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ABSTRACT

This thesis describes the design and implementafi@npre-injection analysis technique
aimed at reducing the cost of validation of faoletant computer systems through fault
injection.

Fault injection has become an important step inptfioeess of validating and evaluating
the reliability of computer systems. Its purposéoivalidate fault-tolerance mechanisms
and measure the dependability of these systems. RBG® a fault injection tool
developed at the Department of Computer Enginegri@balmers University of
Technology. The pre-injection analysis technique applied to this fault injection tool.

Using assembly-level knowledge of the computer esyst— Motorola’'s MPC565
(an implementation of the PowerPC architecturehe- fire-injection analysis produces
fault-sets with a higher proportion of effectivaulfd than random fault selection. The
experimental results obtained using optimized aaddomly selected fault-sets are
compared. The programs executed during the fayéction experiments were an
implementation of the quicksort algorithm and a ptex jet engine controller. Single
bit-flip faults were injected into the user regist®f the MPC565 via its Nexus port (a
standard debug interface for embedded applicatioRe) the jet-engine controller
workload, single-bit flips were also injected irite data, heap and stack segments of the
main memory.

The pre-injection analysis yielded an increase o€ @rder of magnitude in the
effectiveness of faults, a reduction of the faelt-sf two orders of magnitude in the case
of registers and four to five orders of magnitudéhie case of memory.
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1. INTRODUCTION

1.1. Context

Computer systems are increasingly being used iatysafitical applications such as

aerospace or vehicular systems. To achieve the tégiendability required by these

applications, systems are designed with fault &wlee mechanisms in order to deliver
correct service even in the presence of faultslt§aunay, for instance, occur when

processors are disturbed by high energy partiaileb ss neutrons or heavy-ions. Such
particles may sometimes interfere with the processul cause a single event upset
(SEU) — an error that typically changes the stagesingle bit in the system.

Safety-critical systems must be thoroughly testedrder to validate the correctness and
efficiency of their fault tolerance features. Fairfection has become an effective
technique for the experimental dependability vdiaa of computer systems. The
objective of fault injection is to test fault todgrce mechanisms and measure system
dependability by introducing artificial faults aedrors.

A problem found during fault injection campaignghat not all faults fulfil the purpose
of disturbing the system [1]. Often 80-90% of ramdlp injected faults are not activated
[1, 2]. A fault placed in a register just beforee tregister is written or faults that are
injected into unused memory locations are exampfefaults with no possibility of
activation. In most tools the location and the tifmefault injection are chosen randomly
from the complete fault-set, which is typically ethely large. The statistical implication
of this is that the cost of obtaining appropriatnfadence levels of the dependability
measures becomes unnecessarily high.

To deal with this problem and reduce the cost dilation through fault injection, two

main classes of analysis techniques have been ggdpgre-injection and post-injection
analysis [3]. Post-injection analysis aims at prédg the outcome of fault injection
experiments using the results from other experimddte-injection analysis, in its turn,
uses knowledge of program flow and resource usagehdose the location and time
where faults should be placed, before any expetimsgrerformed.

This thesis presents a pre-injection analysis tecienthat is applicable to injection of
transient bit-flips into CPU user registers and ragnocations. The bit-flip fault model
often used in fault injection experiments to emaildie effects of single event upsets and
other transient disturbances.



1.2. Purpose

The pre-injection analysis technique uses prograacwion information to (i) eliminate
faults that have no possibility of activation amjlfind equivalence classes among faults
and inject only one representative of these. Téiaahieved by applying the following
rule: faults should only be placed in the resoureasl by each instruction. A bit-flip in
any resource (register or memory) will only martifiégself once this resource is read to
perform an operation. Delaying the injection of taelt until the moment just before the
targeted resource is read accomplishes the twatbgs stated above.

The technique was implemented in the GOOFI (Ger@bect-Oriented Fault Injection)
[4] tool, for Nexus-based [5] fault injection. Nexis a standard on-chip debug (OCD)
interface for embedded applications suitable faittfanjection. The effectiveness of the
technique was assessed by comparing fault injecgsnlts with results obtained by
random fault injection on the same platform. Thrgea system is based on the Motorola
MPC565 [6] — a processor from the PowerPC architeckimed at the automotive
industry and other control-intensive applicatioBg.applying assembly-level knowledge
of this architecture it is possible to identify whiresources are read by each executed
instruction. This information, along with the tioéthe fault injections, is used to define
an optimized fault-set, which is stored in a dasagbd he fault injection experiments are
then conducted by selecting faults from the optedifault-set.

1.3. Thesis Organization

The next chapter describes previous research amdstdte-of-the-art in pre-injection
analysis. Chapter 3 gives an overview of the GOWBI; the MPC565 microcontroller
and the workloads executed by the target systenapt€hs 4 and 5 discuss the
optimization method and its implementation in th@@-I1 tool. Experimental results that
demonstrate the effectiveness of the optimizatjggr@ach are then presented in Chapter
6, while the conclusions are presented in Chapt&ogsible lines of future research are
presented in Chapter 8.



2. STATE OF THE ART

2.1. Introduction

During the knowledge acquisition phase of this hasnumber of previous approaches to
the problem of fault injection optimization wereeittified and characterized. Most likely

all researchers in the area of fault injection haatesome moment, realized that the
number of experiments required to obtain statillyiozalid results in some case is very

large.

The resources available in computers are, usugitgater than the needs of the
applications executed. This fact motivates a figimization by injecting faults only in
used resources. P. Yuste et al. [2] make, in thgperiments, special care to avoid
placing faults in empty (i.e. not used) memory oagi They obtained fault activation
ratios of 12% and pointed out that injecting fawlssng a random distribution is not a
time-effective approach.

Avoiding unused memory regions might be done maylgl analyzing the memory map
of the application and choosing the segments (steedp, etc.) as valid locations for fault
injection. This approach is quite simple but doesaonsider the way resources are used
along the time dimension. The following graphictbé memory reads by a jet engine
controller during one control loop of execution provides etyie of this fact:
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Figure 1 - Memory read accesses for the jet engine controller
(1 control loop — 11028 memory accesses)

! The jet engine controller is one of the applications tadyit this thesis and is described in Section 3.4.



Reducing the fault-set to the memory segments ptedein the graph increases the
probability of fault activation. Further optimizati would be achieved by considering
only the memory locations within these segmentsdha actually used. Not only are the
available resources greater than the needs ofghkcation but also the segments are
over-dimensioned. Reducing the granularity to #heel of individual memory locations
would yield better results, although it would beemvbetter to use techniques that
consider the dynamic usage of the resources.

During the past years two main classes of analgsisniques for reducing the cost of
validating dependable systems by fault injectiorvehdeen studied — pre-injection
analysis and post-injection analysis. Post-injectamalysis [3] aims at predicting the
outcome of fault injection experiments using theutes from other experiments. Pre-
injection analysis, in its turn, uses knowledgepobgram flow and resource usage to
choose the location and time where faults shoulglbeed, before any experiment is
performed.

The following sections of this chapter present seeahniques focusing on pre-injection
analysis developed in the past to reduce the nagessumber of fault injection
experiments.

2.2. Failure Acceleration

Studies conducted in the past have shown that emeonifestation (rate and effects) is
affected by workload [7, 8, 9]. In [10] the conceypfailure acceleration was introduced
by R. Chillarege and N. Bowen. The failure processdefined as accelerated when the
fault model in not altered and:

i.  The fault latency is decreased,;
il.  The error latency is decreased,;
iii.  The probability of a fault causing a failure isrieased.

Fault latency is defined as the time elapsed betvike fault occurrence and its first
manifestation as an error in the system. Erromniatels defined as the time elapsed
between the occurrence of an error and the timenvitne system fails to deliver correct
service. The definition of these and other relagehs can be found in [11].

R. Chillarege and N. Bowen achieve fault acceleraby injecting faults only on pages
that are currently in use and by using a workloashjng towards the limits in CPU and
I/O capacity. Their experiment had the intent todgt the effects of software faults,
particularly, the overlay. An overlay occurs whepragram writes into an area of real
storage due to an incorrect destination operane. fablt model was implemented by
choosing a random page in use and setting its otste hexadecimal ‘FF’.



The three premises that define failure acceleratiom fulfiled because (i) the error
condition is immediately effective thereby makinte tfault latency zero, (ii) the error
latency is minimized by using a heavy workload (@ffects of workload on error latency
were studied in [9]) and because real storage esntiost used virtual storage in the
system, and (iii) the probability of failure is meased because the hexadecimal value
‘FF’ is, in the targeted architecture, an invalipcode, an invalid branch location and
generally an invalid address.

The particular case of the overlay fault model vafiothis approach to achieve
optimization. The resource usage is consideredgalie time dimension but the
granularity chosen for the resources (memory) ésraplete page. For the single bit-flip
model the page-wide granularity would have to banged to track memory usage in
greater detail and, therefore, place the faulth wibre precision.

2.3. Operational-Profile-Based Fault Injection

J. Guthoff and V. Sieh presented in [12] the openal-profile-based fault injection.
They state that the number of fault injections iatsepecific system component depends
on the relevance of that component for applicaporcessing. In the case of their fault
model — single bit-flips affecting the processaegisters (General Purpose Registers) —
the extent of fault injections into a specific gr is proportional to its utilization.
Register utilization is defined as the measurehef probability that an injected fault
manifests itself as an error. Figure 2 (similatite one presented in [12]) is an example
of what might be obtained from experimental results
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Figure 2: Estimated error probabilities per register

Considering the estimations presented in this &guis more promising to inject faults in
register R1, R14 and R31 (RO is constant zero).

The locations for fault injection are correlatedrésource utilization. Additionally, the
times for fault injection are selected based onddia life-cycles. A data life-cycle starts

10



with the initialization of a register (write accgssid ends with the last read access before
the next write access. Under the single bit-fliplfanodel, faults need to be injected only
within the data life-cycles, just before each raadess.

The life-cycle approach is similar to the methodgented in this thesis. Their study was
conducted using a VHDL simulation of the MotorolaCBB100 RISC Processor and
targeting only the General Purpose Registers. Akeeforming the optimizations the final

results yielded 78% of faults without effect, 12% faults were detected and 10%
produced erroneous results. The fault-set was sgtifrom 21600 temporal locations to
only 220.

2.4. Fault-List Collapsing

A. Benso et al. presented in [13] a set of rulethwhe purpose of collapsing fault-lists.
The rules reduce the fault-list without affectingetaccuracy of the results of fault
injection campaigns by avoiding the injection otilfa for which the behavior can be
foreseen.

Collapsing faults in the code is achieved by elemimg faults which change the opcode
of an instruction into an invalid opcode (which Malgger a processor exception) and by
eliminating faults injected into the code of antinstion after the last execution of that
instruction.

Collapsing faults in the data applies the concdptata life-cycles presented in the
previous section. Faults injected outside datadyfeles are useless and thus removed
from the fault-list. Also, faults injected in ad@t life instants on the same bit of the
same variable belong to the saegeivalence class and only one needs to be injected as a
representative. Two specific rules are presentedhi® Instruction Register (IR) and for
the Program Counter (PC). Faults injected intolEhehat turn it into an illegal opcode
trigger a processor exception and faults which geahe PC value to point to a memory
location where an illegal opcode is stored algggirs an exception in the processor.

One unexplored possibility would be to use the-¢yele concept also for faults in the
code, by injecting faults only before the executdreach instruction.

Their fault injection tool adopts a simulation-basgpproach and exploits VHDL as the
hardware description language to describe the mysteder evaluation — a Motorola
68040 chip.

The results computed on three workloalgbble sort, parser and matrix) showed that

the proposed rules can foresee the exact restiiedault injection experiment in a range
between 36.6% and 54.5%.
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2.5. Path-Based Injection

In [14] a technique namephath-based injection was introduced. With this technique a
fault is injected into a resource that will be udsdthe test program given a particular
input. An input is the set of data that the test program proceasdsmay include
command-line arguments, contents of files, envirennvariables, etc.

The first requirement is, therefore, the manualivdd¢ion of an input set based upon
knowledge of the test program, including documeoradand knowledge of the program’s
high-level language code. The set of inputs shdaddthorough enough to allow the
execution of all basic blocks of the test progrdreast once.

Having the input set it is necessary to discoverpath of execution associated with each
input. Using tracing utilities the execution patre described in terms of a list of basic
blocks that are executed due to a given input set.

The choice of which faults should be injected facle path is the final step. To simplify
this step, they only considered control-flow faulsit directly affect the execution of
branches and faults were only injected into CPUsters. Thus, the faults that can
accomplish activation in each path occur when tR&J Cegisters used as operands for
conditional branches are corrupted. This analygsdone at assembly-level since there is
no dependence on any high-level language, compgamizations are not relevant and
the access to physical registers is allowed withbetneed to map variables to physical
registers.

Once this pre-analysis procedure is completed,-pasied injection can be performed. T.
Tsai et al. [14] used software-implemented faujection (SWIFI) to demonstrate the
effectiveness of path-based fault injection on adean Integrity S2 computer. The fault
injection campaigns using several workloads yielaggtbr detection ratios between
12.4% and 31.6%. Undetected wrong output occureddden 26.2% and 31.8% of the
experiments.

Their analysis encompassed only a subset of tHeugt®n-set and resources (control-

flow instructions and general-purpose register® tuthe complexity of the instruction-
set architecture.

2.6. Workload Dependent Fault Collapsing

Working in a different line of research — faulteanfion for the test of fault-tolerant
circuits — a set of techniques for speeding up @agms is described in [15]. One of these
techniques isvorkload dependent fault collapsing.

Intended for simulation-based fault injection in BH models, the proposed algorithm
first executes a fault-free experiment and stohes golden run. The faults are then
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injected sequentially by loading the state of thisteam just before fault injection time,
placing the bit-flip (the most commonly used modéla SEU) and categorizing its
effects. This step is achieved by using checkpoamd improves the fault injection
procedure by accelerating the fault occurrencenbtithe failure process itself.

The effectiveness of the fault injection processthien improved by applying the
workload dependent fault collapsing technique. Bgithe golden run all read and write
operations on memory elements are tracked witlgrdaibularity. Having this log of read
and write operations on each bit of each signalp@dsible bit-flips are then collapsed
using the following rules:

1. All bit-flips between an operation (either readaoite) and a write operation are
useless, and thus marked as silent;

2. All bit-flips between an operation (either readasite) and the subsequent read
operation are equivalent.

Applying these rules resulted in the elimination7df6 of the faults from the complete
fault-set. The checkpoint mechanism also contribtdethe overall performance speed-
up by reducing the length of each experiment byoatr20%.

The workload dependent fault collapsing technigse therefore suitable for the
optimization of fault injection campaigns on fatdterant circuits. At the hardware level
the technique requires the traceability of all raad write operations on each signal. The
rules are similar to the ones obtained using theept of data life-cycles at the signal-
level.

13



3. SYSTEM DESCRIPTION

3.1. GOOFI

GOOFI (Generic Object-Oriented Fault Injection) igh fault injection tool developed at
the Department of Computer Engineering, Chalmernseassity of Technology. The goal
of this tool is to perform fault injection targegirdifferent systems. Its current plug-in
based engine allows the rapid integration of nast fajection techniques and features.

The optimization technique described in this thegés implemented in GOOFI. The
fault injection campaigns performed in order toidate and evaluate the technique were,
therefore, achieved with this fault injection todhe technique is described in Chapter 4
and its implementation in GOOFI (named OFFSET)ssuwksed in Chapter 5.

3.2. Nexus-based Fault Injection

Recently a new fault injection technique has beevetbped in GOOFI which uses the
Nexus [5] port to inject faults on Motorola’s MPChENexus is an attempt to create a
standard on-chip debug (OCD) interface for embedaplications. This standard is
suitable to be used for fault injection [2] sindeprovides read/write access to the
processor’s resources and code execution tracareapt

The pre-injection analysis technique was implenerite enhance the existing Nexus

fault injection plug-in. The target platform forethmplementation of the optimization is,
therefore, the MPC565 microcontroller, describe&éction 3.3.
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3.3. MPC565 Microcontroller
3.3.1. System Description

The MPC565 is a microprocessor developed by Matotioht implements the PowerPC
instruction standard architecture. It is aimedhat lhigh performance automotive market
as well as other control-intensive applications.

The complete computer system was based on the pREAIMPC565 [16] development
board. It includes a 32-bit Motorola MPC565 prooessvhich offers a class 3 Nexus
debug port. The Nexus standard describes four mmgateation classes. A class 3 Nexus
debug port offers real-time data tracing and rimaétaccess to memory and I/O in
addition to the features of classes 1 and 2 (debhgdgeakpoints, program trace, etc.).

To establish a connection through this port theS$EM iC3000 Active Emulator [17,
18] was used to simulate the Nexus working enviremmThe iC3000 emulator was, in
its turn, controlled by GOOFI through winIDEA - aimtegrated development
environment offered by iISYSTEM. GOOFI and winIDEAeaunning on a host PC.
Figure 3 provides a schematic view of the experialesetup.

GOOFI i
. MPC565 running the
‘and Use iC3000  |—Nexus— control software
winlDEA

—NYI—

MPC565 running the

Parallel/BDM .
engine model

Figure 3 - Experimental setup for the control software

3.3.2. Registers

This section presents basic information about theclop registers available in the
MPC565.

PowerPC processors have two levels of privilegpestsor mode of operation (typically
used by the operating system) and user mode ofatper(used by the application
software). The programming model of this architextwffers 32 general purpose
registers (GPRs), 32 floating point registers (PPRsveral special-purpose registers
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(SPRs) and several miscellaneous registers. EaalerP& processor also has its own
unique set of implementation-specific registers.

The MPC565 is a 32-bit implementation of the Pow&dchitecture. In the MPC565,
the Time Base Register (TBR) and FPRs are 64 Aitsther registers are 32 bits. The
following paragraphs summarize the PowerPC registeat are available in the MPC565.
The information is based on Motorola’s RCPU RefeesManual [19].

General-Purpose Registers (GPRs— The processor provides 32 user-level, general-
purpose registers (GPRs). The GPRs serve as thesolatce or destination for all integer
instructions and provide addresses for all memagess instructions.

Floating-Point Registers (FPRs)— The processor also provides 32 user-level 64-bit
floating-point registers. The FPRs serve as tha daurce or destination for floating-
point instructions. The floating-point registeefitan only be accessed by the FPU.

Condition Register (CR)— The CR is a 32-bit user-level register that iaf eight
four-bit fields that reflect the results of certaperations, such as move, integer and
floating-point compare, arithmetic, and logicaltmstions, and provide a mechanism for
testing and branching.

Floating-Point Status and Control Register (FPSCR)- The floating-point status and
control register (FPSCR) is a user-level registat tontains all exception signal bits,
exception summary bits, exception enable bits, smahding control bits needed for
compliance with the IEEE 754 standard.

Machine State Register (MSR)- The machine state register (MSR) is a supenrescai
register that defines the state of the processor.

Special-Purpose Registers (SPRs} The processor provides several special-purpose
registers that serve a variety of functions, suelpmviding controls, indicating status,
configuring the processor, and performing specp@rations. Some SPRs are accessed
implicitly as part of executing certain instruct®orAll SPRs can be accessed by using the
move to/from special-purpose register instructiontspr and mfspr.

User-Level SPRs— Three SPRs are accessible by user-level soft{td&®e CTR and
XER). The Link Register (used to provide the bratasiyet address and to hold the return
address after branch and link instructions), ther€dregister (decremented and tested
automatically as a result of branch-and-count utsions) and the Integer Exception
Register (contains the integer carry and overflats &dnd two fields for the load string
and compare byte indexed (Iscbx) instruction).

Supervisor-Level SPRs— The processor contains SPRs that can be accessedy
supervisor-level software. Appendix B containssadif these.
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Development Support Registers- The processor provides a set of implementation-
specific registers for development support. Thesesammarized in Appendix C.

The registers targeted in the fault injection caignps described in Section 6 are the
General-Purpose Registers, the Floating-Point Registhe Condition Register and the
three User-Level SPRs (Link Register, Count Regestel Integer Exception Register).

3.3.3. Exceptions

The complete list of exception mechanisms availabléhe MPC565 is presented in

Appendix D. This section presents a more detaikgtdption of the exceptions that were
most often triggered by the fault injection expernts. The description is based on the
MPC565 User’s Manual [6].

Checkstop (CHSTP)- The processor was configured to enterctieekstop state instead

of taking the Machine Check Exception (MCE) itsetien the MCE occurs. CHSTP
does not represent an actual exception, but ratlstate of the processor. The processor
may also be configured to take the MCE handlingineuor enter debug mode. The
MCE, which, in this case, leads to the checksta@iestis caused by the following
conditions:

= The accessed address does not exist.
= A data error was detected.
= A storage protection violation was detected by @fect logic.

Alignment Exception (ALE) — The alignment exception is triggered under tieing
conditions:

The operand of a floating-point load or store stion is not word-aligned.
The operand of a load or store multiple instructgonot word-aligned.

The operand of lwarx or stwcx. is not word-aligned.

The operand of a load or store instruction is ratirally aligned.

The processor attempts to execute a multiple orgsinstruction.

Floating-Point Assist Exception (FPASE)- This exception occurs in the following
cases:

= A floating-point enabled exception condition is etded, the corresponding
floating-point enable bit in the FPSCR is set (g@tim enabled) and
MSR[FEO] | MSR[FE1] = 1.

= Atiny result is detected and the floating pointderflow exception is disabled.

= In some cases when at least one of the sourcermisimdenormalized.
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Software Emulation Exception (SEE) — An implementation-dependent software
emulation exception occurs in the following cases:

= An attempt is made to execute an instruction thabt implemented.
= An attempt is made to execute an mtspr or mfspiriogon that specifies an
unimplemented SPR.

External Breakpoint Exception (EBRK) — This exception occurs when an external
breakpoint is asserted.

3.4. Workloads

Fault injection campaigns were conducted to evel@ator detection coverage for two
different workloads: a quicksort implementation amdet engine controller. Different
campaigns targeting registers and memory, perfarooth random and optimized fault
injection, were carried out.

The outcome of each experiment is analyzed in guddiorm the following classification
of errors:

* Detected Error — All effective errors that are signaled by hardevaerror
detection mechanisms included in the processor.

* Wrong Output — All effective errors that are not detected by phecessor but
lead to the production of wrong results.

* Non-Effective Error — Errors that do not affect the system executionng the
chosen experiment time frame and no differencebserved between the fault
injection experiment and reference values.

3.4.1. QuickSort

The quicksort workload is a recursive implementatiof the well-known sorting
algorithm. It sorts an array containing seven deyikcision floats. Quicksort was the
first workload to be tested due to its small siad aimplicity.

The reference run execution takes less than twoutesnand each fault injection
experiment takes less than half a minute to perform
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3.4.2. Jet Engine Controller

This workload is a control application that exesute loops in order to control a jet
engine. At the end of each loop the controller tmgproduce results and exchange
information with the engine. It is significantly mocomplex than the quicksort program,
allowing the fault-set optimization technique to leealuated using a real-world
application.

Two development boartsvere used to create a distributed system. Onéexfet was
used to run the control software and the othexézete the model of the engine. The two
boards communicate through a CAN bus. Figure 3 igesvan overview of this
experimental setup.

The execution of the reference run takes almoshdrs for the ten control loops
targeted for fault injectich Each fault injection experiment is then perfornretess than
two minutes for the selected configuration (numloércontrol loops and memory
locations to be logged).

3.5. New Database Model

Part of this thesis work included renovating GOGQF#latabase model. The Entity-
Relationship (E-R) diagram of the new databaseasgnted in the following pages.

! See Section 3.3.1.
2 The experimental setup is described in Section 6.3.1.
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4. FAULT-SET OPTIMIZATION METHOD

The fault-set optimization method presented in thissis states, as mentioned before,
that faults should only be placed in the resoureas by each instruction. The following

sections describe how this is achieved in the tasgstem introduced in the previous

chapter.

4.1. Optimization Input

In order to determine the optimized fault-set inecessary to gather information about
the code of the application and the computer sysgetuting it. More precisely, the
input required by the method is:

* Assembly code of the application;

* A vector containing the Program Counter (PC) tiager time;

« The values of the General Purpose Registers befare memory read accéss

* The definition of which resources are read by esgembly instruction.

The assembly codes obtained by disassembling the executable (ELRarkes of the
application.

The Program Counter vector and thevalues of the General Purpose Registerare
stored during the execution of the reference rvengEhough the values of the GPRs are
only required before each memory access, they stered for every instruction executed
to simplify implementation.

The definitions of which resources are read by each assemblyugigin were obtained
from Motorola’s RISC CPU Reference Manual [19] amed presented in Appendix A.

4.2. Optimization Output

The resulting output (the optimized fault-set) astssof a list of possible locations and
times for fault injection. Each element on this éientains the following information:

* Control loop index;

* Internal loop index within the control loop;

! The values of the GPRs are required to calculateftémive address for memory read instructions.
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 Code address;

* The resource and bits that should be targeted.

The control loop index is specific for control applications which executecycles. It
defines the cycle during which a fault should bedted. For applications likguicksort
that do not execute in cycles, the control looin always set to one.

The code addressand theinternal loop index specify the breakpoint position inside the
control loop and the number of times this breakpsimould be reached before fault
injection occurs.

The resource specifies the register or memory location thatusthde injected with the
fault and the bits that are to be flipped.

4.3. Performing the Optimization

Using the Program Counter trace over time, thesdembled code of the application is
parsed to obtain the sequence of assembly insingcéxecuted. Each of the instructions
is then analyzed in order to determine which ressaithe instruction reads. The pseudo-
code for this procedure is presented in Figure 4:

FOR i € 1 TO number_of_instructions_executed DO
code_address € program_counter_vectorfi]
instruction € instruction_at_code_address (code_address)
instruction_read_list € resources_read_by_instruction (instruction)
WHILE instruction_read_list.has_elements() DO
resource € instruction_read_list.next_resource()
useful_fault < (control_loop_index, internal_loop_index, code_address, resource)
store_in_database (useful_fault)
ENDWHILE
ENDFOR

Note: the initialization of variables control_loop_index and internal_loop_index is not shown in
the pseudo-code (their value is particular to each instruction).

Figure 4 - Pseudo-code for the optimization procedure
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The identification of the resources read by easlruction is accomplished by applying
assembly-level knowledge of the system. Appendprésents the list of definitions used
to study the MPC565 instruction-Set

The first step for this identification is to finde definition on the list matching the given
instruction. This is done by matching thygcode and theoperands. Then, by studying the
possible assembly constructs, the symbols avaiiablleeread list of the definition are
replaced by the resources actually read by thengivstruction. Figure 5 illustrates this
process.

Executed Code

39DES: ADD RS5,R10,R11
3S9DEC: LWZ R7,24(R6a)

E&=1000

Assembly Definifions
Opcode | Operands Read List

5

D, v B rh, B

TWZ | 1D, d(rh) | rh, MEM32(d+rdk)

L

Fanlt Locafions
Control | Internal [ Code Resource
Loop Loop | Address '
21 8 390ES R10 <
21 8 39DES R11 <
21 12 J90EC R& <
21 12 39DEC | MEM[1024] |*

Figure 5 - Example of the optimization procedure

The instruction at address 39DE8 adds R10 to Rl stores the result in R5. The
definition for this instruction is found in the faband the read list contains rA and rB,

L All the instructions considered are defined by thes&PC User Instruction Set Architecture (UISA).
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respectively, R10 and R11. Since these are thedamurces read by this instruction, two
new lines are inserted into the fault locations dode address 39DES8 (the control loop
and the internal loop are assumed to hold the sapecified).

The second instruction, at address 39DEC, fetdhesrtemory word addressed by the
effective address (R6) + 24 and stores it in RZdéfinition in the table specifies rA and
MEM32(d+rA), respectively, R6 and the 32-bit word1800+24, as being read. These
two resources are then inserted into the list olt facations.

! The value of R6 is obtained during the reference rungsetion 4.1).
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4.4. Further Optimization

Further optimization may be achieved by studying pinopagation of errors after fault
injection. Code execution sometimes moves the otstaf a given resource onto another
resource. Another equivalence class may be fourehwifis happens since, under certain
conditions, a bit-flip in the first resource is @glent to a bit-flip in the second resource.

To simplify the descriptiorbit-flip transitivity is defined as the following property of
operations: bit-flip transitivity occurs when a gi@ bit-flip in one of the operands
implies, at most, a single bit-flip in the resuittibe operation.

An example of bit-flip transitive operation is tH&ND instruction. This instruction
performs a binary AND on the two source operandd places the result in the
destination operand. A bit-flip in one of the opeda implies, at most, a bit-flip in the
result. Loads from memory are usually bit-flip ts@ive too. The contents of memory are
copied onto registers. In this case, one bit-iighe memory location results exactly in
one bit-flip in the destination register.

Using this concept it is possible to further redtioe fault-set under certain conditions.
This thesis only explored two particular situatioAter a bit-flip transitive instruction is
executed, one of four possibilities happens durthg execution of subsequent
instructions:

a) The source operand is written;

b) The source operand is read;

c) The destination operand is written;
d) The destination operand is read.

This thesis studied only cases a) and c). Casasdyl) are left open for future work. The
same four possibilities, but in the case of ingtams that are not bit-flip transitive, are
also left open.

Assume that a single bit-flip has been injectedha source operand of the bit-flip
transitive instruction. If the source operand istten by a subsequent instruction, then
the bit-flip in that resource will be overwrittebut it will remain in the destination
operand. Thus, an equivalence class may be creatgdwo resources that are operands
of a bit-flip transitive instruction.

Similarly, if the destination operand is overwnitdy a subsequent instruction, the

original bit-flip had no effect on the system so. fd/hen this situation occurs the fault
has already been activated (the resource was tmeadafter the execution of several
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instructions, there is still only one erroneousibithe system and it is still non-effective.
An equivalence class can therefore be createdrauéiiple reads of a resource when the
error only can propagate via the last read. In ¢hise it is suitable to inject the bit-flip

just before the last read.
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The following table exemplifies a situation whehnestoptimization may be performed:

Address I nstruction Comment
_ R15 is ANDed with R16 and the results are

ACF74: AND R10, R15, R16 placed in R10.
R15 is overwritten with data from memory.
Any bit-flip in R15 in the previous instruction

ACF78: LWZ R15, 32(R1) | was “transferred” onto R10. Thus, it is only
necessary to inject faults in R10 in this
equivalence class.

Table 1 - Example of optimization using bit-flip transitivity

To perform this optimization it is necessary to fkéeack not only of read accesses on
registers but also of write accesses. This is #esan why the assembly definitions
presented in Appendix A contain the locations wntby each instruction. The rightmost
column informs whether or not the instruction is-fbp transitive and which of the
operands of this instruction manifest this property
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5. IMPLEMENTATION IN GOOFI: OFFSET

The optimization method presented in the previohapter was implemented in the

GOOFI fault injection tool. This integrated appticm was named OFFSET (Optimized
Full Fault-Set Exploration).

It consists of two distinct modules responding atiscfrom GOOFI: the analysis module
and the fault-selection module. The analysis modslmvoked after the reference run
with the purpose of performing the optimization atdring the fault-set in the database.
The fault-selection module is called before eaalitfanjection experiment in order to
determine the next fault to be injected.

& GOOFI o/Ed

File Edt Database Experiment Tools VWiew Help

YE&OD i >E i€

doTree Yiew | % £, MPC565 NEXUS Fault Injection Setup - BETA = lﬂ%
Campaion | Database | hisads
[ djdhesmysatMocahosts ||| || Campain Setup | Faut Injection Setup | Observation Setup | [
“iorkload
Wiorkload Project:
Wiorkload File:
Output From Workioss:
[ Campaigh

Catmpaign hame:
Murmber of Expetiments:
Titneout (s

Use Saved PCTrace

Campaigh Info:

Fault

Fault Injection Mode:  |Narmal ™
Fautt Space: Randorm T
Rando
Fault Type: H N .m "
Optimized Seguertial [
2> Optimized Random
415
log

|Log started at: 20040517 14:47:42 T
2004-06-17 14:17:43 - stripped_plugin starting
||| 2004-06-17 14:17.44 - MPCEEE_NEXUS $Ul statting

Figure 6 - OFFSET integrated with GOOFI
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5.1. Analysis Module

The analysis module is responsible for optimizing fault-set and storing the resit
the database. The database model presented in orse@i5 includes the
OptimizedFaultSpace table. This table is filled with “useful” fault éations after each
reference run.

The class seen from the exterior (GOOFI) is nawvealysisEngine. After finishing the

reference run GOOFI instantiates an AnalysisEngibgect and calls the methods
described in the following paragraphs:

public void loadCodeFromFile(File codeFile)

This method will open the provided file and parseniorder to obtain the code of the
application. The instantiated AnalysisEngine wfipm then on, have access to the
instructions executed and their address.

public void loadDefinitionsFromFile(File definitionsFile)

Calling this method makes the AnalysisEngine opem file provided and load the
assembly definitions from it. From this moment twe tinstantiated AnalysisEngine is
able to use the assembly definitions in orderudysthe executed code.

public boolean performPreAnalysis(Connection dbCongction, String campaignName,
boolean applySecondOptimization)

After calling methods loadCodeFromFile and loadbigbnsFromFile the analysis
module is ready to perform the optimization. Calimethod performPreAnalysis with
the given parameters carries out this step.

The parametedbConnection should be a connection to the database curresty dor
the campaign under analysis. This campaign is iiiletht by the parameter
campaignName. The third parametegpplySecondOptimization, determines whether or
not the second optimization described in Sectioh ghould be applied. With this
information the AnalysisEngine is able to retrielerequired data from the database.

! See optimization output in Subsection 4.2.
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5.2. Fault-Selection Module

The fault-selection module is used to select tht fmom the optimized fault-set stored
in the database before each fault injection expamim

This module is presented in the form of an abstdass named-aultSpace. Any
implementation of this abstract class present$al@ving methods:

abstract boolean nextFault();

A call to this method moves to the next fault fréme current position. The first call to
the methodhextFault() makes the first fault the current fault. The setoall makes the
second fault the current fault, and so on.

abstract int getFaultControlLoopindex();

Returns theontrol loop index for temporal positioning of the current fault.

abstract int getFaultinternalLooplndex();

Returns thenternal loop index for temporal positioning of the current fault.

abstract long getFaultCodeAddress();

Returns theode address for spatial positioning of the current fault.

abstract String getFaultObject():

Returns the resource that should be targeted hatlcdirrent fault.

abstract long getFaultBitMask();

Returns the mask with the bit from the resourcé shauld be targeted with the current
fault.

31



There are currently two implementations of the st class FaultSpace:
OptimizedFaultSpaceRandom and OptimizedFaultSpageséal. The first connects to
the database when instantiated and subsequent toallse method nextFault() will
randomly select the next fault from the optimizadlf space. The sequential version also
connects to database to select the fault from them@ed fault-set but does this
sequentially. This ensures that the fault-set mrdhghly studied. It should only be
applied when a particular block of code (for ins®mne procedure) or a given resource
is to be studied through fault injection since tlmmplete fault-set is usually still too
large for all faults to be injected.

The selection of which code addresses, memory itotator registers that should be
injected with faults is done though the constructdr each implementation. The
constructor of the random version of the OptimizadESpace is as follows:

OptimizedFaultSpaceRandom(Connection dbConnection,String campaignName, int[]
codeRanges, int[]] memoryRanges, String[] reqisterlsi)

When the GOOFI fault injection tool instantiates@ptimizedFaultSpaceRandom object,
a campaign name and a connection to the databasairding this campaign should be
supplied. Code ranges, memory ranges and registeare optional. The remaining

methods in this class are the implementations ef iethods in the abstract class
FaultSpace described above. The OptimizedFaultSeageential class works in a similar
way.
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6. EXPERIMENTAL RESULTS

6.1. Introduction
6.1.1. Summary

This chapter presents the results of fault injecttampaigns targeting the two tested
workloads: a quicksort implementation and a jet immgcontroller. The quicksort
application was used as the workload during theeldgwment stages of the optimization
tool. It executes 34 distinct assembly instructi@mscodes) and the complete support on
the tool was available early on. When the supportall instructions executed by the
controller was developed (88 assembly instructiongjas possible to test the method
with this more sophisticated, real-world applicaticAt this point the support for
optimization of faults in memory was also available

6.1.2. Targeted Registers

The processor registers were selected as spat@idos for fault injection both in the
quicksort and in the jet-engine controller campaigMemory locations were only
targeted using the jet-engine controller. The tegsstargeted in the random campaigns
were the ones considered by the optimization method

» General Purpose Registers (32 registers of 32 bits)
* Floating Point Registers (32 registers of 64 bits);

» Condition Register (32 bits);

* Integer Exception Register (32 bits);

» Link Register (32 bits);

» Count Register (32 bits).

These registers constitute the User InstructionA8ehitecture (UISA) Register Set. The
UISA registers can be accessed by either usemmersisor-level instructions and user-
level instructions can only operate on these reggst

Two limitations of winIDEA (the debugging environnig are important to mention. The
floating point registers are only allowed to besotpd with faults in the least significant
32 bits. These are the least significant bits & H2-bit mantissa. The Floating Point
Status And Control Register (FPSCR) was removed fthe list because it is not
available for fault injection also due to a limitat of winIDEA.
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6.2. Quicksort
6.2.1. Introduction and Experimental Setup

This section presents the results from fault inggctampaigns evaluating the quicksort
application, targeting only registers through ramdand optimized fault injection.

During the execution of the golden-run for this laggiion, the MPC565 processor
executed 34 distinct assembly instructions (opcoaed a total of 815 instructions.

Both campaigns targeted the registers consideredhbyoptimization method and
described in the previous section. Registers wargeted using both random and
optimized fault injection, according to the faulodel described in the next paragraphs.

The faults in the random campaigns were chosergusinniform distribution for the
temporal location. Then, the targeted resourcelss @etermined using a uniform
distribution. The bit that should be flipped withihe resource is then chosen with a
uniform distribution too. Since all registers ar2-l8ts" long, the result is a uniform
distribution of faults in the non-optimized faults

A different approach was used to select faultshim dptimized campaigns. A fault is
selected uniformly from the optimized fault-seelf$ (temporal and spatial location at
the same time). This implies for instance that distribution of faults in resources is
proportional to the representation of each resourdbe fault-set. Resources with more
read accesses (useful fault locations) will, thenefbe injected with more faults.

! Floating Point Registers are 64-bits long limited teb&8 (see Section 6.1.2).
% The fault-space is the list of locations for fauleirtjon described in Section 4.2.
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6.2.2. Fault Injection Results

The optimization method eliminates faults when gaiealence class is determined or
when the targeted resource is not being used. $ades placed in unused registers are
never activated and, therefore, are always norctffs the optimization is expected to
decrease the percentage of non-effective faults.othicomes of the fault injections were
classified in three classeson-effective, detected andwrong output. The distribution of
the outcomes is presented in Table 2.

Campaign | # Experiments Non-effective  Detected = Wrong Output
Optimized 2791 1461 (52.3%)744 (26.7%) 586 (21.0%)
Random 2739 2603 (95.0%) 83 (3.0%) 53 (2.0%)

Table 2 - Comparison of outcome distribution

As expected, the number of effective faults waséigor the optimized fault selection
technique. The improvement is one order of mageit@aphical representations of the
results are shown in Figures 7 and 8.
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Figure 7 - Outcome of experiments in the Figure 8 - Outcome of experiments in the random
optimized campaign campaign

Table 3 shows the estimated error detection coeefagor detection coverage is defined
as the quotient between the number of detectedetiadtive (detected or wrong output)
outcomes:

Campaign | Estimated error detection coverage (95% confidence)
Optimized 55.9+2.7%
Random 61.0 + 8.2%

Table 3 - Error detection coverage estimations
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Even though the estimated error coverage is sinfidarrandom and optimized fault

injection, the 95% confidence interval for the ramdcampaign is much wider. This is
the result of the low effectiveness of random f&uh order to narrow the interval to the
same size as in the optimized fault injection thenber of experiments would have to be
around ten times larger. More considerations oaretetection coverage estimation can
be found in Section 6.3 that describes the resilthe experiments with the jet engine
controller.

All the detected errors were detected by the exmeptprovided in the MPC565
processor. The distribution among these exceptisngresented in Figure 9 for the
optimized campaign, and in Figure 10 for the randampaign.
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Figure 9 - Exception distribution in the optimized campaig (744 faults in registers)
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Figure 10 - Exception distribution in the random campaig (83 faults in registers)
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The detection mechanisms are activated in a similay for the random and the
optimized campaign. The small number of experimémas produced detected errors in
the random campaign doesn't allow strong conclissatyout this fact.

It is also possible to observe that optimized fainfection activated detection

mechanisms not activated with random injection,fquering the same number of
experiments.
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6.3. Jet Engine Controller

6.3.1. Introduction and Experimental Setup

This section presents the results from fault impgctampaigns evaluating the jet engine
controller, targeting registers and memory, usimhbrandom and optimized fault
injection.

Ten control loops of execution were chosen as plessemporal locations for fault
injection. During these ten control loops the MPES@rocessor executed 231.097
instructions in the reference (fault-free) run.otal of 88 different assembly instructions
were executed.

The spatial locations were divided into registard enemory. The first two campaigns,

described in Section 6.3.2, targeted microprocesgpsters. In Section 6.3.3, the results
from fault injection campaigns targeting memoryaftenly data, stack, heap and other
read/write data segments — sbss and bss) are lukscri

In the first two campaigns the registers targetamusist of the registers considered by the
optimization method and previously described intised.1.2.

The fault injection campaigns in memory targetesl stack, heap, sbss (read/write data),
bss (read/write data) and read-only data segmentiseocontroller. A total of around
100KB of memory were targeted as spatial locatiéasilts in the code segment were not
studied since the code is usually stored in ROMe Gptimization would, nonetheless, be
easily extended to support the optimization oft&ir this segment.

Registers and memory were targeted using both raralwd optimized fault injection.
The fault-model used is described in the followpagagraphs.

The faults in the random campaigns were chosergusinniform distribution for the

temporal location. Then, the resource is also detexd using a uniform distribution. The
bit that should be flipped within the resourcehert chosen with a uniform distribution
too. Since all registers are 32-bits long, the ltaswa uniform distribution of faults in the
non-optimized fault-set.

As mentioned before, a different approach is useddlect faults in the optimized
campaigns. A fault is selected uniformly from th@imized fault-set itself (temporal and
spatial location at the same time). This impliest tine distribution of faults in resources
is proportional to the representation of each resoun the fault-set. Resources with
more read accesses will, therefore, be injecteld mire (useful) faults.
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6.3.2. Fault Injection in Registers

Applying the optimization method to the set of fauln registers resulted in the
determination of 7.776.018 possible bit-flips. &l registers mentioned above are 32 bit
registers. The complete fault-set of these registers isinbthby flipping each bit of
each register, for each instruction executed. ite & over 500 million bit-flips. The
following table summarizes these results:

Campaign Size of the fault-set (bit-flips)
Optimized 7.7x10
Random 5.0 x 10
Ratio 1.5%

Table 4 - Comparison between fault-set sizes (registers)

The optimization reduced the fault-set to 1.5%tsfariginal size. Faults are eliminated
when an equivalence class is determined or whendbeurce is not being used. The
percentage of non-effective faults is expected dorelase using this approach, for the
reason stated in Section 6.2.2. Table 5 preseatdistribution of the outcomes of faults:

Campaign | # Experiments Non-effective  Detected = Wrong Output
Optimized 1559 964 (61.8%) 466 (29.9%) 129 (8.3%)
Random 5708 5457 (95.6%) 200 (3.5%) 51 (0.9%)

Table 5 - Comparison of outcome distribution (registers)

As expected, the effectiveness of faults incredsethe optimized fault-set with respect
to the random fault-set. The improvement is of orger of magnitude. Figures 11 and
12 present a graphical representation of this.

! Floating Point Registers are 64-bits long limited ®Idast significant 32-bits (see Section 6.1.2).
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Figure 11 — Outcome of experiments in the Figure 12 - Outcome of experiments in the
optimized campaign targeting registers random campaign targeting registers

The error detection coverage obtained from thedsrapaigns is shown in Table 6.

Campaign | Estimated error detection coverage (95% confidence)
Optimized 78.3 £ 3.3%
Random 79.7 £+ 5.0%

Table 6 - Error detection coverage estimations (registers)

The values of the error detection coverage estonatare quitsimilar. This is a finding,

in the sense that it was not anticipated. In thiémoped campaigns the faults are only
injected in the location that will activate thent {f@e time that the register is read). Since
no weights are applied to reflect the length of tla¢a life-cycle on the outcomes of
faults, it could be expected that the error detectioverage would be skewed.
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The distribution of detection among the exceptipnavides further insights about the
activated faults in the two campaigns, as showrigare 13 and 14.
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Figure 13 - Exception distribution in the optimized campagn (466 faults in registers)
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Figure 14 - Exception distribution in the random campaig (200 faults in registers)
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It is possible to observe that the detection meishas are activated in a similar but not
identical way for the random and the optimized caigps. Different exception
distributions were expected and Figures 13 andr@vigie an insight on the magnitude of
these differences.
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Figures 15 and 16 show the incidence of detectemtsefor each register injected with
faults. Only the 30 registers with highest rankamg presented.

Detected errors Detected errors
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Figure 15 - Detected errors per register in the Figure 16 - Detected errors per register in the

optimized campaign random campaign

The two registers at the top of both lists are Rd BR, respectively, the Stack Pointer
and the Link Register of this architecture. Sinteirt contents are vital for the
application, faults targeting these are expectedetaletected. Figures 15 and 16 clearly
illustrate the increase in the effectiveness oft$aat the level of the resource (registers in
this case).

It is interesting to observe that the registerssamted differently in the two campaigns.
This shows that the behavior of the system is @hffe in the case of optimized and
random (uniform) fault injection.
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The faults that force the system to produce wromput are usually the most important
to study. These are faults that violate fail-silbahavior. It might therefore be useful to

know which resources are responsible for this behaand, eventually, study these in
more depth. Figures 17 and 18 show the 30 resoummee likely to produce wrong
results:

wrong Outpat wrong Outpat
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eI R
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ra FR1
R7 [ FR10
Rio & FR11
Lk [@ FR12
FRO FR13
FR1 ] FR14
Figure 17 - Wrong output per register in the Figure 18 - Wrong output per register in the
optimized campaign random campaign

The probability of producing a wrong output is mugbher in the optimized campaign.

The order of the registers is also different in thve campaigns. This shows, again, that
the behavior of the system is different for theiroped campaign and the random
campaign.
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Figure 19 shows the 30 registers where faults arst itkely to be non-effective for the
optimized campaign.
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Figure 19 - Non-effective errors per register in the optimized canmgign

The comparison with the random campaign is notgmiesl since most of the registers
targeted in the random campaign resulted in noeegffe errors. The optimization
method eliminated most of the registers that disglsis behavior. In the random
campaign, faults injected in 34 registers alwayslilted in non-effective errors. Most of
these faults were eliminated by the optimizatiorilmad. The eight registers that are still
non-effective could be the basis for future study why activated faults are non-
effective.
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Finally, Figure 20 shows the distribution of faulper register for the optimized
campaign. The figure clearly demonstrates the nofeum distribution caused by the
optimization. The number of faults per registediiectly proportional to the number of
times the register is read
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Figure 20 - Number of faults injected per register
in the optimized campaign

! Notion of useful fault presented in Chapter 4.
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6.3.3. Fault Injection in Memory

In the case of the memory fault-set 3.300.728 ptesdit-flips were determined. The
complete fault-set of memory is obtained by fligpi@ach bit of each memory location
used by the program, for each instruction execu@ahsidering a memory usage of
100KB by the jet engine controller, the size of tdoenplete fault-set is near 200 billion
bit-flips. Table 7 summarizes these results:

Campaign Size of the fault-set (bit-flips)
Optimized 3.3x 10D
Random 1.9 x 19
Ratio 0.0017%

Table 7 - Comparison between fault-set sizes (memory)

The optimization reduced the size of the origiraallf-set five orders of magnitude. In a

way similar to the registers in the previous sectitaults are eliminated when an

equivalence class is determined or when the resoigraot being used. Again, the

percentage of non-effective faults is expecteddoreise using this approach. Table 8
presents the distribution of the outcomes of faults

Campaign | # Experiments Non-effective Detected  Wrong Output
Optimized 2658 2150 (80.9%)166 (6.3%) 342 (12.8%)
Random 6666 6532 (98.0%) 40 (0.6%) 94 (1.4%)

Table 8 - Comparison of outcome distribution (registers)

As expected, the effectiveness of the faults waseased. The improvement is similar to
the one found in registers — one order of magnitddgures 21 and 22 present a
graphical representation of this. Comparing theseilts to the results of fault injection
experiments in registers it is possible to obsénat the number of non-effective errors is
much higher in the optimized campaign in memoryntirathe optimized campaign in

registers.
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At this point it is possible to calculate the erdetection coverage — the quotient between
detected and effective (detected or wrong outp@Stimated by performing optimized or
random fault injection in the targeted memory regio

Campaign | Estimated error detection coverage (95% confidence)
Optimized 32.7+4.1%
Random 29.9+7.7%

Table 9 - Error detection coverage estimations (memory)

The values of the error detection coverage estomatare quite similar. In this case the
estimation from the random campaign is not veryabé since the 95% confidence
interval is still wide due to the small number ffeetive faults (2%). It is, nonetheless, a
finding similar to the error detection coveragereation in registers using both the jet
engine controller and the quicksort. In the optiedizcampaigns the faults are only
injected in the location that will activate thent {he time that the memory address is
read). Since no weights are applied to reflect lémgth of the data life-cycle on the
outcomes of faults, it could be expected that theredetection coverage would be
skewed.
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Figure 23 and 24 show distribution of detected rereomong the exception mechanisms
for the two campaigns.
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Figure 23 - Exception distribution in the optimized campagn (166 faults in memory)
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Figure 24 - Exception distribution in the random campaig (40 faults in memory)

Again, it is possible to observe that the detectiechanisms are activated in a similar
but not identical way for the random and the optedi campaigns. Some differences
were expected and Figures 23 and 24 provide aghhsin the magnitude of these
differences.
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6.4. Results of Further Optimization

The second optimization strategy (presented ini@edt4) was applied to the complete
fault-set targeted in the two jet engine campaigmsemory and registers together. The
fault-set was reduced 10% more. This result shdwas it is possible to analyze the
propagation of errors after fault injection in arde achieve further improvement in the
fault activation.

It should be noted that this study was limitedhe tases presented in Section 4.4 and
that the instruction-set was not thoroughly exambirte find all bit-flip transitive
instructions. There is, therefore, room for everrenimprovement.

6.5. Discussion

An important observation that can be made from ndgults is that error detection
coverage is much lower for memory faults than fegister faults (30% in memory
against 80% in registers). Since the exceptiomnridigion in the memory fault injection
campaigns gives a much larger weight to the FlgaRoint Assist Exception (generic
exception for floating point errors) a possible lax@ation is that memory is often used to
store floats and that these display lower erroec&in coverage. At this point it isn’t
possible to elaborate on this possibility sinceydhk 32 least significant bits of floating
point registers can be targeted but, when storeaeimory, all 64 bits are available.

An interesting observation that can be made fromth Berkloads is that error detection
coverage and exception distribution is similar endom and optimized pairs of
campaigns. The error detection coverage is quiterdnt when the workload is changed
(quicksort and controller) and also when the tadeesources are changed (registers and
memory) but remains similar when moving from randtmmoptimized fault injection.
The exception distribution is similar, but not itieal, for the optimized and the random
campaigns. The rather strong similarity shown moredetection coverage and exception
distribution between the optimized and the rand@mmaigns is an important finding.
Further investigations are, however, needed toigorthat this finding is valid also for
other workloads and target systems, and to exft@measons for this behavior.
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7. CONCLUSIONS

A pre-injection analysis technique was devised dedeloped for the GOOFI fault
injection tool. It was applied to Nexus-based fanjéction on a computer system based
on the Motorola MPC565 processor. Using assembligtlienowledge of the processor -
an implementation of the PowerPC architecturds tossible to eliminate faults with no
possibility of activation and determine equivalercdasses among faults in order to
reduce the fault-set.

The method and this particular implementation vatuglied and the experimental results
of optimized fault injection were compared to theual random approach. Two distinct
applications were used as workloads for this studysimple quicksort implementation
and a more complex jet engine controller. The éffeness of faults was increased one
order of magnitude compared to random fault-ingectiThe fault-set was reduced two
orders of magnitude for the registers and four iv@ forders of magnitude for the
memory.

The optimization is exhaustive in the sense tHahalassembly instructions used by both
workloads are covered. The limitation is that nibtregisters in the processor can be
studied through the analysis of the code. Somestegi have an "asynchronous" behavior
during the execution of the application code. Themebe registers used by the processor
as Control Registers for communication ports ($eGAN, etc.). There are also many
Time Processor Unit (TPU) registers. The TPUs apamsate modules inside the
processor and fault injection in these has no eftet the applications tested. The
registers targeted consist of the User Instruc8eh Architecture register set and these
are likely to correspond to most of the interestnegources to study through fault
injection. Nonetheless, an exhaustive fault in@cticampaign would require fault
injection also in the locations not targeted by dpgimization. The future work section
presents a possible way to deal with this problem.

Even though activation of faults is ensured by pheposed method (activation in the
sense that the faulty resources are always ut)limetiall faults result in effective errors.
For the quicksort program, 52% of the faults targetegisters were still non-effective.
For the jet engine controller, 62% of the faultsragisters and 82% of the faults in
memory remained non-effective. An increase of omdeio of magnitude in the fault
effectiveness is attained but there are still mi@uwts that are activated but produce no
effect. This occurs when the data is used in agsemsitive way by the code (regarding
the single bit-flip model). If, for instance, a faus injected in a register used for a
comparison instruction only some of the bits insthegister will actually affect the
resulting flags in the Condition Register. An imtgling topic for further studies would be
to investigate which activated faults are non-dffecand why.
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One interesting finding is that the estimated edetection coverage estimation is similar
in random and optimized campaigns, but quite dfiérdepending on the workload and
targeted resources. All faults targeting the sameoba given resource, before this

resource is read, are considered equivalent. Sinde one representative of these is
injected it would be necessary to apply a weightesponding to the number of faults in

this equivalence class to obtain an accurate estimaf error detection coverage. The

finding that there is actually almost no differenoethe estimations might be explained

by arguing that the number of experiments is kil when compared to the size of the
fault-set. Another possible explanation is thabueses are used by programs in a way
that the number of collapsed faults in each eqainvae class is not statistically correlated
to the effects of the faults.

As for the exception distribution of detected esyat is clearly different when targeting
different locations (registers and memory). Thisswexpected, since memory and
registers perform different roles during the exepubf a program.

An interesting finding is that the exception distiion is similar on the two workloads
evaluated. This is interesting since previous nefeandicates a strong relationship
between workload and effects of faults.

Comparing the exception distribution of detectedorsr in random and optimized
campaigns shows that they quite similar. This fsxding similar to the error detection
coverage estimation described previously.

It is possible to conclude that the outcomes olt$aare highly dependent on the resource
targeted. Some registers have a greater tendemmause wrong output while some others
cause detected errors more frequently. Using thidifg (shown in Figures 15 to 19)
would allow, for instance, performing a greater inemof experiments resulting in wrong
output (by targeting the resources that are m&edylito observe this behavior).

A first approach at finding equivalencies amongltfawafter propagation yielded a

reduction of 10% of the already optimized fault-dets possible to identify instructions

which propagate single bit-flips in the operandssiagjle bit-flips in the results. These
bit-flips may also be considered as an equivaleriass and only one representative
needs to be injected.
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8. FUTURE WORK

Expanding the optimization to achieve further imymment by analyzing the propagation
of bit-flips has been started in this thesis areddgd good results. It would be interesting
to continue this study and see how much furtheit igossible to improve the fault
effectiveness. This would eventually mean, for anse, that a multiple-bit flip fault
should be injected to avoid the injection of selvsiagle bit-flips.

The study presented in this thesis is limited single target system. This implies that the
results obtained are specially associated to th€B6B. The results of fault injection
experiments are always strongly attached to theesysinder evaluation and even to the
compiler [12] used. Thus, it would be interestingrhplement the optimization method
presented here to other microprocessors and taygegms. The present implementation
(OFFSET) can easily be adapted to other targe¢ssst

In order to achieve results with the statisticalgarties of random fault injection it would
be necessary to weight the outcome of each expetimi¢h the number of faults in the
equivalence class. Even though the results shamitasgty between the results obtained
by the random and optimized fault-sets, it is dassio perform optimized fault injection
and still obtain results that are representativa ohiform distribution of faults.

The optimization method has not been implementednjection into the code segment.
However, the code segment was not targeted by ampaign in this thesis, since it is
usually stored in ROM. The optimization method webbk easily expanded by placing
faults in the memory addressed by the Program @ourfadding support for
MEM32[PC]).

In the future of fault injection the multiple biig fault model will become more
important. The processor technology is employinglin transistors, with lower power
voltages, where a single charged particle is likelychange the state of several bits. It
would be appealing to extend the method presentdus thesis to improve the selection
of multiple bit-flip faults.

The purpose of a fault injection campaign is some$ to study faults that produce
wrong output (the most significant faults). Cortelg the locations for fault injection

with the probability of producing wrong output,andynamic manner, would yield faster
campaigns. The same could be applied to the sthidffexctive faults (detected or wrong
output). The distribution of faults would be furttevay from uniform but would allow a

much smaller time to obtain a certain amount ofiliss

Using a debugger/debugging environment that supptmacing of all read/write

operations on all registers during the golden-ruouldd allow the expansion of the
optimization to all registers.

52



During the experiments performed for this thesisré¢hwere many faults which were
activated, in the sense that the targeted resomaseused, but their outcome was non-
effective. A manual inspection in order to deterenwhy activated faults have no effect

would be interesting.
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APPENDIX A — POWERPC ASSEMBLY-LEVEL DEFINITIONS (MP C565)

The following table presents the definitions usedahalyze the instruction-set of the
MPC565 microprocessor. All the instructions consdeare defined by the PowerPC
User Instruction Set Architecture. This informatias obtained from Motorola’s RISC
CPU Reference Manual [19]. These definitions cawer instructions executed by the
two workloads used in this thesis.

Opcode Operands Read List Write List Transitive
ADD rD,rA,rB rA,rB D
ADDI rD,rA,SIMM rA D
ADDIC rD,rA,SIMM rA D
ADDZE | DA rA,XER[2] D
AND rArS,rB rS,rB rA Y,Y
AND. rArS,1B rS,rB rA,CRO
ANDC rA,rS,1B rS,rB rA Y,Y
ANDC. rA,rS,rB rS,rB rA,CRO
B target

BEQ- target CR[2]

BEQ+ target CR[2]

BGE- target CR[O]

BGE+ target CR[0]

BGT- target CR[1]

BGT+ target CR[1]

BL target LR
BLE- target CR[1]

BLE+ target CR[1]

BLR LR

BLT- target CR[O]

BLT+ target CR[0]

BNE- target CR[2]

BNE+ target CR[2]

CLRLWI rA,rS,n rS rA
CLRLWI. | rArS,n rS rA,CRO
CMPLWI | rAvalue rA,XERJ[0] CRO
CMPW rArB rA,rB,XER[0] CRO
CMPWI rA value rA,XERJ[O] CRO
CROR crbD,crbA CR CR
CROR crbD,crbA,crbB CR CR
EXTSH rA,rS rS[16:31]

EXTSH. rA,rS rS[16:31] CRO
FABS frD,frB frB frD
FADD frD,frA frB frA,frB frD
FADDS frD,frA,frB frA,frB frD
FCMPU crfD,frAfrB frA.frB crfiD
FCTIWZ frD,frB frB frD
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FDIV frD,frA,frB frA,frB frD
FDIVS frD,frA,frB frA,frB frD
FMADD frD,frA,frC,frB frA,frC,frB frD
FMADDS | frD,frAfrC,frB frA,frC,frB frD
FMR frD,frB frB frD
FMSUB frD,frA,frC,frB frA,frC,frB frD
FMUL frD,frA,frC frA,frC frD
FMULS frD,frAfrC frA,frC frD
FNEG frD,frB frB frD
FRSP frD,frB frB frD
FSUB frD,frA,frB frA,frB frD
FSUBS frD,frA frB frA,frB frD
ISYNC

LBZ rD,d(rA) rA,MEMO08(d+rA) D
LBZU rD,d(rA) rA,MEMO08(d+rA) rD,rA
LFD frD,d(rA) rA,MEM64(d+rA) frD
LFDU frD,d(rA) rA,MEM64(d+rA) frD,rA
LFDX frD,rA,IB rA,rB,MEM64(rA+rB) frD
LFS frD,d(rA) rA,MEM32(d+rA) frD
LFSX frD,rA,1B rA,rB,MEM32(rA+rB) frD
LHA rD,d(rA) rA,MEM16(d+rA) D
LHAU rD,d(rA) rA,MEM16(d+rA) rD,rA
LHZ rD,d(rA) rA,MEM16(d+rA) D

LI rA,value rA

LIS rAvalue rA
LMW rD,d(rA) rA,rD,MEMXX(d+rA:32-rD) | GPRI[D] N,N,Y
LWz rD,d(rA) rA,MEM32(d+rA) D N,Y
LWzU rD,d(rA) rA,MEM32(d+rA) rD,rA
LWZX rD,rA,rB rA,rB,MEM32(rA+rB) D
MFCR D CR D
MFLR D LR D
MEMSR D D

MR rA,rS rsS rA
MTLR rA rA LR
MTMSR rS rS MSR
MULLI rD,rA,SIMM rA D
MULLW rD,rA,rB rA,rB D
NEG rD,rA rA D

OR rArS,rB rS,rB rA Y,Y
OR. rArS,1B rS,rB rA,CRO
ORI rA,rS,UIMM rsS rA Y
RLWINM rA,rS,SH,MB,ME rS rA
RLWINM. | rA,rS,SH,MB,ME rS rA,CRO
SLW rA,rS,rB rS,rB[26:31] rA
SRAW rA,rS,rB rS,rB rA
SRAWI rA,rS,SH rS rA
STB rS,d(rA) rA,rS[24:31]
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STBU rS,d(rA) rA,rS[24:31] rA

STFD frS,d(rA) rAfrS

STFEDX frS,rA,rB rA,rB.frS

STFS frS,d(rA) rAfrS

STH rS,d(rA) rA,rS[16:31]

STHU rS,d(rA) rA,rS[16:31] rA

STMW rS,d(rA) rA,rS,GPR[rS] MEMXX(d+rA:32-rS) | N,N,Y
STW rS,d(rA) rArS MEM32(d+rA) N,Y
STWU rS,d(rA) rArS rA,MEM32(d+rA)

SUBF rD,rA,rB rA,rB D

SUBF. rD,rA,rB rA,rB rD,CRO

SUBFIC rD,rA,SIMM rA D

SYNC

XORI rA,rS,UIMM rS rA

XORIS rA,rS,UIMM rS rA

Table 10 - Assembly-level definitions for the MPC565 (ReerPC)




APPENDIX B — MPC565’S SUPERVISOR-LEVEL SPECIAL
PURPOSE REGISTERS

SPR Number (Decimal) Special-Purpose Register
18 DAE/Source Instruction Service Register (DSISR)
19 Data Address Register (DAR)
22 Decrementer Register (DEC)
26 Save and Restore Register 0 (SRR0)
27 Save and Restore Register 1 (SRR1)
80 External Interrupt Enable (EIE)
81 External Interrupt Disable (EID)
82 Non-Recoverable Interrupt (NRI)
272 SPR General 0 (SPRGO)
273 SPR General 1 (SPRG1)
274 SPR General 2 (SPRG2)
275 SPR General 3 (SPRG3)
284 Time Base Lower — Write (TBL)
285 Time Base Upper — Write (TBU)
287 Processor Version Register (PVR)
528 IMPU Global Region Attribute (MI_GRA)
536 L2U Region Attribute (L2U_GRA)
560 BBC Module Configuration Register (BBC_MCR)
568 L2U Module Configuration Register (L2U_MCR)
784 L2U Region Base Address Register 0 (L2U_RBAOQ)
785 IMPU Region Base Address Register 1 (MI_RBA1)
786 IMPU Region Base Address Register 2 (MI_RBA2)
787 IMPU Region Base Address Register 3 (MI_RBA3)
816 IMPU Region Attribute Register 0 (MI_RAOQ)
817 IMPU Region Attribute Register 1 (MI_RA1)
818 IMPU Region Attribute Register 2 (MI_RA2)
819 IMPU Region Attribute Register 3 (Ml_RA3)
792 L2U Region Base Address Register 0 (L2U_RBAO)
793 L2U Region Base Address Register 1 (L2U _RBA1)
794 L2U Region Base Address Register 2 (L2U_RBA?2)
795 L2U Region Base Address Register 3 (L2U_RBA3)
824 L2U Region Attribute Register 0 (L2U_RAO0)
825 L2U Region Attribute Register 1 (L2U_RA1)
826 L2U Region Attribute Register 2 (L2U_RA2)
827 L2U Region Attribute Register 3 (L2U_RA3)
1022 Floating-Point Exception Cause Register (FPECR)

Table 11 - Supervisor-Level Special Purpose Registers



APPENDIX C — MPC565’'S DEVELOPMENT SUPPORT SPECIAL

PURPOSE REGISTERS
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SPR Number (Decimal)

Special-Purpose Register

144 Comparator A Value Register (CMPA)

145 Comparator B Value Register (CMPB)

146 Comparator C Value Register (CMPC)

147 Comparator D Value Register (CMPD)

148 Exception Cause Register (ECR)

149 Debug Enable Register (DER)

150 Breakpoint Counter A Value and Control (COUNTA)
151 Breakpoint Counter B Value and Control (COUNTB)
152 Comparator E Value Register (CMPE)

153 Comparator F Value Register (CMPF)

154 Comparator G Value Register (CMPG)

155 Comparator H Value Register (CMPH)

156 L-bus Support Comparators Control 1 (LCTRL1)
157 L-bus Support Comparators Control 2 (LCTRL2)
158 I-bus Support Control Register (ICTRL)

159 Breakpoint Address Register (BAR)

630 Development Port Data Register (DPDR)

Table 12 - Development Support Special Purpose Registers




APPENDIX D — MPC565’'S EXCEPTIONS

Mneumonic

Name

Causes

RST

System Reset Exception

Any reset pin is asserted — PORESET,
HRESET, or SRESET. An internal reset is
requested, such as from the software watchdog
timer.

CHSTP

Checkstop

The system under study was configured to enter
the Checkstop State when a machine-check
exception (MCE) occurs.

MCE

Machine Check Exception

The accessed address does not exist. A data
error was detected. A storage protection
Violation was detected by chip-select logic.

EXTI

External Interrupt

The external interrupt exception is taken on
assertion of the internal IRQ line to the RCPU.

ALE

Alignment Exception

The operand of a floating-point load or store
instruction is not word-aligned. The operand of a
load or store multiple instruction is not word-
aligned. The operand of lwarx or stwcx. is not
word-aligned.

PRE

Program Exception

A program exception occurs for several
exception conditions and no higher priority
exception exists.

FPUVE

Floating-Point Unavailable
Exception

A floating-point unavailable exception occurs
when no higher priority exception exists, an
attempt is made to execute a floating-point
instruction (including floating-point load, store,
and move instructions), and the floating-point
available bit in the MSR is disabled.

DECE

Decrementer Exception

A decrementer exception occurs when no
higher priority exception exists, the decrementer
register has completed decrementing, and
MSR[EE] = 1.

SYSE

System Call Exception

A system call exception occurs when a system
call instruction is executed.

TR

Trace Exception

A trace interrupt occurs if MSR[SE] = 1 and any
instruction except rfi is successfully completed
or MSR[BE] = 1 and a branch is completed.

FPASE

Floating-Point Assist Exception

A floating-point enabled exception condition is
detected. The corresponding floating-point
enable bit in the FPSCR (floating point status
and control register) is set (exception enabled).
MSR[FEOQ] | MSR[FE1] = 1.

SEE

Software Emulation Exception

When executing any non-implemented
instruction. When executing a mtspr or mfspr
instruction that specifies an un-implemented
internal-to-the-processor SPR.

ITLBER

Instruction Protection Exception

The fetch access violates storage protection
and MSR][IR] = 1. The fetch access is to
guarded storage and MSRJ[IR] = 1.

DTLBER

Data Protection Error Exception

The data access violates the storage protection
and MSR[DR]=1.
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Implementation-Dependent

LBRK Debug Exceptions Data breakpoint match.
IBRK Implementatlon-Dependent Instruction breakpoint match.
Debug Exceptions
EBRK Implementation-Dependent Development port maskable request or a
Debug Exceptions peripheral breakpoint.
DPI Implementation-Dependent Development port non-maskable request.

Debug Exceptions
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Table 13 - Exceptions triggered in the MPC565




