
Memory Protection in a Real-Time Kernel

Jorge Alçada∗

University of Coimbra
Department of Informatics Engineering

Coimbra, Portugal
jfcosta@student.dei.uc.pt

Raul Barbosa and Johan Karlsson
Chalmers University of Technology

Department of Computer Science and Engineering
Göteborg, Sweden

{rbarbosa, johan}@ce.chalmers.se

Abstract

This paper presents an extension of MicroC/OS-II to in-
clude MMU support used to provide memory partitioning
while maintaining the kernel’s real-time characteristics.

1. Introduction

Currently, a hot topic in embedded systems research is to
develop techniques that allow several applications or sub-
systems to share a common hardware platform in a safe and
reliable manner. The main objective for this research is to
allow complex systems to be build from commercial-off-
the-shelf (COTS) software components delivered by differ-
ent vendors. Another important objective is to allow soft-
ware applications of different criticality to execute on the
same hardware. This way, the use of dedicated microcon-
trollers for specific subsystem can be avoided, which po-
tentially reduces cost and improves reliability as it allows
complex systems to be build using a smaller number of mi-
crocontrollers.

This trend is reflected in several industry standards such
as the ARINC 653 specification [1], targeted for avionics
systems, and the AUTOSAR initiative [2] for the automo-
tive industry. These initiatives require a reliable method for
memory partitioning, i.e. to run each application, as well as
the operating system, in a protected memory address space.

While memory protection is an established feature of
desktop and server computers, it is less frequently used in
embedded real-time systems. One reason for this is that
many microcontrollers lack the necessary hardware sup-
port. Another reason is that memory protection imposes
time overhead and makes it more difficult to determine the
worst-case execution time (WCET) of programs.

∗This paper is based on Alçada’s thesis for the degree of Licenciatura
at the University of Coimbra, Portugal. This work was performed while he
was an exchange student at Chalmers.

We are currently developing a prototype of a distributed
real-time system, which we intend to use for experimen-
tally assessing various techniques aimed at achieving the
requirements of ARINC 653 and AUTOSAR, including ap-
proaches for building strong fault containment protection
around software components. We use MicroC/OS-II [3] de-
veloped by Micrium as the operating systems for our pro-
totype. We chose this kernel as it is freely available for
academic purposes and because of its small memory foot-
print, excellent documentation support and well organized
source code. These features make MicroC/OS-II easy to
understand, to use and to extend. However, it lacks support
for memory protection.

In this fast abstract, we describe how we have ex-
tended the MicroC/OS-II kernel to support memory protec-
tion. The extended version of the operating system runs on
Freescale’s MPC5554, which includes a Memory Manage-
ment Unit (MMU). We demonstrate that it is possible to use
the MMU without compromising the predictability of the
execution time of the application programs, and we present
an analysis of the time overhead imposed by the MMU.

The MPC5554 is a micro-controller based on the Pow-
erPC architecture. Its processor core contains an MMU,
and thus the processor does not have direct access to the
main memory. Instead, the processor generates a virtual ad-
dress that is translated by the MMU to the corresponding
physical address. During this process of memory address
translation, we can define access rights for each application
process which are always checked by the MMU.

2. Design principles

The MPC5554’s MMU offers memory management ser-
vices, such as virtual memory and memory protection, and
it comes with Translation Lookaside Buffer (TLB). The
TLB is a small and very fast cache used to prevent large
overheads in the address translation process. Each TLB en-
try contains the necessary information to manage the MMU,
i.e. virtual and physical addresses, the size of each memory



region and access rights.
MicroC/OS-II was extended to manage the MPC5554’s

MMU, as it is demonstrated in figure 1. The resulting kernel
is now able to protect the memory address space of tasks.
Each one of these tasks represent a thread of execution, and
a group of threads that operate within the same memory re-
gion is referred to as process.

The application processes must be correctly divided in
main memory so that the MMU can protect their memory
region. Since in real-time systems all the processes reside
in main memory, we used the linker to statically load each
process to their corresponding memory address space. This
process is done offline after compiling, thus avoiding fur-
ther initialization overheads.

We also added support to run each thread in supervisor
and/or user mode. Threads that run in user mode do not
have direct access to the kernel and have limited view of
the processor. Therefore, in order to be possible for these
threads to communicate with the kernel, we implemented a
System Call library. This library is a set of routines, globally
shared, that acts as an interface for user applications to call
the kernel’s services.

Figure 1. MicroC/OS-II extended architecture.

To guarantee that this extension would not affect the real-
time characteristics of MicroC/OS-II, the design was imple-
mented so it would not allow TLB cache misses. Thus, the
TLB always contains the memory pages of the process that
is currently running. Hence, the kernel updates the TLB
in every process context switch (suspend the process that is
currently running and give control of the processor to an-
other process that is ready to run) [4].

3. Discussion

The memory protection mechanism added to
MicroC/OS-II imposes a time overhead in every pro-
cess context switch. In order to analyze exactly how much,
we measured the time to perform a process context switch,
varying the number of memory segments associated with
the process that will run next. Since each memory segment
requires at least one TLB entry and the MPC5554 MMU
has a 32-entry TLB, this number can range from 0 to 32.

We constructed a test application composed of two pro-
cesses that run on top of MicroC/OS-II. We measured the
execution time from the first line of the context switch in-
terrupt handler to the first instruction of process 2. These
measurements were made with the MPC5554 running at a
clock frequency of 136 MHz and with no compiler code op-
timizations. Figure 2 shows the process context switch time
as a function of the number of memory segments.

Figure 2. Context switch time measurements.

To verify that the TLB updates require a fixed time over-
head, each configuration was measured several times. All
the results were equal for the same number of memory seg-
ments. Therefore, the time to update the TLB is static and
only depends on the number of process memory segments.
Thus, we can take into account this time overhead for real-
time scheduling analysis.

This result demonstrates that it is possible to use the
MMU to provide memory protection without compromis-
ing real-time properties. Furthermore, the memory pro-
tection method implemented simplifies error detection and
handling since it guarantees that there are no TLB access
errors, unless there is a hardware or software fault.

On the other hand, we need to consider that, depending
on execution time performance requirements, the overhead
imposed by the MMU might not be acceptable. In addition,
the paging system used by the MMU adds a small amount
of internal fragmentation, because we are always restricted
to the minimum page size available of 4 Kb.

References

[1] Draft 4 of Supplement 2 to ARINC Specification 653: Avion-
ics Application Software Standard Interface, Part 1 - Required
Services. August 2005.

[2] Harald Heinecke et al. AUTomotive Open System ARchitec-
ture - An Industry-Wide Initiative to Manage the Complexity
of Emerging Automotive E/E-Architectures.

[3] J. J. Labrosse. MicroC/OS-II: The Real-Time Kernel. Pren-
tice-Hall, pub-PH:adr, 1992.

[4] Rune P. Anderson and Per Skarin. Memory Protection in a
Real-Time Operating System. Master’s thesis, Department of
Automatic Control, Lund Institute of Technology, Nov. 2004.


