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Abstract

Operating systems often manage critical infrastructures
where failures can have serious consequences. This raises
great concerns about their robustness. From the user per-
spective, it is the service delivered by host applications that
needs to be dependable. Operating systems should there-
fore provide comprehensive error detection and recovery
services to those applications, so that the system as a whole
can be dependable and secure. This paper addresses the re-
covery flow that takes place after an application error is de-
tected. The goal is to combine existing techniques into a set
of operating system services that support application recov-
ery both from software and hardware errors. We describe a
prototype system where these services are currently being
implemented and outline how we intend to experimentally
evaluate them.

1 Introduction

Designing robust operating systems has been the goal of
numerous research endeavours since the late 1950s, when
the first mainframe computers were born. Since then, op-
erating systems have managed critical infrastructures rang-
ing from server rooms to embedded devices, as well as cru-
cial user information on desktop computers. Given that a
failure of such computers can have serious consequences,
the operating systems must be reliable in the presence of
faults. Moreover, they should also provide comprehensive
error detection and recovery services to hosted applications,
so that the system as a whole can be dependable and secure.

Computer systems are affected by faults of diverse ori-
gins. Software defects – introduced during development –
can cause errors in the applications and in the operating sys-
tem itself. For this reason, a large body of research has been
devoted to preventing and removing software defects; this
is, however, a complex problem lacking perfect solutions.
Thus, operating systems have to cope with the existence and

occasional activation of software faults, e.g., when a buggy
line of device driver code is executed. Another important
source of errors are hardware faults – mostly of physical
nature – due to environmental factors, aging, etc. These
are now more concerning than ever, largely due to modern
manufacturing processes and the associated variability and
degradation of microprocessors [3, 13, 17].

This paper is chiefly concerned with detecting and recov-
ering errant applications. Ultimately, from the user perspec-
tive, it is the service delivered by the applications that needs
to be dependable. Recovering applications (in addition to
isolating them) is therefore key to ensuring sustainable de-
livery of service. Accordingly, we should judge the depend-
ability of an operating system not only for its resilience to
failures but also for the services it provides to hosted appli-
cations with regards to error detection and recovery.

To this end, operating systems can make use of a vast
multitude of techniques available in the literature. In this
paper we address only those targeting hardware and soft-
ware faults of non-malicious nature. Our goal is to combine
several such techniques into a set of operating system ser-
vices that detect application errors and support their recov-
ery.

The first obstacle is that the recovery flow usually de-
pends on whether the error was caused by hardware or soft-
ware. This is generally hard to diagnose. Consider an ex-
ample where the memory management hardware raises an
exception indicating an erroneous memory access; it may
have been caused by a missing pointer initialization in the
software but also by corruption of a pointer due to a hard-
ware fault. In this case it is difficult to choose, for instance,
whether to rollback and retry the operation or to transfer
control to a user-mode exception handler.

Let us assume that application errors can be detected by
the operating system even though their cause is unknown.
Our proposal is to consider at first that an error was caused
by a transient hardware fault. To cope with these, we check-
point applications frequently and rollback to a previous
state upon error detection. If the cause was indeed a hard-



ware fault, there’s a high chance that it will vanish. Other-
wise, if an error is detected again before another checkpoint
is made, we must assume that it was caused by a software
fault. At this point we transfer control to an application-
specific exception handler where the designer can decide
what should be done. If no such handler is defined, the op-
erating system may simply restart the application – this is
often sufficient to deal with rarely activated bugs.

We are developing a prototype system which we in-
tend to use for experimentally assessing various techniques
aimed at building robust operating systems. The remainder
of this paper details the design principles of the prototype
and outlines the experimental evaluation. We begin by sur-
veying related research in Section 2. Error detection is dis-
cussed in Section 3 and Section 4 elaborates on the strategy
for recovering applications. The experimental evaluation
through fault injection is discussed in Section 5. Lastly, we
summarize the main conclusions of the paper in Section 6.

2 Related Research

A great deal of work has been dedicated to ensuring that
operating systems are resilient to internal failures. In this
context, kernel extensions such as device drivers are usu-
ally identified as the major source of problems. The mi-
crokernel approach attempts to solve this issue elegantly by
isolating kernel extensions in user-mode, where fault con-
tainment can be more easily achieved. Herder et al. [6] use
this design principle in the Minix operating system. There is
a price to pay for the increased reliability: obtaining an op-
erating system service often involves full context switching
and additional data copying. Tanenbaum et al. [15] point
out that this performance penalty is worth the trade-off in
systems where reliability is the main concern.

Swift et al. [14] use a different strategy to tackle the same
problem. Their approach, implemented in Nooks, uses the
more common monolithic kernel structure where extensions
run in kernel-mode. It should be emphasized that kernel-
mode instructions access main memory through the mem-
ory management hardware – just like user-mode instruc-
tions. The difference is that user-mode execution has re-
stricted access to privileged registers and instructions. If we
abstract from malicious faults, device drivers can be isolated
by marking unnecessary pages as read-only during their ex-
ecution. The authors make use of this feature to implement
lightweight protection domains. Additionally, they propose
the usage of wrappers to monitor control-flow between the
drivers and the kernel.

A different approach is taken by Hunt et al. in designing
the Singularity operating system [7, 8]. The core of Sin-
gularity is a microkernel written almost entirely in Sing#
– a type-safe programming language with low-level con-
structs. Instead of relying on isolation through hardware

protection, device drivers and applications are executed in
the context of software-isolated processes. Here, the funda-
mental principle is using static software verification to as-
sure that untrusted components are unable to access mem-
ory outside their context. Moreover, interaction among pro-
grams takes place via contract-based channels that can be
statically checked; and the programs themselves come with
a manifest allowing static and dynamic verification of key
properties. The emphasis is thus on fault prevention rather
than fault tolerance.

When it comes to detecting application errors, operating
systems make use of techniques such as memory protection
and watchdog timers to ensure spatial and temporal isola-
tion. Under these circumstances, faults may still propagate
via the system call mechanism – the door used by applica-
tions to request operating system services and to reach the
device drivers. Peterson et al. [11], Provos [12] and many
others propose the usage of sandboxing as the means to pro-
tect the system call mechanism. This technique consists of
interposing the access to system calls with a filter that en-
forces a given policy. In practice, this serves as an accurate
error detection mechanism.

After an error is detected, the recovery process is often
left to the application designer or the operating system sim-
ply terminates the application. As we described before, we
adopt the well-known checkpoint and rollback method to
recover applications from transient hardware failures. This
method can also be applied directly by the hardware. Wang
and Patel [16] use microarchitecture-level checkpointing
and define a set of error symptoms which trigger the proces-
sor to return to a previous state. Since we assume a generic
hardware platform, we opt for implementing checkpointing
as an operating system service.

The effectiveness of a rollback recovery depends sub-
stantially on the checkpointing strategy. If checkpoints
are too frequent, their overhead is too high; if they are
too sparse in time, recoveries may require too much re-
computation. The work by Ling et al. [10], among others,
addresses the checkpointing strategy problem. They offer a
mathematical model for optimal checkpointing under time-
varying failure rates. Results of this kind are an important
input to our design, as they provide the means to choose the
optimal checkpointing strategy.

3 SECERN: An Extension to MicroC/OS-II

A current trend in the design of embedded systems is
to allow multiple applications to share a common hardware
platform. The goal is to avoid using dedicated microcon-
trollers in order to achieve scalability as the number of
functions grows. Initiatives such as the standard interface
for avionics applications, defined by the ARINC 653 spec-
ification [2], aim at developing the critical infrastructures



and operating systems that support this level of integration.
Since these initiatives target safety-critical systems, a fun-
damental concern is to ensure that resource sharing can be
accomplished in a safe and reliable manner.

We are developing a prototype system intended for ex-
perimentally assessing various techniques for building ro-
bust operating systems. The prototype is based on the
MicroC/OS-II real-time kernel, designed by Labrosse [9].
The kernel’s source code is very well documented and
freely available for academic purposes, making it amenable
to extension.

MicroC/OS-II lacks support for isolating applications
from one another and from the operating system. To solve
this, we began by extending the kernel with memory protec-
tion [1] using a Memory Management Unit (MMU). This
was accomplished by making the distinction between pro-
cesses and threads, where each process owns a private ad-
dress space that contains one or more threads of execution.
Memory allocation is done statically by the linker – a com-
mon design decision in embedded systems.

A distinguishing feature of our implementation is that
the Translation Lookaside Buffer (TLB) – a small cache that
speeds up address translation – is updated during context
switch. Our approach is to update the TLB with the pages
that belong to an application before running that applica-
tion. Thus, we avoid handling TLB-miss interrupts during
the normal execution. This, in turn, makes it simpler to de-
termine the worst-case response time of programs (a very
important issue in real-time systems).

The extended version of the operating system runs on
a computer board featuring a Freescale MPC5554 micro-
processor based on the PowerPC architecture. On this pro-
cessor, the time needed for a full context switch without
updating any TLB entries is 10 µs. Considering a typical
embedded application with 4 pages of memory, it takes 31
µs for context switching; with 8 pages it takes 53 µs. How-
ever, this increased time is not a penalty, as handling TLB
misses would be more expensive in the worst case and less
deterministic.

3.1 Error Detection in SECERN

In addition to memory protection, our goal is to further
develop the operating system extension – denominated SE-
CERN – by combining several error detection and recovery
techniques. Some of those techniques are based on the liter-
ature surveyed in Section 2, adapted to suit the performance
needs of embedded applications. Below, we describe the er-
ror detection mechanisms that are implemented in the cur-
rent version of SECERN.

Memory protection. Each process has a private memory
space statically allocated by the linker. Accessing

memory outside this address space raises a CPU ex-
ception that is handled by SECERN.

Processor exceptions. All other CPU exceptions are han-
dled by SECERN as well. Many are classified as re-
coverable, meaning that they were caused by an appli-
cation error and the remaining parts of the system are
intact. In such cases, application recovery is triggered.

Unauthorized system calls. Our extension supplies the ID
of the calling process through a kernel structure that
can be used to filter erroneous accesses to the system
call. The ID can be checked by the system call’s excep-
tion handler in order to enforce a given access policy.

Invalid system call parameters. This mechanism uses the
caller ID principle targeting the device drivers. Any
kernel extension can make sanity checks on the pa-
rameters passed by the caller. An example may be a
communication driver that checks the size of a buffer
and reports an error of the caller application.

Task deadline missed. In SECERN, a thread is expected to
release the processor before its deadline. A scenario
where this does not happen is considered an error. We
note that not all tasks are required to have a deadline
(e.g., background tasks). These should execute with
low priority to ensure that they cannot interfere with
other programs.

Application-specific checks. The application designer is
able to report errors to the operating system. In this
case, the operating system will attempt rollback recov-
ery as if the error had been detected by any of the pre-
vious mechanisms.

4 Recovering Errant Applications

The main contribution of this paper is the recovery flow
that takes place after an application error is detected by one
of the above-described mechanisms. The goal is to provide
a comprehensive method that allows applications to be re-
covered both from hardware and software errors. To make
this possible, one must diagnose the cause of each error, so
that the appropriate recovery technique can be invoked.

Our proposal is to checkpoint the applications frequently
and attempt rollback recovery upon error detection. There
is a high chance that the error will vanish if it was caused by
a transient hardware fault. However, it may also be the case
that an error is detected again (before the next checkpoint).
In this case, we diagnose it as being caused by software.
The operating system can be configured to choose, at that
point, one of two options: (i) restart the task; (ii) transfer
control to an application-specific exception handler. In the



second case, the designer may decide, for example, to im-
plement a backup routine that produces a degraded result
which is known to be safe.

One must also consider the case when an error is detected
a third time, i.e., when both recovery attempts fail. Such
cases may be caused by permanent hardware faults which
prevent an application from executing correctly. Under such
circumstances, the application is terminated in order to en-
sure fail-silence and to constrain resource consumption.

4.1 Checkpointing Strategy

The checkpointing strategy was identified earlier in the
paper as determinant for the performance of the recovery
process. Essentially, we need to know what part of the state
should be saved and when it should be saved. Regarding
what to save, we intend to begin by implementing an agnos-
tic strategy, where the entire address space and processor
registers in the context of an application are saved. There
are more efficient approaches but our first goal is to eval-
uate the effectiveness of our proposed method, rather than
obtaining the best performance.

Regarding the moment when checkpoints should be
made, we propose to have a user-mode thread, with permis-
sion to read everywhere, copying the state of applications
when they are idle. This way we can make use of the avail-
able slack time to increase the dependability of the system.
To achieve this, the operating system should provide a ser-
vice which applications use to request checkpoints. Those
requests are queued and serviced by the low-priority check-
pointing thread.

To ensure a checkpoint’s consistency, we must guaran-
tee that it is completed within one idle period of the ap-
plication being checkpointed. The concern here is that the
checkpointing thread can be preempted by an application
while saving its state. When this occurs, the checkpointing
thread must restart copying the application’s state, since it
may have been modified during the execution of the appli-
cation. For this reason, the context switching routine should
notify the checkpointing thread whenever an application is
executed. This can be done by updating a single value in an
array containing one element for each application, thereby
keeping the overhead minimal.

4.2 An Alternative to Checkpointing

There are other techniques for masking hardware errors
that can be used instead of checkpoint and rollback. We
consider using time redundancy by executing the same task
a second time when an error is detected. This method is ap-
propriate if we consider the classic task models from which
the rate monotonic and earliest deadline first results were
derived. Here, tasks are issued periodically with an input

and must produce their output by a given deadline. As long
as task deadlines are met, we can use time-redundant exe-
cution to recover from transient failures.

From a practical viewpoint, running the task a sec-
ond time upon error detection is equivalent to restoring a
pseudo-checkpoint at the beginning of the task’s execution.
The advantage is that it does not require saving the state of
applications, which may be a time-consuming activity, de-
pending on the implementation. This method is appropriate
for stateless tasks where each iteration is only dependent
on its input. Moreover, we can also use this technique for
tasks that depend on an external state that they cannot up-
date (e.g., the current operation mode); in this case we can
view the external state as part of the input to the task.

5 Evaluation Outline

In this section we outline an experimental evaluation of
the techniques described throughout the paper. Our goal is
to assess, using fault injection, the robustness of the SE-
CERN extension with regards to error detection and recov-
ery. First, we are interested in ensuring that faults in an
application do not propagate to the operating system nor to
other applications (i.e., isolation). Second, the proposed re-
covery flow must be validated and evaluated to ensure its
usefulness and practicality.

With this in mind, we have developed a fault injec-
tion tool, for our experimental setup, that can inject faults
and monitor the outcomes. The evaluation should use two
independent processes receiving input and producing out-
put using simple communication primitives. The tool in-
jects faults in one of the applications and intercepts the
results (of both applications) in the form of value/time
pairs. The results are then classified regarding their correct-
ness/timeliness and the activation of error detection mecha-
nisms is monitored.

We consider injecting both hardware and software faults
in our experiments. Hardware faults are emulated through
bit-flips in registers and memory. Regarding software faults,
we intend to use the most representative operators found by
Durães and Madeira in their field study of open-source pro-
grams [4]. It should be noted that we must inject software
faults manually in the source code of applications, as we
have no automatic tool (e.g., [5]) for this purpose. Never-
theless, we still depend on the fault injection tool for mon-
itoring and classifying the outcome of each fault injection
experiment.

5.1 Research Questions

We have identified a number of research questions which
we expect to address during the experimental evaluation.
The most important ones are:



How well does SECERN handle faults? In general, we’re
interested in understanding how robust operating sys-
tems can be built (focusing on embedded applications).
To this end, fault injection is a good approach to test-
ing, for instance, the coverage of the error detection
mechanisms. A possible outcome would be to identify
vulnerabilities in our extension.

How effective is each error detection mechanism? Each
technique has a certain probability of detecting hard-
ware and software errors. When several techniques are
combined, there is a chance that some of them overlap
and that a given technique is not effective. Answering
this question allows us to make an informed decision
on which set of mechanisms is the best.

Does memory protection ensure isolation? One can as-
sume that the hardware itself has no design faults.
However, there may be hidden faults in the tightly cou-
pled software that manages that hardware. The goal
here is to evaluate the isolation of applications upon
hardware and software failures.

What is the impact of hardware faults? It is known that
a hardware fault can potentially disrupt an entire hard-
ware unit. However, the operating system only exe-
cutes 5% of the time for a typical workload [9]. Dur-
ing the remaining time the processor is either idle or
running applications. It is therefore likely that many
transient hardware faults will only affect the context
of a single application, much like software faults. We
intend to estimate how likely this is.

Is the recovery flow effective and efficient? In this paper
we proposed a recovery flow that addresses both hard-
ware and software faults. Using fault injection we can
evaluate the benefits of using this approach, the over-
head it imposes and the latency of the recovery pro-
cess.

6 Conclusion

This paper addresses the problem of recovering errant
applications. We argue that an operating system’s depend-
ability should be judged not only for its resilience to failures
but also for the services it provides to hosted applications
with regards to error detection and recovery. The reason
for this is that the applications are responsible for providing
service to the system users. Thus, isolating faulty applica-
tions from one another (and from the operating system) is
fundamental, but recovering them is also essential to ensure
sustainable delivery of service.

Effective error detection is the premise to a successful
recovery. We describe the error detection mechanisms im-
plemented in SECERN – our extension to MicroC/OS-II

which aims at providing robust fault containment around
software components. This extension provides, among
other mechanisms, hardware-supported memory protection.
This feature is intended to prevent faults in one component
from propagating to other components through the memory
spaces. Memory protection is uncommon in embedded sys-
tems due to, among other factors, its impact on the worst-
case response time of applications. However, we have opted
for inserting, in the TLB, the page table entries of a process
while context switching to that process. In this way, we
avoid handling TLB-miss interrupts during the execution
of applications, thereby eliminating the unpredictability of
memory accesses.

In this paper we propose a recovery flow that takes place
after an application error is detected. The method consists
in assuming, at first, that an error is caused by a hardware
fault and attempting rollback recovery. If the error is de-
tected again (i.e., the rollback recovery is unsuccessful),
its cause is diagnosed to be a software fault. In this case,
the principle is to allow the application designer to choose
from a set of options. One option is to transfer the control
to an application-specific exception handler where a differ-
ent version of the software is executed; another option is to
simply restart the application. Indeed, one of the principles
adopted in this paper is to provide the application designer
with many different options for recovery, so that the best
choice can be made depending on the needs of each system.

Lastly, we outline an experimental evaluation of the pro-
posed operating system extension. The goal is to assess, us-
ing fault injection, various techniques aimed at building ro-
bust operating systems. To clarify the desired outcomes of
this evaluation, we identify a number of important research
questions. We intend to complete the implementation of the
recovery flow and address those research questions in the
near future.
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