
Implementation of a Flexible Membership Protocol
on a Real-Time Ethernet Prototype

Raul Barbosa†, António Ferreira‡, and Johan Karlsson
Department of Computer Science and Engineering

Chalmers University of Technology
SE-412 96 Göteborg, Sweden

Abstract

This paper describes the implementation of a processor-
group membership protocol in an experimental real-time
network. The protocol is appropriate for fault-tolerant dis-
tributed systems using TDMA for scheduling messages. It
allows nodes to maintain a consensus on the operational
state of all nodes, in the presence of node failures and
restarts, as well as network failures. The protocol is based
on the principle that, in a system of n nodes, each node
must acknowledge the messages from k other nodes in the
membership group, where k can assume values between
2 and n − 1. Membership agreement is guaranteed if
f ≤ k − 1 failures occur during n consecutive transmis-
sion slots. We have implemented the membership protocol
in a time-triggered network based on COTS Ethernet hard-
ware, programmed to schedule messages according to the
TDMA method.

1 Introduction

Group membership is a building block of fault-tolerant
distributed systems. In such systems, the processing nodes
must cooperate in the diagnosis and isolation of faulty
nodes, and in the reconfiguration that must take place to
handle node failures correctly. To achieve this, working
nodes must maintain a consensus on the nodes that should
participate in service delivery. The algorithms designed to
provide this consensus are known as processor-group mem-
bership protocols.

In this paper we describe the implementation of a flex-
ible membership protocol intended for hard real-time sys-

†The work of Raul Barbosa has been supported by the Portuguese Fun-
dação para a Ciência e a Tecnologia through doctoral grant SFRH/BD/
18126/2004.

‡This work was performed while António Ferreira was an exchange
student at Chalmers University of Technology, from the University of
Coimbra, Portugal.

tems. The protocol is appropriate for systems with static
communication scheduling according to the Time Division
Multiple Access (TDMA) method. This method divides
the medium access into transmission slots. In each TDMA
round, nodes transmit a fixed amount of traffic in their
preallocated slots. The TDMA method is widely used in
safety-critical applications and network standards such as
FlexRay [2], TTCAN [3], or TTP [4] use this method for
scheduling static real-time traffic.

The implemented protocol is a modified version of the
algorithm presented in [1]. It is based on the principle
that each message sent by a node in the membership group
should be acknowledged by k other nodes, in a system of
n nodes. The value k can be set to any number between
2 and n − 1. Each message contains k acknowledgement
bits. The reintegration algorithm imposes an overhead of
one bit per message, for the reintegration flag. This flag is
used to acknowledge successful reintegrations and to signal
the reintegration order. The main modifications to the origi-
nal protocol are the addition of self-diagnosis for nodes that
are excluded from the membership and the introduction of a
reintegration order, which nodes must follow when attempt-
ing inclusion in the set of operational nodes.

We have implemented the membership protocol in a pro-
totype of a distributed time-triggered system. The net-
work is based on COTS Ethernet hardware, programmed to
schedule messages according to the TDMA method. This
prototype implementation allowed us to test the feasibility
and performance of the protocol. We present the results
of the communication overhead and the latencies for agree-
ment on departure and reintegration. Moreover, we report
the estimates of memory requirements and CPU overhead
by the protocol implementation.

2 Membership Protocol Description

The membership protocol relies on nodes observing the
transmissions of other nodes to detect failures. It allows

13th IEEE International Symposium on Pacific Rim Dependable Computing

0-7695-3054-0/07 $25.00 © 2007 IEEE
DOI 10.1109/PRDC.2007.49

342

13th IEEE International Symposium on Pacific Rim Dependable Computing

0-7695-3054-0/07 $25.00 © 2007 IEEE
DOI 10.1109/PRDC.2007.49

342

13th IEEE International Symposium on Pacific Rim Dependable Computing

0-7695-3054-0/07 $25.00 © 2007 IEEE
DOI 10.1109/PRDC.2007.49

342

fault-free nodes to maintain an agreement on the opera-
tional state of all nodes in the presence of node failures
and restarts, as well as network failures (lost/corrupted
messages). Failures in the system can prevent messages
from reaching their intended receivers. We distinguish be-
tween consistent failures and inconsistent failures. A con-
sistent failure occurs when a message does not reach any
of its intended receivers; an inconsistent failure causes a re-
ceiver to miss a message, while others receive the message
correctly.

We also distinguish between transient failures and per-
manent failures. We assume that a transient failure only af-
fects one message. If several consecutive messages are lost,
for instance, due to electromagnetic interference on the net-
work, then we consider this as a case of multiple transient
failures. A permanent failure will remain in the system un-
til it is repaired, and may affect one node, its outgoing link,
its incoming link or a point-to-point connection between a
node and the hub, when the network has a star topology.

Independent observations are consolidated to maintain
membership agreement by means of an exchange of infor-
mation, piggybacked on the periodic messages. This infor-
mation consists of message acknowledgements and a rein-
tegration flag. Each node will append k acknowledgement
bits to its message, confirming (or refuting) the reception
of each of the previous k messages from the nodes in the
membership. (Such a node is said to be sponsoring its k
predecessors.) A reintegration flag (r-flag) is also appended
to each message to allow reinitialized nodes to reintegrate
the membership.

The protocol is divided into two main parts: agree-
ment on departure and agreement on reintegration. Agree-
ment on reintegration can be further divided into three sub-
protocols: recovery of the membership state, agreement on
reintegration ordering and the actual procedure for agree-
ment on reintegration.

• Agreement on departure – Initially, the membership
set contains the active processing nodes. The start-
up mechanism, responsible for establishing a sufficient
level of network-wide synchronization, also supplies
the set of initially active nodes to the membership ser-
vice. A given node Nj will be removed from the lo-
cal membership view of Ni if and only if Ni does not
receive a message from Nj and no positive acknowl-
edgement for that message is received from any of the
sponsors of Nj .

• Recovery of the membership state – Assuming that
fundamental data such as the communication schedule
will survive a crash, a node is able to recover the mem-
bership state by listening to the incoming messages.
Starting with its membership set empty, the node adds
other nodes to the local view when their message is

correctly received. The node is required to listen for
one complete round of communication.

• Agreement on reintegration ordering – The protocol
establishes a cyclic order that nodes must follow dur-
ing reintegration. Each node has a single commu-
nication round where it can send a reintegration re-
quest. Agreement on the round number is kept by
the membership nodes as the communication schedule
progresses. Such nodes must signal the current round
number explicitly in order for a failed node to become
synchronized. The protocol supplies the round number
to restarting nodes by signaling a delimiter pattern with
the r-flags of nodes in the membership (one r-flag from
each node in every round). Once a restarting node lis-
tens to the delimiter pattern, a new reintegration cycle
has started.

• Agreement on reintegration – After restarting, a node
obtains both the current round number and the mem-
bership state. This node then sends a reintegration re-
quest in its dedicated reintegration round. The rein-
tegration request contains its view of the membership
state. Upon the reception of such a request, any receiv-
ing node (in the membership) will verify if the view
is correct. If it is, the receiving nodes set their r-flag
to true in their following message. Once the commu-
nication round is completed the node is added to the
membership.

2.1 The Membership Component

We have built a software component that implements the
membership protocol. It consists of a C program that pro-
vides a set of functions for updating the membership set in
response to events. The module is independent from any
other software and provides a strictly reactive service, i.e.,
executes only when a function is called in the context of
an existing process. Thus, it is easily portable to any time-
triggered system that meets the protocol’s assumptions. The
membership interface contains the following functions:

• init(membershipView) – Initializes the mem-
bership component with the given membership state.

• messageReceived(membershipData) – Up-
dates the membership view upon message reception.

• messageLost() – Updates the local membership
view in response to a lost message.

• newRound() – Updates the local membership view
at the end of a communication round.

• getMembershipVector() – Returns the local
membership view.

343343343

• getAcknowledgements() – Returns the ac-
knowledgements and the r-flag for the next message.

3 The Real-Time Ethernet Prototype

We have implemented the membership protocol in a pro-
totype of a distributed real-time system. The experimen-
tal real-time network is based on COTS Ethernet hardware.
Using only software, the system is programmed to schedule
messages according to the TDMA method. Figure 1 depicts
our experimental setup.

Figure 1. The experimental real-time Ethernet
network.

The computer nodes in Figure 1 are Phytec’s phyCORE-
MPC565 development boards [6]. Each contains a
Freescale MPC565 microcontroller, based on the PowerPC
architecture. The boards include an RJ45 socket and an Eth-
ernet controller.

The two boards depicted on the upper-left corner of Fig-
ure 1 are expanded with a custom board. We developed
these expansion boards in order to output the internal clock
of the nodes and to have a 7-segment display (for showing
the number of active nodes in the membership). We con-
nect the clock outputs to an oscilloscope that measures their
synchronization. The expansion boards can be used with
any processor board (to test for slight differences among
nodes). Moreover, we connect a regular PC running Wire-
shark – a protocol analyzer – to the network, in order to
verify the execution of the protocol. Each board executes
a small software module that allows failure scenarios to be
configured and tested.

The experimental network is based on a star topology
with a central switch – HP’s ProCurve Switch 2324. The
Ethernet controller included in the boards runs at 10 Mbit/s
(10Base-T standard). To maintain the TDMA schedule we
implemented the daisy-chain clock synchronization algo-
rithm [5]. This algorithm adjusts the clock of each node
every time a new message is received. The adjustment is
a fraction of the difference between the expected and the
actual arrival time of a message.

3.1 Network Configuration

The length of the Ethernet frames can vary between
64 and 1518 bytes. We used 64-byte packets in our ex-
periments – 46 bytes of payload data, 4 bytes for the
CRC checksum and 14 bytes for the MAC header. The
MAC header identifies the source address (i.e., the message
sender) and the destination address, which is set to broad-
cast. With this configuration the estimated propagation de-
lay for the Ethernet frames was 215 µs.

The duration of a transmission slot was configured to 400
µs. Under these conditions the daisy-chain algorithm main-
tained the processor nodes synchronized within 3 µs. Ta-
ble 1 summarizes the most important network parameters.

Parameter Value

Number of nodes 6
Packet size 64 bytes

Transmission slot 400 µs
Reintegration cycle 36 ms

Communication round 2.4 ms

Clock skew (measured) < 3 µs

Table 1. Configuration of the real-time Ether-
net network and resulting clock skew.

The membership protocol was configured to 4 sponsors
per node. Each 64-byte packet therefore included 5 bits
of membership information (4 acknowledgements and 1 r-
flag).

4 Network and Membership Performance

The nominal bandwidth of the network is 10 Mbit/s.
However, real-time communication using TDMA must take
into account the propagation delays and the clock skews to
ensure that there are never two messages being transmit-
ted at the same time. This is achieved by inserting guard
times between messages. Due to these guard times, we esti-
mate that our experimental network can achieve a maximum
bandwidth of 3.3 Mbit/s using 1518-byte packets.

In our experiments, we used 64-byte packets and trans-
mission slots of 400 µs, which results in a network band-
width of 1.3 Mbit/s. This way, we can calculate the resource
usage when the protocol executes at nearly the highest pos-
sible frequency for our setup. Since each frame reserves 18
bytes for the header and the CRC checksum, we have, for
this configuration, 920 Kbit/s of useful bandwidth available
for payload data (which includes the membership informa-
tion).

In our experiments, each message had 5 bits of piggy-
backed membership information. Messages were sent once

344344344

every 400 µs. The bandwidth required by the membership
service is therefore 12.5 Kbit/s. Since we have 920 Kbit/s
of useful bandwidth available, the membership service im-
poses a 1.4% communication overhead. If we consider the
network’s nominal bandwidth of 10 Mbit/s, the member-
ship’s overhead is less than 0.2%. We emphasize that these
values were obtained for 64-byte packet sizes, which pro-
vide the lowest useful bandwidth. Increasing the packet size
would reduce the membership’s communication overhead
significantly.

A departure is detected by the membership when the
node’s last sponsor transmits its message. In the worst case,
this may occur n − 1 slots after the message is lost. Since
a node may fail immediately after broadcasting a message,
it may take n slots until a message is missed by the other
nodes. The latency for agreement on departure is therefore
(6 + 6 − 1) × 400 µs = 4400 µs. This and other important
latency values are shown in Table 2. It should be noted that
these are calculated (not measured) values. The worst case
latencies for reintegration occur when node 6 wishes to be
reintegrated and starts listening on round 3; the node has to
wait 2 × 6 + 4 = 16 rounds for the next delimiter pattern
and then 12 (2 × 6) rounds to be reintegrated.

Activity Latency

Agreement on departure of a crashed node 4.4 ms
Recovery of the round number 38.4 ms

Fault-free reintegration from restart 67.2 ms

Table 2. Node departure and node reintegra-
tion latencies (worst case).

A direct implementation of our protocol requires nodes
to acknowledge their immediate predecessors. An impor-
tant concern is therefore to ensure that nodes have enough
time to react to received/lost messages. In our experimen-
tal setup, we have verified through extensive testing that the
nodes were able to send their acknowledgements on time.
However, for systems where nodes have a long reaction
time, the order of the acknowledgements can be set in such
a way that node Ni sponsors the nodes starting at Ni−2,
instead of sponsoring its immediate predecessor.

Another important aspect of the implementation of mem-
bership protocols is that the processing capacity of nodes
may be very limited. For our experimental setup, we esti-
mate that the size of the code related to the membership ser-
vice is less than 4KB; the data structures occupy 42 bytes
in memory. We measured the CPU usage with and with-
out the membership service enabled and an early estimation
shows that the CPU overhead of the membership service is
negligible.

5 Conclusion

This paper described the implementation of a processor-
group membership protocol appropriate for hard real-time
systems with TDMA communication scheduling. The pro-
tocol allows a trade-off between reliability and communi-
cation overhead to be made at design time. This flexibil-
ity is well suited for hard real-time systems – such systems
impose hard deadlines for achieving consensus on member-
ship changes, while they offer limited bandwidth for the im-
plementation of the membership services.

The membership protocol was implemented on an ex-
perimental time-triggered network based on COTS Ether-
net hardware. Through extensive testing, we verified that
the protocol maintains membership agreement under mul-
tiple failures. This implementation allowed us to calculate
the departure/reintegration latencies and the bandwidth con-
sumption in a realistic configuration. Configuring the net-
work for the smallest packet size (64 bytes) the useful band-
width is 920 Kbit/s. In this case the membership protocol
has a 1.4% communication overhead. Increasing the packet
size would reduce this overhead significantly (the useful
bandwidth would increase and the protocol would execute
at a lower frequency).

Acknowledgements

The authors would like to thank Mikael Hedén for his
contribution to the development of the real-time Ethernet
prototype.

References

[1] R. Barbosa and J. Karlsson. Flexible, cost-effective member-
ship agreement in synchronous systems. In Proceedings of
the 12th IEEE Pacific Rim International Symposium on De-
pendable Computing (PRDC’06), Riverside, California, USA,
pages 105–112, Dec. 2006.

[2] J. Berwanger et al. FlexRay: The communication system
for advanced automotive control systems. SAE transactions,
110(7):303–314, 2001.

[3] T. Führer, B. Müller, W. Dieterle, F. Hartwich, R. Hugel, and
M. Walther. Time triggered communication on CAN (Time
Triggered CAN - TTCAN). Technical report, Robert Bosch
GmbH, 2000.

[4] H. Kopetz and G. Bauer. The time-triggered architecture. Pro-
ceedings of the IEEE, 91(1):112–126, Jan. 2003.

[5] H. Lönn. A fault tolerant clock synchronization algorithm for
systems with low-precision oscillators. In Proceedings of the
3rd European Dependable Computing Conference (EDCC-3),
Prague, Czech Republic, volume 1667 of Lecture Notes in
Computer Science, pages 88–105. Springer, Sept. 1999.

[6] PHYTEC Meßtechnik GmbH. phyCORE-MPC565 Hardware
Manual (available from www.phytec.de), 2004.

345345345

