
Thesis for the Degree of Licentiate of Engineering

Multi-Layer Fault Tolerance
for Distributed Real-Time Systems

RAUL BARBOSA

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2007

Multi-Layer Fault Tolerance
for Distributed Real-Time Systems

Raul Barbosa

c© 2007 Raul André Brajczewski Barbosa

Technical Report No. 39L
ISSN 1652-876X
Department of Computer Science and Engineering
Chalmers University of Technology
SE–412 96 Göteborg, Sweden
Phone: +46 (0)31–772 1000

Contact information:

Department of Computer Science and Engineering
Chalmers University of Technology
SE–412 96 Göteborg, Sweden

Phone: +46 (0)31–772 1664
Fax: +46 (0)31–772 3663
Email: rbarbosa@ce.chalmers.se

URL: http://www.ce.chalmers.se/∼rbarbosa

Chalmers Reproservice
Göteborg, Sweden, 2007

Abstract

This thesis addresses issues in building fault-tolerant distributed real-time systems.
Such systems are increasingly deployed in automotive and avionics applications.
We focus on the design and validation of fault tolerance mechanisms.

From the design viewpoint, we develop the notion of multi-layer fault tolerance.
A fault-tolerant distributed system contains a set of mechanisms that provide error
detection and recovery. Those mechanisms can be structured into three different
layers, based on where they are implemented and what parts of the system they
involve. Circuit layer mechanisms provide the basic fault tolerance implemented
in hardware; node layer mechanisms are executed locally in computer nodes; and
system layer techniques involve multiple computer nodes to prevent faults from
disturbing the system.

We make a probabilistic modeling analysis to compare federated to integrated
architectures. Federated architectures have few or no fault tolerance mechanisms at
the node layer and a node is the elementary unit of failure; integrated architectures
provide robust partitioning mechanisms at the node layer in order to ensure that
individual tasks are the unit of failure. We compare the reliability of the two
architectures and propose a set of guidelines for building integrated architectures.

The thesis also addresses the problem of distributed redundancy management.
We propose a group membership protocol to achieve consensus on the operational
state of all nodes. The protocol is based on the principle that each message sent
by a node in the membership is acknowledged by k other nodes, in a system with
n nodes. Agreement on node departure is guaranteed if no more than f = k − 1
failures occur during n consecutive transmission slots. Additionally, we provide a
solution for the reintegration of restarted nodes in the membership. This protocol
is part of the system layer of fault tolerance mechanisms.

We address the validation of fault tolerance mechanisms by fault injection. This
thesis describes an automated analysis technique to reduce the cost of fault injection
campaigns. The analysis uses knowledge of program flow and resource usage to
eliminate faults that have no possibility of activation. Our experimental results show
that the fault-spaces are reduced by several orders of magnitude, when compared
with the usual random approach.

i

ii

List of Publications

This thesis is partly based on the following publications:

I Raul Barbosa and Johan Karlsson, “Flexible, cost-effective membership agree-
ment in synchronous systems”, in Proceedings of the 12th IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC’06), Riverside,
California, USA, December 2006.

II Raul Barbosa, Jonny Vinter, Peter Folkesson and Johan Karlsson, “Assembly-
level pre-injection analysis for improving fault injection efficiency”, in Pro-
ceedings of the 5th European Dependable Computing Conference (EDCC-5),
Budapest, Hungary, April 2005.

iii

iv

Acknowledgements

I would like to express my deepest gratitude to Professor Johan Karlsson for the
knowledge shared with me and for his valuable advice as my supervisor.

I owe very special thanks to Professor emeritus Jan Torin, Professor Simin
Nadjm-Tehrani, Sam Nicander and Dr. Kristina Forsberg for the insightful dis-
cussions on the partitioning problem and for the substantial comments on the third
chapter of this thesis.

I would like to show my appreciation to Professor Mário Rela for the introduction
to the field of dependability. His enthusiasm had a strong influence in my decision
to pursue studies in this area. Many thanks go also to Professor João Cunha for
sharing his knowledge with me, in discussions both at the University of Coimbra
and at Chalmers University of Technology.

Special thanks are due to Daniel Skarin, with whom I have the pleasure to
collaborate and exchange valuable insights. Special thanks go also to Jorge Alçada,
António Ferreira and Mikael Hedén for their inspiration and remarkable dedication
during the final stretch of their M.Sc. studies. I would also like to thank Carl
Bergenhem for the valuable discussions and for his joyful attitude.

I also thank Professor Jan Jonsson and Professor Philippas Tsigas for the regular
follow-up meetings to discuss the direction of my studies.

For the constant support, encouragement, dedication and for being the best
companion I could wish for, I thank my girlfriend Filipa.

Last and most importantly, I am grateful to my parents Ângelo and Marta for
everything they have done for me, for their sacrifices in my upbringing and for the
everlasting support in pursuing my goals in life. Obrigado!

This work has been supported by the Portuguese Fundação para a Ciência e a Tec-
nologia through doctoral grant SFRH/BD/18126/2004.

v

vi

Contents

1 Introduction 1

2 The Architectural Framework 3
2.1 Terminology . 3

2.1.1 Faults, Errors and Failures 3
2.1.2 Dependability Attributes . 5
2.1.3 The Means to Dependability 6

2.2 System Model . 7
2.3 Multi-Layer Fault Tolerance . 7
2.4 Goals . 9
2.5 Thesis Contributions . 10

3 Partitioning for Integrated Architectures 13
3.1 Introduction . 13
3.2 Theoretical Motivation . 14

3.2.1 Software Failures . 16
3.2.2 Hardware Failures . 18
3.2.3 Derivation of Formulas . 20

3.3 Requirements for Partitioning . 25
3.4 Mechanisms for Partitioning . 29

3.4.1 Spatial Partitioning . 29
3.4.2 Temporal Partitioning . 34

3.5 Guidelines for Integrated Architectures 35
3.6 Discussion and Conclusion . 36

4 Distributed Redundancy Management 39
4.1 Introduction . 39
4.2 System Model . 41

vii

viii CONTENTS

4.3 Protocol Specification . 43
4.3.1 Definitions . 44
4.3.2 Agreement on Departure . 45
4.3.3 Agreement on Reintegration Ordering 48
4.3.4 Recovery of the Membership State 50
4.3.5 Agreement on Reintegration 50

4.4 Discussion . 54
4.4.1 Further Considerations . 56

4.5 Prototype Implementation . 56
4.5.1 Network Configuration . 57
4.5.2 Network and Membership Performance 58

4.6 Task-Group Membership Agreement 59
4.6.1 Multiple Sending Slots . 59
4.6.2 Task-Group Membership through Fail-Reporting 60

4.7 Related Research . 61
4.8 Discussion and Conclusion . 61

5 Fault Injection Testing 63
5.1 Introduction . 63
5.2 Related Research . 65
5.3 Fault-Space Optimization Method 66

5.3.1 Optimization Input . 66
5.3.2 Optimization Output . 67
5.3.3 Performing the Optimization 67

5.4 Experimental Setup . 68
5.4.1 Fault Injection Tool . 68
5.4.2 MPC565 Microcontroller . 69
5.4.3 Workloads . 70
5.4.4 Fault Model and Fault Selection 71

5.5 Experimental Results . 72
5.5.1 Fault Injection in Registers 72
5.5.2 Fault Injection in Memory 75
5.5.3 Fault-Space Considerations 77

5.6 Discussion and Conclusion . 78

6 Conclusion 79
6.1 Future Work . 80

References 82

Acronyms

CAN Controller Area Network

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

ECC Error-Correcting Code

EDF Earliest Deadline First

FMEA Failure Modes and Effects Analysis

IMA Integrated Modular Avionics

MMU Memory Management Unit

MPU Memory Protection Unit

MTTF Mean Time To Failure

RM Rate-Monotonic Scheduling

SEU Single Event Upset

SIL Safety Integrity Level

TDMA Time Division Multiple Access

TLB Translation Lookaside Buffer

TMR Triple Modular Redundancy

WCET Worst-Case Execution Time

ix

x ACRONYMS

List of Figures

2.1 The dependability tree. 4
2.2 Structural elements of the architectural framework. 7
2.3 Multi-layer fault tolerance in distributed real-time systems. 9

3.1 Relative development effort for software as a function of partitioning
effort for a constant MTTF. 17

3.2 Relative development effort for hardware as a function of the number
of tasks for a constant MTTF. 19

3.3 Task assignment in the federated architecture. 21
3.4 Task assignment in the integrated architecture. 21
3.5 State transition diagram for the federated architecture (software faults). 22
3.6 State transition diagram for the integrated architecture (software

faults). 22
3.7 State transition diagram for the federated architecture (hardware

faults). 25
3.8 State transition diagram for the integrated architecture (hardware

faults). 25

4.1 Round number signaling by a node in the membership, using the r-flag. 49
4.2 Sponsor-graph of a 6-node system (k = 2). 55
4.3 Sponsor-graph immediately after the failure of sending node 1. . . . 56
4.4 Sponsor-graph 2 slots after the failure of node 1. 56
4.5 The real-time Ethernet prototype. 57

5.1 Example of the optimization procedure. 69
5.2 Evaluation platform for the jet engine application. 70
5.3 Exceptions in the quicksort non-optimized campaign (83 faults in

registers). 73

xi

xii LIST OF FIGURES

5.4 Exceptions in the quicksort optimized campaign (744 faults in regis-
ters). 74

5.5 Exceptions in the jet engine controller non-optimized campaign (200
faults in registers). 74

5.6 Exceptions in the jet engine controller optimized campaign (466 faults
in registers). 75

5.7 Number of faults injected per register. 76
5.8 Exceptions in the jet engine controller non-optimized campaign (40

faults in memory). 77
5.9 Exceptions in the jet engine controller optimized campaign (166 faults

in memory). 77

List of Tables

3.1 Reliability of 1-resilient systems with a hardware failure rate of 10−6

failures/h per processor. 19

4.1 Mapping of component failures to failure classes. 42
4.2 Parameters of the real-time Ethernet prototype. 58
4.3 Node departure and node reintegration latencies. 59

5.1 Distribution of outcomes of fault injection in registers. 72
5.2 Error detection coverage estimations (registers). 73
5.3 Distribution of outcomes of fault injection in memory. 76
5.4 Error detection coverage estimations (memory). 76
5.5 Comparison between fault-space sizes (registers). 78
5.6 Comparison between fault-space sizes (memory). 78

xiii

xiv LIST OF TABLES

CHAPTER 1

Introduction

We often depend on a computer system without being aware of its existence.
Whether it is our mobile phone or the plane we’re flying, there’s frequently a part
of our life which we trust directly or indirectly to a computer. Naturally, we expect
product developers to weigh the consequences of a system failure against the cost
of reducing the risk of such an event. Thus, we are willing to pay for safety along
with the functional benefits of a system.

From the designer’s viewpoint, safety and functional features impose conflict-
ing requirements. Adding new and enhancing existing features increases both the
hardware and the software complexity – a major obstacle to creating dependable
systems. On the other hand, society craves for new products that contribute to its
well-being. The increased dependence placed on computers – a steady trend in most
economic sectors (e.g. transport, energy, medical, etc.) – demands strict attention
to their reliability, availability, safety and other attributes of dependability.

There is no simple procedure for building dependable computer systems. One
failure every million hours is a common failure rate for electronic components. This
failure rate is, however, too high for most safety-critical systems, where a failure is
potentially catastrophic. Examples of this are avionics systems, where many lives
are at stake, and automotive systems, where the number cars in use is very large.
For these reasons, systems must be more reliable than their constituting parts.

To achieve this, many critical systems use several redundant computers and ac-
tivate a spare when a failure is detected. This form of redundancy is an effective
approach to fault tolerance, i.e. to provide an acceptable level of service despite the
occurrence of faults. However, redundancy leads to greater cost and higher fault
rate, due to a larger number of system parts. The objective of the designer must
therefore be to minimize the redundancy. Moreover, hardware redundancy is insuf-
ficient to tolerate software defects. Multiple copies of the same faulty program are

1

2 CHAPTER 1. INTRODUCTION

likely to produce the same erroneous result, even if running on different computers.
A highly dependable system must therefore be equipped with the means to tolerate
faults of diverse origins. Furthermore, the implementation of such means should be
cost-effective, in order to ensure that they can be applied in a systematic way.

In critical applications computers are usually embedded into the devices they
control. Users seldom perceive the presence of those computers and their operation
is limited to the scope of the application. Though many embedded systems are
unlikely to harm anyone, their failure can sometimes be extremely harmful. A
faulty system can cause great human and economic losses in avionics control, air
and rail traffic control, telecommunications and industrial applications. Due to
the distributed nature of these applications, the embedded computer systems are
usually distributed as well. Thus, the concerns with fault tolerance go beyond
a single computer. Moreover, embedded systems are often expected to function
correctly for a number of years, possibly without maintenance or repair. Fault
tolerance is fundamental to assure that those systems are trustworthy.

This thesis deals with principles and techniques for the cost-effective implemen-
tation of fault tolerance in distributed real-time systems. The overall goal is to
improve the cost-effectiveness and flexibility of such systems by developing an ar-
chitectural framework and supporting services which allow both safety-critical and
non-critical functions to be executed on the same processing node. The framework
aims to provide fault tolerance using a multi-layer approach which combines circuit
layer, node layer and system layer mechanisms. The core idea is to handle a ma-
jority of the errors at the node layer without any involvement of the other nodes in
the system. Thus, nodes should be able to both detect and recover from errors au-
tonomously. System layer mechanisms are provided to deal with errors that cannot
be corrected at the node layer, e.g. a permanent hardware fault in a node.

The supporting services provide node layer detection and recovery of transient
faults which ensures fail-silent or fail-signaled failure semantics, consistency among
replicated programs and distributed redundancy management under fail-silent or
fail-signaled failure semantics. These services are characterized by the support for
both time-triggered and event-driven execution of application tasks and by the
use of a real-time communication network which supports both on-line and off-line
scheduling of messages. We address the validation of fault tolerance mechanisms
by fault injection.

The thesis is organized as follows: Chapter 2 describes the dependable com-
puting background and introduces the architectural framework for multi-layer fault
tolerance. Chapter 3 looks into fault-containment at the node level and provides
a set of guidelines for building distributed systems with partitioning techniques.
Chapter 4 discusses redundancy management and describes a membership agree-
ment protocol (a basic service for redundancy management). Chapter 5 focuses on
the evaluation of fault tolerance mechanisms through fault injection.

CHAPTER 2

The Architectural Framework

This chapter introduces the architectural framework for multi-layer fault tolerance
in distributed real-time systems. First, some background to the field of dependable
computing is given, followed by a detailed description of the framework.

2.1 Terminology

Safety can be defined as “a property of a system that it will not endanger human
life or the environment” [73]. According to the taxonomy of dependable and secure
computing [12], a system is the basic entity which interacts with other systems (i.e.
hardware, software, humans or the physical world). Systems always interact by
providing and/or receiving some service. A system is safety-critical if safety cannot
be ensured when it fails to provide correct service.

Product developers must therefore be thorough in addressing the dependability
of safety-critical systems. Generally speaking, a system is dependable if one can
assure that the frequency and the consequences of its failure are adequate for a
particular application. However, assurance and adequacy are often subjective terms.
Figure 2.1 shows the dependability tree. The figure was adapted from [12] by
including only the attributes of interest for dependability. The following sections
describe the threats, attributes and means to attain dependability.

2.1.1 Faults, Errors and Failures

The threats to dependability are faults, errors and failures. There is a relationship
between these threats:

• A fault is a defect in the system which, when activated, leads to an error.

3

4 CHAPTER 2. THE ARCHITECTURAL FRAMEWORK

Figure 2.1: The dependability tree.

• An error is an incorrect system state that may affect the external behaviour,
thereby causing a failure.

• A failure occurs when the delivered service deviates from what is considered
correct.

Faults can have diverse origins and may be classified into three partially overlapping
groups:

• Development faults are introduced in the system during the development
phase. These include software bugs, hardware production defects, etc.

• Physical faults include all hardware faults. These can be caused, for instance,
by physical deterioration, design flaws or by external disturbances.

• Interaction faults are all faults that originate outside the system. These faults
are usually the result of human action or physical interference during the
system’s use phase.

A service failure occurs when the delivered service deviates from the correct
service. The service failure modes characterize the different ways in which failures
are manifested. Failures can be described in terms of four characteristics:

• The failure domain distinguishes between content failures and timing failures.
A service can fail in respect to content and timing simultaneously.

• The detectability of a failure describes whether or not the service failure is
signaled to service receivers.

• The consistency of failures refers to the way users perceive failures. A failure
is consistent when all users observe the same failure. If any two users observe
different results from a component, then the failure is inconsistent.

2.1. TERMINOLOGY 5

• The consequences of a failure can range from minor to catastrophic and there-
fore measure the impact that a failure can have in the complete system.

Faults, errors and failures form a causality chain, where a failure of one compo-
nent may cause a fault in another component. Understanding the failure modes of
all components is essential to ensure the cost-effectiveness of fault tolerance mech-
anisms. Knowing, for instance, the consistency of failures in a distributed system
determines the complexity of the communication algorithms. If the nodes can pro-
duce inconsistent failures then the Byzantine generals result [50] dictates that 3f+1
nodes must participate and f+1 communication rounds must be completed to tol-
erate f faulty nodes. On the other hand, if the nodes are known to exhibit only
consistent failures, simple majority voting among 2f+1 nodes suffices to ensure
agreement with f faulty nodes.

2.1.2 Dependability Attributes

According to Figure 2.1 there are five main attributes of dependability. The relia-
bility of a component describes its ability to provide correct service continually, for
a given period of time [68]. If X is a random variable which represents the lifetime
of a component, then the reliability function for that component is

R(t) = P (X > t)

The availability of a system is also important in many situations. It describes
the on-demand probability of correct service. A system that can be repaired after
a failure will have, at least, two states: functional and failed. The availability at
time t is therefore

A(t) = Pfunctional(t)

Availability is often represented by a number (e.g. stating that a system is available
99.999% of the time). This number reports the steady-state availability, which is the
expected fraction of the time that the system would be available, after an infinite
operation time. Thus,

A = lim
t→∞
A(t)

Safety describes the absence of catastrophic failures. In addition to the func-
tional and failed states, some systems are able to find a safe state even under faulty
conditions. A train which stops in the event of a fire is an example of a system
capable of safe shutdown. Airplanes and satellites are examples of systems which
do not have this property. The safety function is thus

S(t) = Pfunctional(t) + Psafe-state(t)

It should be emphasized that we consider the dependability attributes from
the probabilistic (or quantitative) point of view. However, it is also viable to use

6 CHAPTER 2. THE ARCHITECTURAL FRAMEWORK

the same concepts qualitatively. Safety, for instance, can be attained without the
assignment of probability figures. This is typical in a standard-following industry,
where safety is ensured by using state-of-the-art development methods. Doing so
ensures that the product is as safe as possible at the time of development. However,
a probabilistic approach allows us to characterize and compare alternative designs
with respect to their dependability.

2.1.3 The Means to Dependability

The means to attain dependability consist of methods and techniques to assure
the previously described attributes of dependability. The dependability tree in
Figure 2.1 classifies those means into four groups.

• Fault prevention is applied during the development phase to prevent the oc-
currence of faults. Development faults are prevented through good develop-
ment processes such as software testing, formal methods, hardware design rule
checking, etc. Physical faults are prevented by protecting the hardware, usu-
ally via radiation shields, increasing the signal-to-noise ratio, etc. Interaction
faults are commonly prevented by controlling the users’ access to the system.

• Fault tolerance techniques are the means to allow a system to provide correct
service even when faults occur. Such techniques use diverse forms of redun-
dancy to detect and recover from faults. The most common approaches use
either hardware redundancy, software redundancy, time redundancy or infor-
mation redundancy to identify erroneous conditions. The subsequent recovery
process relies on the remaining fault-free parts of the system to correct the
errors and/or prevent them from reappearing.

• Fault removal is applied during the use phase of a system, either by corrective
or preventive maintenance. It usually requires human intervention to replace
faulty units. Though faults can be removed during the development phase, we
view this activity as fault prevention1. Obviously, product developers should
take into account previous system generations when creating new products.
Thus, a fault removed in one product should most certainly be prevented in
the future.

• Fault forecasting methods provide the assurance regarding frequency and con-
sequences of faults. These methods combine qualitative evaluation of failure
consequences, e.g. conducting a Failure Modes and Effects Analysis (FMEA),
with quantitative techniques such as Markov models to measure the attributes
of dependability. Essentially, qualitative analysis defines, for instance, the
safe-states and quantitative analysis evaluates the probability of remaining in
those states.

1This view differs from the definition in [12].

2.2. SYSTEM MODEL 7

2.2 System Model

The structural elements of the architectural framework are nodes, networks, services
and tasks. A node is essentially a computer with a processor, memory and i/o
interfaces which provide the access to the network and peripherals (e.g. storage,
sensors, actuators, etc.). Each node is able to support the execution of multiple
tasks.

A task is a computer program, which consists of code, data and all the informa-
tion relevant to its execution. In the operating systems literature a task is referred
to as a process or a thread [74]. Tasks are logically grouped into services when they
collaborate in providing a system function. In a car a service can, for example,
implement a brake-by-wire function, whereas in an aircraft a service can implement
an autopilot function.

A service’s tasks can be distributed across different nodes by using the network
for information exchange. Different services are also allowed to exchange infor-
mation, thus creating dependencies among services. The definition of service is
therefore only introduced to reason about the dependability of a given function
(which may depend on other functions). Figure 2.2 depicts the structure of the
system. It should be noted that a complete system can include several networks of
processing nodes, which form independent clusters.

Figure 2.2: Structural elements of the architectural framework.

2.3 Multi-Layer Fault Tolerance

In the distributed system depicted in Figure 2.2 fault tolerance can be viewed as
a set of mechanisms that provide error detection and recovery. Those mechanisms
can be structured into three different layers, based on where they are implemented
and what parts of the system they involve:

• Circuit layer mechanisms provide the basic fault tolerance implemented in
hardware. Most hardware units include some forms of fault tolerance. Exam-

8 CHAPTER 2. THE ARCHITECTURAL FRAMEWORK

ples are the ability of most microprocessors to detect exceptional conditions
(e.g. invalid instructions, erroneous memory accesses, etc.), cache protection
with parity checks and main memory protection with error-correcting codes
(ECCs). Triple modular redundant (TMR) logic at the transistors [34] is an
example of a more advanced circuit layer technique.

• Node layer mechanisms are executed locally in a computer node. Additional
hardware or software is used to detect errors and, if possible, recover from
them. Executing, for example, a task twice allows transient errors to be
detected; triplicated time-redundant execution of a task and voting provides
effective transient error masking. Other examples of node layer fault tolerance
techniques include checkpointing, watchdog timers, runtime assertions, etc.

• System layer techniques are those that involve multiple processing nodes. A
commonly used fault-tolerant system is the TMR system, in which the results
of three nodes are voted to obtain a single output. TMR systems are an
example of static redundancy. A cold standby spare, activated when the
primary node fails, is an example of dynamic redundancy.

It is important to realize that these layers are not working in isolation from one
another. Fault tolerance mechanisms often require different layers to cooperate.
To exemplify, consider a fault in one of the tasks of a brake-by-wire system. A
memory access outside its memory address space may be detected at the circuit
layer by a Memory Management Unit (MMU). An exception is raised and, at the
node layer, the exception handling routine can delete the faulty task. This, in turn,
causes the node to exhibit a silent failure once that task produces no results. At the
system layer all remaining fault-free nodes detect the omission and may switch to
an alternate braking algorithm which takes into account that one of the wheel nodes
is not braking. This allows the system to provide degraded service while remaining
in a safe state by preventing the car from moving sideways. This exemplifies a
scenario where mechanisms at all layers cooperate to tolerate a fault.

The combination of fault tolerance mechanisms at different layers is fundamental
to ensure their cost-efficiency, even when there is no explicit cooperation among
them. In theory one should try to ensure that distinct fault tolerance mechanisms
don’t overlap, i.e. they should not detect or handle the same faults. This guideline
is often difficult to ensure in practice. A second guideline is that the lower fault
tolerance layers should restrict the failure modes exhibited to the upper layers. This
restriction aims at simplifying the fault tolerance mechanisms by allowing only
increasingly benign failure modes to be observed at each layer. With respect to
the characteristics of the failure modes, signaled failures are more benign than
unsignaled failures; consistent failures are more benign than inconsistent failures;
and so on.

The second guideline is important since the cost of handling complex failure
modes at the upper layers is much higher than detecting and handling them ear-

2.4. GOALS 9

lier in the causality chain. An activated fault causes an error, which may cause
a failure; this failure may then cause a fault in another component. Allowing, for
instance, nodes to exhibit inconsistent failures requires complex Byzantine agree-
ment algorithms at the system layer. Therefore, a majority of the errors should
be handled at the circuit and node layers in order to guarantee consistent failure
modes. Fault tolerance mechanisms thus form a hierarchy. Figure 2.3, adapted
from [1], illustrates the three-layer hierarchy of fault tolerance mechanisms.

Figure 2.3: Multi-layer fault tolerance in distributed real-time systems.

Figure 2.3 shows a possible combination of failure modes observed at the different
layers. It should be noted that the figure is intended to depict the layers where faults
are treated. Thus, the figure does not indicate that development, physical and
interaction faults occur at the circuit layer. A fault is assumed to occur anywhere
in the system. The fundamental design decisions are where (i.e. at which layer) and
how to detect and recover from them.

2.4 Goals

A hardware fault, such as a Single Event Upset (SEU) in an integrated circuit,
may be detected by mechanisms of the system layer by using, for example, a TMR
configuration. This is, however, a costly approach to fault tolerance. Mechanisms
of the system layer are likely to exclude an entire node from the set of operational
nodes (i.e. the processor-group membership) in order to prevent the fault from being
re-activated. A more cost-efficient combination of fault tolerance mechanisms would
first attempt to mask errors at the node layer. This could be achieved with hardware
redundancy [63] or with software and time redundancy [3].

This thesis aims to study methods that allow the task to be the elementary
unit of failure. However, hardware faults have the potential to disrupt entire nodes.

10 CHAPTER 2. THE ARCHITECTURAL FRAMEWORK

Thus, system layer mechanisms must also be provided to detect and recover from
errors that cannot be handled locally at the nodes. The overall goal of the thesis
is to develop and validate a set of mechanisms that support a cost-effective imple-
mentation of fault tolerance in distributed real-time systems. Those mechanisms
are characterized by the following features:

• Achieve fault tolerance with a multi-layer approach, which combines circuit
layer, node layer and system layer mechanisms.

• Ensure strong fault containment within nodes by using robust partitioning
among tasks to tolerate software development faults.

• Allow both safety-critical and non-critical functions to be executed on the
same processing node.

• Provide redundancy at the node layer to tolerate a majority of the transient
hardware faults. The principal concern here is to use mostly software, time
and information redundancy, in order to minimize the hardware redundancy
and thereby the system cost.

• Provide redundancy and consensus mechanisms at the system layer to tolerate
node failures and network failures.

• Support time-triggered execution for safety-critical tasks and event-driven ex-
ecution for non-critical tasks and recovery mechanisms.

• Use a real-time communication network which supports both on-line and off-
line scheduling of messages.

2.5 Thesis Contributions

This thesis builds on the concept of multi-layer fault tolerance for the design of
distributed real-time systems. The main contributions can be grouped into three
areas of study: analysis of robust partitioning methods, distributed redundancy
management and validation of fault tolerance mechanisms through fault injection.

• Analysis of robust partitioning methods – The requirements of partitioned sys-
tems are examined in the light of declassification – a computer security notion
that we found useful for specifying partitioning requirements. Subsequently,
we survey the existing mechanisms to fulfill those requirements. Moreover, we
present a probabilistic analysis of the reliability of federated and integrated ar-
chitectures. Based on this analysis we propose a set of guidelines for building
integrated architectures.

2.5. THESIS CONTRIBUTIONS 11

• Distributed redundancy management – We propose a processor-group mem-
bership protocol that achieves consensus on the operational state of all nodes.
It is intended for systems that use time-triggered communication. The pro-
tocol builds on the idea that each message sent by a node in the membership
is acknowledged by a configurable number of sponsor nodes. Incrementing
the number of sponsors increases the reliability, while more resources must
be allocated to the protocol. We have built a real-time Ethernet prototype
to serve as an experimental platform. Though not regarded as a scientific
contribution, the experimental platform allowed the protocol to be tested in
a realistic environment. The protocol description is based on Paper I.

• Fault injection testing – We describe a pre-injection analysis technique aimed
at reducing the cost of fault injection campaigns. The technique eliminates
faults that have no possibility of activation by using knowledge of program
flow and resource usage, before any faults are injected. The technique was
presented in Paper II.

12 CHAPTER 2. THE ARCHITECTURAL FRAMEWORK

CHAPTER 3

Partitioning for Integrated Architectures

One of the goals of this thesis is to study methods that allow a task to be the ele-
mentary unit of failure. Node layer mechanisms should therefore detect and recover
from faulty tasks without involving other processing nodes. To achieve this, robust
partitioning mechanisms must assure fault containment within nodes. Robust par-
titioning allows both safety-critical and non-critical functions to be executed on the
same node. Furthermore, it allows nodes to provide degraded service in the event of
faults. This chapter identifies the state-of-the-art in robust partitioning techniques
and proposes a set of guidelines for building integrated architectures, where the
nodes are shared among several tasks. The guidelines are derived through proba-
bilistic analysis.

3.1 Introduction

Embedded systems have traditionally been implemented by dedicating a computer
system to each software component or function. This architecture, which is usually
referred to as federated, has the advantage of providing clear fault containment
boundaries in the design. Each software component executes independently on
its own processor and resource sharing is reduced to message passing through a
communication infrastructure. The need for fault tolerance is satisfied with the
introduction of redundant computer systems as well as redundant networks. This
approach makes it simple to contain hardware and software faults in the processor
where they originate.

The main drawback of federated architectures is that they lead to a proliferation
of hardware as the number of functions grows. The trend to increase the number
of subsystems, designed to add new and enhance existing features, demands a large

13

14 CHAPTER 3. PARTITIONING FOR INTEGRATED ARCHITECTURES

number of microcontrollers – one per major function. The consequence of such
designs is the reliability and cost problems currently faced by the manufacturers
of embedded systems. The use of many independent computer systems increases
the cost of acquisition, space and maintenance, as well as the power consumption.
Moreover, a larger number of hardware units leads to a higher fault rate, that may
reduce the system’s reliability.

To address these problems, there are several initiatives underway aiming at sim-
plifying the sharing of computer resources among different functions in distributed
real-time systems. Examples of such initiatives are the development of the Inte-
grated Modular Avionics (IMA) concept [7] and the ARINC 653 standard [8] for
the aerospace industry; and the AUTOSAR project [41] launched by the automotive
industry. One goal of these initiatives is to integrate different functions and software
components into a common hardware platform with few but powerful processing
elements. Such integrated architectures have a great potential to reduce cost and
improve reliability, since they require fewer hardware components than federated
architectures. Furthermore, these initiatives favor the integration of Commercial
Off-The-Shelf (COTS) software in order to reduce development and maintenance
costs.

However, to achieve these improvements, it is necessary to equip the system with
robust partitioning mechanisms. Such mechanisms prevent faults in the design of
one function from disrupting the operation of other coexisting functions. Robust
partitioning mechanisms should therefore ensure fault containment within nodes –
between different application processes, and between the application processes and
the operating system. These mechanisms must prevent processes from writing into
each other’s memory space – spatial partitioning – as well as ensuring that there is
no interference in the time domain – temporal partitioning –, which encompasses
both task scheduling and concurrency control.

This chapter examines the requirements for robust partitioning and identifies
existing approaches to provide a computing platform which achieves those require-
ments. The next section provides a probabilistic analysis to understand the impact
of integrated architectures on the system’s reliability. Section 3.3 identifies the re-
quirements for partitioning and Section 3.4 discusses the existing mechanisms to
fulfill those requirements. Section 3.5 provides a set of qualitative guidelines for
building integrated architectures, based on the argumentation presented through-
out the chapter. Section 3.6 summarizes the main conclusions of the chapter.

3.2 Theoretical Motivation

In this section we analyze the development effort necessary to assure the reliability
of federated and integrated architectures. In our probabilistic analysis, the main
assumption is that hardware and software components have a failure rate that can
be reduced by increasing the development effort. Furthermore, we assume that the

3.2. THEORETICAL MOTIVATION 15

development process follows a standard that assigns criticality levels to components;
higher criticality levels imply higher development effort.

If a processing node does not contain robust partitioning mechanisms then all
its software is required to be developed and certified at the criticality ceiling of that
node. The criticality ceiling of a node is the criticality level of the most critical
software running on it. Since a fault in less critical software can cause the failure of
the most critical function, its criticality must be raised to that of the most critical
function.

The problem with this approach is that, without partitioning, the failure rate
of the less critical software must be decreased to zero in order to ensure that the
reliability of the most critical software remains as high as if the two tasks were
running on two distinct nodes. In fact, there are only three possibilities to assure
the reliability of the most critical software resulting from the integration of less
critical software:

1. Reduce the failure rate of the less critical software to zero.

2. Decrease not only the failure rate of the less critical software but also the
failure rate of the most critical task to a suitable level.

3. Equip the node with partitioning mechanisms which provide 100% error de-
tection coverage.

Clearly, there is no process by which we can ensure that the failure rate of soft-
ware is zero. Decreasing the failure rate of highest criticality software would require
even more strict development processes than those available today. Hence the most
promising approach is to develop a computing platform with robust partitioning
mechanisms that contain faults in the faulty partitions, even if all software is of the
same criticality.

It is also viable to combine the different integration possibilities in situations
where partitioning exists but is not 100% effective. Moving from a federated archi-
tecture to an integrated one will require either very strong partitioning mechanisms
or a higher development effort to prevent failures from occurring in the first place.
As we will see next, there is a tradeoff between development effort and partitioning
effort, which allows an integrated system to be built with, for instance, 99% effective
partitioning mechanisms (by assuring a slightly lower task failure rate).

It should be emphasized that we are referring to the effectiveness of the parti-
tioning mechanisms in terms of error detection. Thus, we define the error detection
coverage of the partitioning mechanisms (denoted by c) as a conditional probability:

c = P (partitioning is not violated | partition has failed)

If λ partition failures occur every year, then the rate at which such failures result in
partitioning violations is λ(1 − c). Thus, if partitioning mechanisms are only 99%

16 CHAPTER 3. PARTITIONING FOR INTEGRATED ARCHITECTURES

effective (c = 0.99) and, for instance, λ = 10−6 failures/year, partitioning violations
would occur at a rate of 10−8 per year.

An orthogonal problem to partitioning coverage is the failure rate introduced
by the partitioning mechanisms themselves. The partitioning mechanisms must be
implemented in either software or hardware. Both approaches have the potential to
add new failure modes and increase the existing failure rate. An example would be
the failure of a memory protection mechanism which prevented fault-free tasks from
accessing their own memory spaces. The partitioning failure rate must therefore
be reduced to a suitable degree through strict development processes. Clearly, we
would like the failure rate as well as the coverage of the partitioning mechanisms
to be as low as possible. These are, however, two separate issues.

3.2.1 Software Failures

This section focuses the reliability assessment regarding software failures. We ap-
ply continuous-time Markov modeling [68] to compare the federated architecture
with the integrated architecture. We explicitly use software failure rates as tran-
sition rates in our models. Most software reliability modeling techniques [36] use
software failure rates to predict reliability and number of faults (i.e. bugs) in soft-
ware systems. Moreover, it is commonly assumed that the software failure rate
is proportional to the number of faults in the system. Under these assumptions,
predicting the number of software faults can be done before software deployment.
An approach is to use field failure data from previous releases or products [81].

However, the statistical approach to software reliability assessment is not always
used in practice. The DO-178B [64] standard for avionics software development does
not require the assignment of a failure rate for software of any level of criticality.
Instead, this approach aims to assure a high level of confidence that the software is
free from faults. This is usually achieved by using the best existing systems engi-
neering practices. Reference [16] scrutinizes the differences between the statistical
and the perfectionist approach, and clarifies the relationship between statements of
software failure rates and about software correctness.

We assume the existence of a failure rate for software in order to reason about
the dependability attributes of the two architectures. Furthermore, we assume that
the failure rate decreases when the software is developed to a higher criticality
level. The IEC 61508 [44] international standard for functional safety defines four
Safety Integrity Levels (SILs) for safety-related functions. To each integrity level
corresponds a range of failure probabilities. Higher integrity levels impose lower
probabilities of failure (either specified in terms of probability of failure per hour or
probability of failure on demand). Under these assumptions we can relate the devel-
opment effort to the software failure rate. Thus, we can compare the development
effort in the two architectures by comparing the failure rates of their components.

Consider the scenario where two tasks (software components), which were previ-
ously granted their own microcontroller, are to be deployed on a single one. Assume,

3.2. THEORETICAL MOTIVATION 17

for instance, that the two tasks are equally critical, with the same failure rate, and
that the system can cope with the failure of any of them, but not both. In this sce-
nario we can adjust two different parameters: (i) the development effort to decrease
the software failure rate (in failures/h) from λF in the federated architecture to λI in
the integrated architecture and (ii) the error detection coverage of the partitioning
mechanisms (denoted by c). Equation (3.1) shows the relative development effort
(λF/λI) as a function the partitioning coverage, given the requirement that the two
architectures should have the same Mean Time To Failure (MTTF).

λF
λI

=
3

2c+ 1
with c ∈ [0, 1] (3.1)

Equation (3.1) applies to the failure of software in systems which can tolerate the
failure of a single task. We call these systems 1-out-of-n-resilient systems, or simply
1-resilient systems. Equation (3.1) applies to the special case where the system is
composed of two tasks (a 1-out-of-2-resilient system). Equation (3.2) generalizes
the relation for 1-resilient systems with any number of tasks. These equations are
derived in Section 3.2.3.

λF
λI

=
2n− 1

(c+ 1)n− 1
with n ∈ {2, 3, . . .} ∧ c ∈ [0, 1] (3.2)

The plots in Figure 3.1 illustrate the relative software development effort (to de-
crease the failure rate of the different tasks) as a function of the partitioning effort
(to increase the error detection coverage of the partitioning mechanisms).

0 10 20 30 40 50 60 70 80 90 100
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Coverage factor of the partitioning mechanisms (%)

R
at

io
 o

f s
of

tw
ar

e
fa

ilu
re

 r
at

es
 (λ

F
 /

λ I)

1−resilient system with n = 2
1−resilient system with n = 4
1−resilient system with n = 8
1−resilient system with n = ∞

Figure 3.1: Relative development effort for software as a function of
partitioning effort for a constant MTTF.

18 CHAPTER 3. PARTITIONING FOR INTEGRATED ARCHITECTURES

One can conclude by analysing Figure 3.1 that, without partitioning (when
c = 0), all tasks must be guaranteed to fail with, at most, half of their original
failure rate (one third in the worst case) in order for the integrated architecture
to maintain the same MTTF as the federated architecture. On the other hand, if
partitioning is 100% effective there is no need for software development at higher
criticality levels. In fact, with perfect partitioning (when c = 100%), the reliability
(and not only the MTTF) of the two architectures will be the same over any period
of time.

3.2.2 Hardware Failures

So far our analysis has focused on the failure of software components. It is when
dealing with hardware failures that integrated architectures have a great potential
to improve the system’s reliability. Such architectures allow complex systems to
be built using a smaller number of microcontrollers. Hence, the overall hardware
failure rate will be determined by a smaller number of hardware components.

Consider again the above-described case of 1-resilient systems, but when facing
hardware failures. Again, we wish to share the same processor among n different
tasks. In a federated architecture each task would have a dedicated processor with a
known failure rate λ′F . In an integrated architecture all tasks share a single hardware
platform which has a λ′I failure rate. We have to assume that the partitioning
mechanisms are not effective against hardware failures. All partitions, as well as
the partitioning mechanisms, depend on the correct operation of their underlying
hardware. Some transient hardware faults will eventually be confined to a single
partition but this is not a requirement posed on partitioning mechanisms. We
therefore assume that a hardware failure in the integrated architecture will result
in the failure of all tasks sharing the faulty processor. Under these assumptions the
relative hardware development effort (λ

′

F/λ′
I
), for the two architectures to present

the same MTTF, is a function of the number of tasks. This relation, derived in
Section 3.2.3, is shown in Equation (3.3). The equation is plotted in Figure 3.2.

λ′F
λ′I

=
2n− 1
n2 − n

with n ∈ {2, 3, . . .} (3.3)

By analysing Figure 3.2 it is possible to come to the conclusion that the de-
velopment effort for hardware is lower in integrated architectures, even with no
partitioning at all, if three or more tasks are integrated. This is true in cases where
three or more tasks are merged into the same processing node, whenever the MTTF
is the most significant measure of dependability.

However, the MTTF is not as meaningful as a reliability value with an associated
time to compare the dependability of the two architectures. Most automotive and
avionics computer systems are mission-critical, designed to have very high reliability
during a 5 to 10 year life cycle. For such systems the MTTF is not always a
good measure for comparison since it integrates the reliability function over an

3.2. THEORETICAL MOTIVATION 19

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of tasks integrated into the same hardware platform

R
at

io
 o

f h
ar

dw
ar

e
fa

ilu
re

 r
at

es
 (λ

′ F
 /

λ′ I)

Figure 3.2: Relative development effort for hardware as a function of
the number of tasks for a constant MTTF.

infinite amount of time. Table 3.1 provides the values of the reliability of the two
architectures (for 1-resilient systems) after 5 and 10 years. The reliability of the
integrated architecture is not affected by the number of tasks since the hardware
failure rate depends on the number of hardware units rather than the number
of tasks. Regarding the federated architecture Table 3.1 shows the reliability for
systems with 5, 10 and 15 tasks – one task in each processing unit. We assume that
the hardware failure rate per processor is the same in both architectures (λ′F = λ′I =
10−6 failures/h). The values in Table 3.1 were obtained using Equations (3.12) and
(3.13), derived in Section 3.2.3.

Table 3.1: Reliability of 1-resilient systems with a hardware failure rate
of 10−6 failures/h per processor.

The first conclusion one can draw from Table 3.1 is that the reliability of the
federated architecture decreases with the number of processors. Hence, integrated
architectures are a promising alternative by reducing the number of processors.

The second and perhaps most important conclusion (also from Table 3.1) is
that integrated architectures are not beneficial in all situations. It is only when
the number of processors exceeds a certain threshold (around 7 processors for 1-

20 CHAPTER 3. PARTITIONING FOR INTEGRATED ARCHITECTURES

resilient systems) that we can benefit from integrated architectures. This number
has already been surpassed by the industry as there can be as many as 70 processors
in a high-end road vehicle and 50 in a modern airplane, with the consequent penalty
in safety and reliability.

The third conclusion is that, if we only consider hardware failures, it is simpler
to integrate mixed levels of criticality (e.g. one critical function per hardware unit
coexisting with several non-critical functions) than to integrate highly critical func-
tions. In the integrated architecture hardware failures can potentially disrupt more
than one critical function. Thus, when the number of functions is small (e.g. 5 tasks
in Table 3.1), the federated architecture offers better reliability. Usually, even if the
system has hundreds of functions, only a small fraction of those is critical. Thus,
deploying all critical functions in a single shared processor is not beneficial unless
the system suffers a catastrophic failure when any of them fails. In this case, which
is a 0-resilient system, the hardware reliability increases by using fewer hardware
components. A larger number of hardware components can only increase reliability
when used redundantly.

3.2.3 Derivation of Formulas

This section contains the demonstrations of the theoretical results described textu-
ally in the previous section. We use continuous-time Markov processes [68] to model
the system. We assume that the failure of one component is statistically indepen-
dent of the failures of other components. Furthermore, we assume that component
failures are exponentially distributed with a constant failure rate.

Since we assume independent failures, we do not consider correlated component
failures. This does not mean, however, that the failure of one component will not
propagate to other system components. Under certain conditions, a failure may
have consequences outside the component where it originated. Nevertheless, the
occurrence of one such failure is assumed to be statistically independent of any
other component failure.

We consider the scenario of 1-resilient systems, described earlier in this chapter.

Definition 1. A system is said to be 1-out-of-n-resilient if it can can tolerate the
failure of any single component. For short, we call these systems 1-resilient.

We begin by modeling the federated and the integrated architectures regarding
software failures. The problem described in the beginning of Section 3.2.1 involved
merging two or more tasks (software components), which were previously granted
their own microcontroller, into a single one. These tasks compose a 1-resilient
system and are equally critical, with the same failure rate. Consider the following
notations:

• λF – Failure rate of each task in the federated architecture.

3.2. THEORETICAL MOTIVATION 21

• λI – Failure rate of each task in the integrated architecture.

• c – Coverage factor of the partitioning mechanisms, i.e. the conditional prob-
ability that a partitioning violation does not occur, given that a task has
failed.

Definition 2. We define the relative development effort as the quotient λF/λI . The
relative development effort is a measure of the difference in the development effort
for a component moved from a federated architecture to an integrated architecture.
This definition is based on our assumption that the development effort of a compo-
nent is inversely related to its failure rate.

In the typical federated architecture each of the n software components would
have a dedicated microcontroller, as shown in Figure 3.3. On the other hand, with
an integrated architecture, the software components would share a single microcon-
troller, as shown in Figure 3.4.

Figure 3.3: Task assignment in
the federated architecture.

Figure 3.4: Task assignment in
the integrated architecture.

The first problem is to determine the development effort necessary to ensure
that the integrated architecture is as dependable as the federated architecture.
Considering the MTTF as the measure to compare the dependability of the two
architectures, Equation (3.2) can be derived through continuous Markov modeling.

Figures 3.5 and 3.6 show the state transition diagrams for the federated archi-
tecture and the integrated architecture, respectively. There is a direct mapping
between the states of the two models:

• A and A′ – All n tasks are functioning correctly.

• B and B′ – One task has failed and the remaining n− 1 tasks are functioning
correctly.

• F and F ′ – A second task has failed. Since the system can only tolerate a
single failure, this state represents a system failure.

The reliability of the system is the probability that the system functions correctly
over a specified period of time [68]. Let R(t) denote the probability that the system
is functional in [0, t]. For the two architectures in question, RF (t) = PA′(t) +
PB′(t) and RI(t) = PA(t) + PB(t) represent the reliability of the federated and the

22 CHAPTER 3. PARTITIONING FOR INTEGRATED ARCHITECTURES

Figure 3.5: State transition dia-
gram for the federated architec-
ture (software faults).

Figure 3.6: State transition dia-
gram for the integrated architec-
ture (software faults).

integrated design, respectively. PA(t) is the probability of being in state A at time
t.

An immediate conclusion one can draw is that, when c = 1 (perfect partitioning
coverage), RF (t) = RI(t) if and only if λF = λI . When c = 1 the Markov models
are exactly the same, with the exception of the failure rates. Thus, PA(t) = PA′(t)
and PB(t) = PB′(t) as long as λF = λI . This means that, with perfect partitioning,
we obtain the same reliability for the two architectures, regarding software failures,
with no additional development effort (λF = λI ⇔ λF/λI = 1).

We now wish to obtain the expression which relates the development effort to
any given value of c. From the Markov model in Figure 3.6 we obtain the transition
rate matrix Q:

Q =

−nλI nλIc nλI(1− c)
0 −(n− 1)λI (n− 1)λI
0 0 0

Since we know that

P ′(t) = P (t) ·Q

P (0) =
[

1 0 0
]

we obtain the system of equations

P ′A(t) = −nλIPA(t), (3.4)

P ′B(t) = nλIcPA(t)− (n− 1)λIPB(t), (3.5)

P ′F (t) = nλI(1− c)PA(t) + (n− 1)λIPB(t) (3.6)

to which we can apply the Laplace transform

L {P ′(t)} = sP̃ (s)− P (0).

So we have

sP̃A(s)− 1 = −nλIP̃A(s), (3.7)

sP̃B(s) = nλIcP̃A(s)− (n− 1)λIP̃B(s), (3.8)

sP̃F (s) = nλI(1− c)P̃A(s) + (n− 1)λIP̃B(s). (3.9)

3.2. THEORETICAL MOTIVATION 23

From (3.7) we get

P̃A(s) =
1

s+ nλI
(3.10)

From (3.7) and (3.8) we get

P̃B(s) =
1

s+ (n− 1)λI
nλIc P̃A(s)

=
nλIc

(s+ (n− 1)λI)(s+ nλI)

=
nc

s+ (n− 1)λI
−
nc

s+ nλI
(3.11)

Applying the inverse Laplace transform to both sides of (3.10) and (3.11) we get

L
−1{P̃A(s)} = L

−1
{ 1
s+ nλI

}

⇒

⇒ PA(t) = e−nλI t

and

L
−1{P̃B(s)} = L

−1
{ nc

s+ (n− 1)λI
−
nc

s+ nλI

}

⇒

⇒ PB(t) = nc(e−(n−1)λI t − e−nλI t).

Thus

RI(t) = PA(t) + PB(t) = nce−(n−1)λI t − (nc− 1)e−nλI t.

By replacing c with 1 we obtain RF (t) (the reliability of the federated architecture):

RF (t) = ne−(n−1)λF t − (n− 1)e−nλF t.

We now obtain the MTTF of both architectures

MTTFI =
∫

∞

0
RI(t) dt

=

[

−
nc

(n− 1)λI
e−(n−1)λI t +

nc− 1
nλI
e−nλI t

]

∞

0

=
nc+ n− 1
(n2 − n)λI

MTTFF =
∫

∞

0
RF (t) dt

=

[

−
n

(n− 1)λF
e−(n−1)λF t +

n− 1
nλF
e−nλF t

]

∞

0

=
2n− 1

(n2 − n)λF

24 CHAPTER 3. PARTITIONING FOR INTEGRATED ARCHITECTURES

We equate the MTTF of the two architectures to obtain the relative development
effort:

MTTFI =MTTFF ⇔
nc+ n− 1
(n2 − n)λI

=
2n− 1

(n2 − n)λF

⇔
λF
λI

=
2n− 1

(c+ 1)n− 1

Which completes the demonstration of Equations (3.1) and (3.2) presented in Sec-
tion 3.2.1. Equation (3.1) describes the special case when n = 2. We now turn to
the problem of hardware failures and demonstrate Equation (3.3).

Equation (3.3) defines the relative development effort necessary to ensure that
the integrated and the federated architecture are equally dependable. The MTTF
is the measure taken into account to compare their dependability.

The task assignment is the same as in Figures 3.3 and 3.4. We assume that a
hardware failure affecting a processing node will hinder all of the processor’s tasks
from executing correctly, i.e. partitioning is not effective against hardware failures.
Consider the following notation:

• λ′F – Hardware failure rate of each processing node in the federated architec-
ture.

• λ′I – Hardware failure rate of the shared processing node in the integrated
architecture.

Figures 3.7 and 3.8 show the state transition diagrams for the two architectures,
regarding hardware failures. The models consist of the following states:

• A′ – All n processing nodes are functioning correctly.

• B′ – One processing node has failed but the remaining n− 1 are functioning
correctly.

• F ′ – A second processor has failed. Since the system can only tolerate a single
failure, this state represents a system failure.

• A – The shared processing node is functioning correctly.

• B – The shared processing node has failed. Since all tasks share this node,
this is a failed state.

The Markov model of the federated architecture is the same as the one in Fig-
ure 3.5 (for software failures). Thus, we can reuse the previous set of calculations
to obtain the reliability of the federated architecture concerning hardware failures:

RF (t) = ne−(n−1)λ′
F
t − (n− 1)e−nλ

′

F
t. (3.12)

3.3. REQUIREMENTS FOR PARTITIONING 25

Figure 3.7: State transition dia-
gram for the federated architec-
ture (hardware faults).

Figure 3.8: State transition dia-
gram for the integrated architec-
ture (hardware faults).

Hardware failures are assumed to be exponentially distributed, so

RI(t) = e−λ
′

I
t. (3.13)

We now obtain the MTTF, regarding hardware, of both architectures

MTTFF =
∫

∞

0
RF (t) dt =

2n− 1
(n2 − n)λ′F

MTTFI =
∫

∞

0
RI(t) dt =

1
λ′I

We equate the MTTF of the two architectures to obtain the relative development
effort:

MTTFI =MTTFF ⇔
1
λ′I

=
2n− 1

(n2 − n)λ′F

⇔
λ′F
λ′I

=
2n− 1
n2 − n

We have now found the relative development effort for hardware, which completes
the demonstration of Equation (3.3), used in Section 3.2.1.

3.3 Requirements for Partitioning

So far, we have discussed partitioning in abstract terms. We see it as a set of
mechanisms that behaves like a firewall, preventing faults from propagating among
components. We have implicitly assumed that tasks are executing according to
a model and that partitioning would be unnecessary if the tasks always behaved
according to this model. The task model may include, for instance, a deadline which
must be met in every execution. Furthermore, one may schedule tasks according to
their priorities and design them to call a sleep-until primitive to release the CPU
as soon as their computations are finished. When all tasks follow this model we
are trusting them to complete their execution and call the sleep-until primitive on
time.

The main reason for using partitioning is that the arguments collected during
the certification of one component only assess its ability to provide correct service –

26 CHAPTER 3. PARTITIONING FOR INTEGRATED ARCHITECTURES

which includes calling the sleep-until primitive on time. For cost reasons, it would
not be effective to gather the same amount of dependability arguments for a non-
critical function and for a critical function. Thus, the sleep-until primitive must be
replaced by a stronger mechanism. One such mechanism should allow the safety-
critical task to provide correct service even if the non-critical task crashes or enters
an infinite loop.

The main requirement for partitioning is to ensure that fault-free partitions
are always able to provide correct service, regardless of which software executes
in other partitions. However, this requirement may be too strong, since it would
be necessary to take into account all possible program behaviors to ensure that a
partition remains fault-free in all cases. A thorough argumentation on the informal
requirements for partitioning, as well as a comparison between partitioning and
computer security, can be found in an excellent report by J. Rushby [65].

In recent years, the relation between dependability and computer security has
been clarified. We can view dependability and security as two distinct concepts
which share common attributes and are often interdependent [12]. Researchers
have realized that many systems are not secure unless they are dependable, and
vice versa. Examples of such systems are are network firewalls, which must be
highly available to be secure; computer systems in power plants, which must be
secured against malicious interaction faults to be dependable; and so on.

Security research can make a relevant contribution to the partitioning problem,
mainly with modeling techniques and with the requirements specification. Security
is often concerned with controlling the information flow among tasks:

• Confidentiality is a system’s ability to prevent the flow of sensitive information
to unauthorized partitions.

• Integrity is the ability to protect sensitive information from being modified
by unauthorized partitions.

The dependability field is mostly concerned with integrity rather than confiden-
tiality. Consequently, one of the major goals of partitioning is to assure the integrity
of partitions. In this context, fault propagation is the type of information flow that
partitioning aims to prevent. Thus, the development of partitioned systems can
directly benefit from the research in the field of computer security.

Conventional federated architectures assure the integrity of the different sub-
systems by using dedicated processing nodes – a basic form of partitioning. When
those processing nodes are interconnected and cooperate via message exchange, the
network is a potential path for fault propagation. Thus, federated architectures
require some mechanisms to provide partitioning among system nodes. Examples
of such techniques are the electrical isolation of hardware components at the cir-
cuit layer; bus guardians at the node layer to prevent untimely network accesses;
and redundancy management mechanisms at the system layer to detect and isolate
faulty nodes from the system.

3.3. REQUIREMENTS FOR PARTITIONING 27

The conventional partitioning mechanisms are also necessary when building in-
tegrated architectures. A permanent hardware fault in a node, for instance, should
not propagate to other processing nodes. Additionally, however, integrated archi-
tectures demand finer-grained partitioning mechanisms at the node layer. These
mechanisms should ensure the integrity of individual tasks or, possibly, groups of
tasks running on the same node.

The partitioning mechanisms should, ideally, provide a level of fault containment
among tasks comparable to that of federated architectures. One way to model this
is to identify the externally visible behavior of the system when all tasks are running
in isolation [28]. When moving the same system to an integrated architecture it
should be required that no new behaviors are introduced. This notion of noninter-
ference [35] was originally introduced by security researchers.

Noninterference is an information flow policy which specifies that the actions of
an entity1 should have no observable effects on other entities. Checking that such
a property holds throughout the execution of all tasks requires a clear definition
of “observable effects” and a clear model of the possible “actions”. A formulation
of noninterference that can be helpful for the verification process is based on the
determinism of the observations [62]. Under this formulation the actions of a high-
level entity are deemed nondeterministic. If the observations of the lower-level
entities are deterministic then they are independent of higher-level entities. The
direction of noninterference can be reversed to assure that there is no information
flow in any direction.

A similar line of thought is applied in [77], where task isolation is achieved by
ensuring invariant system performance. The formulation of invariant performance
guarantees that the software components’ execution after integration is exactly the
same as it was in isolation. A system with invariant performance is required to (i)
execute the operations of each task at precisely defined times (unvarying schedule)
and (ii) ensure noninterference.

However, for most applications invariant performance is too restrictive to be
useful – one must be able to predict which task is executing during each proces-
sor cycle. Simple noninterference properties are also too strong and restrictive for
real-world applications. This follows from the common notion of task deadline in
hard real-time systems: a task should always complete before its deadline. Invari-
ant performance implies that tasks are always completed exactly at their deadline;
noninterference implies that a task’s completion is totally independent of any other
tasks. In other words, there would be information flow from a failed task to other
tasks if the resulting spare cycles could be reclaimed by those tasks.

For these reasons, well-established scheduling algorithms such as Earliest Dead-
line First (EDF) and Rate-Monotonic Scheduling (RM) [52] are not valid options
when ensuring invariant performance or plain noninterference. In fact, most real-
world approaches to partitioning at the node layer have used time-triggered cyclic

1An entity can can be a user, a task, a database, etc.

28 CHAPTER 3. PARTITIONING FOR INTEGRATED ARCHITECTURES

schedules. This rules out, for instance, the possibility of integrating low-criticality
background tasks which use the spare processor cycles to provide additional features
(e.g. monitoring tasks). We therefore require more flexible policies than noninter-
ference to apply event-driven scheduling in partitioned systems.

There are several advantages in using event-driven scheduling instead of time-
triggered approaches. Sporadic and aperiodic tasks are favoured with more efficient
resource utilization; the average response time of such tasks is also improved by
avoiding event-polling waiting times. Furthermore, there is usually no reason to
prevent tasks from early completion – the real problem is to ensure that they never
complete too late. Thus, the models derived from noninterference must be extended
with integrity policies that control the information flows instead of ruling them out.

These issues have also been identified in the field of computer security, where
there is an ongoing effort to devise less restrictive information flow policies [80].
For practical reasons information is often disclosed intentionally. Web servers, for
instance, reveal the family/version of their software without compromising any sen-
sitive information. The notion of declassification [79] has been proposed to model
those intentional flows. Information is declassified or downgraded by providing
intentional leaks. The resulting declassification channels are then expected to be
robust, i.e. only the intended information should be released.

According to [67], declassification has four dimensions that describe intentional
information release: what can be released, when and where can it be released, and
who can release it. Since we are focusing on the integrity of partitions (not their
confidentiality) our concern is that information might change due to faults in other
partitions, rather than it being released. Thus, for partitioned systems, the four
dimensions describe what information can be modified, when and where can it be
modified, and who can modify it. These dimensions can be used to characterize the
requirements of partitioning mechanisms:

• Spatial partitioning mechanisms should ensure the integrity of the information
belonging to each partition, i.e. memory address space, storage space, mes-
sages on the network, private i/o devices, etc. Pure noninterference is often
required for information such as private data structures or code. The com-
munication network, however, exemplifies a structural element that is shared
among several partitions. The access to the network is therefore declassified
in order to allow several partitions to communicate. In doing so, the system
designer must carefully specify when may each partition access the network
(e.g. time-triggered scheduling).

• Temporal partitioning mechanisms should ensure that the response time re-
quirements of non-faulty partitions are satisfied. This indicates that the in-
terference among partitions, in the time domain, must be controlled, rather
than ruled out. The response time analysis must therefore take into account
faulty scenarios.

3.4. MECHANISMS FOR PARTITIONING 29

3.4 Mechanisms for Partitioning

This section identifies existing approaches to fulfill the requirements for partitioning.
We examine the topics of spatial and temporal partitioning separately.

3.4.1 Spatial Partitioning

In multitasking environments, preventing the tasks from writing into each other’s
memory space is fundamental. The concern is that, if the memory spaces are not
isolated, a failed task may hinder the correct execution of other tasks. Closing this
pathway for fault propagation is an issue for spatial partitioning mechanisms.

In computer architecture and operating systems literature [72, 42] spatial parti-
tioning is usually referred to as memory protection. It can employ either software,
hardware or a mix of both to allocate memory to different processes and ensure
that they cannot access memory outside their own areas.

The most common method for memory protection is paging. In the simplest
version of paging the memory is divided into fixed-size frames. Each process page
is allowed to occupy any such frame. Additionally, it is possible for every process
to access its memory through a contiguous virtual address space which aggregates
all pages. The page size determines the amount of internal fragmentation, i.e. the
memory wasted when a process page is smaller than the (fixed) page size. Small
page sizes are often desired in order to reduce internal fragmentation. However,
since the operating system must maintain the information of which pages belong
to a process in a page table, a small page size results in more overhead due to large
process page tables. A common page size is 4KB. However, most memory protection
designs allow multiple (simultaneous) page sizes to avoid the drawbacks of fixed-size
pages. Depending on the actual design the page sizes can be, for instance, powers
of 4KB (4, 16, 64, etc.).

Another common memory protection scheme is segmentation. Segmentation
allows programs to allocate unequal-sized portions of memory in the form of seg-
ments. The segments may also be dynamic in order to handle growing/shrinking
data structures. Since processes may occupy several segments a memory access must
specify the segment number and an offset within that segment. This scheme has
the advantage of reducing the internal fragmentation at the expense of increasing
the complexity of many aspects of the operating system’s design.

Currently, there are numerous techniques to implement memory protection,
which can be broadly classified into two categories: software techniques and hard-
ware techniques (which most often require some software to be managed).

Hardware Techniques

Hardware-based memory protection by means of a MMU is an established feature
of desktop and server computers [42]. The MMU is a gateway between processor

30 CHAPTER 3. PARTITIONING FOR INTEGRATED ARCHITECTURES

and memory with many important features. It provides memory protection by
restricting programs to memory accesses within specified areas. When a program
accesses another program’s memory area, an exception is raised and the control
is handed over to the operating system, which may then stop the erroneous (or
malicious) program. Address translation allows all programs to have the same
logical address space, whilst their code and data can be located in convenient real
addresses.

A key component in providing efficient address translation is the Translation
Lookaside Buffer (TLB) – a small and very fast cache which holds recently used
entries. Each entry contains the physical page number, the real page number and
the permissions of the currently running process (read, write and execute rights for
both supervisor and user mode). Each entry may additionally include a dirty bit to
identify pages which have been written to, the caching policy for the page, and other
information which depends on the actual hardware. Whenever an effective address
is matched against a TLB entry (cache hit), the page number is found immediately
and the real address can be formed. Otherwise, if a TLB miss occurs, the table
must be updated with an entry for the missing page. In some architectures this
process is done entirely by the hardware whereas in others an exception is generated,
requiring the operating system’s software to update the TLB. In any case, TLB
misses incur severe performance penalties.

Some systems make use of virtual memory – the ability to store some pages in
memory and others is disk [72]. When a TLB entry describes a virtual page which
has no physical memory allocated, a page fault will be signaled by the MMU. The
operating system must then handle this request by loading the appropriate page
from disk (possibly by swapping out an existing page and saving it to disk). A page
fault may also indicate a faulty process which should be stopped. Virtual memory
allows every process to run as if the entire memory was contiguous and unlimited.
In a 32-bit processor, for instance, each process is able to address 4GB of memory.

Furthermore, some MMUs offer cache control mechanisms. This feature allows
the operating system to decide whether or not a page is cacheable. It may also be
possible to specify that a page should always be kept in cache. This feature may
prove useful in real-time systems by retaining the pages which belong to critical
tasks in the cache. The response times of these tasks will be deterministic as
there will be no cache misses. Nevertheless, memory caches are usually small when
compared to the size of main memory. Thus, cache entries should only be locked
when the cost of cache misses is not acceptable.

Although virtual memory by means of the MMU is the de facto method for
memory protection in desktop and server computers, it is less frequently used in
embedded real-time systems. In order to reduce the cost and the energy consump-
tion of the CPU, most embedded microcontrollers lack the hardware support for
advanced memory management. Furthermore, MMUs impose time overhead and
make it more difficult to determine the Worst-Case Execution Time (WCET) of

3.4. MECHANISMS FOR PARTITIONING 31

programs.
However, Freescale’s MPC5554 [31] is an example of a recently introduced em-

bedded microcontroller equipped with an MMU which provides, among other capa-
bilities, memory protection. For real-time applications, it is possible to effectively
disable address translation (and virtual memory) by using a one-to-one mapping
between virtual and real addresses. Moreover, one can ensure that the TLB always
contains the page entries of the process that is currently running [5, 6]. This ap-
proach brings determinism and low-overhead to memory accesses, while ensuring
that memory access violations are detected. If all pages of a process have an entry
in the TLB and a TLB miss occurs, then the process is accessing memory outside
its own area.

Some embedded microcontrollers such as Freescale’s MPC565 [32] and ARM’s
940T [10] are equipped with a Memory Protection Unit (MPU). An MPU does
not translate virtual addresses but provides basic memory access control in a way
similar to an MMU. Depending on the actual processor model, the address space
can be partitioned into at most eight segments of data and eight segments of code.
Every segment has a minimum size of 4KB and can grow, by a power of 2, up to
4GB. This may lead to internal fragmentation and, consequently, wasted memory.

MPUs can be useful in embedded real-time applications since they only provide
simple memory protection. MMUs, on the other hand, provide many other features
designed for high average throughput that, when enabled, make worst-case estima-
tions unacceptable. However, the number of segments supported by common MPUs
is lower than the number of TLB entries in common MMUs. This makes it possible
to use an MMU as an MPU. The converse is not possible, as MMUs provide other
useful features such as cache control. In fact, even virtual address translation can
be of use for fault tolerance purposes. A viable approach is to store multiple copies
of data in memory and switch transparently to another physical address space when
a fault is detected.

Software Techniques

A number of software techniques to prevent unauthorized memory accesses has been
devised in the past. Some involve the use of run-time checks to ensure that every
memory access is safe, whereas others aim at proving safety via static code analysis.
Generally speaking, software techniques for partitioning are all which do not use
specialized hardware and attempt to provide the same level of memory protection.

One such technique is called intended segment analysis [70]. This technique
provides segment protection by inserting run-time checks before memory accesses
to detect segmentation violations. The run-time checks are inserted at compile-time
by an automatic tool which is language-independent.

In order to detect all segmentation violations it would be required to place a run-
time check for each memory reference, with a few trivial exceptions (e.g. sequential
instruction fetches starting in a valid point, constant pointers, etc.). However, the

32 CHAPTER 3. PARTITIONING FOR INTEGRATED ARCHITECTURES

performance of this baseline method, also evaluated in [70], is quite poor. The
execution time overhead was found to average 60%, the code size overhead was, on
average, 6% and the energy consumption overhead was estimated to an average of
48%.

Consequently, the authors devised a set of optimizations, derived from compiler
theory, which improved the performance dramatically. The optimizations include,
for instance, checking only the reference which dominates multiple accesses to the
same address (subsequent accesses do not require checking). The optimized solution
was found to have an average overhead of 0.72% in execution time, 3.6% in code size
and 0.44% in energy consumption. One noteworthy point is that, while the average
code size overhead is 3.6%, one of the eight benchmarks yielded an overhead of 25%.

Another method for software memory protection is to use safe programming
languages such as Cyclone [45]. Cyclone is a dialect of C which imposes some
restrictions to ensure that all operations are safe. The restrictions include ensur-
ing safe type-casts and unions, mandatory pointer initialization, inserting run-time
bound checks to prevent segmentation faults, etc. In order to regain the restricted
features provided by standard C some extensions are provided by Cyclone.

The Cyclone compiler performs a static code analysis to ensure safety. Under
certain conditions the static analysis cannot guarantee that the code is safe but the
insertion of run-time checks will ensure the detection of all errors. If neither the
static analysis nor the run-time checks can ensure safety, the compiler will reject
the program – which may be written in standard C. The programmer then needs
to rewrite the program in order for the compiler to verify its safety. The authors
estimate that, if the original C code is safe, porting legacy code to Cyclone requires
8% of the code to be modified [38, 45].

The overhead of using the Cyclone compiler depends on the number of run-time
checks that are required to ensure safety. This number depends on the performance
of the static analysis in avoiding the run-time checks. When comparing the ex-
ecution time of the original C code to the Cyclone code, the estimated overhead
was on average 30%, with a maximum of 150%. Conceptually speaking, it would
be possible to optimize the run-time checks with techniques such as the ones used
in the intended segment analysis method. Nonetheless, there is a cost associated
to porting legacy code to Cyclone, which is often impractical for the industry to
support.

A similar approach is taken by the Control-C programming language [49], which
is a restricted subset of C designed to guarantee memory safety without run-time
checks. The semantic restrictions required by Control-C (e.g. strong typing, re-
stricted array operations, mandatory pointer initialization, etc.) allow the compiler
to verify the code entirely by static analysis, thereby avoiding run-time bounds
checking and garbage collection. Although Control-C has the same drawback as
Cyclone – porting legacy code is expensive and only practical if the original code
is written in C – there is no run-time overhead. Furthermore, Control-C may con-

3.4. MECHANISMS FOR PARTITIONING 33

ceptually be used as a tool which checks C programs that are then compiled and
linked with standard C compilers.

Safe-C [11] and CCured [24] are program transformation techniques. This type
of technique transforms the source code of a program into another program, in the
same language, which has run-time checks. Safe-C applies a simple set of trans-
formations to C code in order to provide complete error coverage. The method
is not limited to C and can, in theory, be applied to any language. The imple-
mentation presented in [11] was benchmarked for pointer-intensive programs. The
execution time overhead ranged from 130% to 540% while the code size overhead
was estimated to 100%. Nonetheless, the benchmarks were compiled with no com-
piler optimizations enabled. Thus, by using techniques such as the ones in intended
segment analysis [70] the overhead should be reduced significantly.

CCured, on the other hand, attempts to prove memory safety first through
static analysis (by enforcing strong types). When the C code does not comply
to the CCured type system, run-time checks are used to ensure error detection.
The performance of this method is heavily dependent on the amount of run-time
checks needed when the static analysis fails. The authors benchmarked CCured
with a large set of widely used programs and found run-time overheads ranging
from 0 to 87%. Similarly to Safe-C, this overhead can be improved with compiler
optimizations.

Hardware Mechanisms vs. Software Mechanisms

The main advantage of software techniques is their flexibility in providing unlimited
memory segments of arbitrary sizes. Moreover, less is required from the hardware,
hence microcontroller costs and power consumption are reduced. On the other hand
the execution time and code size overheads of run-time checks can be significant.
There is also an additional cost associated with changing compilers (which often
requires costly certification processes) as well as changing programming languages.

Hardware mechanisms also introduce some overhead. However, this overhead is
clearly lower than in software mechanisms and easier to model (e.g. by including
context switching overhead in WCET analysis). Furthermore, hardware techniques
are systematic in which they can be developed once and used for a long period of
time with no additional concerns. Thus, the application programming effort is not
directly influenced by the partitioning mechanisms. However, there is an added
complexity to the microcontrollers which support hardware memory protection.
This results not only in higher cost of acquisition and power consumption but also
in higher hardware failure rates as well. Furthermore, the most common hardware
mechanisms are designed for desktop and server applications, where some internal
fragmentation and a moderate page fault rate are acceptable. In common processors
the MMU can hold up to 32 entries in the TLB with a minimum page size of 4KB.

Both hardware and software techniques have the potential to achieve very high
or even perfect error detection coverage for software faults (bugs) that cause erro-

34 CHAPTER 3. PARTITIONING FOR INTEGRATED ARCHITECTURES

neous memory access attempts. Unless a design fault affects the memory protection
mechanisms no process will be able to access outside its own address space.

However, hardware faults can affect the partitioning mechanisms and thereby
cause the whole node to fail. This is true whether the mechanisms are implemented
in software or in hardware. A transient fault affecting the MMU can result in
corrupted memory addresses. A similar fault affecting a software run-time check
can have the same effect. Hence, it is not a straightforward issue to determine
whether or not software mechanisms are more vulnerable to hardware faults than
hardware mechanisms.

Hardware faults must therefore be handled by executing programs on redun-
dant computers. The number of redundant units necessary is intuitively lower in
integrated architectures than in federated architectures. Thus, the development
of memory protection mechanisms facilitates the integration of functions, which in
turn facilitates the design of hardware-fault handling mechanisms. This is the case
whether memory protection is implemented through software or hardware.

However, hardware memory protection mechanisms can be designed to mask
transient hardware faults. TMR and other methods can be applied to the MMU
or MPU hardware. This approach is taken in the LEON processors [34], which
are able to tolerate transient SEUs. Consequently, spatial partitioning through
hardware can be extended to handle hardware faults. Nonetheless, this approach
implies moving away from COTS hardware.

3.4.2 Temporal Partitioning

For real-time applications it is fundamental for each task to complete before a
certain deadline. When multiple processes compete for the same resources (e.g.
processor, i/o devices, etc.) one must ensure that no process can cause resource
starvation. Resource starvation occurs when one or more processes are denied
access to the shared resources. Such processes may never complete their execution.
In general, partitioning requires that the software in one partition does not disrupt
the timeliness of software in other partitions. This means that, in addition to spatial
partitioning mechanisms, one needs to develop temporal partitioning mechanisms
as well.

The simplest answer to temporal partitioning is to use well known scheduling
algorithms such as RM and EDF scheduling [52]. In [59] the four main approaches
for scheduling are discussed in detail. The approaches are: static table-driven
scheduling, static preemptive scheduling, dynamic planning-based scheduling and
dynamic best-effort scheduling. These scheduling approaches are discussed in the
context of IMA in [65].

However, the existing models of partitioning (discussed in Section 3.3) impose
some restrictions on the applicability of the classical scheduling results. An example
of this is noninterference. When a task completes its execution earlier than expected
it will interfere with other tasks in the temporal domain (they will start executing

3.5. GUIDELINES FOR INTEGRATED ARCHITECTURES 35

earlier than expected). This suggests that noninterference in the temporal domain
should be relaxed by using the notion of declassification. The main requirement
would be to ensure that tasks are unable to hinder other tasks from fulfilling their
response time requirements.

If this policy is accepted, then one can use RM or EDF to schedule partitions as
long as there are mechanisms to ensure that a task cannot execute past its deadline
(e.g. watchdog timers). When the deadlines are enforced the only timeliness issues
arise with concurrent accesses to data items. This issue is also solvable through
concurrency control techniques [19].

The existing practical approaches to partitioning try to avoid any type of inter-
ference, even if benign. A two-level scheduler such as the one presented in [51] is
a common paradigm. Under this scheme partitions are executed in a cyclic time-
triggered schedule. The individual tasks within each partition are then executed
with static (RM) or dynamic (EDF) priority scheduling.

The drawbacks of this approach are twofold. First, the WCET analysis of tasks
can be overly pessimistic. In a scenario where external interrupts are being used to
serve, for instance, a network controller, an interrupt servicing partition A might
occur during the execution of partition B. Thus, the execution time of any task in
partition B must take into account the frequency at which interrupts for partition
A are occurring. Second, the maximum frequency of execution of any task is de-
termined by the frequency of execution of the partition. Clearly, context switching
times between partitions make it impractical to give partitions the illusion of a
dedicated (slower) processor by using, for instance a cycle frequency of 1KHz. This
creates a limitation in managing tasks with disparate frequencies.

An approach which can be useful for temporal partitioning under faulty condi-
tions is described in [69]. Along with the usage of an MMU for spatial partitioning,
an imprecise computation model is proposed for temporal partitioning. Whenever
the execution of a task exceeds a certain time limit (before the actual deadline),
a backup routine is started. The backup routine will produce an imprecise result
during the remaining time before the deadline. This approach may present some
advantages if imprecise results can be acceptable. Nonetheless, this approach is
an extension to partitioning methods rather than a separate temporal partitioning
technique.

3.5 Guidelines for Integrated Architectures

This section provides a set of qualitative guidelines for building integrated architec-
tures, based on the analysis provided in this chapter. These guidelines are derived
from the quantitative assessment discussed in Section 3.2 and the available parti-
tioning mechanisms surveyed in Section 3.4.

• To assure the reliability of integrated architectures, a fundamental design
decision is whether to use robust partitioning mechanisms or to increase the

36 CHAPTER 3. PARTITIONING FOR INTEGRATED ARCHITECTURES

development effort for all functions. There is a cost associated to both options.
Partitioning mechanisms add complexity to the system, thereby increasing the
development effort for the entire platform; the other option is to increase the
development effort for individual functions, which is costly when the number
of functions grows. There is a trade-off between the two choices. However,
partitioned systems have the additional advantage of facilitating incremental
certification, i.e. to certify a system once and upgrade it with new features
without the need for complete re-certification.

• When the robust partitioning option is chosen, it is beneficial to segregate
all integrated functions. This includes separating functions of the highest
criticality from each other. In this chapter we conclude this through proba-
bilistic analysis. Furthermore, the same conclusion is apparently motivated
by the perfectionist approach (procedure-based software development). If the
emphasis is on using the best available systems engineering practices, then
partitioning (or some other type of protection among functions) should al-
ways be introduced.

• Partitioning mechanisms provide limited or no protection against hardware
failures. Thus, structural hardware redundancy is required to protect the
system against hardware failures.

• Hardware mechanisms for spatial partitioning have a clear advantage over
software mechanisms. First, spatial partitioning through software requires
the costly introduction of new tools in the toolchain (compiler, linker, etc.).
Second, the code containing, for instance, runtime checks will be interleaved
with the application code. Thus, it may be difficult to persuade the certifying
authorities that the same object code contains distinct criticality levels for
the application and for the spatial partitioning mechanism.

3.6 Discussion and Conclusion

This chapter presented an analysis of robust partitioning methods. We discussed the
requirements for partitioning and the existing mechanisms to implement partitioned
systems. Furthermore, we analyzed the development effort necessary to ensure that
integrated and federated architectures are equally dependable.

We conclude that different functions can be integrated into the same hardware
platform without robust partitioning. However, without partitioning, the develop-
ment effort for each individual function must be increased. Furthermore, whenever
the system is upgraded there is a need for re-certification. On the other hand,
with robust partitioning (100% effective), software can be developed and certified
without taking into account that other tasks are sharing the same processing node.

3.6. DISCUSSION AND CONCLUSION 37

Regarding hardware failures, the reliability of federated architectures decreases
with the number of processors. However, integrated architectures are not beneficial
in all scenarios. It is only when the number of processors used in a federated archi-
tecture exceeds a certain threshold that an integrated architecture would provide
better reliability. Our analysis shows that this threshold is around 7 processors for
1-resilient systems.

We discuss the requirements for partitioning in the light of computer security
concepts. When specifying the integrity requirements of partitions we find the
notion of declassification to be less restrictive and therefore more useful than pure
noninterference policies.

We survey the existing spatial partitioning mechanisms and come to the conclu-
sion that hardware mechanisms have clear advantages over software mechanisms.
Furthermore, the hardware support for advanced memory management is gradually
being introduced in embedded microcontrollers.

On the other hand, software mechanisms have some advantages (e.g. unlimited
memory segments of arbitrary sizes) that may be useful for some applications. It
should be noted that the overhead of some software mechanisms can be reduced by
eliminating the runtime checks for instructions that read data from memory. Our
primary concern is the integrity of partitions. Thus, we only need to insert runtime
checks for write instructions.

There is a large set of design choices available for temporal partitioning. In prin-
ciple, both event-driven and time-triggered execution can fulfill the requirements of
partitioning. This is therefore an architecture-dependent choice. However, there are
several advantages in using event-driven scheduling. This type of scheduling would
therefore be beneficial in assuring the response time requirements of partitioned
systems.

38 CHAPTER 3. PARTITIONING FOR INTEGRATED ARCHITECTURES

CHAPTER 4

Distributed Redundancy Management

This chapter addresses the problem of redundancy management in distributed sys-
tems. We propose a group membership protocol that achieves consensus on the
operational state of all nodes in a system using time-triggered communication. The
protocol ensures agreement on node departure under faulty conditions; the num-
ber of near-coincident failures that can be tolerated is configurable at design time,
offering a trade-off between reliability and communication overhead. Additionally,
the protocol provides agreement on reintegration of restarted nodes.

4.1 Introduction

Recovery from processing node failures requires distributed mechanisms that sup-
port diagnosis, isolation, reconfiguration and reinitialization of nodes. These four
activities are implemented at the system layer by distributed redundancy manage-
ment protocols. Such protocols ensure that redundancy management is coordinated,
i.e. working nodes have a consensus on the location of the fault – diagnosis –, on
the components that should be excluded – isolation – and on the reconfiguration
that must take place to handle faults correctly.

Group membership is often a cornerstone of the design of redundancy manage-
ment mechanisms for fault-tolerant distributed systems. The entities, or nodes,
which constitute such systems, must cooperate in providing a correct service to its
user(s), even in the presence of faults. A correct behavior of the system requires
that the non-faulty nodes have access to timely and consistent information about
the operational state of all nodes. The algorithms devised to maintain this infor-
mation, preferably in a decentralized manner, are usually known as processor-group
membership protocols.

39

40 CHAPTER 4. DISTRIBUTED REDUNDANCY MANAGEMENT

This chapter proposes a processor-group membership protocol appropriate for
hard real-time systems which utilize network standards such as TTCAN [33] or
FlexRay [17]. Such systems impose hard deadlines for achieving consensus on mem-
bership changes, while they offer limited bandwidth for the implementation of the
membership services.

The numerous solutions proposed in the past reflect the diversity of situations
where membership agreement services are of use. In this thesis we consider group
membership for systems relying on synchronous communication, where messages
are transmitted within a known amount of time and processing nodes have a global
notion of time. The membership problem in such systems was first described in [25].
Specially tailored solutions, for different applications, were subsequently devised
and proposed in the literature [47], [46], [23] and [61]. The problem has also been
widely studied in the context of asynchronous systems, which do not observe the
synchrony hypothesis (e.g. [60], [30], [56] and [29]). The timed asynchronous model
[26] combines these two classes of systems by assuming that all services, including
membership, are timed although interprocess communication time is unbounded.

The protocol described in this chapter assumes that each node in the system pe-
riodically sends messages that reach all other nodes under fault-free circumstances.
It piggybacks all protocol-specific information on such periodic messages. The pro-
tocol allows fault-free nodes to reach agreement on the operational state of all
nodes in the presence of node failures as well as network failures (lost or corrupted
messages).

It is based on the principle that each message sent by a node which is present in
the membership should be acknowledged by k other nodes in a system of n nodes.
The value k can be set to any number between 2 and n−1. Each node must ac-
knowledge k messages, and thus each message must contain k acknowledgement
bits. The number of acknowledgement bits determines the number of simultaneous
failures that can be tolerated during n consecutive transmission slots. Therefore,
our protocol contrasts to most solutions intended for hard real-time systems in its
flexibility to configure the trade-off between reliability and communication over-
head, at design time.

Agreement on departure is guaranteed if no more than f=k−1 failures occur
during n consecutive transmission slots, while at most one node can attempt rein-
tegration into the group of operational nodes (the membership) per communication
round. In our scheme, listening on the network is enough for a restarted node to re-
cover the state of the membership, before attempting reintegration. We introduce
an additional service for agreement on round number to ensure that nodes send
their reintegration requests in a known order.

In addition to the protocol for processor-group membership agreement, this
chapter presents the outline of an extension which keeps track of application pro-
cess failures. This feature is intended for distributed real-time systems where the
processing nodes offer effective fault-containment between different application pro-

4.2. SYSTEM MODEL 41

cesses executed on the node. In such systems the membership service should prefer-
ably handle both node failures and application process failures.

4.2 System Model

We consider a set of processing nodes linked by a time-triggered broadcast network.
We assume that the network has either as bus or star topology. Processors (nodes)
have their clocks tightly synchronized and send messages at predefined time-slots
according to a time-triggered cyclic schedule. Each cycle in the schedule corresponds
to a communication round.

Each node has a single dedicated transmission slot on the network which it uses
to broadcast its messages in every communication round. Processing nodes are
assumed to be fail-silent, i.e. either correct results or no results are broadcasted,
or fail-reporting, i.e. either the correct result or a failure report, specifying the
causes of failure, is produced. (The term fail-signaling is sometimes used instead of
fail-reporting.)

Under fault-free conditions, a node will always send a message in its transmission
slot. The physical link ensures that the message is delivered to all other nodes (i.e.
the receiving nodes). If a node does not receive a message during a slot, then a
failure has occurred. It could be a failure of the sending node, a failure of the
receiving node, a network failure or a combination of these.

In our system model, we assume that failures can occur in the nodes, their
incoming and outgoing links (protocol processors which provide the interface to
the network), and the network itself. To simplify the discussion about the kind
of failures our protocol can handle, we map these failure types into four different
failure classes according their persistence, permanent or transient, and whether their
impact on the system is consistent or inconsistent. We assume that a transient
failure only affects one message.

If several consecutive messages are lost, for instance, due to electromagnetic
interference on the network, then we consider this as a case of multiple transient
failures. A permanent failure will remain in the system until it is repaired, and may
affect one node, or its outgoing or incoming link, or a point-to-point connection
between a node and the hub if the network has a star topology. (A permanent
failure of a non-redundant bus network will lead to a failure of the entire system,
and is thus not relevant for our group membership protocol.)

We classify a failure as consistent if all receiving nodes fail to receive a message
correctly, since all the receiving nodes in this case will have a consistent view of the
system state. On the other hand, an inconsistent failure occurs if one node fails to
receive a message correctly, since that node then has a different view of the system
compared to all other nodes.

We assume that a situation where some nodes receive a message correctly, and
two or more nodes receive the message incorrectly, can only occur in presence of

42 CHAPTER 4. DISTRIBUTED REDUNDANCY MANAGEMENT

multiple failures. We deal with multiple failures by configuring the membership pro-
tocol appropriately. Table 4.1 shows how the different types of component failures
are mapped into the different failure classes.

Component Failures Transient Permanent

Sending Node 1. 3.

Outgoing Link Transient Consistent Permanent Consistent

Network (Consistent)

Network (Inconsistent) 2. 4.

Incoming Link Transient Inconsistent Permanent Inconsistent

Receiving Node

Table 4.1: Mapping of component failures to failure classes.

The rationale for this failure model is to have a clear definition of what we mean
by a failure, as we express the fault tolerance capabilities of our protocol in terms
of the number of simultaneous1 failures the protocol can cope with. As previously
explained, the number of simultaneous failures under which the protocol reaches
agreement on the membership depends on the number of acknowledgement bits
used. An example of a similar failure model, used in conjunction with processor-
group membership protocols for time-triggered systems, can be found in [47].

From the viewpoint of healthy nodes, a failure of the sending node means missing
at least one message from this node or receiving at least one failure report. In any
of these cases the failure will be consistently detected by all healthy nodes. The
same can be assumed when an outgoing link failure of the sending node occurs.
These two failure types can therefore be classified as consistent failures, i.e. class 1
or class 3, depending on their persistence.

On the other hand, when a receiving node suffers a transient failure it will
miss a single message. A transient incoming link failure will also have the same
consequence. These failures are classified as transient inconsistent failures (class 2).
When the incoming link of a single node becomes permanently faulty we classify it
as a permanent inconsistent failure (class 4).

Modeling communication failures must consider the topology of the network [66].
We assume that the network is based either on a bus topology or a star topology. Our
protocol can be used with both redundant and non-redundant networks. Common
examples of redundant networks are duplicated buses or duplicated stars.

The network failure model is supported by the following analysis. We assume
that applying structural redundancy will allow single transient failures to be masked
by the physical layer. When the network uses a bus topology it is reasonable to
assume that the probability of an error causing some nodes to receive the correct

1By simultaneous failures we mean failures that occur during n consecutive transmission slots,
where n is the number of nodes in the system.

4.3. PROTOCOL SPECIFICATION 43

message while other nodes receive a corrupted version, is negligible. If this assump-
tion does not hold (e.g. slightly-off-specification failures are a concern), then the
number of acknowledgement bits must be increased to a suitable configuration.

When the star topology is used, network failures in the connection between the
sending node and the star hub will be detected by all receiving nodes. On the other
hand, failures occurring in a receiving node’s connection to the star hub will only
be perceived by this node. We assume that the hub itself will not introduce changes
to this failure model.

When all nodes miss a single message due to a transient network failure we
have a failure of the transient consistent class. On the other hand, if only one
receiving node misses a single message, a failure of the transient inconsistent class
has occurred. When the network failure is permanent then either one node is not
able to send messages (permanent consistent failure) or one node is not able to
receive messages (permanent inconsistent failure).

4.3 Protocol Specification

This section provides the specification of the membership agreement protocol. For
simplicity, we divide the specification into four mini-protocols which, combined,
provide agreement on departure of failed nodes and reintegration of recovered nodes.
The four mini-protocols are:

• Agreement on departure, which handles the departure of failed nodes from the
membership set.

• Agreement on reintegration, that specifies how nodes are reintegrated into the
membership set.

• Agreement on reintegration ordering, that supplies the “current” round num-
ber to restarting nodes, which must follow an order of reintegration.

• Recovery of the membership state, which provides the means for a restarting
node to retrieve the “current” membership state.

The membership protocol relies on the periodic messages sent by each node
to piggyback a sequence of acknowledgements. Each node will append k acknowl-
edgement bits to its message, confirming (or refuting) the reception of each of the
previous k messages from the nodes in the membership. A reintegration flag is also
appended to each message to allow reinitialized nodes to reintegrate the member-
ship. The periodic messages therefore respect the following format:

message = 〈data, ack1, · · · , ackk, r-flag〉

The data field contains the payload of the message, i.e. the normal informa-
tion sent by nodes on the membership. The ack fields, as well as the r-flag, are

44 CHAPTER 4. DISTRIBUTED REDUNDANCY MANAGEMENT

Booleans that can be represented by a single bit. The four mini-protocols describe
how the ack flags and the r-flag are set in response to certain events. The events
that are reported to a node are message receptions, message losses and new round
notifications.

4.3.1 Definitions

Let N denote the totally ordered set of processing nodes N1, N2, . . . , Nn. The
totality condition is intuitively satisfied by the order in which nodes broadcast in
every round, imposed by the network schedule. We use n to indicate the number
of nodes in the system. We exclude systems with n ≤ 2 processing nodes, where
membership agreement is irrelevant.

Each node has access to a global view of time, supplied by a clock synchroniza-
tion mechanism. In what concerns the membership problem, the required gran-
ularity of time is a transmission slot. Let s denote the slot progression, starting
at 1 and incrementing to infinity. Processing nodes are not required to know the
value of s (the absolute slot number since start-up). The membership protocol only
requires nodes to hold the slot number within the communication round. Hence,
each node holds a local variable currentSlot which is synchronized among all nodes.
Additionally, nodes have a currentRound variable to count communication rounds
(sequences of n slots starting with the slot of node N1). Each node holds also a
local variable membershipArray.

• The integer variable currentSlot represents the progression of time (in slot
units). This variable is a cyclic counter of slots, starting at 1 and incrementing
to n. It indicates which of the processing nodes N1, N2, . . . , Nn is the sending
node in each transmission slot.

• The integer variable currentRound holds the number of the current round
within the reintegration cycle. This variable is used for agreement on reinte-
gration, where it counts the progression of rounds in a cyclic manner, starting
at 1 and incrementing to 2n+3, as will be described in Section 4.3.3.

• The variable membershipArray represents the local view of the membership
set. It is a Boolean array with n elements – element i specifies whether or
not Ni is in the membership.

We assume the existence, at any time, of at least two working nodes, which
agree on the membership and are not subject to failures which would break the
agreement. Booting into such a configuration relies on the existence of a reliable
start-up mechanism [22]. Periods of the execution where this assumption does not
hold must be properly handled by blackout mechanisms, such as the ones used in
TTP. During temporary blackouts the nodes attempt to maintain themselves in a
safe state while monitoring the network. When other nodes start to recover it is
possible to return to a normal operating mode.

4.3. PROTOCOL SPECIFICATION 45

In our protocol a node is said to be sponsoring nodeNj if the acknowledgement of
the last message from Nj is attached to its message. Only nodes in the membership
are involved in sponsoring relations. Under normal conditions each node will have
k sponsors (and will be sponsoring k nodes). The value k stipulates how resilient
the protocol will be to near-coincident failures, at the expense of communication
overhead. If, in a given slot s, the membership set contains ns nodes and ns ≤ k,
a node is not expected to sponsor itself. Hence, when ns ≤ k, each node will be
sponsoring its ks = ns − 1 membership predecessors; otherwise, ks = k.

We define the predicate sponsor(i, j) as true if and only if Ni is sponsoring Nj.
According to the definition of sponsor, Ni is sponsoring its ks predecessors (in the
order of broadcast) which are contained in the membership. Additionally, we define
the predicate lastSponsor(i, j) as true if and only if node Ni is sponsoring Nj but the
immediate successor of Ni in the membership is not sponsoring Nj. This predicate
essentially states that Ni is the last node to acknowledge the previous message from
Nj.

4.3.2 Agreement on Departure

Initially, the membership set contains all active processing nodes. We assume that
the start-up mechanism, responsible for establishing a sufficient level of network-
wide synchronization, also supplies the set of initially active nodes to the member-
ship service.

A given node Nj will be removed from the local membership view of Ni if and
only if Ni does not receive a message from Nj and no positive acknowledgement for
that message is received from any of the sponsors of Nj. Node Ni will remove Nj
from the membership immediately after the sending slot of the last sponsor of Nj.
The pseudo-code for this mini-protocol is shown in Algorithm 1.

The two events that trigger the mini-protocol for agreement on departure are
message receptions and message losses. Logically, these two events are mutually
exclusive in any given slot, i.e. a node will either receive or lose a message in a
communication slot.

• Line 4 – A message is received and stored in the msg variable. The message
sender is the owner of the current slot. Thus, the currentSlot variable identifies
the sending node as well.

• Line 13 – The slot time elapses with no message being received. A message
loss event is reported and the owner of the current slot is specified by the
currentSlot variable.

Each node holds a Boolean array presentArray to store the temporary informa-
tion on the presence of other nodes (line 2 of the pseudo-code). Initially, all the
elements of presentArray are set to true, even if some nodes are not in the member-
ship. This simplification is allowed since the only elements of presentArray which

46 CHAPTER 4. DISTRIBUTED REDUNDANCY MANAGEMENT

membershipArray: Local view of the membership.1

presentArray: Temporary information on the presence of other nodes.2

ackStack: Circular stack to store this node’s acknowledgements.3

on Message Received:4

msg: The received message.5

currentSlot: The current slot number (also the sending node ID).6

if membershipArray[currentSlot] = true then /* Node in membership */7

presentArray[currentSlot] := true;8

processIncomingAcks(msg, currentSlot);9

push(ackStack, true);10

decisionStep(currentSlot);11

end12

on Message Lost:13

currentSlot: The current slot number (also the sending node ID).14

if membershipArray[currentSlot] = true then /* Node in membership */15

presentArray[currentSlot] := false;16

push(ackStack, false);17

decisionStep(currentSlot);18

end19

Algorithm 1: Pseudo-code for the agreement on departure.

4.3. PROTOCOL SPECIFICATION 47

are used are those that correspond to nodes in the membership; such nodes must
be considered present at start-up. The presentArray is updated at three different
locations in the pseudo-code:

• Line 8 – A message from a node in the membership is received. That node is
marked as present by setting its flag to true in the presentArray.

• Line 16 – A message from a node in the membership is lost. That node is
temporarily marked as absent by setting its flag to false in the presentArray.

• Line 9 – The processIncomingAcks method updates the presentArray accord-
ing to the acknowledgement flags contained in the received message. Each
message contains k flags that confirm or refute the reception of the mes-
sages from the sponsored nodes. The processIncomingAcks sets to true the
presentArray elements that are positively acknowledged by the message (by
processing the acknowledgement flags).

At each slot the sending node (Ni such that i = currentSlot) sends a message
that contains k acknowledgement flags. When a node is about to send its message, it
will pop k flags from the ackStack. These flags are the message’s acknowledgement
flags. At a node’s sending slot, the ackStack contains the k flags that refer to the
predecessor nodes in the membership. A node therefore builds the acknowledgement
field of its message simply by copying the contents of ackStack.

• Line 3 – The ackStack is a circular stack which can hold up to k Booleans.
A circular stack is a LIFO structure (last in, first out) that discards surplus
elements – instead of overflowing. Thus, it contains the k “freshest” elements
that were pushed to the stack. The ackStack is initialized with k elements set
to true.

• Line 10 – A message from a node in the membership is received. That node’s
presence will be acknowledged later in the communication schedule (if it is a
sponsored node).

• Line 17 – A message from a node in the membership is lost. That node will
be reported as absent later in the communication schedule (if it is a sponsored
node).

Synchronous Decision Step

When the slot of a node Ni, present in the membership, comes to an end, all
nodes execute the synchronous decision-making step. They do so by calling the
decisionStep method. When the decisionStep(currentSlot) call is made, node
Nj, such that lastSponsor(currentSlot, j) = true, will be removed from the local view
of the membership if and only if presentArray[j] = false. Node Nj is removed by
executing membershipArray[j] := false.

48 CHAPTER 4. DISTRIBUTED REDUNDANCY MANAGEMENT

We emphasize that the decisionStep method must be called at the end of each
slot owned by a node in the membership. Pseudo-code lines 11 and 18 show the
call when a message is received or lost, respectively. Additionally, the node which
has sent a message must also execute the decision step – that node is also the last
sponsor for some other node.

Self Diagnosis of Faulty Nodes

During the synchronous decision step, nodes verify if at least one message was
received from their k predecessors in the membership. If not, the only conclusion is
that the node has suffered a permanent failure which does not allow the reception
of messages. We assume that no more than f failures occur during n consecutive
slots, where k=f+1. Thus, if a node misses k messages in a row, then it must
self diagnose a permanent inconsistent failure. With respect to the pseudo-code in
Algorithm 1, the first condition for self diagnosis is:

• When the decisionStep(currentSlot) method is called, each node checks
if the ackStack contains at least one element set to true. If it doesn’t, then it
diagnoses itself as faulty.

A second condition is provided for self diagnosis of nodes that have failed to send
their message. These nodes will be removed from the membership by all other
membership nodes. Thus, the second condition for self diagnosis is:

• When the decisionStep(currentSlot) method is called, each node checks
if it has received at least one positive acknowledgement for its own message
by one of its sponsors. If it hasn’t, then it diagnoses itself as faulty.

Nodes that have diagnosed themselves as faulty should send no more messages.
The remaining fault-free nodes will remove the faulty ones (once their message is lost
and their last sponsor broadcasts). The sensible procedure would be to reinitialize
that node and attempt reintegration later in time.

4.3.3 Agreement on Reintegration Ordering

In our protocol only one node can reintegrate the membership per communication
round. We therefore introduce a service for agreement on round number to ensure
that nodes send their reintegration requests in a known order. The main goal is to
prevent nodes from attempting simultaneous reintegration in the membership.

Agreement on the round number is kept by the nodes in the membership as the
communication schedule progresses. A failed node is, however, unable to determine
the current round number unless fault-free nodes explicitly signal it.

We assume that the synchronization mechanisms are able to detect the current
slot number. Examples of such mechanisms are the introduction of message IDs
which are unique, to identify the message sender; using unique message lengths that

4.3. PROTOCOL SPECIFICATION 49

act as implicit message IDs; and having the network (or some specific node) signal
new rounds with some special type of message or delimiter.

The protocol supplies the round number to restarting nodes through a simple
algorithm which uses the reintegration flag (r-flag) of nodes in the membership.
This service does not impose any additional overhead since the r-flag is required
anyhow to signal successful reintegrations (see Section 4.3.5).

Ensuring an order of reintegration only requires nodes to agree on the value
of a cyclic counter of rounds. Thus, the absolute round number since startup is
not required. The cyclic round counter determines which node can reintegrate in
a given round. For this purpose we define the reintegration cycle as a sequence
of rounds where every node has one dedicated reintegration round. The length of
every such reintegration cycle is 2n+3 rounds, where n is the number of nodes. The
round counter is therefore incremented by 1 when a new round begins; if the counter
reaches 2n+3, then the next value will be 1 (a new cycle begins). Figure 4.1 shows
the state of the r-flag (sent by a node in the membership) during a reintegration
cycle.

Figure 4.1: Round number signaling by a node in the membership,
using the r-flag.

During the first 3 rounds of a reintegration cycle all nodes in the membership
use their r-flag to signal the delimiter pattern. When the counter equals 1, nodes
set their r-flag to false; when the counter equals 2 or 3, nodes set their r-flag to
true. Two such delimiters are shown in Figure 4.1. The first delimiter (rounds 1, 2
and 3) signals the start of a reintegration cycle. The second delimiter (rounds 1′, 2′

and 3′) comes after 2n+3 rounds to signal the start of the subsequent reintegration
cycle.

The 2n rounds between two consecutive delimiters constitute the reintegration
rounds, where nodes can reintegrate the membership. On even reintegration rounds
the r-flag is always set to false; on odd reintegration rounds the state of r-flag
(illustrated with question marks) is set to either true or false according to the
specification in Section 4.3.5.

This method guarantees that the r-flag is set to false during, at least, one out
of any two consecutive rounds. The only exception to this occurs intentionally
during the delimiter pattern, where the r-flag is set to true in rounds 2 and 3. Any
restarting node synchronizes its round counter with the nodes in the membership
by listening to their messages on the network. When the r-flags are observed to be
true in two consecutive rounds, a restarting node sets its round counter to 3 (the

50 CHAPTER 4. DISTRIBUTED REDUNDANCY MANAGEMENT

end of a delimiter pattern). We note that receiving one message where the r-flag
is true in each of those two rounds is enough to detect a delimiter pattern. The
subsequent round will therefore be round number 4 (the first reintegration round).

According to our failure model, the number of failures in a communication round
is assumed to be less than the number of active nodes in the membership. This
implies that a restarting node (free from permanent incoming link failures) receives
at least one message per round. Thus, such a node is guaranteed to obtain the
round number after listening for, at most, 2n+4 rounds. The worst case occurs
when the node starts listening on round 3; in this case the node has to wait until
the reintegration cycle is complete to observe a complete delimiter pattern.

4.3.4 Recovery of the Membership State

When a previously failed node is able to restart, after a downtime period, it will
need to recover the state of the membership before broadcasting any messages. We
assume that fundamental data such as the communication schedule will survive
the crash. The node only needs to recover the state of the membership, which is
dynamic.

There is no need for explicit broadcast of the membership state by active nodes.
A restarting node listens to the incoming messages and detects which nodes are in
the membership. We propose a simple scheme which is fault-intolerant, i.e. a restart-
ing node may obtain an incorrect membership state if failures occur. However, such
a node will be denied reintegration once its reintegration request is validated by
membership nodes.

Consider a restarting node that intends to send its reintegration request on round
r. To recover the membership state, the node should start listening to the incoming
messages on round r−2. Starting with its membership set empty, the node adds
other nodes to the local view when their message is received. If no failures occur,
the restarting node has the correct membership view once round r−2 is completed.

At the beginning of round r−1 the node starts executing the mini-protocol
for agreement on departure. Once that communication round is completed, the
restarting node may attempt reintegration during round r, at its transmission slot.
This method to recover the membership state is clearly not fault-tolerant. On
the other hand, the benefit of this approach is its simplicity. We emphasize that
membership agreement is not compromised by this approach – a node will not
be accepted in the membership unless its view is confirmed by the nodes in the
membership.

4.3.5 Agreement on Reintegration

Agreement on reintegration is, per se, a simple procedure in which a node sends
a reintegration request and membership nodes acknowledge its reception, adding

4.3. PROTOCOL SPECIFICATION 51

the node to their local membership view. However, before attempting reintegra-
tion, a restarting node must (i) obtain the current round number and (ii) obtain
the set of nodes in the membership. The first requirement is satisfied by the algo-
rithm in Section 4.3.3 and the second requirement is satisfied by the algorithm in
Section 4.3.4.

Reintegration Requests

The procedure for agreement on reintegration starts when node Nr obtains both the
current round number and the membership state. During the reintegration cycle,
described in Section 4.3.3, node Nr has two dedicated reintegration rounds:

• Round 2r+2 – NodeNr sends the reintegration request in its communication
slot. We note that no other node will send a reintegration request during this
round since node IDs are unique.

• Round 2r+3 – All nodes in the membership acknowledge the reintegration
request with their r-flag. Node Nr is reintegrated when this round is com-
pleted.

The first reintegration round comes immediately after the delimiter pattern, as
shown in Figure 4.1. If node N1 were to attempt reintegration, it should send its
reintegration request in round 4 (2×1+2), node N2 in round 6 (2×2+2), etc. We
note that node Nr should not send any messages during round 2r+3. This node
will only be integrated in the membership once round 2r+3 is completed. Thus,
allowing a node to send “normal” messages before it is included in the membership
would only increase the complexity of the protocol.

The reintegration request of node Nr is a special type of message. Reintegration
requests do not include the normal information sent by nodes in the membership.
Instead, the message should include the membership view of node Nr, so that all
other nodes are able to confirm that a successful reintegration is taking place. The
concern here is that failures during restart would lead to a node being reintegrated
without agreeing on the membership state. Such an event would break the mem-
bership agreement. We therefore require nodes to send their complete membership
view (instead of the normal payload) in reintegration requests:

messager = 〈viewOfNode1, viewOfNode2, · · · , viewOfNoden〉

Reintegration Acknowledgements

A given node Nr will be reintegrated into the membership if it sends a correct
reintegration request in round 2r+2. Node Nr is the only node allowed to attempt
reintegration during that round. Since node Nr is not in the membership, all
receiving nodes perceive its message as a reintegration request. Thus, nodes in the

52 CHAPTER 4. DISTRIBUTED REDUNDANCY MANAGEMENT

membership can distinguish normal messages from reintegration requests, without
any additional message fields.

The mini-protocol for agreement on reintegration ensures that node reintegration
is fault-tolerant, i.e. membership agreement is ensured under the failure hypothesis.
To achieve this, all receiving nodes compare the membership view supplied in the
reintegration request with their own membership view. If the membership views
are equal, nodes acknowledge the reintegration by setting their r-flag to true in the
round that follows; if they differ, the r-flag remains false. The pseudo code for this
mini-protocol is provided in Algorithm 2.

The two events that trigger the mini-protocol for agreement on reintegration are
message receptions and new round notifications:

• Line 6 – A message is received and stored in the msg variable. The message
sender is the owner of the current slot. Thus, the currentSlot variable identifies
the sending node as well.

• Line 15 – This event signals that the current round was completed and a new
round will start.

The variable currentRound maintains the value of the round number within the
reintegration cycle (pseudo-code line number 2). It should be initialized to 2n+3
and a new round event should be reported at start-up, to begin the execution of
the mini-protocol for agreement on reintegration.

Each node holds three Boolean variables (declared in the pseudo-code lines 3
through 5) which the node uses to respond to the membership events. The rein-
tegrateOnNewRound flag indicates whether a node should be reintegrated upon
completion of the current round; the nextRoundRFlag holds the value of the node’s
r-flag for the next round; the currentRoundRFlag holds the value of the node’s
r-flag for the current round’s message (see pseudo-code line 24).

Upon the reception of a reintegration request, membership nodes verify if the
membership view of the reintegrating node is correct. If so, the reintegration is
acknowledged during the following round. When a node is about to send a message,
it sets its r-flag to the value of the currentRoundRFlag variable.

• Line 12 – A reintegration request is received. The reintegrationRequest-

IsCorrect() method verifies whether or not the reintegrating node has the
correct view of the membership. If so, its reintegration will be acknowledged
during the following round.

It should be noted that the reintegration request can be missed by some nodes
in the membership. Such nodes will be aware that a reintegration is taking place
once they receive the r-flags transmitted by other nodes in the membership:

• Line 10 – A message from a node in the membership is received. If the pig-
gybacked r-flag is true then it can be either a reintegration acknowledgement

4.3. PROTOCOL SPECIFICATION 53

membershipArray: Local view of the membership.1

currentRound: Current round number (cyclic counter).2

reintegrateOnNewRound: Whether a node will be reintegrated next round.3

nextRoundRFlag: Status of this node’s r-flag during the next round.4

currentRoundRFlag: Status of this node’s r-flag during the current round.5

on Message Received:6

msg: The received message.7

currentSlot: The current slot number (also the sending node ID).8

if membershipArray[currentSlot] = true then /* Node in membership */9

if msg.r-flag = true and currentRound > 3 then10

reintegrateOnNewRound := true;11

else if reintegrationRequestIsCorrect(msg) then12

nextRoundRFlag := true; /* Acknowledge during next round */13

end14

on New Round:15

if reintegrateOnNewRound = true then16

reintegratingNode := (currentRound–3)/2;17

membershipArray[reintegratingNode] := true; /* Reintegrate */18

updateAckStack(reintegratingNode);19

reintegrateOnNewRound := false;20

end21

if nextRoundRFlag = true and currentRound > 3 then22

reintegrateOnNewRound := true;23

currentRoundRFlag := nextRoundRFlag;24

currentRound := currentRound + 1; /* Update the round counter */25

if currentRound > 2n+3 then currentRound := 1;26

if currentRound = 1 or currentRound = 2 then /* Round signaling */27

nextRoundRFlag := true; /* r-flag in rounds 2 and 3 */28

else29

nextRoundRFlag := false;30

Algorithm 2: Pseudo-code for the agreement on reintegration.

54 CHAPTER 4. DISTRIBUTED REDUNDANCY MANAGEMENT

or a delimiter pattern; if the current round number is greater than 3 then it
is a reintegration acknowledgement and a node will be reintegrated on new
round.

There are two different ways in which a node becomes aware of a reintegration:
(i) when it receives a reintegration request, acknowledges the reintegration and
sets its reintegrateOnNewRound variable to true (later, in pseudo-code line 23) and
(ii) when a reintegration acknowledgement is received (pseudo-code line 11). In
both cases the node will be reintegrated in the membership:

• Line 17 – A new round event was reported and the reintegrateOnNewRound
variable is set to true. The synchronous decision-making step about the rein-
tegration of a node is executed. The ID of the node which is reintegrated is
obtained from the currentRound variable – the order of reintegration specifies,
with no ambiguity, which node reintegrates in each round.

The reintegration is processed by adding the node to the membershipArray
(line 18) and by updating the ackStack. After a node is reintegrated into the
membership the nodes must refresh their ackStack to insert the acknowledgement
flag for the reintegrated node (in the correct position). This is done in pseudo-code
line 19 by calling the updateAckStack method. The nodes which become sponsors
for the reintegrated node will send a positive acknowledgement bit for that node in
their following messages.

• Lines 25 to 30 – The round counter is updated to start a new round. In
rounds 1, 2 and 3 the r-flag signals the delimiter pattern, according to the
specification in Section 4.3.3.

4.4 Discussion

The mini-protocol for agreement on departure requires k=2 sponsors per node in
its minimum configuration. Setting k=1 does not allow the agreement to be main-
tained after a transient receiving failure of a sponsor, since the sponsor itself will
erroneously remove its sponsored node from the local membership view.

Choosing the number k of sponsors per node defines the balance between fault
tolerance and communication overhead. It is possible to identify the failure condi-
tions which maintain the agreement by analyzing the directed graphs of sponsoring
relations (sponsor-graphs). Figure 4.2 depicts such a sponsor-graph for an example
of a 6-node system with k = 2.

A sponsor-graph is initialized with each vertex representing a node in the system.
Initially, each directed edge from a given node Ni to Nj denotes that sponsor(i, j) =
true. This graph evolves at every synchronous step by removing an edge when-
ever the corresponding acknowledgement is missed by at least one node. When a

4.4. DISCUSSION 55

Figure 4.2: Sponsor-graph of a 6-node system (k = 2).

decision-making slot comes and Ni is found to be faulty by all other nodes, then
the sponsor-graph will be updated by removing the edges directed to vertex i and
adding edges directed to the nodes which then obtained new sponsors (the previous
sponsors of Ni are now sponsoring some other nodes).

Agreement will be maintained when all fault-free nodes receive at least one
acknowledgement of any given message. Therefore the system is able to maintain
the agreement if there is always at least one edge directed to each vertex.

Any failure which is not a permanent inconsistent failure will remove at most one
edge directed to any given node. Therefore, if f such failures are to be tolerated in
each communication round, the number of initial edges (i.e. the number of sponsors),
should be k = f + 1. A permanent inconsistent failure will become apparent as
a permanent consistent failure when the failed node diagnoses itself as failed and
stops sending messages.

Agreement on the “real” state of the membership is reached k slots after the most
recent failure. Consequently, at this point the system has redirected the sponsoring
edges into a safe configuration again.

For any value of k the protocol maintains consistent views of the membership
even when multiple permanent node failures occur, if this is the only type of failure
to occur in the period between the first node failure and k slots after the last
node failure. This type of failure is consistently perceived by all fault-free nodes.
Therefore, all fault-free nodes will miss the messages from the permanently failed
nodes and no positive acknowledgement on these messages will be sent. Agreement
on the departure of the last node to suffer such a failure is reached k slots later.

The graph in Figure 4.2 exemplifies a sponsor-graph where no faults have oc-
curred. When a failure of sending node 1 occurs (either transient or permanent)
the graph will change into the one illustrated in Figure 4.3. Two slots later, after
node 3 (the last sponsor of node 1) broadcasts, the system is “reconfigured” into
the graph in Figure 4.4. In the critical moment, before reconfiguration, there are
edges directed to each node, therefore agreement is ensured.

56 CHAPTER 4. DISTRIBUTED REDUNDANCY MANAGEMENT

Figure 4.3: Sponsor-graph immediately
after the failure of sending node 1.

Figure 4.4: Sponsor-graph 2 slots after
the failure of node 1.

4.4.1 Further Considerations

A node is expected to broadcast not only its message but also the information
necessary for membership agreement. For practical purposes the total order in the
membership set can be adapted in order to permit a “reaction time” from processing
nodes. If a node is to start the broadcast immediately after the previous slot ends,
there may be insufficient time to evaluate the correctness of the previous message
and to execute the membership protocol. At the expense of detection latency,
each node Ni can be set to be sponsoring the nodes starting from Ni−2 instead of
sponsoring its immediate predecessor.

4.5 Prototype Implementation

We have implemented the membership protocol in a prototype of a distributed
real-time system. The real-time network prototype [40] is based on COTS Ethernet
hardware, programmed to schedule messages according to the Time Division Mul-
tiple Access (TDMA) method. Figure 4.5 shows the 6 processing nodes included in
our experimental setup.

The computer nodes shown in Figure 4.5 are Phytec’s phyCORE-MPC565 [58]
development boards. Each contains a Motorola2 MPC565 microcontroller, based
on the PowerPC architecture. The boards include an RJ45 socket and an Eth-
ernet controller. Additionally, the boards include controllers for CAN and serial
communication.

The two boards on the upper-left corner of Figure 4.5 are expanded with a
custom board. We developed these expansion boards in order to have a 7-segment
display (for showing the number of active nodes in the membership) and to output
the internal clock of the nodes. We connect these clock outputs to an oscilloscope
in order to measure their synchronization.

The prototype network is based on a star topology with a central switch – HP’s
ProCurve Switch 2324. The Ethernet controller included in the boards runs at 10

2Since 2004, Motorola’s semiconductor products are developed under the name Freescale Semi-
conductor, Inc.

4.5. PROTOTYPE IMPLEMENTATION 57

Figure 4.5: The real-time Ethernet prototype.

Mbit/s (standard 10BASE-T). To maintain the TDMA schedule we implemented
the daisy-chain clock synchronization algorithm [53].

4.5.1 Network Configuration

The length of the Ethernet frames can vary between 64 and 1518 bytes. We used
64-byte packets for this set of experiments – 46 bytes of payload data, 4 bytes for
the CRC checksum and 14 bytes for the MAC header. The MAC header identifies
the source address (i.e. the message sender) and the destination address, which is
set to broadcast. With this configuration the estimated propagation delay for the
Ethernet frames was 215 µs.

The duration of a transmission slot was set to 400 µs (the lower bound for
this parameter is ∼250 µs in our setup). Under these conditions the daisy-chain
algorithm maintained the processor nodes synchronized within 3 µs. Table 4.2
summarizes the most important network parameters.

The membership protocol was configured to 4 sponsors per node. Each 64-byte
packet therefore included 5 bits of membership information (4 acknowledgements
and 1 r-flag).

58 CHAPTER 4. DISTRIBUTED REDUNDANCY MANAGEMENT

Parameter Value

Number of nodes 6

Packet size 64 bytes

Transmission slot 400 µs

Clock skew < 3 µs

Reintegration cycle 36 ms

Communication round 2.4 ms

Table 4.2: Parameters of the real-time Ethernet prototype.

4.5.2 Network and Membership Performance

The nominal bandwidth of the network is 10 Mbit/s. However, real-time commu-
nication using TDMA must take into account the propagation delays and the clock
skews in order to ensure that there are never two messages being transmitted at the
same time. This is achieved by inserting guard times in between messages. Due to
these guard times, we estimate that our network prototype can achieve a maximum
bandwidth of 3.3 Mbit/s using 1518-byte packets.

In our experiments, we used 64-byte packets and transmission slots of 400 µs
which results in a network bandwidth of 1.3 Mbit/s. Since each frame reserves 18
bytes for the header and the CRC checksum, we have 920 Kbit/s of useful bandwidth
available for payload data (which includes the membership information).

In our experiments, each message had 5 bits of piggybacked membership infor-
mation. Messages were sent once every 400 µs. The bandwidth required by the
membership service was therefore 12.5 Kbit/s. Since there were 920 Kbit/s of use-
ful bandwidth available, the membership service imposes a 1.4% communication
overhead. If we consider the network’s nominal bandwidth of 10 Mbit/s, the mem-
bership’s overhead is less than 0.2%. We emphasize that these values were obtained
for 64-byte packet sizes, which provide the lowest useful bandwidth. Increasing
the packet size would therefore reduce the membership’s communication overhead
significantly.

Using 4 sponsors in the membership protocol means that a departure will be
detected by membership nodes 4 transmission slots after the message is lost. The
latency for agreement on departure, counting the slot where the failure occurs, is
therefore (4 + 1) × 400 = 2000 µs. This and other important latency values are
shown in Table 4.3. It should be noted that these are calculated (not measured)
values. The worst case latencies for reintegration occur when node 6 wishes to be
reintegrated and starts listening on round 3; the node has to wait 2 × 6 + 4 = 16
rounds for the next delimiter pattern and then 12 (2×6) rounds to be reintegrated.

A practical implementation of our protocol requires nodes to acknowledge their
predecessors. An important concern is therefore to ensure that nodes have enough
time to react to received/lost messages. In our experimental setup, we have verified
through extensive testing that the nodes were able to send their acknowledgements

4.6. TASK-GROUP MEMBERSHIP AGREEMENT 59

Activity Latency

Agreement on node departure 2 ms

Recovery of the round number (worst case) 38.4 ms

Fault-free reintegration from restart (worst case) 67.2 ms

Table 4.3: Node departure and node reintegration latencies.

on time.
Another important aspect of the implementation of membership protocols is

that the processing capacity of nodes may be very limited. For our experimental
setup, we estimate that the size of the code related to the membership service is less
than 4KB; the data structures occupy 42 bytes in memory. We measured the CPU
usage with and without the membership service enabled and an early estimation
shows that the CPU overhead of the membership service is negligible.

4.6 Task-Group Membership Agreement

Chapter 3 of this thesis studies integrated architectures, where many tasks share a
common hardware platform with relatively few but powerful processing elements.
Such designs have a great potential to reduce both product and maintenance costs,
and to improve system reliability, since they require fewer hardware components
than designs where every function has their own dedicated microcontroller.

From a fault tolerance perspective there are clear differences between systems
that do not provide partitioning at the node layer and those that do. In the former,
the smallest unit of failure typically corresponds to an entire node, while in the
latter the smallest unit of failure is an application process. Thus, for systems
provided with partitioning and other mechanisms for achieving fault containment
at the nodes, the membership service should preferably handle both node failures
and application process failures.

So far, we have described our protocol in terms of a processor-group membership
protocol. However, it can easily be extended to keep track of both node failures
and task failures. Without giving a full protocol description, we will here outline
how such an extension could be implemented. This extension is not included in the
prototype implementation described in the previous section.

4.6.1 Multiple Sending Slots

We have assumed before that a node only broadcasts one message per communica-
tion round. However, when a node contains multiple tasks, the network schedule
should accommodate multiple messages from that node in each round – one message
per task.

It would be possible to extend the processor-group membership protocol directly

60 CHAPTER 4. DISTRIBUTED REDUNDANCY MANAGEMENT

to individual tasks. Each task could acknowledge the predecessing task in the
network schedule. The creation of network schedules would only be restricted to
prevent tasks on the same node from sponsoring each other (i.e. to prevent a node
from sponsoring itself). However, this approach would consume a very large amount
of bandwidth.

Instead we propose that, in each communication round, only the last message
sent by each node should carry membership information. We define a logical message
as the set of messages sent by a node during one round. Our proposal is that the
acknowledgements sent with a logical message should refer to the other nodes’
logical messages.

When a physical message is lost by a given node, that node will immediately
consider that the corresponding logical message was lost. Nodes must therefore
receive the entire set of physical messages in order to acknowledge the successful
reception of the logical message.

4.6.2 Task-Group Membership through Fail-Reporting

We assume that a node equipped with node layer fault tolerance mechanisms can
exhibit two different failure modes: fail-silent and fail-reporting. A fail-silent failure
implies that the node does not produce any results at all. We assume that fail-silent
failures only occur when the entire node has failed, for example, as a result of an
operating system crash or a permanent hardware failure.

On the other hand, a fail-reporting failure occurs when a node cannot send
a result because one of its tasks has failed. In that case, the operating system
is still operational and can produce a failure report message that the node sends
instead of the regular message. Such failure reports could of course be generated
without the involvement of the processor-group membership protocol. However,
we believe that there are many advantages in combining processor-group and task-
group membership into a single service.

To achieve this for our protocol, we can simply add one extra bit to each message
sent by a task. This fail-report bit would indicate that a message is carrying a failure
report for the task, rather than a regular message. When multiple tasks, running
on the same node, share the same transmission slot to send their messages, one
bit is added for each application (with the same indication). A task is removed
from the task-membership set of other nodes when they receive a failure report
for that task. Task failures are this way reported to all nodes in the system. A
task is reintegrated into the task-membership when nodes receive a regular message
from that task, instead of the failure report. When a complete node fails (and is
removed from the processor-group membership) all its tasks are removed from the
task-membership set of other nodes.

This type of membership agreement is weaker than the processor-group mem-
bership agreement described earlier. When all nodes receive the failure report, there
will be agreement on the departure of the corresponding task. However, if any other

4.7. RELATED RESEARCH 61

failures occur simultaneously, the nodes will disagree on the task-membership until
a fault-free period of the execution allows the nodes to refresh the task-membership.
It should be noted that the node must send a failure report for a failed task at all
transmission slots dedicated to that task.

With respect to the processor-group membership protocol, there is no difference
between messages that carry failure reports and those that carry regular member-
ship information. That is, the acknowledgment bits and the r-flag will have the
same function for both message types. Similarly, a message containing a failure
report will be handled by the node membership service exactly in the same way as
a regular message. It should be noted that this issue only concerns the messages
that include membership information, i.e. the last message sent by a node in every
round.

4.7 Related Research

The protocol specification allows a comparison with existing membership protocols.
The TTP specification [48] includes a membership service which imposes no direct
overhead on the network. This is achieved instead by placing the load of the failure
detection on the CRC mechanisms and by requiring the membership state to be
explicitly broadcasted in order to allow the reintegration of previously failed nodes.
In our approach a node needs only to listen on the bus for the period of one round
on the bus to recover the membership state.

Ref. [46] presents a solution which isolates TTP’s membership protocol from the
other elements in the protocol. By using a single acknowledgement bit it ensures
membership agreement, under the single failure assumption, by prompt removal of
failed nodes. Since the proposed scheme does not provide reintegration capabilities,
prompt removal is a costly approach to tolerating transient failures. Nevertheless,
this scheme requires only one overhead bit per message, whereas our approach
imposes an overhead of at least two acknowledgement bits to tolerate any random
failure.

In [37] a solution based on a variable number of sponsors is presented, but in
a context unrelated to hard real-time systems. Ref. [54] briefly and informally
presents a protocol based on a variable number of sponsors as well. In the proposed
scheme, permanent node failures will lead to a rapid decrease in the reliability of
the protocol. On the other hand, reintegrating nodes is easy and does not incur
additional overhead.

4.8 Discussion and Conclusion

This chapter provided the precise specification of a protocol for membership agree-
ment in synchronous systems. This protocol is flexible in the sense that the trade-off

62 CHAPTER 4. DISTRIBUTED REDUNDANCY MANAGEMENT

between reliability and communication overhead can be defined at design time.
The existence of structural redundancy (e.g. duplicate buses) supports our as-

sumptions on the failure model. However, the protocol is designed to provide a fair
level of reliability even when there is no redundancy. In networks based on a bus
topology or a star topology, a transient failure is likely to affect either all receiving
nodes or a single node. When designing mission-critical systems it is possible to
increase the fault tolerance of the protocol by specifying the failure rate that is to
be endured and setting the necessary overhead accordingly.

Reaching agreement is based on the principle that a node should not be removed
from the membership in the event of a transient failure. Following this principle
implies that the layers built on top of the membership, in particular the applications,
are able to handle omission failures. This arises from the fact that single transient
receiving failures result in lost messages without membership departures.

We have implemented the processor-group membership protocol in a real-time
Ethernet network prototype. In our experimental setup, we have verified through
extensive testing that the nodes are able to acknowledge their immediate predecessor
in the membership. The prototype implementation allowed the protocol to be tested
in a realistic environment. It also allowed us to calculate the departure/reintegration
latencies and the bandwidth consumption in a realistic configuration. In our setup,
we estimate that the size of the code related to the membership service is less than
4KB, while the data structures occupy 42 bytes in memory.

In addition to node membership, this chapter specifies how task-group member-
ship may be provided. Such a service is intended for systems which benefit from
the knowledge about the operational state of individual applications. We base task-
membership on the fail-reporting behavior – an extension of the fail-silent behavior
by producing either the correct result or a report on the cause of failure. Addition-
ally, we provide a method for nodes to broadcast more than once per communication
round.

CHAPTER 5

Fault Injection Testing

This chapter describes a fully automated pre-injection analysis technique aimed at
reducing the cost of fault injection campaigns. The technique optimizes the fault-
space by utilizing assembly-level knowledge of the target system in order to place
single bit-flips in registers and memory locations only immediately before these are
read by the executed instructions. This way, faults (time-location pairs) that are
overwritten or have identical impact on program execution are removed.

5.1 Introduction

Computer systems are increasingly being used in safety-critical applications such
as aerospace or vehicular systems. To achieve the high safety levels required by
these applications, systems are designed with fault tolerance mechanisms in order
to deliver correct service even in the presence of faults. Faults may, for instance,
occur when processors are disturbed by high energy particles such as neutrons or
heavy ions. Such particles may sometimes interfere with the processor and cause
an SEU – an error that typically changes the state of a single bit in the system.

In order to validate the correctness and efficiency of their fault tolerance features,
safety-critical systems must be thoroughly tested. Fault injection has become an
effective technique for the experimental dependability validation of computer sys-
tems. The objective of fault injection is to test fault tolerance mechanisms and
measure system dependability by introducing artificial faults and errors.

A problem commonly observed during fault injection campaigns is that not
all faults fulfill the purpose of disturbing the system. Often 80-90% of randomly
injected faults are not activated [55, 78]. A fault placed in a register just before
the register is written or faults that are injected into unused memory locations

63

64 CHAPTER 5. FAULT INJECTION TESTING

are examples of faults with no possibility of activation. In most tools the location
and the time for fault injection are chosen randomly from the complete fault-space,
which is typically extremely large. The statistical implication of this is that the cost
of obtaining appropriate confidence levels of the dependability measures becomes
unnecessarily high.

To deal with this and other similar problems and to reduce the cost of vali-
dation through fault injection, two main classes of analysis techniques have been
proposed: pre-injection and post-injection analysis [2]. Post-injection analysis aims
at predicting dependability measures using the results of completed fault injection
experiments. Pre-injection analysis instead uses knowledge of program flow and re-
source usage to choose the location and time where faults should be injected, before
any experiment is performed.

This chapter presents a pre-injection analysis technique that is applicable to the
injection of transient bit-flips into CPU user registers and memory locations. The
bit-flip fault model is often used in fault injection experiments to emulate the effects
of single event upsets and other transient disturbances.

The objective of the pre-injection analysis is to optimize1 the fault-space from
which the injected faults are sampled. The analysis uses program execution infor-
mation to (i) eliminate faults that have no possibility of activation and (ii) find
equivalence classes among faults and insert only one of these into the optimized
fault-space. This is achieved by applying the following rule: faults should only be
placed in resources immediately before these are read by each instruction. A bit-flip
in any resource2 will only manifest itself once this resource is read to perform an
operation. Delaying the injection of the fault until the moment just before the tar-
geted resource is read accomplishes the two objectives stated above. It should be
noted that collapsing all faults in a given class into a single fault in the optimized
fault-space may cause a bias in the estimated dependability measures (e.g. error de-
tection coverage). One of the objectives of this research is therefore to investigate
the magnitude of this bias.

The pre-injection analysis technique was implemented in the GOOFI tool [4, 76],
for Nexus-based fault injection [43, 78, 71], and is also suitable for implementation
in other platforms. The effectiveness of the technique was assessed by comparing
fault injection results with results obtained by non-optimized fault injection on
the same target system. The system is based on the Motorola MPC565 [31] – a
microcontroller aimed at the automotive and other control-intensive applications
based on the PowerPC architecture. By applying assembly-level knowledge of this
architecture we identify which resources are read by each executed instruction.
This information, along with the time of the fault injections, is used to define the

1The word optimize should not suggest that the optimal fault-space is found but rather an
improvement on the usual random approach. Further optimization is therefore achievable.

2In this chapter we use the word resource as a common term for CPU register, main memory
locations and other state-elements where bit-flips may occur.

5.2. RELATED RESEARCH 65

optimized fault-space, which is stored in a database. The fault injection experiments
are then conducted by random sampling of faults from the optimized fault-space.

5.2 Related Research

The resources available in computers are, usually, greater than the needs of the
applications executed. This fact motivates a first optimization by injecting faults
only in used resources. P. Yuste et al. [78] take, in their experiments, special care to
avoid placing faults in empty (i.e. not used) memory regions. They obtained 12%
of effective faults and pointed out that a random sampling from an unrestricted
fault-space consisting of all possible fault locations (bits) and all time points is not
a time-effective approach.

Avoiding unused memory regions might be done manually by analyzing the
memory map of the application and choosing the segments (stack, heap, etc.) as
valid locations for fault injection. This approach is quite simple but does not
consider the dynamical usage of resources along the time dimension.

Studies conducted in the past have shown that error manifestation (rate and
effects) is affected by workload [18, 21, 27]. In [20] the concept of failure acceleration
was introduced by R. Chillarege and N. Bowen. They achieve fault acceleration by
injecting faults only on pages that are currently in use and by using a workload
pushing towards the limits in CPU and I/O capacity.

J. Güthoff and V. Sieh presented in [39] the operational-profile-based fault in-
jection. They state that the number of fault injections into a specific system com-
ponent should be proportional to its utilization. Register utilization is defined as
the measure of the probability that an injected fault manifests itself as an error.
Additionally, the times for fault injection are selected based on the data life-cycles.
A data life-cycle starts with the initialization of a register (write access) and ends
with the last read access before the next write access. Under the single bit-flip fault
model, faults need to be injected only within the data life-cycles, just before each
read access.

A. Benso et al. presented in [14] a set of rules with the purpose of collapsing
faultlists. The rules reduce the fault-list without affecting the accuracy of the
results of fault injection campaigns by avoiding the injection of faults for which the
behavior can be foreseen.

In [75], T. Tsai et al. introduced a technique named path-based injection. With
this technique a fault is injected into a resource that will be used by the test
program, given a particular input set. After the manual derivation of the input
sets, the path of execution is described in terms of a list of executed basic blocks.
For each path, faults are only injected in the utilized resources.

Working in fault injection for the test of fault-tolerant circuits, using VHDL
models, a set of techniques for speeding up campaigns is described by L. Berrojo et
al. in [15]. One of these techniques is workload dependent fault collapsing. During

66 CHAPTER 5. FAULT INJECTION TESTING

the reference run (a fault-free execution in order to store the program’s normal
behavior) all read and write operations on memory elements are tracked with bit
granularity. Having this log of read and write operations on each bit of each signal,
at the circuit level, all possible bit-flips are then collapsed by (i) marking as silent
all bit-flips between an operation (either read or write) and a write operation, and
(ii) marking as equivalent all bit-flips between an operation (either read or write)
and the subsequent read operation.

J. Arlat et al. [9] increased the efficiency of their fault injection experiments
targeting the code segment by logging the control flow activated by the workload
processes. If the randomly selected address for fault injection is not part of the log
(instruction trace), then the corresponding experiment can simply be skipped (as
the outcome is already known).

5.3 Fault-Space Optimization Method

For single bit-flip fault injection, we define a fault-space to be a set of time-location
pairs that determines where and when the bit-flip is injected. The time is selected
from an interval during the execution of the workload selected for the experiment.
The time granularity is based on the execution of machine instructions, i.e. bit-
flips can only be injected between the execution of two machine instructions. The
complete (non-optimized) fault-space consists of all possible time-location pairs.

The fault-space optimization method presented in this chapter states that faults
should only be placed in a resource immediately before the resource is read by an
instruction. The following sections describe the input needed for the analysis, the
output created and the optimization procedure.

5.3.1 Optimization Input

In order to determine the optimized fault-space it is necessary to gather information
about the code of the application and the computer system executing it:

• Assembly code of the application;

• The Program Counter (PC) trace over time;

• The effective address of each memory read access;

• The definition of which resources are read by each assembly instruction.

In our experimental setup, the assembly code is textual information obtained by
disassembling the executable binaries of the application, processed automatically
by the optimization program. The Program Counter trace and the values of the
General Purpose Registers are stored during the execution of the reference run.
The effective address of each memory read access is calculated with these values.

5.3. FAULT-SPACE OPTIMIZATION METHOD 67

The definitions of which resources are read by each assembly instruction are built
into the optimization program. These were obtained from Motorola’s RISC CPU
Reference Manual [57] and are available in [13].

5.3.2 Optimization Output

The resulting output (the optimized fault-space) consists of a list of possible loca-
tions and times for fault injection. The optimization procedure has been adapted
to both one-shot applications and control applications executing in loops. Each
element on the optimized fault-space contains the following information:

• Control loop index;

• Breakpoint address;

• Number of breakpoint invocations within the control loop;

• The fault injection location.

The control loop index is specific for control applications which execute in
cycles. It defines the cycle during which a fault should be injected. For appli-
cations that do not execute in loops, the control loop index is always set to one.
The breakpoint address specifies the breakpoint position inside the control loop
and the number of breakpoint invocations specifies the number of times this
breakpoint should be reached before fault injection.

5.3.3 Performing the Optimization

Using the Program Counter trace over time, the disassembled code of the application
is parsed to obtain the sequence of assembly instructions executed. Each of the
instructions is then analyzed in order to determine which resources the instruction
reads. The pseudo-code for this procedure is presented in Algorithm 3.

The most important stage (line number 6 in the pseudo-code) is the identification
of the resources read by each instruction. To accomplish this, the first step is to find
the definition on the list matching the given instruction. This is done by matching
the opcode and the operands. Then, by examining the possible assembly constructs,
the symbols available in the read list of the definition are replaced by the resources
actually read by the given instruction. Figure 5.1 illustrates this process.

In Figure 5.1, the instruction at address 39DE816 adds R10 to R11 and stores
the result in R5. The definition for this instruction is found in the table and the
read list contains rA and rB, respectively, R10 and R11. Since these are the two
resources read by this instruction, two new lines are inserted into the fault locations
for code address 39DE816 (the control loop index and the breakpoint invocation are
assumed to hold the specified values).

68 CHAPTER 5. FAULT INJECTION TESTING

programTrace: Array containing the Program Counter trace over time.1

foreach programCounter in programTrace do2

controlLoopIndex := currentControlLoop();3

breakpointInvocation := countInvocations(programCounter);4

instruction := instructionAtCodeAddress(programCounter);5

instructionReadList := resourcesReadByInstruction(instruction);6

foreach resource in instructionReadList do7

usefulFault := 〈 controlLoopIndex, programCounter,8

breakpointInvocation, resource 〉;
storeIntoDatabase(usefulFault);9

end10

end11

Algorithm 3: Pseudo-code for the optimization procedure.

The second instruction, at address 39DEC 16, fetches the memory word ad-
dressed by the effective address (R6)+24 and stores it in R7. Its definition in
the table specifies rA and MEM32(d+rA), respectively, R6 and the 32-bit word at
1000+24, as being read. The value 1000 of R6 is obtained during the reference run.
The two resources along with the timings are then inserted into the fault-space.

5.4 Experimental Setup

Figure 5.2 describes the evaluation platform used to evaluate the effectiveness of
the optimization technique for experiments performed on the jet engine control
software, which is one of two workloads investigated in this chapter. The GOOFI
fault injection tool controls the experiments by using the winIDEA debugging en-
vironment in conjunction with the iSystem’s iC3000 debugger. Faults are injected
into the MPC565 microcontroller running the control software. In the case of the
jet engine controller one computer board was used to run the jet engine control
software and one board to execute the model of the jet engine. The experimental
setup used for the other workload (an implementation of the quicksort algorithm)
used only one computer board.

5.4.1 Fault Injection Tool

GOOFI is a fault injection tool developed at the Department of Computer Engi-
neering, Chalmers University of Technology. It provides the ability to define and
conduct fault injection campaigns on a variety of microprocessors. During each
campaign GOOFI is responsible for controlling all the necessary software and hard-
ware, and storing the acquired data into a database.

5.4. EXPERIMENTAL SETUP 69

Figure 5.1: Example of the optimization procedure.

A plug-in [71] has recently been developed in GOOFI which uses the Nexus
port [43] to inject faults in Motorola’s MPC565. Nexus is an attempt to create
a standard on-chip debug interface for embedded applications. This standard is
suitable to be used for fault injection [78] since it provides read/write access to the
processor’s resources and code execution trace capture.

The pre-injection analysis technique was implemented to enhance the existing
Nexus fault injection plug-in. The target platform for the current implementation is
therefore the MPC565 microcontroller. The technique may however be implemented
for any microprocessor.

5.4.2 MPC565 Microcontroller

The MPC565 is a microcontroller developed by Motorola that implements the Pow-
erPC instruction standard architecture. It is aimed at the high performance auto-
motive market as well as other control-intensive applications. The complete com-
puter system was based on the phyCORE-MPC565 [58] development board. It
includes Motorola’s MPC565 processor, which offers a Nexus debug port, enabling
real-time trace of program and data flow.

To establish a connection through this port the iSystem iC3000 Active Emulator
was used to access the Nexus working environment. The iC3000 emulator was, in its

70 CHAPTER 5. FAULT INJECTION TESTING

Figure 5.2: Evaluation platform for the jet engine application.

turn, controlled by GOOFI via winIDEA – an integrated development environment
offered by iSystem AG. GOOFI and winIDEA are executing on the same host PC.

5.4.3 Workloads

Fault injection campaigns were conducted to evaluate the optimization technique
using two different workloads: a sort program using the quicksort algorithm and
a jet engine controller. Different campaigns targeting registers and data memory,
using both optimized and non-optimized fault selection, were carried out. The tech-
nique is fully implemented in the sense that all the assembly instructions executed
by the workloads are analysed and all registers and data memory locations where
optimization is achievable with this method are considered. The outcome of each
fault injection experiment was classified into one of the following categories:

• Detected error – All effective errors that are signalled by hardware error de-
tection mechanisms included in the processor.

• Wrong output – All effective errors that are not detected by the processor but
lead to the production of wrong results.

• Non-effective error – Errors that do not affect the system execution during
the chosen experiment time frame.

Quicksort

The quicksort workload is a recursive implementation of the well-known sorting
algorithm. It sorts an array containing seven double-precision floats.

The reference run execution takes two minutes during which the processor is
being stepped and all the required data is obtained. The optimization procedure
takes 20 seconds to complete. Each fault injection experiment takes less than half
a minute to perform. During the execution of the reference run for this application,
the MPC565 processor executed 34 distinct assembly instructions (opcodes) and a
total of 815 instructions.

5.4. EXPERIMENTAL SETUP 71

Jet Engine Controller

This workload is a control application that executes in loops in order to control a jet
engine. At the end of each loop the controller has to produce results and exchange
information with the engine (sensor values from the engine and actuator commands
from the controller). It is significantly more complex than the quicksort program,
allowing the fault-space optimization technique to be evaluated using a real-world
application.

The execution of the reference run takes almost 12 hours. The optimization
procedure takes 10 minutes to complete. Each fault injection experiment is then
performed in less than two minutes for the selected configuration (number of control
loops and memory locations to be logged).

Forty control loops of execution were logged during each experiment. From
these, ten loops (21 to 30) were chosen as possible temporal locations for fault
injection (corresponding to 50ms of real-time execution of the controller). During
these ten control loops, in the reference run, the MPC565 processor executed 231.097
instructions. A total of 88 different assembly instructions (opcodes) were executed.

5.4.4 Fault Model and Fault Selection

The fault model applied is the single bit-flip model of the effects of transient faults.
The technique assumes this model as the basis for optimization.

The faults in the non-optimized campaigns were chosen using a uniform distri-
bution. In the case of the optimized campaigns the faults are selected randomly
from the optimized fault-space itself (the list of temporal and spatial locations for
fault injection described in Section 3.2). This implies that the distribution of faults
in resources is proportional to the representation of each resource in the optimized
fault-space.

Microprocessor registers were selected as spatial locations for fault injection
both in the quicksort and in the jet-engine controller campaigns. Memory locations
were only targeted using the jet-engine controller. The registers targeted in the
non-optimized campaigns are the ones considered by the optimization method:

• General Purpose Registers (32 registers of 32 bits)

• Floating Point Registers (32 registers of 64 bits)

• Link Register (32 bits)

• Condition Register (32 bits)

• Integer Exception Register (32 bits)

• Count Register (32 bits)

72 CHAPTER 5. FAULT INJECTION TESTING

These registers constitute the User Instruction Set Architecture (UISA) Register
Set. User-level instructions are limited to this register set while supervisor-level
instructions have access to other, special purpose registers (SPRs).

Two limitations of winIDEA (the debugging environment) are important to men-
tion. The floating point registers are only allowed to be injected with faults in the
least significant 32 bits. These are the least significant bits of the 52-bit man-
tissa. The Floating Point Status And Control Register (FPSCR), targeted by the
optimization, is also not available for fault injection.

The fault injection campaigns in memory targeted the stack, heap and all other
read/write and read-only data segments of the controller. A total of 100KB of
memory were targeted as spatial locations.

The analysis of faults in the code segment was still not implemented and was
therefore not studied. The optimization is easily extendable to support faults in
the code segment by targeting, in each instruction, the 32-bit memory contents
addressed by the Program Counter. This would be equivalent to the analysis per-
formed in [9] by using the instruction trace.

5.5 Experimental Results

5.5.1 Fault Injection in Registers

Table 5.1 shows the distribution of the outcomes of faults in the fault injection
campaigns targeting microprocessor registers for both the quicksort and the jet
engine controller workloads. The quicksort campaigns include approximately the
same number of experiments. For the non-optimized jet engine controller campaign,
a much higher number of experiments had to be performed in order to increase the
confidence in the results.

Table 5.1: Distribution of outcomes of fault injection in registers.

The percentage of effective faults (detected or wrong output) increases from 5.0%
using non-optimized fault selection to 47.7% choosing faults from the optimized
fault-space when targeting the quicksort workload. In the jet engine controller this
increase is from 4.4% to 38.2%. The improvement in the effectiveness of faults is,
therefore, one order of magnitude.

Table 5.2 shows the estimated error detection coverage obtained in each cam-
paign. We here define error detection coverage as the quotient between the number
of detected and the number of effective faults.

5.5. EXPERIMENTAL RESULTS 73

Table 5.2: Error detection coverage estimations (registers).

The values of the error detection coverage estimations are quite similar whether
applying non-optimized or optimized fault selection. In the optimized campaigns
the faults are only injected in the location that will activate them (at the time that
the register is read). Since no weights are applied to reflect the length of the data
life-cycle on the outcomes of faults, it could be expected that the error detection
coverage would be skewed.

The detected errors were signalled by the exceptions provided in the MPC565
processor. The distribution among these exceptions is presented in Figures 5.3
and 5.4 for the quicksort campaigns, and in Figures 5.5 and 5.6 for the jet engine
controller campaigns.

Figure 5.3: Exceptions in the quicksort non-optimized campaign (83
faults in registers).

It is possible to observe that the detection mechanisms are activated in a sim-
ilar but not identical way for the non-optimized and the optimized campaigns.
Figures 5.3 to 5.6 provide an insight on the magnitude of the differences between
non-optimized and optimized fault selection. A brief description follows of the most
frequently activated exceptions.

• Checkstop (CHSTP) – The processor was configured to enter the checkstop
state instead of taking the Machine Check Exception (MCE) itself when the
MCE occurs. CHSTP does not represent an actual exception, but rather a
state of the processor. The processor may also be configured to take the MCE

74 CHAPTER 5. FAULT INJECTION TESTING

Figure 5.4: Exceptions in the quicksort optimized campaign (744 faults
in registers).

Figure 5.5: Exceptions in the jet engine controller non-optimized cam-
paign (200 faults in registers).

handling routine or enter debug mode. The MCE, which, in this case, leads
to the checkstop state, is caused, for instance, when the accessed memory
address does not exist.

• Alignment Exception (ALE) – The alignment exception is triggered under the
following conditions:

– The operand of a floating point load or store instruction is not word-
aligned;

– The operand of a load or store multiple instruction is not word-aligned;

– The operand of lwarx or stwcx. is not word-aligned;

– The operand of a load or store instruction is not naturally aligned;

– The processor attempts to execute a multiple or string instruction.

5.5. EXPERIMENTAL RESULTS 75

Figure 5.6: Exceptions in the jet engine controller optimized campaign
(466 faults in registers).

• Floating-Point Assist Exception (FPASE) – This exception occurs in the fol-
lowing cases:

– A floating-point enabled exception condition is detected, the correspond-
ing floating-point enable bit in the Floating Point Status And Control
Register (FPSCR) is set (exception enabled);

– A tiny result is detected and the floating point underflow exception is
disabled;

– In some cases when at least one of the source operands is denormalized.

• Software Emulation Exception (SEE) – An implementation-dependent soft-
ware emulation exception occurs in the following cases:

– An attempt is made to execute an instruction that is not implemented;

– An attempt is made to execute an mtspr or mfspr instruction that spec-
ifies an unimplemented Special Puspose Register (SPR).

• External Breakpoint Exception (EBRK) – This exception occurs when an
external breakpoint is asserted.

Figure 5.7 shows the distribution of faults per register for the optimized cam-
paign. The figure clearly demonstrates the non-uniform distribution caused by the
optimization. The number of faults per register is directly proportional to the
number of times the register is read.

5.5.2 Fault Injection in Memory

Fault injection in memory locations was performed only for the jet engine controller.
Table 5.3 shows the distribution of the outcomes of faults for both non-optimized

76 CHAPTER 5. FAULT INJECTION TESTING

Figure 5.7: Number of faults injected per register.

and optimized fault selection.

Table 5.3: Distribution of outcomes of fault injection in memory.

The effectiveness of faults increases from 2.0% using non-optimized fault selec-
tion to 19.1% choosing faults from the optimized fault-space. The improvement
in the effectiveness of faults is one order of magnitude, similar to one obtained for
faults in microprocessor registers.

Table 5.4 shows the error detection coverage estimations obtained with non-
optimized and optimized fault selection.

Table 5.4: Error detection coverage estimations (memory).

We here observe a similar pattern to that observed for microprocessor registers,
where the error detection coverage estimation using non-optimized or optimized
fault selection is quite similar. In this case the estimation from the non-optimized
campaign is not very accurate since the 95% confidence interval is still wide due to
the small number of effective faults (2%).

Figures 5.8 and 5.9 show the distribution of detected errors among the exception
mechanisms for the two campaigns.

Again, it is possible to observe that the detection mechanisms are activated in a
similar but not identical way for the non-optimized and the optimized campaigns.

5.5. EXPERIMENTAL RESULTS 77

Figure 5.8: Exceptions in the jet engine controller non-optimized cam-
paign (40 faults in memory).

Figure 5.9: Exceptions in the jet engine controller optimized campaign
(166 faults in memory).

5.5.3 Fault-Space Considerations

Applying the optimization method to the fault-space of registers for the jet engine
controller resulted in the determination of 7.7 × 106 distinct time-location pairs
for bit-flips. All the targeted registers are 32-bit registers3. The complete non-
optimized fault-space of these registers is obtained by flipping each bit of each
register, for each instruction executed. This results in a set containing over 500
million bit-flips. Table 5.5 summarizes these results.

In the case of the memory fault-space 3.3× 106 possible time-location pairs for
bit-flips were determined using optimized fault selection. The complete fault-space
of memory is obtained by flipping each bit of each memory location used by the
program, for each instruction executed. Considering a memory usage of 100KB for

3Floating Point Registers are 64-bits long, limited by winIDEA to the least significant 32-bits.

78 CHAPTER 5. FAULT INJECTION TESTING

Table 5.5: Comparison between fault-space sizes (registers).

data by the jet engine controller, the size of the complete fault-space is near 200
billion bit-flips.

Table 5.6: Comparison between fault-space sizes (memory).

5.6 Discussion and Conclusion

The study presented in this chapter shows the efficiency of eliminating faults with
no possibility of activation and determining equivalence classes among faults. A
comparison with traditional non-optimized fault selection (from the complete fault-
space) shows an order of magnitude increase in the effectiveness of faults. The
fault-space itself is reduced two orders of magnitude for the registers and four to five
orders of magnitude for the memory. Even though these fault-spaces are still quite
large when targeting the complete execution of programs, the exhaustive evaluation
of small enough subroutines against all possible bit-flips becomes possible.

All faults targeting the same bit of a given resource, before this resource is
read, are considered equivalent. This way, only one representative of these faults is
injected. To obtain an accurate estimation of the error detection coverage (or any
other dependability measure) it would be necessary to apply a weight corresponding
to the number of faults in each equivalence class. However, the error detection
coverage estimated by the optimized fault selection is found to be quite similar to
the coverage estimated by non-optimized fault selection.

Even though activation of faults is ensured by the optimization technique (ac-
tivation in the sense that the faulty resources are always utilized) not all faults
result in effective errors. Even though the optimization increases the percentage of
effective errors, a majority of the activated faults (both in registers and memory)
is still non-effective. This occurs either when the data is used in a non-sensitive
way by the code, or when the error remains latent within the time frame of the
experiment.

CHAPTER 6

Conclusion

This thesis develops the idea of multi-layer fault tolerance for distributed real-time
systems. A fault-tolerant distributed system contains a set of error detection and
recovery mechanisms that can be structured into three layers – circuit layer, node
layer and system layer –, based on where they are implemented and what parts of
the system they involve.

Those fault tolerance layers are not working in isolation from each other. Coop-
eration among fault tolerance mechanisms that belong to different layers is funda-
mental to ensure their cost-efficiency. This cooperation can be explicit, e.g. when
a fault is detected at one layer and signaled to the upper layers, so that it can be
handled; it can also be implicit, when lower fault tolerance layers restrict the failure
modes exhibited to the upper layers.

One of the concerns of this research is to understand the best ways in which
layers can cooperate. For this reason, we address design issues in building integrated
architectures and in providing system-wide redundancy management. In the future,
our ambition is to enhance the interaction between node layer and system layer
mechanisms.

To achieve this, we are currently building a prototype of a distributed real-
time system, which we regard as an instance of our architectural framework. We
intend to test our ideas in a realistic setup and to be able to address the validation of
fault tolerance mechanisms by fault injection, targeting the nodes of the distributed
system. There is therefore much work to be done in the future regarding all the
problem areas that we address.

79

80 CHAPTER 6. CONCLUSION

6.1 Future Work

There are several limitations in our theoretical analysis of partitioned systems that
we wish to address in the future. It would be interesting to introduce the cost of
the partitioning mechanisms in the reliability models, in order to obtain a more
realistic comparison between the two architectures. Though we take this cost into
consideration in the set of guidelines for building integrated architectures, we have
not included it directly in the reliability models.

Furthermore, we have assumed that the failure rate of the partitioning mech-
anisms is zero. To overcome this limitation, a possibility would be to count the
partitioning mechanisms as an additional task, which contributes to the software
failure rate. Another possibility would be to assume a higher hardware failure rate
for integrated architectures, to reflect the increased complexity of a processor that
has support for partitioning.

The hardware failure rate will probably be higher in integrated architectures
than in federated architectures, due to the use of more powerful microcontrollers
and to the additional hardware necessary to provide partitioning. It would therefore
be interesting to conduct a sensitivity analysis to understand the impact of small
increases in the hardware failure rate of integrated architectures.

We have assumed in our probabilistic analysis that partitioning at the node layer
provides no coverage against hardware faults. However, some faults (e.g. faults that
affect only the context of one task) will be covered by the partitioning mechanisms.
A sensitivity analysis with values greater than zero for the coverage of hardware
faults would therefore be useful.

This thesis provides the precise specification of a protocol for membership agree-
ment. Any such protocol must be formally verified before it can make part of a
fault-tolerant distributed system. One of the next steps is therefore to formally
verify the correctness of the protocol by using, for instance, a model-checking tool.

We have implemented and tested the protocol in a real-time Ethernet prototype.
The protocol extension which provides task-group membership agreement is not
included in the current implementation. We would therefore like to implement and
test this extension in the future. This issue is very interesting in the context of
the thesis – in integrated architectures the membership service should handle both
node failures and task failures.

Another important issue that we would like to address in the future is to adapt
the protocol, in an efficient way, to networks that provide event-driven scheduling.
Time-triggered network standards such as FlexRay and TTCAN provide event-
driven communication slots in addition to the static schedule, for which nodes can
compete in response to events. It would therefore be interesting to adapt our
protocol and make an efficient use of this feature.

There are several advantages in injecting faults in real-time, i.e. without stopping
the target processor. Furthermore, it would be interesting to inject faults into a
set of tasks instead of isolated applications (e.g. to test partitioning mechanisms).

6.1. FUTURE WORK 81

For such an experimental setup it would be interesting to use the optimization tool
in real-time, without executing a fault-free experiment (golden run). The valid
locations for fault injection would be chosen on-demand once the time point for
fault injection had been defined.

The outcome of a fault is highly dependent on the targeted resource. Faults
in some registers were observed to have a greater tendency to cause wrong output
while faults in other registers cause detected errors more frequently. This motivates
a possible evolution in fault selection by using the results of previous fault injection
experiments to select the faults that should be injected next (a combination of
pre-injection and post-injection analysis). It would be possible to achieve a faster
evaluation of specific error detection mechanisms by injecting faults in the resources
that are more likely to activate them.

Even though activation of faults is ensured by the optimization technique (acti-
vation in the sense that the faulty resources are always utilized) a majority of faults
results in non-effective errors. An interesting topic for further studies would be to
investigate which activated faults are non-effective and to find the reasons for this.

82 CHAPTER 6. CONCLUSION

References

[1] J. Aidemark. Node-Level Fault Tolerance for Embedded Real-Time Systems.
PhD thesis, Department of Computer Engineering, Chalmers University of
Technology, Göteborg, Sweden, 2004.

[2] J. Aidemark, P. Folkesson, and J. Karlsson. Path-based error coverage predic-
tion. In Proceedings of the 7th IEEE International On-Line Testing Workshop
(IOLTW-7), pages 14–20. IEEE Computer Society, July 2001.

[3] J. Aidemark, P. Folkesson, and J. Karlsson. A framework for node-level fault
tolerance in distributed real-time systems. In Proceedings of the 2005 Inter-
national Conference on Dependable Systems and Networks (DSN 2005), pages
656–665, Yokohama, Japan, June-July 2005. IEEE Computer Society.

[4] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson. GOOFI: Generic object-
oriented fault injection tool. In Proceedings of the 2001 International Confer-
ence on Dependable Systems and Networks (DSN’01), pages 83–88, Washington
- Brussels - Tokyo, July 2001. IEEE.

[5] J. Alçada. Extension of a real-time kernel with memory management unit
support. Master’s thesis, Department of Computer Science and Engineering,
Chalmers University of Technology, Göteborg, Sweden, 2006.

[6] J. Alçada, R. Barbosa, and J. Karlsson. Memory protection in a real-time
kernel (fast abstract). In EDCC-6, 6th European Dependable Computing Con-
ference, Coimbra, Portugal, October 2006.

[7] ARINC Incorporated. ARINC specification 651: Design guidance for inte-
grated modular avionics, November 1997.

[8] ARINC Incorporated. ARINC specification 653: Avionics application software
standard interface, 2006.

83

84 REFERENCES

[9] J. Arlat, J.-C. Fabre, M. Rodríguez, and F. Salles. Dependability of COTS
microkernel-based systems. IEEE Transactions on Computers, 51(2):138–163,
Feb. 2002.

[10] ARM Ltd. ARM40T Technical Reference Manual (Rev 2), November 2000.

[11] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient detection of all pointer and
array access errors. In Proceedings of the ACM SIGPLAN ’94 Conference on
Programming Language Design and Implementation, pages 290–301, Orlando,
Florida, June 20–24, 1994.

[12] A. Avižienis, J.-C. Laprie, B. Randell, and C. E. Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions on
Dependable and Secure Computing, 1(1):11–33, 2004.

[13] R. Barbosa. Fault injection optimization through assembly-level pre-injection
analysis. Master’s thesis, Department of Computer Engineering, Chalmers
University of Technology, Göteborg, Sweden, 2004.

[14] A. Benso, M. Rebaudengo, L. Impagliazzo, and P. Marmo. Fault-list collapsing
for fault injection experiments. In Proceedings of the Annual Reliability and
Maintainability Symposium (RAMS’98), pages 383–388, Jan. 1998.

[15] L. Berrojo, I. Gónzález, F. Corno, M. S. Reorda, G. Squillero, L. Entrena,
and C. López. New techniques for speeding-up fault-injection campaigns. In
DATE, pages 847–853. IEEE Computer Society, Mar. 2002.

[16] A. Bertolino and L. Strigini. Assessing the risk due to software faults: Esti-
mates of failure rate versus evidence of perfection. Software Testing, Verifica-
tion and Reliability, 8(3):155–166, 1998.

[17] J. Berwanger, C. Ebner, A. Schedl, R. Belschner, S. Fluhrer, P. Lohrmann,
E. Fuchs, D. Millinger, M. Sprachmann, F. Bogenberger, G. Hay, A. Krüger,
M. Rausch, W. Budde, P. Fuhrmann, and R. Mores. FlexRay: The commu-
nication system for advanced automotive control systems. SAE transactions,
110(7):303–314, 2001.

[18] X. Castillo and D. P. Siewiorek. Workload, performance and reliability of
digital computing systems. In Proceedings of the 11th Intl. Symp. on Fault
Tolerant Computing (FTCS-11), pages 84–89, Portland, Maine, USA, June
1981. IEEE Computer Society Press.

[19] M.-I. Chen and K.-J. Lin. Dynamic priority ceilings: A concurrency control
protocol for real-time systems. Real-Time Systems, 2(4):325–346, 1990.

REFERENCES 85

[20] R. Chillarege and N. S. Bowen. Understanding large file system failures : A
fault injection experiment. In Proceedings of the 19th Fault-Tolerant Computing
Symposium (FTCS’89), pages 356–365, Washington, D.C., USA, June 1989.
IEEE Computer Society Press.

[21] R. Chillarege and R. K. Iyer. The effect of system workload on error latency:
An experimental study. In SIGMETRICS, pages 69–77, Aug. 1985.

[22] V. Claesson, H. Lönn, and N. Suri. An efficient TDMA start-up and restart
synchronization approach for distributed embedded systems. IEEE Trans. Par-
allel Distrib. Syst., 15(8):725–739, 2004.

[23] M. Clegg and K. Marzullo. A low-cost processor group membership protocol for
a hard real-time distributed system. In IEEE Real-Time Systems Symposium,
pages 90–98. IEEE Computer Society, 1997.

[24] J. Condit, M. Harren, S. McPeak, G. C. Necula, and W. Weimer. CCured in
the real world. ACM SIGPLAN Notices, 38(5):232–244, May 2003.

[25] F. Cristian. Reaching agreement on processor-group membership in syn-
chronous distributed systems. Distributed Computing, 4:175–187, 1991.

[26] F. Cristian and C. Fetzer. The timed asynchronous distributed system model.
IEEE Trans. Parallel and Distrib. Systems, 10(6):642–657, 1999.

[27] E. W. Czeck and D. P. Siewiorek. Observations on the effects of fault manifes-
tation as a function of workload. IEEE Transactions on Computers, 41(5):559–
566, 1992.

[28] B. L. Di Vito. A model of cooperative noninterference for integrated modu-
lar avionics. In Proceedings of the Conference on Dependable Computing for
Critical Applications (DCCA-99), pages 269–286, 1999.

[29] P. D. Ezhilchelvan, R. A. Macêdo, and S. K. Shrivastava. Newtop: A fault-
tolerant group communication protocol. In Proceedings of the 15th Interna-
tional Conference on Distributed Computing Systems (ICDCS’95), pages 296–
306, Los Alamitos, CA, USA, May 30–June 2 1995.

[30] C. Fetzer and F. Christian. A fail-aware membership service. In Proceedings
of The 16th Symposium on Reliable Distributed Systems (SRDS ’97), pages
157–164, Oct. 1997.

[31] Freescale Semiconductor, Inc. MPC5553/MPC5554 Microcontroller Reference
Manual (Rev 3.1), October 2005.

[32] Freescale Semiconductor, Inc. MPC565 Reference Manual (Rev 2.2), November
2005.

86 REFERENCES

[33] T. Führer, B. Müller, W. Dieterle, F. Hartwich, R. Hugel, and M. Walther.
Time triggered communication on CAN (Time Triggered CAN - TTCAN).
Technical report, Robert Bosch GmbH, 2000.

[34] J. Gaisler. A portable and fault-tolerant microprocessor based on the SPARC
V8 architecture. In Proceedings of the 2002 International Conference on De-
pendable Systems and Networks (DSN 2002), Bethesda, MD, USA, pages 409–
415. IEEE Computer Society, June 2002.

[35] J. A. Goguen and J. Meseguer. Security policies and security models. In Proc.
IEEE Symposium on Security and Privacy, pages 11–20, 1982.

[36] S. S. Gokhale, P. N. Marinos, and K. S. Trivedi. Important milestones in
software reliability modeling. In Proc. of Software Engineering and Knowledge
Engineering (SEKE) ’96, Lake Tahoe, NV, USA, pages 345–352, 1996.

[37] R. Golding. Weak-Consistency Group Communication and Membership. PhD
thesis, University of California, Santa Cruz, USA, 1992.

[38] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-
based memory management in Cyclone. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI) , Berlin, Germany,
pages 282–293, 2002.

[39] J. Güthoff and V. Sieh. Combining software-implemented and simulation-
based fault injection into a single fault injection method. In Proceedings of the
25th International Symposium on Fault-Tolerant Computing (FTCS’95), pages
196–206, Los Alamitos, June 1995. IEEE Computer Society Press.

[40] M. Hedén. A deterministic ethernet based real-time communication prototype.
Master’s thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, Göteborg, Sweden, 2007.

[41] H. Heinecke, K.-P. Schnelle, H. Fennel, J. Bortolazzi, L. Lundh, J. Leflour, J.-L.
Maté, K. Nishikawa, and T. Scharnhorst. Automotive open system architecture
- an industry-wide initiative to manage the complexity of emerging automotive
e/e architectures. In Proc. Convergence, 2004.

[42] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufman, second edition, 1996.

[43] IEEE - Industry Standards and Technology Organization. The nexus 5001
forum

TM

standard for a global embedded processor debug interface (available
from IEEE-ISTO - www.nexus5001.org), 2003.

REFERENCES 87

[44] International Electrotechnical Commission. IEC 61508 - Functional safety of
electrical/electronic/programmable electronic safety-related systems (7 parts
available from IEC Geneva, Switzerland - www.iec.ch).

[45] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and Y. Wang.
Cyclone: A safe dialect of C. In C. S. Ellis, editor, USENIX Annual Technical
Conference, General Track, pages 275–288. USENIX, 2002.

[46] S. Katz, P. Lincoln, and J. Rushby. Low-overhead time-triggered group mem-
bership. Lecture Notes in Computer Science, 1320:155–169, 1997.

[47] K. H. Kim, H. Kopetz, K. Mori, E. Shokri, and G. Grünsteidl. An efficient de-
centralized approach to processor-group membership maintenance in real-time
LAN systems: The PRHB/ED scheme. In Symposium on Reliable Distributed
Systems, pages 74–83, 1992.

[48] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of the
IEEE, 91(1):112–126, 2003.

[49] S. Kowshik, D. Dhurjati, and V. S. Adve. Ensuring code safety without runtime
checks for real-time control systems. In S. S. Bhattacharyya, T. N. Mudge,
W. Wolf, and A. A. Jerraya, editors, CASES, pages 288–297. ACM, 2002.

[50] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–401,
July 1982.

[51] Y.-H. Lee, D. Kim, M. F. Younis, J. X. Zhou, and J. McElroy. Resource
scheduling in dependable integrated modular avionics. In Proceedings of the
2000 International Conference on Dependable Systems and Networks (DSN
2000), pages 14–23. IEEE Computer Society, 2000.

[52] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in
a hard real-time environment. Journal of the ACM, 1(20):44–61, Jan. 1973.

[53] H. Lönn. A fault tolerant clock synchronization algorithm for systems with low-
precision oscillators. In Proceedings of the 3rd European Dependable Computing
Conference (EDCC-3), Prague, Czech Republic, volume 1667 of Lecture Notes
in Computer Science, pages 88–105. Springer, Sept. 1999.

[54] H. Lönn. Synchronization and Communication Results in Safety-Critical Real-
Time Systems. PhD thesis, Department of Computer Engineering, Chalmers
University of Technology, Göteborg, Sweden, 1999.

[55] H. Madeira and J. G. Silva. Experimental evaluation of the fail-silent behaviour
in computers without error masking. In Proceedings of the 24th Fault-Tolerant

88 REFERENCES

Computing Symposium (FTCS’94), pages 350–359, Austin, Texas, June 1994.
IEEE Computer Society.

[56] L. E. Moser, P. M. Melliar-Smith, and V. Agrawala. Processor membership
in asynchronous distributed systems. IEEE Trans. Parallel Distrib. Syst.,
5(5):459–473, 1994.

[57] Motorola, Inc. RISC Central Processing Unit Reference Manual (Rev 1), Feb.
1999.

[58] PHYTEC Meßtechnik GmbH. phyCORE-MPC565 Hardware Manual (avail-
able from www.phytec.de), April 2004.

[59] K. Ramamritham and J. Stankovic. Scheduling algorithms and operating sys-
tems support for real-time systems, Jan. 1994.

[60] A. Ricciardi and K. P. Birman. Using process groups to implement failure
detection in asynchronous environments. In Proceedings of the Tenth Annual
ACM Symposium on Principles of Distributed Computing, pages 341–353, Mon-
treal, Quebec, Canada, 19–21 Aug. 1991.

[61] L. Rodrigues, P. Veríssimo, and J. Rufino. A low-level processor group mem-
bership protocol for LANS. In ICDCS, pages 541–550, 1993.

[62] A. Roscoe, J. Woodcock, and L. Wulf. Non-interference through determinism.
Journal of Computer Security, 4(1):27–54, 1996.

[63] B. Rostamzadeh, H. Lönn, R. Snedsbøl, and J. Torin. DACAPO: A distributed
computer architecture for safety-critical control applications. Proc. IEEE Inter-
national Symposium on Intelligent Vehicles, Detroit, MI, USA, pages 376–381,
1995.

[64] RTCA Inc. DO-178B/ED-12B - Software considerations in airborne systems
and equipment certification, December 1991.

[65] J. Rushby. Partitioning in avionics architectures: Requirements, mechanisms,
and assurance, SRI International, Menlo Park, California, USA. Technical
report, June 1999.

[66] J. Rushby. Bus architectures for safety-critical embedded systems. In T. A.
Henzinger and C. M. Kirsch, editors, Embedded Software, First International
Workshop, EMSOFT 2001, Tahoe City, CA, USA, October, 8-10, 2001, Pro-
ceedings, volume 2211 of Lecture Notes in Computer Science, pages 306–323.
Springer, 2001.

REFERENCES 89

[67] A. Sabelfeld and D. Sands. Dimensions and principles of declassification.
In Proceedings of the 18th IEEE Computer Security Foundations Workshop
(CSFW’05), pages 255–269. IEEE Computer Society Press, June 2005.

[68] R. A. Sahner, K. S. Trivedi, and A. Puliafito. Performance and Reliability Anal-
ysis of Computer Systems: An Example-Based Approach Using the SHARPE
Software Package. Kluwer Academic Publishers, Boston, Nov. 1995.

[69] R. Seyer, C. Siemers, R. Falsett, K. H. Ecker, and H. Richter. Robust parti-
tioning for reliable real-time systems. In Workshop on Parallel and Distributed
Real-Time Systems – WPDRTS, 18th International Parallel and Distributed
Processing Symposium (IPDPS 2004), Apr. 2004.

[70] M. Simpson, B. Middha, and R. Barua. Segment protection for embedded
systems using run-time checks. In T. M. Conte, P. Faraboschi, W. H. Mangione-
Smith, and W. A. Najjar, editors, CASES, pages 66–77. ACM, 2005.

[71] D. Skarin, J. Vinter, P. Folkesson, and J. Karlsson. Implementation and usage
of the GOOFI MPC565 nexus fault injection plug-in. Technical Report 04-
08, Chalmers University of Technology, Department of Computer Engineering,
Göteborg, Sweden, 2004.

[72] W. Stallings. Operating Systems: Internals and Design Principles. Prentice-
Hall, fourth edition, 2001.

[73] N. Storey. Safety-Critical Computer Systems. Addison-Wesley, 1996.

[74] A. S. Tanenbaum. Modern Operating Systems. Prentice-Hall, Upper Saddle
River, NJ, USA, second edition, 2001.

[75] T. K. Tsai, M.-C. Hsueh, H. Zhao, Z. Kalbarczyk, and R. K. Iyer. Stress-based
and path-based fault injection. IEEE Transactions on Computers, 48(11):1183–
1201, Nov. 1999.

[76] J. Vinter, J. Aidemark, D. Skarin, R. Barbosa, P. Folkesson, and J. Karlsson.
An overview of GOOFI – a generic object-oriented fault injection framework.
Technical Report 05-07, Chalmers University of Technology, Department of
Computer Science and Engineering, Göteborg, Sweden, 2005.

[77] M. M. Wilding, D. S. Hardin, and D. A. Greve. Invariant performance: A
statement of task isolation useful for embedded application integration. In
Proceedings of the Conference on Dependable Computing for Critical Applica-
tions (DCCA-99), pages 287–300, 1999.

[78] P. Yuste, J.-C. Ruiz-Garcia, L. Lemus, and P. J. Gil. Non-intrusive software-
implemented fault injection in embedded systems. In LADC, volume 2847 of
Lecture Notes in Computer Science, pages 23–38. Springer, 2003.

90 REFERENCES

[79] S. Zdancewic. Challenges for information-flow security. In Proceedings of the
1st International Workshop on the Programming Language Interference and
Dependence (PLID’04), Aug. 2004.

[80] S. Zdancewic and A. C. Myers. Robust declassification. In Proceedings of
the 14th IEEE Computer Security Foundations Workshop (CSFW’01), pages
15–26. IEEE Computer Society Press, June 2001.

[81] X. Zhang and H. Pham. Software field failure rate prediction before software
deployment. Journal of Systems and Software, 79(3):291–300, 2006.

