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In distributed systems where the processing nodes offer effective fault-
containment between different application processes executed on a node,
it is desirable for the protocol to provide information also on which tasks
are operational. This chapter extends the protocol to allow each node
to send multiple messages in each communication round. Moreover, the
protocol is extended to keep track of application-process failures.

8.1 Advantages of Fail-Report Semantics

In the system model described in Chapter 6 nodes are assumed to fail
silently, i.e., by sending no more messages when an error is detected.
This class of failure is modeled by a permanent sending omission. If
a node fails silently, the remaining nodes cannot discover whether it
was a sending omission or a receiving omission without executing the
protocol. This would not be the case of all internal failures were signaled
by sending a failure report. In this section we investigate whether fail-
report semantics has a positive impact on the reliability of the protocol.

To this end, we analyze a scenario where the group membership pro-
tocol executes only in presence of node failures which are detected by
node-layer mechanisms. Using fail-silent semantics, faulty nodes send
no more messages; using fail-report semantics, faulty nodes send a mes-
sage which all other nodes interpret as a signaled failure rather than a
communication failure.

Consider that the membership protocol is configured with k = 3 and
is therefore capable of tolerating a single failure in any two consecutive
rounds. If two nodes fail silently at the same time, and the second node
broadcasts immediately after the first, then there will be two expected
messages missing from the network. The remaining nodes fail to receive
two consecutive messages and diagnose themselves as faulty. This is done
in line 6 of Algorithm 6.2 to ensure that nodes exclude themselves from
the membership when they are unable to receive any more messages.
Thus, due to the failure of two nodes, all remaining nodes self-exclude
from the membership and initiate local recovery.

Since the protocol can tolerate up to f = k − 2 failures in any two
consecutive rounds of communication, any node that fails to receive k−1
consecutive messages diagnoses itself as faulty. TTP’s group membership
protocol has the same property. It is designed to tolerate a single failure
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and any node failing to receive two consecutive messages diagnoses itself
as faulty.

The alternative is for a node to report failures instead of failing
silently. If all nodes send a failure report upon error detection, then
it is possible to prevent self-exclusion of working nodes. We modified the
failure injector model of the previous chapter, shown in Figure 7.5, to
inject only node failures which are detected (the other possible failure
modes are not considered). The Promela code in Figure 8.1 injects a
simultaneous failure (by self-exclusion) of up to k−1 nodes. This models
a situation where up to k− 1 nodes detect an internal error at the same
time.

for(j,1,K) /* any K-1 nodes may fail */

if /* choose one node */

:: i=0 :: i=1 :: i=2 :: i=3 :: i=4 :: i=5 :: i=6

fi;

localView[i].view[i] = false /* the node excludes itself */

rof(j,1,K);

Figure 8.1: Failure injection model, modified to inject only node errors
that are detected (for a system with seven nodes).

By excluding a node from its own view of the membership, that node
sends a failure report according to line 37 of Algorithm 6.1. Thus, the
code in Figure 8.1 causes up to k−1 nodes to send a failure report instead
of failing silently (the situation which would lead all nodes to diagnosing
themselves as faulty).

The modified Promela model was verified using Spin for systems
with 6 and 7 nodes configured with k = 3 and k = 4 (four combinations
in total). Spin verified that the correctness properties (specified in the
previous chapter) hold in these configurations. This shows that the pro-
tocol is capable of handling certain failure modes by reporting failures
which are not handled if nodes fail silently.

We can therefore draw the conclusion that using fail-report instead
of fail-silent semantics has a positive effect on the protocol’s reliability.
However, the effect is difficult to quantify. Furthermore, this result is
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difficult to generalize to other systems, even though it is reasonable to
presume that fail-report semantics may improve the reliability of other
protocols for synchronous systems.

8.2 Multiple Transmission Slots

We assumed earlier in the thesis that nodes only transmit one message
per communication round. However, when a node contains multiple
tasks, the network schedule should accommodate multiple messages from
that node in each round (possibly one message per task). A trivial so-
lution would be to concatenate the messages of all tasks into a single
physical message, but this solution is not general. Without changing
the protocol, we describe how it can maintain consensus on the working
nodes while allowing them to broadcast more than once in each round.

To build a service implementing our protocol, the lower network lay-
ers notify the reception/loss of physical messages to the membership
service. The service reacts to those events and updates the membership
set accordingly. To support multiple transmissions by each node, we pro-
pose that the events notified to the membership service refer to logical
messages, instead of physical ones. We define a node’s logical message
as the concatenation of all physical messages sent by that node during
one round. When a physical message is lost by a given node, that node
will consider the corresponding logical message to be lost.

Rather than imposing physical concatenation of messages (as in the
trivial solution), this method concatenates messages logically. By doing
so, it allows nodes to have multiple transmission slots in each round.
The reception/loss of a node’s logical message should be notified to the
membership service only after the last transmission slot of that node.
Accordingly, only the last physical message transmitted by each node
should carry membership information (acknowledgements and i-flag re-
ferring to logical messages).

This scheme does not change the membership protocol. It only
changes the way in which membership events are reported to the mem-
bership service. In a system with n nodes there will be n logical messages
transmitted every round, regardless of the number of physical messages.
Thus, the overhead of the membership protocol depends only on the total
number of nodes.
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8.3 Application-Process Membership

So far, we have described a processor-group membership protocol that
guarantees consensus on the status of all processor nodes. In the previous
section the protocol was extended to allow each node to broadcast multi-
ple messages in each communication round. In this section we describe,
without giving a full specification, how the protocol can be extended to
keep track of both node failures and application-process (or task) failures.

To achieve this for our protocol, we can add one extra bit to each
physical message sent by a task. This fail-report bit indicates that a
message is carrying a failure report for the task, rather than a regular
message. When multiple tasks, running on the same node, share the
same transmission slot to send their messages, one bit is added for each
application (with the same indication).

A task is removed from the task-group by other nodes when they
receive a failure report for that task. Task failures are this way reported
to all nodes in the system. When nodes receive a regular message, instead
of the failure report, from a task which had previously failed, the task
is included in the task-group again. When a complete node fails (and is
removed from the processor-group membership) all its tasks are removed
from the task-group by the other nodes.

This type of membership agreement is weaker than the processor-
group membership agreement described in the previous chapters. When
all nodes receive the failure report, there will be agreement on inclu-
sion/exclusion of the corresponding task. However, if any other failures
occur simultaneously, the nodes will disagree on the task membership
until a fault-free period of the execution allows the nodes to refresh the
status of all tasks. Such cases can only occur when a task fails and there
is a near-coincident network failure affecting the transmission of the re-
port. It should be noted that the node must send a failure report for a
failed task at all transmission slots dedicated to that task.

With respect to the processor-group membership protocol, there is
no difference between messages that carry failure reports and those that
carry regular membership information. That is, the acknowledgement
bits and the i-flag will have the same function for both message types.
Similarly, a message containing a failure report will be handled by the
node membership service exactly in the same way as a regular message.
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8.4 Summary and Discussion

This chapter unified the building blocks that were presented in the the-
sis. In the previous chapters we began by investigating techniques for
ensuring containment of faults within application processes. When an
application error is detected, the operating system attempts recovery us-
ing the lightweight checkpointing technique. If the recovery fails or the
task fails to send a message, the operating system sends a failure report
on behalf of the faulty application.

However, an application error may remain undetected and cause the
entire node to fail. The same may happen if the operating system itself
is faulty. Moreover, network failures may prevent a node from sending or
receiving messages. These cases are handled by the group-membership
protocol by excluding the complete node from service delivery. In this
case, all the tasks executing on the excluded node are also considered to
be faulty.

In some cases the operating system is able to detect errors locally
that prevent the entire node from delivering service. In such cases we
show that it is beneficial to signal failures by sending a failure report. It
was shown in [139] that signaling failures improves the performance of
protocols for asynchronous systems. For our protocol, which is appropri-
ate for synchronous systems, we show that fail-report semantics improves
the protocol’s reliability. This piece of evidence suggests that it might
also be the case in other protocols for synchronous systems, even though
the result is difficult to generalize.
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Conclusions

This thesis deals with principles and techniques for achieving fault toler-
ance in distributed embedded systems. More specifically, it addresses the
problem of how to implement fault tolerance in a cost-effective way in
systems where the processor nodes execute many applications and system
services, so called integrated systems. As a starting point, we propose
a design philosophy called layered fault tolerance, which identifies three
layers – the system layer, the node layer and the hardware layer – where
mechanisms for fault tolerance can be implemented. We argue that one
should make a careful trade-off between the cost and the complexity of
mechanisms that are employed at each layer to minimize the overall cost
of a system. While all three layers are important for achieving high de-
pendability, the contributions of the thesis focus on the node layer and
the system layer.

A key issue in the design of integrated embedded systems is how
to achieve temporal and spatial partitioning of programs. This issue
is addressed in the context of Secern – an approach for implementing
support for partitioning and fault tolerance in real-time kernels. Secern
includes several mechanisms that aim to confine errors to the applica-
tions where they originate. Several of these mechanisms were imple-
mented as extensions to the µC/OS-II real-time kernel. These mecha-
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nisms were memory protection, processor exceptions, system call protec-
tion and application-specific checks. The extended kernel was developed
for Freescale’s MPC5554 microcontroller.

Memory protection was achieved by using the microcontroller’s mem-
ory management unit. One disadvantage of using MMUs in real-time
systems is that they can increase the jitter (variability) in the execution
time of real-time tasks. The jitter problem arises when an application
accesses a page which is not listed in the cache holding page entries – the
processor’s TLB. In our design, TLB-misses are avoided by updating the
TLB during context switches. The approach is to insert in the TLB the
pages that belong to a process before switching context to that process.
This adds some overhead to the context switches, which was measured
and found to be acceptable for many applications. Since this method
prevents TLB misses to occur during the execution of tasks, it avoids
execution time jitter and thereby simplifies the response time analysis
for hard real-time tasks.

Unfortunately, it was not possible to conduct an extensive experi-
mental assessment of the mechanisms included in the extended real-time
kernel within the time frame of this thesis project. Nevertheless, we de-
veloped a fault injection tool and conducted a series of preliminary tests
of these mechanisms. The tests were conducted according to a methodol-
ogy of focused fault injection, whose main objective is fault removal, i.e.,
identification and removal of design faults. It consists of setting up finely
controlled experiments in accordance with the system properties that are
to be verified. Since our goal was to verify the partitioning mechanisms,
we configured the system with two processes, injected faults into the con-
text of one of them and observed the outcome. Given that the extended
kernel is supposed to handle this type of fault, any experiment where the
fault-free task or the operating system are affected would indicate the
existence of a design flaw in the partitioning mechanisms.

The experiments exposed two vulnerabilities in the extended kernel:
one related to configuration management, where some memory pages
were marked as writable for all processes while they should be read-
only; and one related to an inherited design decision regarding context
switches which is not appropriate for partitioned systems. Even though
these experiments did not provide an exhaustive assessment of the ex-
tended real-time kernel, they demonstrated the importance and potential
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benefits of using fault injection for fault removal in partitioned systems.

In addition to the mechanisms included in the extended real-time
kernel, Secern includes an approach to checkpointing and rollback re-
covery of real-time tasks named lightweight checkpointing. The goal of
this approach is to provide detection, isolation and recovery of errant ap-
plication processes. The checkpoints are primarily intended for recovery
from errors caused by transient hardware faults. However, a key feature
is that the recovery strategy can distinguish between transient hardware
faults and software faults. It relies on the checkpointing mechanism to
diagnose the actual cause of an error. If an error reappears after a roll-
back, it assumes that the cause is a software fault. If this happens, the
operating system transfers control to an application-specific exception
handler, which the application designer can use to implement a recov-
ery strategy for software faults. This strategy could be based on design
diversity, data diversity, or simply do a restart of the task.

The lightweight checkpointing scheme allows applications to save
snapshots of their state to main memory while providing them with a
service for locking the checkpoint area using memory protection. The
content of the snapshots is determined by the application designer. The
locking makes it possible to deal with failure modes where an applica-
tion attempts to overwrite any previous checkpoints. To deal with error
detection latency, the scheme uses three checkpoints, transparently to
applications, and enforces a minimum time between calls to the lock-
ing mechanism. We show that this method ensures the integrity of
application-level checkpoints while introducing only a small and fixed
overhead to each checkpoint for locking the memory.

In addition to applying fault injection as a means of verification, the
thesis addressed the problem of making fault injection campaigns more
efficient. A problem commonly observed during fault injection campaigns
is that most faults are not activated when chosen randomly. Thus, since
each experiment is a time-consuming procedure, it is important to reduce
the number of experiments that have no impact on the system.

To this end, a pre-injection analysis was proposed and experimentally
evaluated. We compared the results of selecting faults randomly with
injecting faults in registers and memory locations only when they are
read. This increased the effectiveness of the fault injections by one order
of magnitude. The pre-injection analysis is suitable for emulating the
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effects of faults that hit registers and memory locations directly, since it
selects the points in time where resources are read, rather than written.
Nevertheless, we observed that the error detection coverage estimation
was, in our experiments, similar when selecting faults randomly or using
the pre-injection analysis.

Even though it is possible to develop node-layer mechanisms for mak-
ing each node highly dependable, nodes may still fail. To deal with node
failures and errors occurring in the communication network, a system
must be equipped with appropriate system-layer mechanisms. To this
end, the thesis addressed the problem of redundancy management in
distributed embedded systems.

We propose a group membership protocol for guaranteeing consistent
views of failures and restarts among all working nodes. The protocol is
especially designed for systems using time-triggered communication. We
assume that errors lead to send/receive omissions that can be either
transient or permanent. The protocol tolerates a configurable number
of simultaneous or near-coincident failures. This provides the system
designer with the ability to adjust the reliability of the protocol to the
available resources.

Moreover, the protocol supports inclusion of restarted nodes under
the same failure assumptions as exclusion. To achieve this, we address
the problem of ensuring that a restarted node recovers the correct mem-
bership state – which may change at any point in time – before joining
the group. The concern is that a node must remain excluded from the
group if any failures prevent that node from agreeing on the membership
state. We found that node inclusion is safe by allowing only a single node
to be reintegrated in any given round. This is achieved by establishing
a cyclic order that nodes follow to send inclusion requests. The part of
the protocol that provides agreement on inclusion can be combined with
other solutions existing in the literature that have no such functionality.

We formalized the correctness properties and the protocol in the
Promela language, in order to build a model which could be verified
by Spin. The exhaustively verified protocol configurations contribute
substantially to our confidence in that the protocol obeys the specified
properties. As a model checker, Spin has the advantage of being able to
pinpoint design flaws at early development stages. On the other hand,
explicit-state model checkers face the well known problem of state-space
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explosion. In our case, this effect is partly caused by the highly combi-
natorial nature of failures. For this reason, a major effort was put into
creating an efficient model which was successfully verified for configura-
tions of up to seven processor nodes.

One of the main strategies for reducing the state-space was to pre-
vent instructions of nodes from being interleaved. This way of modeling
broadcast channels is applicable to time-triggered communication sys-
tems, where processor nodes operate in close synchrony – in each trans-
mission slot there is only one sender and all receivers are able to interpret
the message before the next slot. This property of time-triggered com-
munication systems can be used for simplifying the verification process,
particularly when using model checking. It is therefore not surprising
that this paradigm is used in numerous communication standards in-
tended for safety-critical applications.

The thesis also considers the problem of interoperability between
node and system layers. An important feature of the group member-
ship protocol is that it can be integrated with node-layer fault tolerance
mechanisms. First, the protocol is capable of providing accurate self-
exclusion information to node-layer recovery mechanisms. This feature
allows nodes to rapidly trigger local recovery procedures when they are
excluded from service delivery by the remaining nodes. Second, it allows
node-layer error detection mechanisms, executed locally at each node,
to notify the group membership service that an error prevents a node
from producing correct results. In this case, the usual approach is to
ensure fail-silence, i.e., the node sends no more messages. In contrast,
our protocol can send a failure report upon error detection. The prac-
tical outcome of using fail-report semantics is that node failures are not
interpreted by other nodes as communication failures.

This leads us to the final contribution of the thesis. We show that
using fail-reporting instead of fail-silent semantics has a positive impact
on the protocol’s reliability. We modified the formal model of the proto-
col to show, using Spin, that the protocol is capable of handling certain
failure modes by reporting failures which are not handled if nodes fail
silently. This shows that the reliability of the protocol improves by using
fail-report semantics. This piece of evidence suggests that it might also
be the case in other protocols for synchronous systems.

To summarize, the thesis proposes several ideas on how to imple-
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ment fault tolerance in distributed embedded systems where the pro-
cessor nodes are shared by many system functions. These ideas have
been assessed and validated by implementation studies, fault injection,
probabilistic modeling and model checking. Nevertheless, there are un-
certainties associated with these efforts. This thesis was written in the
hope that, despite these uncertainties, designers of distributed embedded
systems will find the proposed ideas useful.
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