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1 Introduction

Data management in real-time systems has
traditionally been implemented via application-
dependent designs. The main drawback of this
approach is that, as the applications grow in com-
plexity and amount of data, the code which deals
with data management becomes increasingly diffi-
cult to develop and maintain. Real-time database
systems are the most promising alternative to
manage the data with a structured and system-
atic approach.

Database systems have been successfully ap-
plied in many production systems. Many websites
rely on conventional databases to provide a reposi-
tory for data and to organize the retrieval and ma-
nipulation of data. However, this type of database
is not suitable for applications with timing require-
ments (e.g. air traffic control, telecommunications
and industrial control). It thus becomes interest-
ing to apply techniques from the real-time systems
research to provide timeliness in addition to the
common features of database systems.

The typical database design aims to provide a
fast response time. Indeed, with suitable hard-
ware resources it is possible to achieve impressive
results. IBM presented in late 2006 a system capa-
ble of completing more than 4 million transactions
per minute when running the TPC-C benchmark
[15]. The same system would be even faster if ad-
vanced performance optimization techniques (such
as indices) were allowed by the TPC-C specifica-
tion.

A fast database is, however, not necessarily a

real-time database. For some applications the av-
erage transaction rate is not as important as com-
pleting each transaction before a certain deadline.
For such applications the transaction rate is a
parameter specified by the application designers.
The real-time database then has to be designed in
such a way that transactions meet their deadlines.

Real-time databases thus have the requirement
of ensuring transaction timeliness in addition to
the well-known ACID properties. According to
the ACID model the key transaction process-
ing properties are atomicity, consistency, isolation
and durability. A database management system
which does not ensure all these properties (with-
out a solid argumentation) should not be consid-
ered trustworthy.

e Atomicity — A transaction either completes
all its operations or none of them. If any oper-
ation fails then the transaction must be rolled
back.

e Consistency — Any transaction which
breaks the integrity constraints of the
database must be aborted and its actions
rolled back.

e Isolation — Transactions which are executed
simultaneously must not influence each other.
All transactions “see” the database as it was
before any other transaction started or after
it committed.

e Durability — The result of any committed
transaction will be persistent in the database,
even in the event of a failure.



The ideal real-time database should be able to
perform real-time ACID transactions. However,
the timeliness requirement poses an additional
challenge which often implies relaxing one or more
ACID properties in order to complete the transac-
tions in a timely manner. It is therefore necessary
to consider the timeliness aspect of the transac-
tion processing mechanisms at the same level as
the ACID properties. A real-time database should
therefore be evaluated based on the support for
TACID transactions [16].

2 Design Issues

Predictable response times often require the
database to be memory resident. Placing the
database on main memory avoids the non-
determinism of disk accesses. At the same time
the performance of the database is significantly
improved. On the other hand, the durability of
data is not guaranteed in the event of a failure
unless techniques such as checkpointing, journal-
ing or replication are used. These techniques in-
cur additional overhead during normal execution
as well as system recovery and should therefore
be carefully analyzed. This means that timeliness
and durability are in some sense competing prop-
erties. When the hardware resources are scarce
the durability is often relaxed in order to ensure
timeliness.

Scheduling transactions in order to satisfy their
deadlines is where the real-time research makes
a fundamental contribution. Real-time databases
make use of well established scheduling policies
such as the Rate Monotonic (RM) algorithm and
the Earliest Deadline First (EDF) algorithm, both
presented in [11]. With the rate monotonic al-
gorithm the transactions have a fixed priority in-
versely proportional to their periods. The rate
monotonic policy is an optimal fixed priority
scheduling algorithm. This means that if a given
set of transactions can be scheduled with a fixed
priority scheme, then it will be schedulable with
the rate monotonic algorithm. The EDF algo-
rithm is an optimal dynamic priority scheduling
algorithm which assigns the highest priority to the
transaction which has the closest deadline. The

RM algorithm is suitable for a system with peri-
odic transaction whereas the EDF approach suits
both periodic and non-periodic transactions.

The issues involved in the design of real-time
databases sometimes deal with other areas of re-
search. The usual real-time system architectures
do not place the database on a dedicated computer
system. This extends the problem of determinism
to the operating systems which manage the com-
puter system’s resources. In order to ensure trans-
action timeliness one must use real-time operating
systems. Only this approach can ensure that the
tasks which serve the transactional mechanisms
are executed in real-time.

Similarly, if the database has a distributed na-
ture then the message passing mechanisms must
provide real-time guarantees. Network standards
such as Ethernet are not suitable for distributed
real-time database systems. In a general sense all
the layers underlying the database system must
offer real-time services in order to ensure that the
database has real-time properties.

It is arguable that the technological advances in
hardware will solve the problem of designing real-
time databases [14]. There is certainly a benefit
to be taken from hardware improvements. Solid
state drives may be non-volatile (e.g. based on
Flash technology) and provide very fast and de-
terministic data accesses. Using this type of data
storage would ensure the durability of data with-
out compromising the timeliness of the transac-
tional mechanisms. Parallel processors will also
help in obtaining more powerful computing plat-
forms.

Nonetheless, hardware alone does not guaran-
tee that a conventional database will provide real-
time response. It is, for instance, necessary to
enhance the existing database interfaces - such
as the Structured Query Language (SQL) - with
support for the specification of timeliness require-
ments along with the queries.

Furthermore, even if the database system solves
all real-time issues, this does not ensure that the
query itself is executable within the specified dead-
line. The database design process requires the
help of Worst Case Execution Time (WCET) anal-
ysis tools to determine how long will it take for



a transaction to complete. This is an extremely
complex problem as it may be difficult or overly
pessimistic to predict the execution time under
concurrency control conditions. In addition to
this, the algorithms used to obtain data from the
database may, for instance, involve full table scans
(e.g. when searching for a specific row without
using an index). This implies that the execu-
tion time depends on the number of rows present
in the table at any given time. Consequently,
static analysis methods will not help in determin-
ing the WCET of a transaction, unless the maxi-
mum number of rows in the table is known a pri-
ori.

3 Concurrency Control

Due to the nature of the applications, database
systems have to deal with concurrent transac-
tions. Resolving data conflicts among transactions
is an issue for real-time concurrency control mech-
anisms. The importance of this issue motivates a
thorough discussion.

It has been suggested that, in uniprocessor sys-
tems, one can simply execute the transactions se-
quentially. Thus, concurrency control would not
be necessary. The main advantage of this ap-
proach is that the overhead of concurrency con-
trol mechanisms would be eliminated. Further-
more, the overall number of context switches due
to blocking would be decreased. However, concur-
rency is required when transactions vary both in
length and priority. If a high-priority transaction
is issued when a long running low-priority trans-
action is already executing, it is only possible to
ensure timeliness if concurrency is enabled.

The main requirement is that serialization con-
sistency must be guaranteed. This means that
the result of the read/write operations must be
the same as if the transactions had been executed
in serial order. It should be noted that there is
no requirement on the actual order, as long as it
is possible to ensure some ordering. Ref. [9] dis-
cusses this issue in detail.

There are two main classes of concurrency con-
trol techniques: optimistic and pessimistic. In
the optimistic approach the operations are carried

out and the transaction is checked for serialization
consistency before the results may be written into
the database. The pessimistic approach allows the
transaction to start executing only when it is en-
sured that serializability will not be violated.

Two-phase locking — a pessimistic concurrency
control technique — is the most common approach
for concurrency control in centralized databases.
The procedure involves the use of locks in order
to gain the access to data items. In the first
phase the transaction must acquire the locks on
the required data items. For optimization pur-
poses these locks can be for reading only as well
as for writing. In the second phase the transaction
releases the locks. With two-phase locking a lower
priority transaction 77, is able to block a higher
priority transaction Ty when 717, has the lock on
a data item which Ty needs and 77, is allowed to
complete before Ty can access it. This can cause
PTIoTILY INVETSIONn.

The problem of priority inversion arises when
transaction Ty is waiting for T, to release the lock
on data item I and a transaction Tj; with an in-
termediate priority arrives to the system. If Ty,
does not require access to data item I then it will
preempt T, thus delaying 7. Their priorities are
therefore inverted.

The simplest solution to the problem is based on
the fact that transactions can usually be aborted
and restarted. The high priority protocol [1]
aborts low priority transactions when higher pri-
ority transactions require data items which are
locked. With this protocol a transaction is never
blocked by a lower priority transaction — the pro-
tocol is deadlock-free. On the other hand, any
work done by an aborted transaction is wasted
and needs to be re-executed.

Another solution to the priority inversion prob-
lem is to make a low priority transaction inherit
the priority of the higher priority transaction when
there is a data conflict between them. This is
known as the priority inheritance protocol [12].
In these conditions the low priority transaction is
said to be executing on behalf of the higher pri-
ority transaction. The protocol prevents priority
inversion since only a transaction with a priority
higher than both transactions can preempt the low



priority transaction (and delay the high priority
transaction). However, the drawbacks of prior-
ity inheritance are twofold: i) the highest prior-
ity transaction may, in the worst case, be blocked
once by every other transaction and ii) deadlocks
are not prevented (e.g. if locks are acquired in
reverse order).

When a deadlock occurs one must abort and
restart one or more transactions in order to en-
sure that their execution progresses and eventu-
ally comes to an end. There are many different
criteria for choosing which transactions should be
aborted. However, it has been verified empirically
that, in most cases, deadlocks involve only two
transactions [4]. Thus, any such criteria should
be inexpensive to implement as there not many
ways to choose the wrong victim.

The priority ceiling protocol [2] overcomes both
drawbacks of priority inheritance. The priority
ceiling of a data item is defined as the highest pri-
ority among the transactions that may lock the
data item. For a transaction to execute, it must
have a priority strictly higher than the highest pri-
ority ceiling of all data items locked by all other
transactions. The priority ceiling protocol over-
comes the two shortcomings of the priority inheri-
tance method — deadlocks are prevented and high
priority transactions are blocked by at most one
transaction.

Optimistic concurrency control techniques [5, 7]
divide the execution of the transactions into three
phases. The first is the read phase, where the re-
quired data items are read. The second is the
validation phase, detailed in [8], where the system
must check if serialization consistency may be vi-
olated if the data is written into the database. Fi-
nally, in the write phase the data is written into to
the database. This class of protocols is considered
very good for real-time databases as it is deadlock-
free and non-blocking. The main shortcoming is
that one or more transactions may need to be
aborted as the consequence of a failed validation
(and any completed work needs to be restarted).

Optimistic and pessimistic concurrency control
techniques provide the means to guarantee the se-
rialization consistency of transactions. However,
serialization consistency can be sacrificed in favor

of timeliness [13]. With this approach the trans-
actions access the data items concurrently with-
out control. This idea is only applicable to sys-
tems where the data is refreshed at a high enough
frequency. The rationale behind this strategy is
that any inconsistent state will not be propagated
throughout the database or the amount of error
will be tolerable. This is another example where
the ACID properties of transactions are relaxed in
order to ensure their timeliness.

4 How Hard is Real-Time?

Transactions have many attributes (priority, ex-
ecution time, resource usage, etc.), the most im-
portant of which is the deadline. A transaction’s
deadline is the mean by which the system designer
can specify its timeliness requirement.

A way of classifying transactions is based on
the effects of their deadlines not being met. Hard
real-time transactions are those which can have
catastrophic consequences if they are not executed
on time. Soft real-time transactions, on the other
hand, will only degrade the system’s performance
when not completed within their deadline. A spe-
cial type of soft real-time transaction is a firm real-
time transaction, which has no value to the system
when its deadline is not met and should therefore
be aborted.

Transactions may also be classified according
to the periodicity of their arrival — a very impor-
tant property for schedulability analysis. Some
applications require certain transactions to be ex-
ecuted periodically, with a given frequency. Pe-
riodic transactions can thus be statically sched-
uled to execute at a fixed rate. In contrast, there
are aperiodic transactions that must be scheduled
whenever they arrive. Aperiodic transactions offer
little or no predictability and they are suitable for
scheduling with dynamic policies (or with static
policies which have enough computing power open
for competition among aperiodic transactions). A
special kind of aperiodic transactions are sporadic
transactions, which have a known minimum inter-
arrival time. Schedulability analysis for sporadic
transactions is somewhat easier than for pure ape-
riodic transactions.



It is often a requirement that a database system
must deal with mixed types of transactions. In the
extreme case there may be real-time transactions
executing in parallel with transactions which have
no timing requirements. Furthermore, periodic
and non-periodic transactions may coexist. The
database system must therefore support different
notions of time and criticality. Designing a generic
real-time database is therefore a very complex
task. There is an extremely large amount of ways
in which one can model transactions. Hopefully,
it will be possible to devise a way which satisfies
most application scenarios but, naturally, there
will always exist application-specific issues which
must be dealt in an application-specific manner.

5 Memory Resident Databases

Memory resident databases help in improving
the performance of the system and, most impor-
tantly, do away with the non-determinism of disk
accesses. Such an approach is making its way
into mainstream databases designed by companies
which target time-critical businesses. The applica-
tions include operational support systems, airline
and reservation systems, etc.

As mentioned earlier, the durability of the
stored information cannot be ensured unless tech-
niques such as journaling, checkpointing or repli-
cation are used. Since the main memory is
volatile, a power outage is enough to wipe out all
data. Conventional databases rely on the fact that
the integrity of the disk subsystem is usually not
affected by a system crash.

Due to all the issues discussed so far (con-
currency control, scheduling, technological limi-
tations, execution time analysis, etc.) and many
other, not discussed in this essay, placing the en-
tire database in memory is not sufficient to make
it suitable for real-time applications.

On the other hand, there are specialized disk
scheduling algorithms which help improving the
determinism of disk accesses. Thus, it is not
mandatory to place the entire data in main mem-
ory. This is especially beneficial for applications
which manage very large amounts of data. Never-
theless, performance goals will always require the

right data to be in main memory at the right time.
An approach commonly taken is to enlarge the
buffer pool, thereby providing enough space to re-
tain most or perhaps the entire set of data items
required by the transactions.

6 Hard Real-Time Databases

A pragmatic way to design real-time databases
is to minimize the ratio of transactions that miss
their deadlines. This strategy is, however, a step
short of meeting hard real-time requirements, un-
der which missing a single deadline can lead to
catastrophic effects. Most commercial databases
that claim real-time properties are not suitable for
hard real-time applications.

Real-time database designers are faced with a
vast number of constraints, difficult to fulfill while
offering an adequate set of features. The database
source code, developed to manage the transac-
tional mechanisms, has to be thoroughly analyzed
in order to guarantee worst case execution timings.
Furthermore, a generic hard real-time database
would have to suit a great diverseness of appli-
cation requirements, thereby demanding a signifi-
cant development effort.

In addition to this, due to their criticality, hard
real-time applications usually have dependability
demands. One might, for instance, need to en-
sure a certain level of availability, i.e. the fraction
of time during which the system is in an opera-
tional state, or a particular mean-time-to-failure
(MTTF) for the system. To achieve these goals
the dependability community has devised a num-
ber of techniques, suitable for different applica-
tions. Again, it is costly to develop a generic fault-
tolerance framework to support any database ap-
plication.

Providing hard real-time transactions limits the
broadness of the set of features a database can of-
fer. A particular method to join two tables may
have an order of complexity which makes its exe-
cution depend on the number of rows in the table
or require too much memory. If there is no other
algorithm capable of providing the same function-
ality, with a feasible amount of computation, then
it may be difficult to make it part of a hard real-



time database.

However, many different research efforts have
been presented in the past years which may lead
to functional hard real-time databases. At the
moment there are many commercially available
databases which are time-cognizant and feature a
great deal of predictability. Such databases al-
ready solve to some extent the issues debated in
this essay. They should be expected to evolve with
the goal of performing hard real-time ACID trans-
actions.

7 Index Structures for Real-Time

Indices are, in the taxonomy of databases, data
structures which improve significantly the per-
formance of search operations. Indices of di-
verse types integrate conventional database man-
agement systems with the goal of providing fast
response times. Due to this fact, indices assume
a vital part of real-time databases. Some index
structures provide, in addition to performance im-
provements, a predictable access time — which is
highly desired in real-time systems.

Real-time indexation requires specialized struc-
tures which maximize the usage of CPU and main
memory [10]. The most common index structure
is the B+ tree — a variant of the B tree. B trees
are broad and not very deep (a common tree does
not go beyond 3 levels of depth). This makes them
suitable for disk databases. However, if the data is
in main memory the B tree should be preferred to
the B+ tree. B+ trees keep the data in the leaves
of the tree. Instead, the leaves should store the
pointers to the actual data, with the purpose of
saving storage space. Following a pointer in mem-
ory is far less computationally expensive than do-
ing so on disk. Figure 1 shows the structure of a
B tree node.
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Figure 1. Structure of a B-tree node

Another structure which has had some appli-
cation in the past is the AVL tree. AVL trees are

binary search trees which are kept height-balanced
through rotation operations (whenever an update
breaks the balance). Since AVL trees are binary,
there are two pointers (left and right) at each
node. Every node stores a single data item (or
a pointer to a data item). AVL trees are therefore
less convenient than B trees due to the storage re-
quirements. The structure of an AVL tree node is
depicted in Figure 2.

Data

Left child Right child

Figure 2. AVL-tree node structure

The T tree structure [10] is a mix of B trees
and AVL trees. It is a binary tree but each node
stores many elements, thereby keeping the favor-
able storage properties of B trees. Rebalancing
the tree on update is also required but, since there
is the possibility of moving data within each tree
node, it does not happen as frequently as with
AVL trees. There is, however, a disadvantage with
this structure: traversing the tree is computation-
ally expensive. Figure 3 shows the structure of the
nodes of T trees.

Parent
Data 1 Data ... Data n
Left child Right child

Figure 3. The structure of a T-tree node

The T* tree is a variation of the T tree, pro-
posed in [3]. It uses the basic structure of the T
tree, with an additional pointer to the successor
node. The successor pointer is depicted in Figure
4. This pointer makes sequential search work in a
similar way to linked lists. The performance of T



trees is therefore improved in certain situations.
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Figure 4. T*-tree node structure

7.1 Index Concurrency Control

The high throughput desired in some applica-
tions may raise the contention in accessing the in-
dices to the point where it becomes a more seri-
ous performance bottleneck than the normal data
accesses. In addition to the regular concurrency
control issues, described in Section 3, we must be
aware of the problems with index concurrency con-
trol.

The study presented in [6] gives some insight
into the problem, by describing conventional index
concurrency control mechanisms with the incor-
poration of priorities, in the context of firm real-
time transactions. B tree concurrency control is
achieved through the use of locks on index nodes
(latches). Incorporating priority into this type of
technique is done by preempting the lower prior-
ity transaction when a conflict is detected. This
transaction will be required to repeat the last in-
dex operation (not all transaction operations). On
the other hand, a lower priority transaction will
never acquire a lock if there is a conflict.

There is also the possibility of using priority in-
heritance, which uses the same method described
in Section 3. It also comes with the same pros and
cons of conventional priority inheritance — there
will be no wasteful restarts but there is a possi-
bility of blocking high priority transactions when
lower priority transactions already acquired the
locks.

8 Conclusions

Real-time database systems are emerging as
a structured and systematic approach to man-
age data, avoiding application-dependent designs.
This approach combines techniques from the
database systems community with the existing
methods for real-time computing.

At least part of the database must be placed
in main memory, in order to avoid the non-
determinism of disks. However, a fast database ex-
ecuting in main memory is not necessarily a real-
time database. For some applications completing
each transaction within its deadline is more im-
portant than the average transaction rate. This
requires a specialized design which ensures that
transactions meet their deadlines.

Indices are data structures which improve sig-
nificantly the performance of search operations.
In some cases the order of complexity of the
search operations is reduced, which means that
the database will be able to provide additional
features, impossible to offer otherwise. There are
several different types of index — some more ap-
propriate than others for real-time. The T* tree
and the B tree indexes are the most suitable choice
for this type of system.

The problem of concurrency control, in access-
ing data items as well as index nodes, has received
some attention. Real-time performance, while en-
suring the consistency of data, is a delicate prob-
lem, solved by a few distinct strategies (each with
advantages and drawbacks). In some cases it is
even possible to neglect concurrency control by
ensuring that the data is being refreshed quickly
enough and that the amount of error propagated
through the database is small.

Designing a hard real-time database is not a
simple task, given the vast number of constraints
and the diverseness of application requirements.
Real-time databases which strive to provide time-
liness in addition to the well-known ACID prop-
erties are often required to sacrifice one or more
such properties (e.g. timeliness vs. durability).
A common strategy is to minimize the ratio of
transactions that miss their deadlines. However,
this may not be applicable to hard real-time sys-



tems, where missing a single deadline can have
catastrophic effects.

At the moment there are many commercially
available databases which are time-cognizant and
feature a great deal of predictability. Most of these
databases are not yet suitable for hard real-time
applications. Nonetheless, the numerous research
efforts currently ongoing may lead to functional
hard real-time databases in the near future.
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