
Flexible, Cost-Effective Membership Agreement in Synchronous Systems

Raul Barbosa and Johan Karlsson
Department of Computer Science and Engineering

Chalmers University of Technology
SE-412 96 Göteborg, Sweden
{rbarbosa, johan}@ce.chalmers.se

Abstract

This paper presents a processor group membership pro-
tocol for fault-tolerant distributed real-time systems that
utilize periodic, time-triggered scheduling for sending mes-
sages over the system’s communication network. The proto-
col allows fault-free nodes to reach agreement on the opera-
tional state of all nodes in the presence of fail-silent or fail-
reporting node failures as well as network failures (lost or
corrupted messages). The protocol is based on the principle
that each message sent by a node in the membership is ac-
knowledged by k other nodes in a system of n nodes, where
k can be set to any number between 2 and n−1. Agreement
on node failure (membership departure) and agreement on
node recovery (membership reintegration) are handled by
two different mechanisms. Agreement on departure is guar-
anteed if no more than f = k−1 failures occur in the same
communication round, while at most one node can be rein-
tegrated into the membership per communication round.

1 Introduction

Group membership is often a cornerstone of the design
of fault-tolerant distributed systems. The entities, or nodes,
which constitute such systems, must cooperate in provid-
ing a correct service to its user(s), even in the presence of
faults [2]. A correct behavior of the system requires that
the non-faulty nodes have access to timely and consistent
information about the operational state of all nodes. The
algorithms devised to maintain this information, preferably
in a decentralized manner, are usually known as processor
group membership protocols.

This paper proposes a processor group membership pro-
tocol appropriate for hard real-time systems which utilize
buses such as TTCAN [11] or FlexRay [3]. Such systems
impose hard deadlines for achieving consensus on member-
ship changes, while they offer limited bandwidth for the im-
plementation of the membership services.

The numerous solutions proposed in the past reflect the
diversity of situations where membership agreement ser-
vices are of use. In this paper we consider group member-
ship for systems relying on synchronous communication,
where messages are transmitted within a known amount of
time and processing nodes have a global notion of time. The
membership problem in such systems was first described
in [6]. Specially tailored solutions, for different applica-
tions, were subsequently devised and proposed in the lit-
erature [15], [14], [5] and [20]. The problem has also
been widely studied in the context of asynchronous systems,
which do not observe the synchrony hypothesis (e.g. [19],
[9], [8] and [18]). The timed asynchronous model [7] com-
bines these two classes of systems by assuming that all ser-
vices, including membership, are timed although interpro-
cess communication time is unbounded.

The protocol described in this paper assumes that each
node in the system periodically sends messages that reach
all other nodes under fault-free circumstances. It piggy-
backs all protocol-specific information on such periodic
messages. The protocol allows fault-free nodes to reach
agreement on the operational state of all nodes in the pres-
ence of node failures as well as network failures (lost or
corrupted messages).

It is based on the principle that each message sent by a
node which is present in the membership is acknowledged
by k other nodes in a system of n nodes, where k can be set
to any number between 2 and n − 1. Each node must ac-
knowledge k messages, and thus each message must contain
k acknowledgement bits. The number of acknowledgement
bits determines the number of simultaneous failures that
can be tolerated in one communication round. Therefore,
our protocol contrasts to most solutions intended for hard
real-time systems in its flexibility to configure the trade-off
between reliability and communication overhead, at design
time.

Moreover, agreement on node failure (membership de-
parture) and agreement on node recovery (membership rein-
tegration) are handled by two different mechanisms. This

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

allows the cost of fault-tolerant reintegration to be de-
creased by implementing the reintegration procedure using
the event-driven fraction of the bus schedule, where avail-
able. Time-triggered buses such as FlexRay and TTCAN
provide event-driven communication slots in addition to the
static schedule, for which nodes can compete in response to
events.

Agreement on departure is guaranteed if no more than
f = k−1 failures occur in the same communication round,
while at most one node can be reintegrated into the group
of operational nodes (the membership) per communication
round. In our scheme, listening on the bus is enough for a
restarted node to recover the state of the membership, before
attempting reintegration.

Furthermore, the protocol maintains consistent views of
the membership even when multiple permanent node fail-
ures occur simultaneously, if at least two nodes remain
fault-free and no other types of failure than permanent node
failures occur in the same communication round.

In addition to the protocol for processor group member-
ship agreement, this paper presents the outline of an exten-
sion which keeps track of application process failures. This
feature is intended for distributed real-time systems where
the processing nodes offer effective fault-containment be-
tween different application processes executed on the node.
In such systems the membership service should preferably
handle both node failures and application process failures.

2 System Model

We consider a set of processing nodes linked by a time-
triggered broadcast network. We assume that the network
has either as bus or star topology. Processors (nodes)
have their clocks tightly synchronized and send messages at
pre-defined time-slots according to a time-triggered cyclic
schedule. Each node has a single dedicated slot on the
network which it uses to broadcast its messages in every
communication round. Processing nodes are assumed to be
fail-silent, i.e. either correct results or no results are broad-
casted, or fail-reporting, i.e. either the correct result or a
failure report (specifying the causes of failure) is produced.

In fault-free conditions the node which has the right to
access the network (i.e. the sending node) does so by send-
ing a message. The physical link then ensures this message
is delivered to all other nodes (i.e. the receiving nodes). If,
at some point, a node does not receive a valid message, due
to loss or corruption, a failure has occurred. It could be a
failure of the sending node, a failure of the receiving node,
a network failure or a combination of these.

In our system model, we assume that failures can occur
in the nodes, their incoming and outgoing links (protocol
processors which provide the interface to the network), and
the network itself. To simplify the discussion about the kind

of failures our protocol can handle, we map these failure
types into four different failure classes according their per-
sistence, permanent or transient, and whether their impact
on the system is consistent or inconsistent. We assume that
a transient failure only affects one message. If several con-
secutive messages are lost, for instance, due to electromag-
netic interference on the network, then we consider this as a
case of multiple transient failures. A permanent failure will
remain in the system until it is repaired, and may affect one
node, or its outgoing or incoming link, or a point-to-point
connection between a node and the hub if the network has a
star topology. (A permanent failure of a non-redundant bus
network will lead to a failure of the entire system, and is
thus not relevant for our group membership protocol.)

We classify a failure as consistent if all receiving nodes
fail to receive a message correctly, since all the receiving
nodes in this case will have a consistent view of the sys-
tem state. On the other hand, an inconsistent failure occurs
if one node fails to receive a message correctly, since that
node then has a different view of the system compared to
all other nodes. We assume that a situation where some
nodes receive a message correctly, and two or more nodes
receive the message incorrectly, can only occur in presence
of multiple failures. We do not include permanent failures
of a receiving node in our failure model, since a permanent
failure of a node can only be seen by other nodes when the
faulty node is supposed to act as a sender. Table 1 shows
how the different types of component failure are mapped
into the different failure classes.

Table 1. Failure classes.

The rationale for this failure model is to have a clear def-
inition of what we mean by a failure, as we express the fault
tolerance capabilities of our protocol in terms of the num-
ber of simultaneous1 failures the protocol can cope with. As
previously explained, the number of simultaneous failures
under which the protocol reaches agreement on the mem-
bership depends on the number of acknowledgement bits
used. An example of another failure model used in conjunc-
tion with processor-group membership protocols for time-
triggered systems can be found in [15].

From the viewpoint of healthy nodes, a failure of the
sending node means missing at least one message from this
node or receiving at least one failure report. In any case the
failure will be consistently detected by all healthy nodes.
The same can be assumed when an outgoing link failure of

1By simultaneous failures we mean failures that occur during one com-
munication round.

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

the sending node occurs. These two failure types can there-
fore be classified as consistent failures, i.e. class 1 or class
3, depending on their persistence.

On the other hand, when a receiving node suffers a tran-
sient failure it will miss a single message. A transient in-
coming link failure will also have the same consequence.
These failures are classified together as transient inconsis-
tent (class 2). When the incoming link of a single node
becomes permanently faulty we classify it as a permanent
inconsistent failure (class 4).

Modeling communication failures entails some consider-
ations on the topology of the networks deployed in safety-
critical systems [21]. We assume either the existence
of structural redundancy (e.g. duplicate buses), as in
TTP [16], or that the network is based on a bus topology
or a star topology.

The network failure model is supported by the following
analysis. We assume that applying structural redundancy
will allow single transient failures to be masked by the phys-
ical layer. When the network uses a bus topology it is rea-
sonable to assume that the probability of an error affecting
only the propagation of the last few bits of a message, caus-
ing some nodes to receive the correct message while other
nodes receive a corrupted version, is negligible. When the
star topology is used, network failures in the connection be-
tween the sending node and the star hub will be detected by
all receiving nodes. On the other hand, failures occurring
in a receiving node’s connection to the star hub will only be
perceived by this node. We assume that the hub itself will
not introduce changes to this failure model.

When all nodes miss a single message due to a transient
network failure we have a failure of the transient consistent
class. On the other hand, if only one receiving node misses
a single message, a failure of the transient inconsistent class
has occurred. When the network failure is permanent then
either one node is not able to send messages (permanent
consistent failure) or one node is not able to receive mes-
sages (permanent inconsistent failure).

3 Protocol Specification

Let N denote the totally ordered set of processing nodes
N1, N2, . . . , Nn. The totality condition is intuitively satis-
fied by the order in which nodes broadcast in every round,
imposed by the network schedule. We exclude systems with
n ≤ 2 processing nodes, where membership agreement
is trivially achieved by independent assessment, from our
analysis.

The membership protocol relies on the periodic mes-
sages sent by each node to piggyback a sequence of ac-
knowledgements. Each node will append k acknowledge-
ment bits to its message, confirming (or refuting) the recep-
tion of each of the previous k messages from the nodes in

the membership. A given node Nj will be removed from
the local membership view of Ni if and only if Ni does not
receive a message from Nj and no positive acknowledge-
ment for this message is received from any of the sponsors
of Nj .

A node is said to be sponsoring node Nj if, along with
its message, the acknowledgement of the last message from
Nj is attached. Only nodes in the membership are in-
volved in sponsoring relations. Under normal conditions
each node will have k sponsors (and will be sponsoring k
nodes). Thus, k stipulates how resilient the protocol will be
to near-coincident failures, at the expense of communica-
tion overhead.

The protocol requires k = 2 sponsors per node in its
minimum configuration. Setting k = 1 does not allow the
agreement to be maintained after a transient receiving fail-
ure of a sponsor, since the sponsor itself will erroneously
remove its sponsored node from the local membership view.

Only one node can be reintegrated in each communica-
tion round. A node attempts reintegration simply by broad-
casting a correct message. Given that failures can take place
during this round there is the need for fault-tolerance in the
reintegration process. Reintegration activities require there-
fore an additional bit to be appended to each message. We
believe that the best solution is to use the event-driven frac-
tion of the bus schedule – available in architectures such
as TTCAN or FlexRay – to decrease the cost of the reli-
able response to reintegration events. Since we make no
assumption on the existence of such a dynamic fraction of
the schedule, a reintegration bit is added to each message in
the static part of the schedule.

Upon the reception of a correct message in a slot ex-
pected to be left unoccupied (dedicated to a node out of the
membership) all receiving nodes will set the reintegration
bit of their subsequent message to true. When the evidence
of a reintegration is received by a node but it has not re-
ceived any message from a previously failed node then it
must declare itself failed, since it will certainly disagree on
the global membership view.

Reintegration activities will seldom take place. Hence it
is reasonable to assume that the probability of a fault occur-
ring whilst a reintegration attempt takes place is very low.
However, if this probability is non-negligible, there is the
need for fault-tolerant reintegration. It is also reasonable to
assume that allowing a single reintegration in every com-
munication round is sufficient. Section 3.6 presents some
considerations on how to increase both the fault-tolerance
and the functionality of the reintegration process at the ex-
pense of increasing the time needed for reintegration and
the bandwidth overhead.

The following sections firstly endow with the essential
definitions. The formal specification of the agreement on
departure and reintegration is then presented, leading to a

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

discussion on the configuration, reliability and functionality
of the protocol.

3.1 Definitions

Each node has access to a global view of time. This is
supplied by clock synchronization mechanisms. In what
concerns the membership problem, the required granular-
ity of time is the slot. Hence, each node uses the global
variable slot. Each node contains also the local variable
membership.

• The integer variable slot represents the progression of
time. This variable in no more than an integer counter
of slots, starting at 1 and incrementing to infinity.

• The predicate slot(i) is defined, for each synchronous
step, as true if and only if i = slot mod n. It thus
indicates which of the processing nodes N1, N2, . . . ,
Nn, is the sending node in each bus slot.

• The variable membership represents the local view of
the membership set.

We assume the existence, at any time, of at least two
full-fledged nodes, which agree on the membership and are
not subject to failures which would break the agreement.
Booting into such a configuration relies on the existence of
a reliable start-up mechanism [4]. Periods of the execu-
tion where this assumption does not hold must be properly
handled by blackout mechanisms, such as the ones exist-
ing in TTP. During temporary blackouts the nodes attempt
to maintain the local system in a safe state while monitor-
ing the membership. When other nodes start to recover it is
possible to return to a normal operating mode.

Section 3.2 describes how the membership set is updated
in response to every received/missed message from nodes in
the membership. Section 3.3 then specifies how to handle
messages received from nodes absent from the membership
– reintegrations.

3.2 Agreement on Departure

Initially, the membership contains all processing nodes.
Each node has a boolean array present. The boolean el-
ement present[i] will be set to false when the message
expected from Ni is not received. It will be set to true
when a positive acknowledgement referring to this message
is received from one of the sponsors of Ni. Initially, all the
elements of the present array are set to true.

We define the predicate sponsor(i, j) as true if and only
if Ni is sponsoring Nj . According to the definition of spon-
sor, Ni is sponsoring its ks predecessors (in the order of
broadcast) which are contained in the membership. Here

we use ks instead of k to define sponsor(i, j). When, in
a given slot s, the membership set contains ns nodes and
ns ≤ k, a node is not expected to sponsor itself. Hence,
when ns ≤ k, each node will be sponsoring its ks = ns− 1
membership predecessors. Otherwise, ks = k.

The predicate lastSponsor(i, j) is defined to be true if
and only if node Ni is sponsoring Nj and the immediate
successor of Ni in the membership is not sponsoring Nj .
This predicate essentially states if Ni is the last node to ac-
knowledge the previous message from Nj .

The protocol progresses in discrete steps corresponding
to the bus slots. At each step the sending node (Ni such that
slot(i) = true) sends a message which contains an ack
field. The ack field is an array containing k boolean vari-
ables or, simply put, it is the sequence of acknowledgement
bits referring to the previous message from the ks nodes
sponsored by Ni.

The ack field is built by using the present array. The
sending node sets the ack bit which refers to a sponsored
node Na to present[a]. Thus it will be true if and only if
the sending node received the previous message from Na or
any of its acknowledgements.

When the slot of a node Ni in the membership comes
to an end, all nodes, including the sending node, syn-
chronously execute the decision-making step. This is the
time when the membership set is updated in the follow-
ing way: Node Nj , such that lastSponsor(i, j) = true,
will be removed from the membership if and only if
present[j] = false.

In this decision-making step a node which verifies that
no messages were received during the last round of commu-
nication (i.e. all elements of present are false) has to re-
move itself from the membership by declaring itself failed
and sending no more messages. Since the existence of two
nodes in the membership, at all times, is assumed, this
node has certainly suffered a permanent fault which doesn’t
allow the reception of messages.

3.3 Agreement on Reintegration

The reintegration procedure commences when slot(r) =
true, Nr /∈ membership and a message is correctly re-
ceived by at least one node. This means that Nr is up and
running again and the receiving nodes will set their local
variable reintegrating ← r. This variable keeps track of
the node which is currently reintegrating and is therefore
initialized to null.

At each step the sending node (Nj such that slot(j) =
true) piggybacks a r-ack bit to its message. The r-ack
bit serves the purpose of notifying the nodes which might
have lost the message from the reintegrating node. There-
fore, a sending node will set r-ack ← true if and only if
reintegrating �= null.

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

Any node which receives a message reporting r-ack =
true when reintegrating = null has to remove itself from
the membership by declaring itself failed and sending no
more messages. This node has certainly missed a reintegra-
tion message (from an unknown source) and will therefore
be left out of the membership.

The synchronous decision-making step about the reinte-
gration of node Nr is executed when reintegrating = r
(therefore reintegrating �= null) and the slot of the first
predecessor of Nr contained in the membership comes to an
end. This is processed by i) adding Nr to the membership,
ii) setting reintegrating ← null and iii) present[r] ←
true.

3.4 Recovery of Failed Nodes

When a previously failed node is able to restart, after
a downtime period, it will need to recover the state of the
membership before broadcasting any messages. We assume
that fundamental data such as the bus schedule will survive
the crash. The node only needs to recover the state of the
membership, which is dynamic.

There is no need for explicit broadcast of the member-
ship state since a restarting node may listen on the bus and
infer which nodes are in the membership. If no failures
occur, the messages received during two communication
rounds and their appended ack and r-ack flags permit the
recovery of the membership state. The time for recovery is
therefore unbounded since, for example, a transient failure
of the restarting node may occur in every communication
round.

Listening on the bus and analyzing the ack and r-ack
fields is also required to ensure that only one node is at-
tempting reintegration at any given moment. If two nodes
restart simultaneously, then it is possible for the first (in
the order of communication) to reintegrate the membership,
while the second waits for one communication round before
sending any messages.

3.5 Message Overhead vs. Reliability

Choosing the number k of sponsors per node defines the
balance between fault-tolerance and communication over-
head. It is possible to identify the failure conditions which
maintain the agreement by analyzing the directed graphs
of sponsoring relations (sponsor-graphs). Figure 1 depicts
such a sponsor-graph for an example of a 6-node system
with k = 2.

A sponsor-graph is initialized with each vertex represent-
ing a node in the system. Initially, each directed edge from
a given node Ni to Nj denotes that sponsor(i, j) = true.
This graph evolves at every synchronous step (bus-slot) by

Figure 1. Sponsor-graph of a 6-node system
(k = 2).

removing an edge whenever the corresponding acknowl-
edgement is missed by at least one node. When a decision-
making slot comes and Ni is found to be faulty by all other
nodes, then the sponsor-graph will be updated by removing
the edges directed to vertex i and adding edges directed to
the nodes which then obtained new sponsors (the previous
sponsors of Ni are now sponsoring some other nodes).

Agreement will be maintained when all fault-free nodes
receive at least one acknowledgement of any given message.
Therefore the system is able to maintain the agreement if
there is always at least one edge directed to each vertex.

Any failure which is not a permanent inconsistent failure
will remove at most one edge directed to any given node.
Therefore, if f such failures are to be tolerated in each com-
munication round, the number of initial edges (i.e. the num-
ber of sponsors), should be k = f + 1. A permanent incon-
sistent failure will become apparent as a permanent consis-
tent failure when the failed node declares itself failed and
stops sending messages.

Agreement on the “real” state of the membership is
reached k slots after the most recent failure. Consequently,
at this point the system has redirected the sponsoring edges
into a safe configuration again.

For any value of k the protocol maintains consistent
views of the membership even when multiple permanent
node failures occur, if this is the only type of failure to occur
in the period between the first node failure and k slots af-
ter the last node failure. This type of failure is consistently
perceived by all fault-free nodes. Therefore, all fault-free
nodes will miss the messages from the permanently failed
nodes and no positive acknowledgement on these messages
will be sent. Agreement on the departure of the last node to
suffer such a failure is reached k slots later.

The graph in Figure 1 exemplifies a sponsor-graph where
no faults have occurred. When a failure of sending node 1
occurs (either transient or permanent) the graph will change
into the one illustrated in Figure 2. Two slots later, after
node 3 (the last sponsor of node 1) broadcasts, the system
is “reconfigured” into the graph in Figure 3. In the critical

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

Figure 2. Sponsor-
graph immediately
after the failure of
sending node 1.

Figure 3. Sponsor-
graph 2 slots after
the failure of node
1.

moment, before reconfiguration, there are edges directed to
each node, therefore agreement is ensured.

3.6 Further Considerations

A node is expected to broadcast not only its message but
also the information necessary for membership agreement.
For practical purposes the total order in the membership set
can be adapted in order to permit a “reaction time” from
processing nodes. If a node is to start the broadcast imme-
diately after the previous slot ends, there may be insufficient
time to evaluate the correctness of the previous message and
to execute the membership protocol. At the expense of de-
tection latency, each node Ni can be set to be sponsoring
the nodes starting from Ni−2 instead of sponsoring its im-
mediate predecessor.

Consider a bus with a total bandwidth of 1Mbps where
each round takes 5ms to complete. There are 5Kbits avail-
able in each round. In its minimum configuration, the proto-
col requires 3 bits piggybacked on each message (assuming
that access to an event-driven schedule is not available). If
we assume that the system contains 10 processing nodes,
then there will be an overhead of 30 bits in each round, ded-
icated to the membership service. This corresponds to less
than 1% of the total bandwidth. A noteworthy fact is that
the overhead grows linearly (with a factor of k+1) with the
number of nodes.

Regarding the reintegration procedure, if we consider
non-negligible the probability of i) two nodes attempting
reintegration in the same round, ii) an inconsistent failure of
the second node occurs during the first reintegration attempt
and iii) there is another inconsistent failure in the system,
then the fault-tolerance of the reintegration process has to
be achieved by tentative reintegration messages. Along with
the reintegrating variable each node should keep track of the
number of tentative reintegrations. The decision about the
reintegration of a node will only be made after a predefined
number of slots.

If, on the other hand, we wish to extend the functionality
of the reintegration process by allowing the simultaneous
reintegration of multiple nodes, the number of overhead r-
ack bits can be increased (by using a counter of currently
reintegrating nodes).

4 Related Research

The protocol specification allows a comparison with ex-
isting membership protocols. The TTP specification [16]
includes a membership service which imposes no direct
overhead on the network. This is achieved instead by plac-
ing the load of the failure detection on the CRC mecha-
nisms and by requiring the membership state to be explicitly
broadcasted in order to allow the reintegration of previously
failed nodes. In our approach a node needs only to listen on
the bus for the period of one round on the bus to recover the
membership state.

Ref. [14] presents a solution which isolates TTP’s mem-
bership protocol from the other elements in the protocol. By
using a single acknowledgement bit it ensures membership
agreement, under the single failure assumption, by prompt
removal of failed nodes. Since the proposed scheme does
not provide reintegration capabilities, prompt removal is a
costly approach to tolerating transient failures. Neverthe-
less, this scheme requires only one overhead bit per mes-
sage, whereas our approach imposes an overhead of at least
two acknowledgement bits to tolerate any random failure.

In [12] a solution based on a variable number of spon-
sors is presented, but in a context unrelated to hard real-
time systems. Ref. [17] briefly and informally presents a
protocol based on a variable number of sponsors as well. In
the proposed scheme, permanent node failures will lead to
a rapid decrease in the reliability of the protocol. On the
other hand, reintegrating nodes is easy and does not incur
additional overhead.

5 Application Process Group Membership
through Fail-Reporting

Today many manufacturers of embedded systems are
facing reliability and cost problems because their products
are composed of an increasing number of subsystems and
functions, which each use their own microcontroller. To ad-
dress these problems, there are currently several initiatives
under way aiming at simplifying the sharing of computing
resources among different functions in distributed embed-
ded real-time systems. The development of the ARINC
653 [1] standard for the aerospace industry and the AU-
TOSAR [13] project launched by the automotive industry
are examples of such initiatives.

One goal of these initiatives is to simplify the construc-
tion of distributed systems where many functions share a

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

common hardware platform with relatively few but pow-
erful processing elements. Such designs have a great po-
tential to reduce both product and maintenance costs, and
improve system reliability, since they require fewer hard-
ware components than designs where every function has
their own dedicated microcontroller. However, to achieve
these improvements, it is necessary to equip the system with
powerful mechanisms for ensuring node-level fault contain-
ment between different application processes, and between
the application processes and the operating system. These
systems require powerful microcontrollers with hardware
implemented memory protection mechanisms. Freescale’s
MPC5554 [10] is an example of a recently introduced mi-
crocontroller that fulfills these requirements.

From a fault-tolerance perspective there are clear differ-
ences between systems that do not provide memory pro-
tection and those that do. In the former, the smallest unit
of failure typically corresponds to an entire node, while in
the later the smallest unit of failure is an application pro-
cess. Thus, for systems provided with memory protection
and other mechanisms for achieving node-level fault con-
tainment, the membership service should preferably handle
both node failures and application process failures.

So far, we have described our protocol in terms of a pro-
cessor group membership protocol. However, it can easily
be extended to keep track of both node failures and appli-
cation process failures. Without giving a full protocol de-
scription, we will here outline how such an extension could
be implemented.

We assume that a node equipped with mechanisms for
node-level fault containment can exhibit two different fail-
ure modes: fail-silent and fail-reporting. A fail-silent fail-
ure implies that the node does not produce any results at all.
We assume that fail-silent failures only occur when the en-
tire node has failed, for example, as a result of an operating
system crash or a permanent hardware failure.

On the other hand, a fail-reporting failure occurs when a
node cannot send a result because an application process has
failed. In that case, the operating system is still operational
and can produce a failure report message that the node sends
instead of the regular message. Such failure reports could of
course be generated without the involvement of the proces-
sor group membership protocol. However, we believe that
there are many advantages to combine the processor group
and application process group membership into a single ser-
vice. To achieve this for our protocol, we can simply add
one extra bit along with the k acknowledgement bits and
the reintegration bit to our message format. This fail-report
bit would indicate that a message is carrying a failure report
rather than a regular message. When multiple applications
(running in the same node) share the same bus-slot to send
their messages one bit is added for each application, with
the same indication.

The payload part of the message could optionally carry
a failure code that could be passed on to application pro-
cesses which cooperate with the failed process. This way
the membership service could be used to support applica-
tion specific recovery or error handling actions. The failure
codes could be generated by either the operating system or
the failing processes itself, or possibly by a specially de-
signed network controller.

With respect to the processor group membership proto-
col, there is no difference between messages that carry fail-
ure reports and those that carry regular messages. That is,
the acknowledgment bits and reconfiguration bit will have
the same function for both message types. Similarly, a mes-
sage containing a failure report will be handled by the node
membership service exactly in the same way as a regular
message.

6 Conclusions and Future Work

This paper provided the precise specification of a pro-
tocol for membership agreement in synchronous systems.
This protocol is flexible in the sense that the trade-off be-
tween reliability and communication overhead can be de-
fined at design time. Additionally, agreement on departure
is separated from agreement on reintegration. This feature
allows the cost-effective implementation of reliable reinte-
gration by using the event-driven schedule, instead of the
time-triggered part, in buses such as FlexRay or TTCAN.

The existence of structural redundancy (e.g. duplicate
buses) supports our assumptions on the failure model. How-
ever, the protocol is designed to provide a fair level of relia-
bility even when there is no redundancy. In networks based
on a bus topology or a star topology, a transient failure is
likely to affect either all receiving nodes or a single node.
When designing mission-critical systems it is possible to in-
crease the fault-tolerance of the protocol by specifying the
failure rate that is to be endured and setting the necessary
overhead accordingly.

Reaching agreement is based on the principle that a node
should not be removed from the membership in the event of
a transient failure. Following this principle implies that the
layers built on top of the membership, in particular the ap-
plications, are able to handle omission failures. This arises
from the fact that single transient receiving failures result
in lost messages without membership departures. It is pos-
sible to extend the protocol with a configuration parameter
that determines whether or not a node should voluntarily
depart the membership when a message is missed but the
evidence of its reception by other nodes is received. Such
an approach would make it possible to use the protocol in
applications which do not allow omission failures. This ex-
tension to the protocol is left for future work.

In addition to node membership, this paper specifies how

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

application membership may be provided. Such a service
is intended for systems which benefit from the knowledge
about the operational state of individual applications. We
base application membership on the fail-reporting behavior
– an extension of the fail-silent behavior by producing either
the correct result or a report on the cause of failure.

Throughout this paper we have limited the discussion to
systems where each node has a single slot dedicated in each
round. When building systems where nodes run several dif-
ferent applications it might be useful for a node to broadcast
more than once per communication round. It would there-
fore be interesting to overcome this limitation, while taking
into account that a node should not acknowledge its own
messages when specifying the sponsoring relations.

Any protocol devised for membership agreement must
be formally verified before it can be made part of a fault-
tolerant computer system. One of the next steps is therefore
to formally verify the correctness of the protocol by using,
for instance, a model-checking tool.

However, formal methods evaluate the correctness of any
implementation by taking into account all possibilities, in-
cluding infrequent worst-case failure-scenarios. Thus, it
would be also interesting to study the reliability of the pro-
tocol from a stochastic point of view. Such a study would
take into consideration the failure rates to measure the reli-
ability of the protocol.

References

[1] ARINC Incorporated. ARINC specification 653-1: Avionics
application software standard interface, 2006.

[2] A. Avižienis, J.-C. Laprie, B. Randell, and C. E. Landwehr.
Basic concepts and taxonomy of dependable and secure
computing. IEEE Transactions on Dependable and Secure
Computing, 1(1):11–33, 2004.

[3] J. Berwanger, C. Ebner, A. Schedl, R. Belschner, S. Fluhrer,
P. Lohrmann, E. Fuchs, D. Millinger, M. Sprachmann,
F. Bogenberger, G. Hay, A. Krüger, M. Rausch, W. Budde,
P. Fuhrmann, and R. Mores. FlexRay: The communication
system for advanced automotive control systems. SAE trans-
actions, 110(7):303–314, 2001.

[4] V. Claesson, H. Lönn, and N. Suri. An efficient TDMA
start-up and restart synchronization approach for distributed
embedded systems. IEEE Trans. Parallel Distrib. Syst.,
15(8):725–739, 2004.

[5] M. Clegg and K. Marzullo. A low-cost processor group
membership protocol for a hard real-time distributed sys-
tem. In IEEE Real-Time Systems Symposium, pages 90–98.
IEEE Computer Society, 1997.

[6] F. Cristian. Reaching agreement on processor-group mem-
bership in synchronous distributed systems. Distributed
Computing, 4:175–187, 1991.

[7] F. Cristian and C. Fetzer. The timed asynchronous dis-
tributed system model. IEEE Trans. Parallel and Dis-
trib. Systems, 10(6):642–657, 1999.

[8] P. D. Ezhilchelvan, R. A. Macêdo, and S. K. Shrivastava.
Newtop: A fault-tolerant group communication protocol. In
Proceedings of the 15th International Conference on Dis-
tributed Computing Systems (ICDCS’95), pages 296–306,
Los Alamitos, CA, USA, May 30–June 2 1995.

[9] C. Fetzer and F. Christian. A fail-aware membership ser-
vice. In Proceedings of The 16th Symposium on Reliable
Distributed Systems (SRDS ’97), pages 157–164, Oct. 1997.

[10] Freescale Semiconductor, Inc. MPC5554 Product Summary
Page, http://www.freescale.com/webapp/sps/site/prod sum-
mary.jsp?code=MPC5554, September 15, 2006.

[11] T. Führer, B. Müller, W. Dieterle, F. Hartwich, R. Hugel, and
M. Walther. Time triggered communication on CAN (Time
Triggered CAN - TTCAN). Technical report, Robert Bosch
GmbH, 2000.

[12] R. Golding. Weak-Consistency Group Communication and
Membership. PhD thesis, University of California, Santa
Cruz, USA, 1992.

[13] H. Heinecke, K.-P. Schnelle, H. Fennel, J. Bortolazzi,
L. Lundh, J. Leflour, J.-L. Mat, K. Nishikawa, and
T. Scharnhorst. Automotive open system architecture - an
industry-wide initiative to manage the complexity of emerg-
ing automotive e/e architectures. In Proc. Convergence,
2004.

[14] S. Katz, P. Lincoln, and J. Rushby. Low-overhead time-
triggered group membership. Lecture Notes in Computer
Science, 1320:155–169, 1997.

[15] K. H. Kim, H. Kopetz, K. Mori, E. Shokri, and
G. Grünsteidl. An efficient decentralized approach to
processor-group membership maintenance in real-time LAN
systems: The PRHB/ED scheme. In Symposium on Reliable
Distributed Systems, pages 74–83, 1992.

[16] H. Kopetz and G. Bauer. The time-triggered architecture.
Proceedings of the IEEE, 91(1):112–126, 2003.

[17] H. Lönn. Synchronization and Communication Results in
Safety-Critical Real-Time Systems. PhD thesis, Department
of Computer Engineering, Chalmers University of Technol-
ogy, Gothenburg, Sweden, 1999.

[18] L. E. Moser, P. M. Melliar-Smith, and V. Agrawala. Proces-
sor membership in asynchronous distributed systems. IEEE
Trans. Parallel Distrib. Syst., 5(5):459–473, 1994.

[19] A. Ricciardi and K. P. Birman. Using process groups to im-
plement failure detection in asynchronous environments. In
Proceedings of the Tenth Annual ACM Symposium on Prin-
ciples of Distributed Computing, pages 341–353, Montreal,
Quebec, Canada, 19–21 Aug. 1991.

[20] L. Rodrigues, P. Verı́ssimo, and J. Rufino. A low-level pro-
cessor group membership protocol for LANS. In ICDCS,
pages 541–550, 1993.

[21] J. M. Rushby. Bus architectures for safety-critical embedded
systems. In T. A. Henzinger and C. M. Kirsch, editors, Em-
bedded Software, First International Workshop, EMSOFT
2001, Tahoe City, CA, USA, October, 8-10, 2001, Proceed-
ings, volume 2211 of Lecture Notes in Computer Science,
pages 306–323. Springer, 2001.

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

