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Abstract—This paper investigates sources of uncertainty
in measurement results obtained using three different fault
injection techniques. Two software-implemented and one test
port-based technique are characterized and compared. The
three techniques can be used to inject the same faults, which
are defined in a shared database. Due to the uncertainties
associated with the techniques, which we identify and discuss,
the results of injecting a given fault may differ to some extent.
The paper analyzes the results of using the three techniques
to inject faults into two experimental targets: a brake-by-wire
controller and a partitioning operating system. The objective
of the experiments is to determine whether the results of
the different techniques are metrologically compatible and,
consequently, meaningful when disseminated and compared.
Our observations indicate that, even though the outcome of
many individual experiments is affected by uncertainties, the
three techniques produce similar average results over a large
number of experiments.

I. INTRODUCTION

The role of computer systems and infrastructures in
modern society has increased the importance of thoroughly
assessing their dependability. To this end, one may use
analytical as well as experimental approaches, depending
on the type of system under evaluation and its development
stage. An effective approach to the experimental evaluation
of dependability attributes is fault injection, which is recog-
nized for its ability to evaluate real systems, prototypes or
models of target systems. It is suitable for fault removal, by
increasing the test coverage for fault handling mechanisms,
and for fault forecasting, by providing probabilistic infor-
mation on how a system will perform after deployment [1].

In spite of steady advances, quantitative evaluation of
dependability attributes remains a complex task lacking stan-
dard processes and techniques. This has recently motivated
a greater awareness for the need to incorporate metrology
concepts into dependability studies [2]. To do so, it is
necessary to regard any tools such as those used for fault
injection and data collection as measuring instruments, and
to scientifically obtain measurement results that can be
compared and reproduced by others.

The difficulties in comparing and reproducing results of
dependability measurements arise from a wide range of un-
certainties associated with measurement procedures, instru-
ments and target systems. Examples are non-representative

sampling with respect to workload, faultload, and time
instants chosen for collecting measurements; approximate
implementations of a measurand’s definition; and instrumen-
tal uncertainty due to software defects in any tools used in
the process. Such factors cause variations in measurement
results. It is therefore necessary to estimate the magnitude of
such variations and to assess the metrological compatibility
of measurement results [3], i.e., whether different measure-
ments, possibly obtained in different studies, relate to the
same measurand or not.

This paper examines the metrological compatibility of
measurement results obtained using different fault injection
techniques. Over the years, numerous fault injection tools
and techniques have been described in the literature (with
surveys in [4] and [5]), aiming at introducing errors in
systems and measuring relevant aspects of their operation,
e.g., error coverage of specific mechanisms or the latency
with which errors are handled. Measurands such as coverage
and latency are usually well defined. However, due to the
uncertainties associated with each fault injection technique,
the results of injecting a given fault may differ to some
extent. This paper analyzes the results of injecting a set of
faults using three different techniques, in order to determine
the factors that can affect the compatibility of results.

The first is a test port-based technique implemented
using the Nexus standard. Modern microprocessors are
often equipped with I/O ports for testing and debugging,
known as test ports, that provide the ability to control and
monitor the execution. These features make it convenient
to use test ports such as Nexus for fault injection [6].
The second technique provides software-implemented fault
injection (SWIFI) using debugging and monitoring functions
available in advanced processors. It places the fault injection
code in exception-handling routines intended for debugging
– an approach adopted in [7] and [8]. The third technique
does not require any specific hardware, and injects faults
by instrumenting the executable file with fault injection
code before it is downloaded to the target system. Like
the previous one, this is a SWIFI technique, since the fault
injection code is executed on the target system (an approach
frequently used by authors in the field [9], [10], [11]).

The main contributions of this paper are the following:
∙ It identifies the sources of uncertainty observed in our



experimental platform and discusses possible means to
minimize their impact.

∙ It describes an experimental evaluation of the metrolog-
ical compatibility of the results provided by the three
techniques. Previous research has studied uncertainty
with respect to timing measurements [12]. We analyze
the outcomes of the experiments focusing on the value
domain. The methodology adopted consists in injecting
the same set of faults (defined in a shared database)
with the three techniques, and comparing the measure-
ment results.

∙ It addresses the issue of validating the results of
dependability studies (one which is often neglected).
Complex tools and techniques, requiring some form
of validation, are usually involved in dependability
measurements. By comparing the outcome of diverse
fault injection methods we can increase our confidence
in the correctness of their implementation, and therefore
reduce the instrumental uncertainty.

The paper is organized as follows: The techniques for fault
injection examined in this paper are described in Section II
and sources of uncertainty are discussed in Section III.
Section IV describes the results of the experimental evalua-
tion, targeting a brake-by-wire controller and a partitioning
operating system. Those results are discussed in Section V
and the conclusions drawn from this study are summarized
in Section VI.

II. THE FAULT INJECTION TECHNIQUES

We used the GOOFI-2 fault injection tool [13] for the
experimental evaluation. The tool supports the three tech-
niques evaluated in this paper: test port-based injection,
exception-based injection and instrumentation-based injec-
tion. All techniques are capable of emulating soft errors,
which are disturbances in the state of integrated circuit
elements, caused by transient hardware faults [14].

GOOFI-2 emulates soft errors using the single bit-flip
error model. Errors are uniquely defined using time-location
pairs. The location corresponds to a bit in a register or a
memory element; the time corresponds to the execution of
an instruction, identified by its code address together with
an invocation count that specifies the number of iterations
before injection. The following sections describe how the
different techniques inject errors into a microprocessor.

A. Test port-based injection

The test port-based technique uses a Nexus interface
to inject errors into Freescale’s MPC565 and MPC5554
microprocessors. Nexus is a standard that defines an inter-
face along with a minimum set of features for debugging.
These features include support for starting and stopping the
microprocessor, setting instruction and data breakpoints, and
reading and modifying registers and memory values. The

features provided by the Nexus test port are well suited for
fault injection purposes.

A major advantage of the test port-based technique is that
errors can be injected into registers and memory without
requiring any modifications to the program running on the
microprocessor. Techniques that use a Nexus port to inject
errors can potentially achieve a low level of temporal intru-
siveness as the Nexus standard provide support for real-time
access to memory. In practice, however, it is difficult to fully
exploit all features offered by Nexus without compromising
key properties such as repeatability of experiments.

B. Exception-based injection

Exception-based injection is a SWIFI technique that takes
advantage of debug features available in the MPC565 mi-
croprocessor. Faults are injected into registers and memory
by exception routines, which are activated by hardware
breakpoints configured for specific instruction addresses.
The approach is similar to the one used by Xception [7]
and RT-Xception [8].

The exception routines are specifically designed for each
injected fault. At the start of a fault injection experiment,
GOOFI-2 downloads the machine code implementing the
exception routine via a fault injection console running on
the target system. This means that the target system must
be modified in such a way that the fault injection console
is first to execute at startup. After the exception routine is
placed on the target system, the fault injection console sets
the hardware breakpoint used to trigger the fault injection,
and starts the execution of the target program.

Memory values are logged at the end of an experiment. A
hardware breakpoint that identifies the end of the experiment
is set by the exception routine after the injection of an error.
This breakpoint will cause the fault injection console to
resume control of the microprocessor, and allow GOOFI-
2 to read the values from memory locations in the target
system. GOOFI-2 can also reach the fault injection console
by resetting the MPC565 microprocessor.

Exception-based injection cannot be used together with a
Nexus debugger. The reason is that the MPC565 does not
allow the debug registers to be updated by software when
the debugger is connected. This means that the debugger
is not available for detailed analysis of “interesting” errors
when exception-based injection is used. Another drawback
of exception-based injection is that the program code of the
target system must be extended with instructions for fault
injection, which leads to higher intrusiveness compared to
test port-based injection.

C. Instrumentation-based injection

Instrumentation-based injection is a runtime SWIFI tech-
nique that injects errors into registers and memory using
software only. This is a general technique that is not limited
to a specific microprocessor. The injection of an error is



triggered by a software breakpoint, which is placed at the
instruction that identifies the time instant when a fault should
be injected.

The software breakpoint is inserted by replacing the
instruction at the breakpoint address in the target program
with a branch to a fault injection routine. The routine keeps
track of the number of invocations, and injects the error
when the specified invocation count is reached. The original
instruction, which is replaced by the branch instruction, is
executed before the instrumentation routine returns to the
instruction following the software breakpoint. Our current
implementation lacks support for setting software break-
points at branch instructions.

The instrumentation is done by modifying the machine
code for the target system’s executable file. The fault injec-
tion routine is placed at memory addresses that are unused
by the target program, and the software breakpoint is in-
serted by replacing the instruction at the breakpoint address.
We use the same experimental setup for the instrumentation-
based injection as for the test port-based injection. This
makes it possible to use the Nexus port to program the in-
strumented executable to the microprocessor’s flash memory,
and to log values from the target system.

III. SOURCES OF UNCERTAINTY

Generally speaking, uncertainty expresses doubt about the
validity of a measurement result, and may also provide
quantitative measures of that doubt. In that context, a mea-
surement result is associated with an uncertainty parameter,
which characterizes the dispersion of values that could
be attributed to a measurand. In [15], general sources of
uncertainty are listed. With no claim of being exhaustive,
this section describes uncertainties (highlighted in italics)
specifically in fault injection.

The use of representative workloads and faultloads is
essential in fault forecasting and fault removal experiments.
Hence, non-representative sampling is an important source
of uncertainty. This makes the collected dependability mea-
sures meaningful of a system under normal operating condi-
tions. Furthermore, if the results are to be disseminated, as
pushed by dependability benchmarking initiatives [16], this
is a source of uncertainty that deserves careful attention.

This source of uncertainty concerns not only the faultload
and the workload, but also the time instants when data is
collected on the target system, and the data items that are
read. This means that the output of a given task must be
sampled with a given frequency and that the data items that
represent the output must be chosen appropriately.

Determinism of the target system is needed for results to
be reproducible. It is also necessary to ensure repeatability,
which is an important property of the fault injection tool.
Repeatability refers to the ability to repeat the injection of a
specific fault and obtain the same result. However, achieving

a fully deterministic system is difficult due to, e.g., rounding-
effects in floating point values [17] and performance improv-
ing features in microprocessors such as caches and branch
prediction.

Finite resolution of instruments affects measurements in
the time and value domains. The binary representation of
values in memory and registers can usually be accessed with-
out losing precision. Nevertheless, resolution is a problem if
a processor uses an internal precision that is higher than what
can be observed by the fault injection tool. As computers
operate on discrete values, resolution of instruments is
mostly a concern when measuring time.

Measurements are often obtained using an approximation
of a measurand’s definition. In dependability studies there
is usually a precise definition of what a system’s correct
behaviour is. This can be used to define properties that are
interesting in any given case and appropriate measurands.
In principle, it is possible to create good definitions of the
measurands. However, at some point we must realize these
definitions in practice by implementing, for example, a tool
that classifies the outcome of each injection.

Due to the finite amount of detail that such an imple-
mentation can handle, approximations are often introduced
in the realization of the measurand. If, for instance, we are
observing the behaviour of a system and it produces correct
output at the expected time, we may say that the system
is reliable in the presence of faults. However, there may
be latent faults in some parts of the system that are not
considered as part of the output during the analysis.

Assumptions in the measurement procedure can lead to
deviations in the measurements, which are caused by events
other than the injection of a fault. Measurements for depend-
ability evaluations are often obtained under the assumption
that the target system is only affected by the injected fault. In
reality, the target or measurement system can be affected by
some unforeseen external event affecting the measurement
results, or internal events affecting the target system, e.g.,
design flaws in the hardware or software.

Instrumental uncertainty is often neglected in dependabil-
ity studies. The tools and techniques involved in dependabil-
ity measurements are usually complex, thus requiring some
form of validation. The fault injection component should be
verified against a reference component whenever available,
to ensure that it does inject the intended faults. Furthermore,
the components that analyze the data collected during each
experiment may also contain software defects, leading to
incorrect classification of experiments. Special care must be
taken to develop reliable tools.

Initialization uncertainty can influence the outcome of an
injected error. Processors are usually led to a known state at
startup, but memory is normally not initialized in its entirety
by target programs. After an error is injected, a program may
come to use non-initialized values; in such cases the contents
of unused memory locations and registers can influence the



1 ...
2 2130: lfs f0,8604(r9) # error injected in r9
3 2134: fcmpu cr7,f13,f0
4 2138: bgt cr7,2140
5 213c: b 2158
6 2140: # code for f13 > f0
7 ...
8 2158: # code for f13 ≤ f0
9 ...

Figure 1. Example of code affected by initialization uncertainty.

impact of the injected error. The parts that are used by the
program in normal conditions are likely to have initialized
values (otherwise the target system would probably contain
some defects).

Figure 1 shows an example of code that can be affected by
initialization uncertainty. An error injected into register r9,
just before Line 2, can cause the floating point register fr0
to be loaded with a value from a non-initialized memory
location. If this faulty value represents a value that is outside
the supported range of floating point values, the processor
may raise an exception. On the other hand, if the incorrect
value loaded into fr0 is within the supported range, the
compare instruction at Line 3 can instead cause the error to
be masked. However, the error may cause data errors if the
conditional branch at Line 4 is affected, or if the incorrect
value in fr0 is later used in calculations. Consequently,
even if a specific error is injected several times, the outcomes
of such experiments may differ depending on how a given
memory location is initialized.

The problem of initialization is closely related to the
repeatability of experiments. In order to ensure perfect
repeatability of every experiment, the fault injection tool
would have to copy the entire state of memory at start-up
and restore it in each experiment. Even though this ensures
repeatability, it does not solve initialization uncertainty, as
we are interested in knowing how the results would vary if
the system had a different state in the uninitialized memory
segments.

Spatial intrusiveness reflects changes made to the sys-
tem under test to allow the experimental evaluation. Such
changes include adding instructions to the target program for
the injection of faults, as in the case for SWIFI techniques.
By doing such a modification, memory regions in the
original program that are uninitialized, or initialized to some
specific value, instead hold valid instructions or data in the
modified program. The outcomes of fault injections in these
two program versions can differ, as an injected fault in the
modified program can access memory values that are not
present in the original program. Spatial intrusiveness also
arises if the memory layout of the target program is changed.
This happens, e.g., when a program is placed in a different
memory type for the experimental evaluation.

The spatial intrusiveness of the three fault injection tech-
niques differ significantly. The test port-based technique

does not modify the target system, and the technique has no
intrusiveness with respect to space. The exception-based and
instrumentation-based techniques, however, both require that
the target program is extended with additional instructions.
The fault injection console used for the exception-based
injection requires about 5kb of code and data for our imple-
mentation in C. The implementation of the instrumentation-
based technique requires at most 21 instructions to be added.
For the experiments with the partitioning kernel, 4kb of data
and 4kb of code is needed due to the minimum page size
of the memory management unit.

Temporal intrusiveness is especially important in real-time
systems. Assessing the impact of faults in such systems
requires the fault injection tool to have a negligible impact
on the target system with respect to time. To obtain meaning-
ful measurements, the temporal intrusiveness must be lower
than the resolution used for time measurements.

We have investigated the temporal intrusiveness for the
three techniques in detail. For the test port-based injection, it
is mainly caused by the time needed for sending commands
and data between the fault injection tool and the target
system. The test port-based tool, which is a Java program
running on Windows, communicates with the target system
using a Nexus debugger and a development environment.
The communication between these different components
generates high and not entirely deterministic temporal in-
trusiveness, which is unsuitable for real-time systems.

The temporal overhead for the exception-based injection
is caused by the execution of the exception routine. In
our implementation, the exception routine requires at most
50 machine instructions to handle an exception, inject an
error, and configure a breakpoint that is used to terminate
the experiment. These instructions are executed only once
for each injected fault. Thus, the temporal intrusiveness of
exception-based injection is constant and very low.

The temporal intrusiveness of setting software breakpoints
in the instrumentation-based technique may be high in
some circumstances. A software breakpoint replaces the
instruction that is used to trigger the fault injection routine.
The overhead of this technique depends on the amount
of times that the original instruction is executed. Table I
shows an estimate of the temporal overhead, in number
of instructions executed by the target system, of setting a
software breakpoint for fault injection. The results were
obtained for 10 workloads of the MiBench set of bench-
marks [18], using the PIN binary instrumentation tool [19]
on a IA32 processor to trace the instructions executed by
each workload. The calculations are made considering that
21 machine instructions are executed each time the software
breakpoint is reached (the maximum value observed in our
implementation).

It is possible to observe that the average overhead is well
under 1% for all workloads. However, all workloads have
some instructions (usually less than ten) that are executed



Table I
INSTRUCTION COUNT OVERHEAD OF SETTING A SOFTWARE BREAKPOINT FOR FAULT INJECTION.

Workload Instruction Count Unique Instructions Max. Iterations Avg. Iterations Max. Overhead Avg. Overhead
basicmath 54 060 249 5 744 360 916 9 412 14.01% 0.37%
crc32 75 350 090 4 203 1 368 865 17 928 38.15% 0.50%
gsm-decode 8 887 763 8 615 31 920 1 032 7.54% 0.24%
ispell 8 356 837 14 459 187 384 578 47.09% 0.15%
jpeg-decode 7 038 219 16 222 65 536 434 19.55% 0.13%
pgp-sign 7 333 695 23 983 48 471 306 13.88% 0.09%
sha 12 462 696 11 377 102 333 1 095 17.24% 0.18%
stringsearch 163 965 3 179 14 592 52 186.89% 0.67%
susan-edges 2 119 798 6 691 7 220 317 7.15% 0.31%
typeset 68 019 206 57 116 482 721 1 191 14.90% 0.04%

very frequently – the instructions at the core of the inner-
most loop of the algorithm. Since those instructions have a
very high number of iterations, they incur a large overhead
when instrumented with a software breakpoint. We can
therefore say that in rare cases the temporal intrusiveness
of instrumentation-based injection is very high, even though
for the vast majority of instructions the overhead can be
considered low.

IV. EXPERIMENTAL EVALUATION

We investigate metrological compatibility of measure-
ments results by analyzing the results of 10 000 fault injec-
tions targeting a brake-by-wire controller and a partitioning
kernel. The goal is to identify uncertainties that cause
differences in the results measured with the three techniques,
focusing on the value domain, i.e., the correctness of the
results produced by the workloads.

A. Experiments targeting the brake-by-wire controller

This section presents results obtained by the three fault
injection techniques using a prototype brake controller. The
controller implements an Anti-lock Braking System (ABS).
Such systems are used in road vehicles to maintain steering
ability and decrease braking distance by preventing wheel-
locking during braking. The prototype ABS controller used
in this study has been specifically designed to be included
in future brake-by-wire systems. As there is no mechanical
back-up in such systems, the brake controller must be highly
reliable and fault-tolerant.

1) Target system and experimental setup: The brake con-
troller uses a combination of simple hardware and software
mechanisms to detect and recover from soft errors. We have
previously evaluated the effectiveness of this approach using
extensive experiments conducted with the test port-based
technique [20]. The error detection consists of a run-time
check of a program variable holding the controller’s state.
In addition to this software check, the brake controller uses
hardware exceptions to detect errors. Two different strategies
are used to recover the brake controller from errors. When
an error is detected by the software check for the controller’s
state variable, the brake controller rolls back to a previous
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Figure 2. Experimental setup for the brake-by-wire experiments.

state. For errors that are detected by hardware exceptions
in the microprocessor, we restart the brake controller and
reinitialize all variables in the brake controller program.

The brake controller is allowed to produce outputs differ-
ent from the ones produced by a fault-free controller. This
makes it possible to use a non-perfect error recovery, which
is an approach that is valid for many control systems [21].
Outputs affected by errors, however, are not allowed to cause
critical brake controller failures such as a loss of braking or
a locked wheel. Incorrect outputs are only allowed to be
produced if they have a benign effect on the system., i.e., if
they have no significant effect on the wheel being controlled.

Figure 2 shows the experimental setup that we use for
the experiments with the brake-by-wire controller. GOOFI-
2 is used to inject errors into an emulated brake system,
which consists of two computer nodes based on the MPC565
microcontroller from Freescale. One node executes the brake
controller program while the other node executes a simula-
tion model of a vehicle, which includes models of a wheel, a
brake pedal, a wheel speed sensor, and a brake actuator. The



Table II
SUMMARY OF PROGRAM OUTCOMES FOR THE BRAKE-BY-WIRE EXPERIMENTS.

Program outcomes Test port-based Instrumentation-based Exception-based
Register errors

No impact 228 (22.8%) 237 (23.7%) 223 (22.3%)
Data corrupted 764 (76.4%) 755 (75.5%) 775 (77.5%)
Detected, not recovered 6 (0.6%) 6 (0.6%) 0 (0.0%)
Crash 2 (0.2%) 2 (0.2%) 2 (0.2%)

Memory errors
No impact 356 (35.6%) 356 (35.6%) 356 (35.6%)
Data corrupted 644 (64.4%) 644 (64.4%) 644 (64.4%)
Detected, not recovered 0 (0.0%) 0 (0.0%) 0 (0.0%)
Crash 0 (0.0%) 0 (0.0%) 0 (0.0%)

Table III
SUMMARY OF ERROR DETECTIONS FOR THE BRAKE-BY-WIRE EXPERIMENTS.

Error detections Test port-based Instrumentation-based Exception-based
Register errors

Hardware exceptions 488 (48.8%) 490 (49.0%) 519 (51.9%)
Software check 83 (8.3%) 83 (8.3%) 56 (5.6%)
No detection 429 (42.9%) 427 (42.7%) 425 (42.5%)

Memory errors
Hardware exceptions 370 (37.0%) 370 (37.0%) 370 (37.0%)
Software check 35 (3.5%) 35 (3.5%) 35 (3.5%)
No detection 595 (59.5%) 595 (59.5%) 595 (59.5%)

brake system emulator executes for 4 s of real-time execution
in our experiments. During this time, the simulation node
executes code that models a vehicle with an initial speed of
30 m/s, and for which maximum braking is requested 10 ms
after the start of an experiment. The two nodes exchange
sensor readings and actuator commands via a CAN-bus, and
these values are also saved to a workstation via a serial link
(denoted RS232 in Figure 2).

The brake system emulator was developed as models
using Simulink and Matlab from MathWorks, Inc. We used
the TargetLink code generator from dSPACE GmbH to
generate C code, and the GNU Compiler Collection (GCC)
to create an executable file. The brake controller program
also includes startup code for the MPC565 microprocessor
and code for scheduling and the communication with the
environment simulation node. The brake controller program
used with the exception-based technique also includes code
for the fault injection console described in Section II. Except
for the startup code for the MPC565, the fault injection
console does not modify any instructions or the memory
layout of the original brake controller program.

2) Experimental results: We randomly selected 1 000
errors to be injected into registers and 1 000 errors to
be injected into memory. As mentioned earlier, we define
errors using time-location pairs. The time-location pairs
were selected using a pre-injection tool, which ensures that
errors are injected immediately before a register or memory
element is read. This avoids injecting errors into “dead”
registers, i.e., registers that will never be read again. The
time instants were selected among instructions of the brake
controller program executed during the calculation of the

brake actuator command for a single control loop. The
locations were selected among general purpose registers and
the data and stack segments of the memory.

Table II and Table III show a summary of the program
outcomes and error detections for the in total 6 000 exper-
iments with the brake-by-wire controller. The experiment
outcomes were classified into the following groups:

∙ No impact – All outputs were identical to the ones
produced by a fault-free brake controller.

∙ Data corrupted – The brake controller produced out-
puts different from the ones produced by a fault-free
brake controller. As the brake controller uses a non-
perfect error recovery, this group can includes experi-
ments in which the injected error was detected by the
software or hardware mechanisms.

∙ Detected, but not recovered – The microprocessor
raised an exception that caused the processor to en-
ter debug mode. This may happen in experiments
using the Nexus debugger, i.e., the test port-based
and instrumentation-based injections, as there are some
exceptions that cannot be recovered due to limitations
in the experimental setup.

∙ Crash – The brake controller stopped producing out-
puts.

We observe that all errors injected into memory caused
identical results to be produced, but some errors injected into
registers by the three techniques caused different outcomes.
The results obtained using the exception-based and the test
port-based techniques were identical for 933 out of 1 000 of
the register errors. The exception-based and instrumentation-
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based techniques caused identical results for 921 out of 1 000
errors injected into registers. For the instrumentation-based
and test port-based technique, 986 out of 1 000 errors caused
the exact same results to be produced.

We investigated the errors that differed in their classi-
fication to identify which uncertainties that affected the
results. For the instrumentation-based and test port-based
technique, we observed that the differences in the results
were caused by initialization uncertainty. This source of un-
certainty also affected the results obtained by the exception-
based technique. The spatial intrusiveness of this technique,
however, caused additional differences compared to the
results obtained by the test port-based and instrumentation-
based techniques.

The spatial intrusiveness of the exception-based technique
was caused by the instructions added to the brake controller
program, and by the memory usage during the execution of
those instructions. We observed that the stack usage of the
fault injection console caused parts of the data memory to
be initialized when the brake controller program started to
execute. These memory values were non-initialized in the
experiments using the test port-based and instrumentation-
based techniques.

B. Experiments targeting the partitioning kernel

This section presents the results of the experimental
evaluation of uncertainty targeting the �C/OS-II real-time
kernel [22] with the SECERN partitioning extension. The
extension provides robust partitioning among different tasks
running on the kernel in order to ensure that a faulty task is
unable to affect the execution of either the kernel or other
tasks. In previous work, we have used fault injection to
assess the correctness of the partitioning mechanisms [23].
Through those experiments it was possible to find several
vulnerabilities in the extension and correct them. In this
paper we target the updated version of SECERN, and inves-
tigate whether different fault injection techniques can obtain
compatible measurements.

1) Target system and experimental setup: The extended
version of the kernel runs on a computer board featuring a
Freescale MPC5554 microprocessor [24], based on the Pow-
erPC architecture. The processor core includes a memory

Table IV
ACTIVATION OF THE INJECTION BREAKPOINT FOR THE PARTITIONING

KERNEL EXPERIMENTS.

Breakpoint activation Test port-based Instrumentation-based
Register errors

Number of experiments 1000 1000
Breakpoint reached 499 499
Breakpoint not reached 501 501

Memory errors
Number of experiments 1000 1000
Breakpoint reached 520 520
Breakpoint not reached 480 480

management unit (MMU) which provides, among other ser-
vices, memory protection. In addition to memory protection,
the extension provides support for system call checks, stack
pointer checking at context switches, application-specific
checks and general processor exceptions to detect errors.

The experimental setup consists of a workstation, with
GOOFI-2 and the winIDEA development environment, con-
trolling an MPC5554 development board [25]. The develop-
ment board includes an on-board Nexus debugger. Figure 3
depicts the experimental platform.

The base version of �C/OS-II that we used lacks support
for isolating applications from one another and from the
operating system. One of the key modifications to �C/OS-II
is the distinction between processes and threads, where each
process owns a private address space that groups together
one or more execution threads. Each process acts as a
container which is sometimes called a partition or a sandbox.

When any of the error detection mechanisms is triggered,
SECERN handles the error in one of two central exception
handlers. The recoverable exception handler is activated
when the detected error is confined to a single process
(i.e., partition) and it is possible to delete that process and
continue executing. All errors that can safely be assumed
to be recoverable are forwarded to this exception handler.
The remaining errors are forwarded to the unrecoverable
exception handler. The currently implemented version enters
an infinite loop in such cases.

2) Experimental results: We configured the system to
execute two processes (or tasks), each one with a single
thread. The two threads executed, in an infinite loop, a
data processing routine and released the CPU until the next
iteration. Both threads executed a workload consisting of
a wavelet transform, which takes an array of input data
an produces an output array containing the result of the
transform.

We executed a set of experiments targeting the task with
the lowest priority (task 2). The code addresses to set the
fault injection breakpoint were selected to cover the entire
code segment of task 2, and faults were selected randomly
targeting general purpose registers and memory locations
(the data and stack segments of task 2).

We injected 1000 faults into registers and 1000 faults



Table V
SUMMARY OF KERNEL AND TASK OUTCOMES FOR THE PARTITIONING KERNEL EXPERIMENTS.

Outcomes Test port-based Instrumentation-based
Register errors

Kernel crash 0 (0%) 0 (0%)
Task 1: correct output 499 (100%) 499 (100%)
Task 1: wrong output 0 (0%) 0 (0%)
Task 1: removed 0 (0%) 0 (0%)
Task 2: correct output 444 (89.0%) 443 (88.8%)
Task 2: wrong output 10 (2%) 10 (2%)
Task 2: removed 45 (9.0%) 46 (9.2%)

Memory errors
Kernel crash 0 (0%) 0 (0%)
Task 1: correct output 520 (100%) 520 (100%)
Task 1: wrong output 0 (0%) 0 (0%)
Task 1: removed 0 (0%) 0 (0%)
Task 2: correct output 448 (86.2%) 448 (86.2%)
Task 2: wrong output 68 (13.1%) 68 (13.1%)
Task 2: removed 4 (0.8%) 4 (0.8%)

into memory locations, using the test port-based and the
instrumentation-based techniques; there is currently no sup-
port for exception-based injection in the MPC5554, since the
processor board provides no communication interfaces and
the exception-based injection tool requires at least a serial
port to download code and data.

To speed-up the fault injection process, the partitioning
kernel setup does not collect the sequence of instructions
executed in the fault-free experiment (i.e., it does not create
a program trace) and, unlike the MPC565 setup, the pre-
injection analysis is not performed. To set a breakpoint, we
choose a random code address from the entire range of user-
defined addresses. Since that address might not be reached
once the program executes, there is a number of experiments
in which a fault is never injected and the outcome is exactly
the same as that of a fault-free experiment. Such experiments
are discarded during analysis and classification.

Table IV shows that the fault injection breakpoint was
reached, in this set of experiments, in about half of the
executions. In the remaining experiments the fault injection
breakpoint was not reached and therefore no fault was
injected. There is a complete match between the two fault
injection techniques. This means that the execution of the
workloads until the fault is injected has no observable
uncertainty.

We analyzed the experiments where a bit-flip was actually
injected – 499 register errors and 520 memory errors – to
determine whether it was correctly handled by the kernel.
The classification process takes into account the activation
of the centralized exception handlers (recoverable and unre-
coverable) and the output of the tasks to determine whether
or not the fault was handled.

Experiments were classified according to the outcome of
each task (correct output, wrong output, and removal) and
the outcome of the kernel (operational or crashed):

∙ Kernel crash – The unrecoverable exception handler

is executed or the experiment reaches a timeout at an
instruction which is not set as a valid end point or
breakpoint.

∙ Correct output – The task continues executing and there
is no difference between its output after the fault was
injected and its output in the reference experiment.

∙ Wrong output – The task produces results differing
from the reference output at some point of its execution.

∙ Removed – One of the error detection mechanisms is
triggered, the recoverable exception handler is executed
and the task is removed.

Table V shows the classification of the fault injec-
tion experiments for the test port-based injection and
instrumentation-based injection techniques. We can observe
that all errors were correctly handled by the kernel, since
there were no kernel crashes and task 1 (the fault-free task)
always produced correct results. In our previous paper, the
kernel was tested under a similar faultload and the software
defects that were exposed at that time were removed. It is
therefore unsurprising that this faultload is unable to expose
more defects that might still exist. The uncertainty with this
respect is to have a representative sampling with respect to
faultload as well as workload.

Nevertheless, the outcomes of task 2 provide some insight
into whether the same measurement can be made by different
techniques. There is nearly a complete match between the
results of test port-based and instrumentation-based injec-
tions. For register errors, there was only a single experiment
differing in classification, in which a correct output was
obtained through test port-based and the instrumentation-
based technique classified it as a task removal. The error was
injected into a resource which was apparently unused, so the
recoverable exception handler must have been triggered by
some other problem which we were unable to reproduce.
We repeated that same experiment several times, with both
injection techniques, and the outcome was always classified



as correct output.
The different outcome for the experiment classified as task

removal is attributed to assumptions in the measurement
procedure, which is a source of uncertainty described in
Section III. We have observed some very rare cases when
the programming of the flash, which is used to store the
target program, fails without giving any warning or error
message. As the flash is programmed for each experiment
using the instrumentation-based technique, this uncertainty
can explain the different outcome for the experiment.

Regarding the memory experiments, there is a complete
match between the techniques. In this case, the trend is
similar to the brake-by-wire experiments: the tendency is
that memory errors cause mostly data errors, manifested as
wrong output. For register errors, the trend is also similar
in that most of the errors that have an impact on the system
are detected by the error detection mechanisms.

However, the outcomes of register errors are nearly iden-
tical for both injection techniques, whereas in the brake-
by-wire experiments we observed some differences. The
main reason is that the partitioning kernel initializes all data
segments with zeros, the unused portions of memory are not
mapped in the MMU and the read-only segments cannot
be written to due to the memory permissions set in the
MMU. Consequently, there is very little to no initialization
uncertainty in the partitioning kernel experiments. Any at-
tempt by an instruction to access an unused (and therefore
uninitialized) section of memory results in a recoverable
exception generated by the MMU, i.e., these errors are
detected and the faulty task is deleted.

V. DISCUSSION OF RESULTS

In the experiments targeting the brake-by-wire controller,
we observed that the exception-based and test port-based
technique caused identical program outcomes and error
detections to be produced for 93.3% of the injected errors
into registers. For the exception-based and instrumentation-
based technique, the results were identical for 92.1% of
the injected register errors. When an error is injected into
a register used for calculating the effective address of a
load or a store instruction, the system will make operations
on different memory locations. Thus, since those locations
might be uninitialized on the brake-by-wire controller, there
is a great deal of initialization uncertainty in the register
error experiments of the brake-by-wire controller.

In the case of memory errors affecting the brake-by-
wire controller, we observed identical outcomes for all
experiments. The main tendency of memory errors is to
cause pure value errors. When a corrupted value is read
from memory, the target system tends to use that value in
calculations that have systematic effects on the workload,
independent of the technique used for the fault injection.

Initialization uncertainty is not present in the partitioning
kernel experiments, since the kernel initializes all used

memory segments at start-up and the MMU prevents tasks
from accessing any other areas in memory. Thus, as we can
see in Table V, the match between experiments using test
port-based injection and instrumentation-based injection is
nearly perfect.

The evidence gathered in the brake-by-wire experiments
suggests that initialization uncertainty is a dominant factor
in the variability of measurement results. It has a random
effect, so it contributes to widening the confidence interval
of a given set of measurements. Spatial intrusiveness is
another significant source of uncertainty. The code added
to the brake-by-wire program for the experiments using the
exception-based technique caused certain memory values
to become initialized, instead of being uninitialized. These
values led to different outcomes for some experiments
using exception-based injection, compared to the outcomes
produced by the two other techniques.

One particularly important result of the experiments de-
scribed in this paper is the validation of all techniques. Even
though some estimations differ, the majority of individual
experiments resulted in identical behaviour across the three
techniques. We examined the few cases in which the out-
comes differed, and concluded that these differences were
not caused by bugs in the tool, but rather by measurement
uncertainties. We can therefore be confident that the instru-
mental uncertainty is low.

VI. CONCLUSION

We identified and evaluated sources of uncertainty af-
fecting measurements taken with three fault injection tech-
niques: test port-based injection, exception-based injection,
and instrumentation-based injection. In most cases, the out-
come of injecting a given error is identical for the three tech-
niques, increasing our confidence in that the intended errors
are correctly injected, analyzed, and classified. The cases in
which the outcomes differed were caused by measurement
uncertainties.

The evidence collected in our experiments, targeting a
brake-by-wire controller and a partitioning kernel, suggests
that initialization uncertainty can have a significant impact
on measurement results. The brake-by-wire controller only
initializes specific memory variables and is consequently in-
fluenced by uninitialized values. In contrast, the partitioning
kernel is not affected by this factor, given that it initializes
the accessible portions of memory. Spatial intrusiveness
was also identified as a significant source of uncertainty.
The measurement results obtained using exception-based
injection were the most affected by this uncertainty.

These uncertainties caused differences in the outcome of
many individual experiments. Nevertheless, the final results
produced from a large number of experiments are similar
for the three techniques. We can therefore conclude that the
three techniques are able to obtain metrologically compatible
results.
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