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Abstract

This paper presents a processor group membership pro-
tocol appropriate for distributed fault-tolerant real-time
systems that utilize time-triggered communication.

1 Introduction

Group membership is often a cornerstone of the design
of fault-tolerant distributed systems. The entities, or nodes,
which constitute such systems, must cooperate in provid-
ing a correct service to its user(s), even in the presence of
faults. A correct behavior of the system requires that the
non-faulty nodes have access to timely and consistent in-
formation about the operational state of all nodes, i.e. the
membership. The algorithms devised to maintain this infor-
mation, preferably in a decentralized manner, are usually
known as processor group membership protocols.

This paper proposes a processor group membership pro-
tocol for systems relying on synchronous communication,
where messages are transmitted within a known amount of
time and processing nodes have a global notion of time. The
protocol is appropriate for hard real-time systems which uti-
lize network standards such as FlexRay [1] or TTCAN [2].
Such systems impose hard deadlines for achieving consen-
sus on membership changes, while they offer limited band-
width for the implementation of the membership services.

2 System Model

We consider a set of processing nodes linked by a time-
triggered broadcast network. We assume that the network is
based on a bus topology or a star topology. Each processor
(node) has a single dedicated slot on the network which it
uses to send messages according to a cyclic schedule.

Nodes are assumed to be fail-silent, i.e. either correct
results or no results are broadcasted, or fail-reporting, i.e.

either the correct result or a failure report (specifying the
causes of failure) is produced.

Under fault-free conditions the node which has the right
to broadcast on the network (i.e. the sending node) does so
by sending a message. If, at some point, a node does not
receive a valid message, due to loss or corruption, a failure
has occurred. It could be a failure of the sending node, a
failure of the receiving node or a network failure.

In our system model, we assume that failures can oc-
cur in the nodes, their incoming and outgoing links, and the
network itself. We map these failure types into four differ-
ent failure classes according their persistence (permanent or
transient) and whether their impact on the system is consis-
tent or inconsistent.

A transient failure only affects one message. If a fault
leads to the corruption of two messages we consider this
a double failure. A permanent failure will remain in the
system until it is repaired. We classify a failure as consistent
if all receiving nodes fail to receive a message correctly. On
the other hand, an inconsistent failure occurs if only one
node fails to receive a message correctly.

Table 1 shows how the different types of component fail-
ure are mapped into different failure classes.

Transient Permanent

Sending Node 1. 3.

Outgoing Link Transient Consistent Permanent Consistent
Network (Consistent)

Network (Inconsistent) 2. 4.

Incoming Link Transient Inconsistent Permanent Inconsistent
Receiving Node

Table 1. Failure classes.

3 Protocol Specification

Let N denote the totally ordered set of processing nodes
N1, N2, . . . , Nn. We exclude systems with n ≤ 2 process-
ing nodes from our analysis, as membership agreement is



trivially achieved in this case.
Each node has access to a global view of time. This is

supplied by clock synchronization mechanisms. In what
concerns the membership problem, the required granular-
ity of time is the slot. Hence, each node uses the global
variable slot. The predicate slot(i) is defined, for each syn-
chronous step, as true if and only if i = slot mod n. It
thus indicates which of the processing nodes N1, N2, . . . ,
Nn, is the sending node in each bus slot.

Each node has a local variable membership, which rep-
resents its local view of the membership. The goal of the
protocol is to ensure that all nodes maintain timely and con-
sistent views of the membership.

3.1 Agreement on Departure

The membership protocol relies on the periodic mes-
sages sent by each node to piggyback a field containing a
sequence of k acknowledgement bits. This ack field is used
to confirm (or refute) the reception of each of the previous
k messages from the nodes in the membership.

A node Ni is said to be sponsoring node Nj if, along
with its message, the acknowledgement of the last mes-
sage from Nj is attached. Only nodes in the membership
are involved in sponsoring relations. We define the predi-
cate sponsor(i, j) as true if and only if Ni is sponsoring
Nj . The predicate lastSponsor(i, j) is defined to be true
if and only if sponsor(i, j) = true and sponsor(p, j) =
false, where Np is the immediate successor of Ni in the
membership.

Under normal conditions each node will have k sponsors
(and will be sponsoring k nodes). Thus, k stipulates how
resilient will the protocol be to near-coincident failures, at
the expense of communication overhead.

Initially, the membership contains all processing nodes.
Each node has a boolean array present. All the ele-
ments of present are initialized to true. The present
array will be updated by each node upon message recep-
tion/loss. When a message expected from Ni is not received
present[i] ← false. When a positive acknowledgement
referring to a message from Ni is received from one of its
sponsors, present[i]← true.

The sending node Ni sets the ack bit which refers to its
sponsored node Na to present[a]. Thus acki[a] = true if
and only if Ni received the previous message from Na or
any of its acknowledgements.

When the slot of a node Ni in the membership comes
to an end, all nodes, including the sending node, syn-
chronously execute a decision-making step. Node Nj , such
that lastSponsor(i, j) = true, will be removed from the
membership if and only if present[j] = false.

3.2 Agreement on Reintegration

The reintegration procedure commences when slot(r) =
true, Nr /∈ membership and a message is correctly re-
ceived by at least one node. This means that Nr is up and
running again and the receiving nodes will set their local
variable reintegrating ← r.

At each step the sending node piggybacks a r-ack bit
to its message. The r-ack bit serves the purpose of noti-
fying the nodes which might have lost the message from
the reintegrating node. Therefore, a sending node will set
r-ack ← true if and only if reintegrating 6= null.

The synchronous decision-making step about the reinte-
gration of node Nr is executed when reintegrating = r
and the slot of the first predecessor of Nr contained in the
membership comes to an end. This is processed by i) adding
Nr to the membership, ii) setting reintegrating ← null
and iii) setting present[r]← true.

Any node which receives a message reporting r-ack =
true when reintegrating = null has certainly missed a
reintegration message (from an unknown source) and will
therefore be left out of the membership.

4 Discussion and Conclusions

The protocol specified in this paper is flexible in the
sense that the tradeoff between reliability and communica-
tion overhead can be defined at design time, by choosing
the number k of sponsors per node.

The value of k can be set to any number between 2 and
n − 1. Agreement on departure is guaranteed if no more
than f = k − 1 failures occur in the same communication
round, while at most one node can be reintegrated into the
the membership per communication round. Listening on the
bus is enough for a restarted node to recover the state of the
membership, before attempting reintegration.

Additionally, agreement on node failure (membership
departure) and agreement on node recovery (membership
reintegration) are handled by two different mechanisms.
This allows decreasing the cost of fault-tolerant reintegra-
tion by implementing the reintegration procedure using the
event-driven fraction of the communication schedule (pro-
vided by standards such as FlexRay and TTCAN).
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