
JAMES: A Platform of Mobile Agents for the

Management of Telecommunication Networks

Luis Moura Silva1, Paulo Sim~oes1, Guilherme Soares1, Paulo Martins1, Victor
Batista1, Carlos Renato2, Leonor Almeida2, and Norbert Stohr2

1 CISUC - Dep. Eng. Informatica, University of Coimbra
P-3030 Coimbra, Portugal

luis@dei.uc.pt
2 Siemens S.A., Rua Irm~aos Siemens, N. 1

P-2720-093 Amadora, Portugal

Abstract. This paper presents an overview of JAMES, a Java-based plat-
form of mobile agents that is mainly oriented for the management of data
and telecommunication networks. This platform has been developed on
behalf of a Eureka Project (�!1921) and the project partners are Siemens
SA, University of Coimbra and Siemens AG. We describe the main ar-
chitecture of the platform giving more emphasis to the most important
features. To show the e�ectiveness of some of the techniques that have
been implemented we will present some performance results that com-
pare the JAMES platform with the Aglets Workbench.
The main target of our platform is network management and telecom-
munication applications. In this line, we have done a Java-based imple-
mentation of SNMP that has been integrated within the platform. The
industrial partners of our project (i.e. Siemens S.A.) have developed a
prototype application for TMN performance management. Although it
is still a prototype it is being used to validate the technological advan-
tages of using mobile agents in the management of telecommunication
networks.

1 Introduction

The main goal of the JAMES project is to develop an infrastructure of Mobile
Agents with enhanced support for network management and try to exploit the
use of this new technology in some telecommunications software products. A
Mobile Agent corresponds to a small program that is able to migrate to some
remote machine, where it executes some function or collects some relevant data
and then migrates to other machines in order to accomplish another task. The
basic idea of this paradigm is to distribute the processing throughout the net-
work: that is, send the code to the data instead of bringing the data to the
code.

The existing applications in the management of telecommunication networks
are usually based on static and centralized client/server solutions, where every
element of the network sends all the data to a central location that executes the

whole processing over that data and provides the interface to the user operator.
By consequence, they are not exible, they have problems of scalability and they
produce too much tra�c in the network.

The use of Mobile Agents in this kind of applications represents a novel
approach and potentially solves most of the problems that exist in centralized
client/server solutions. The applications can be more scalable, more robust, can
be easily upgraded or customized and can reduce the tra�c in the network.

The JAMES project will try to exploit all these technological advantages and
see how the mobile agents technology can be used in software products that
are been developed by Siemens SA. The project involves the development of a
Java-based software infrastructure for the execution of mobile agents. The use
of Java was motivated for reasons of code portability.

In the last few years the use of Mobile Agent technology has received an ex-
traordinary attention from several Universities and research institutes and a no-
table investment from several companies [1]. Mobile agents have been applied in
several areas, like mobile computing, electronic commerce, Internet applications,
information retrieval, workow and cooperative work, network management and
telecommunications [2{5]. Several commercial implementations of mobile agents
have been presented in the market, including Aglets from IBM [6], Concordia
from Mitsubishi [7], Odyssey from General Magic [8], Voyager from ObjectSpace
[9] and Jumping Beans from AdAstra [10]. Although these software products
have some very interesting features they are too much general-purpose and do
not provide any special support for network management.

In our project, we are developing from scratch a new Mobile Agent infras-
tructure that is being tuned and customized for the applications we have in mind
in the area of telecommunications and data network management. For this rea-
son we decided to develop another platform from scratch that would take into
account the following list of issues:

{ high-performance and e�cient code migration,
{ fault-tolerance and robustness,
{ support for network management,
{ exible code distribution and easy upgrading,
{ mechanisms for resource control,
{ disconnected operation,
{ easy-to-use programming interface,
{ 100% pure Java implementation,
{ support for CORBA [11].

These are the main goals of our platform. Some of them have been already
achieved in the �rst release, while the others are scheduled for future versions.

During this project, the platform will be used in two software products: one
in the area of telecommunication and other for data network management. Our
industrial partners (Siemens S.A.) have been developing a prototype application
in the area of performance management by using our platform of mobile agents.
This prototype is already �nished and we are now conducting a benchmarking
study to compare the use of mobile agents over traditional client/server solutions

Centra l Host

N e t w o r k
E lement

N e t w o r k
E lement

N e t w o r k
E lement

Mob i le Agent

Mob i le Agent

J A M E S
Agency

J A M E S
Manage r

User
Opera to r

J A M E S
G U I

J A M E S
agent

J A M E S
Code Server

Code Server

Appl icat ion Developer

Fig. 1. An Overview of the JAMES Platform

to see if we corroborate some of the advantages of this new paradigm in the �eld
of distributed computing.

The rest of the paper is organized as follows: section 2 presents an overview
of the JAMES Platform, giving more emphasis to the most important features
of the system. Section 3 presents some experimental results where we compare
the performance of JAMES against the Aglets system. Section 4 describes the
work we have done in the integration of SNMP in our platform, while section 5
presents a brief overview of the prototype application that has been implemented
by Siemens S.A. Section 6 concludes the paper.

2 The Architecture of the JAMES Platform

The JAMES Platform provides the running environment for mobile agents. There
is a distinction between the software environment that runs in the manager host
and the software that executes in the Network Elements (NEs): the central host
executes the JAMESManager while the nodes in the network run a JAMES Agency.
The agents are written by application programmers and will execute on top of
that platform. The JAMES system will provide a programming interface that

allows the full manipulation of Mobile Agents. Fig. 1 shows a global snapshot
of the system, with a special description of a possible scenario where the mobile
agents will be used.

Every NE runs a Java Virtual Machine and executes a JAMES Agency that
enables the execution of the mobile agents. The agents will migrate through
the machines of the network in order to access some data, execute some tasks
and to produce reports that will be sent back to the JAMES Manager. There is
a mechanism of authentication in the JAMES Agencies to control the execution
of agents and to avoid the intrusion of non-o�cial agents. The communication
between the di�erent machines is done through stream sockets. A special protocol
was developed to transfer the agents across the machines in a robust way and
to provide atomicity to the occurrence of failures.

The application developer writes the applications that are based on a set of
mobile agents. These applications are written in Java and should use the JAMES
API for the control of mobility. After writing an application the programmer
should create a JAR with all the classes that make part of the mobile agent.
This JAR �le is placed in a JAMES Code Server. This server can be a di�erent
machine or in the same machine where the JAMES Manager is executing. In both
cases, it maintains a code directory with all the available JAR �les and provides
a mapping to the corresponding mobile agents. The Code Store can be replicated
if we want to increase the availability of the code.

The host machine that runs the JAMES manager is responsible for the whole
management of the mobile agent system. It provides the interface to the end-
user, together with a Graphical User for the remote control and monitoring
of agents, places and applications. A snapshot of this interface is presented in
Fig. 2. The JAMES GUI is the main tool for management and administration
of the platform. With this interface, the user can manage all the Agents and
Agencies in the system.

The JAMES platform is still in its �rst version but the main features of the
platform can be summarized in the following list:

{ Kernel of the JAMES Manager and JAMES Agency,
{ Service for remote updating of Agents and Agencies,
{ Flexible code distribution (caching and prefetching schemes),
{ Atomic migration protocol,
{ Support for fault-tolerance through checkpoint-and-restart,
{ Recon�gurable itinerary,
{ Support for disconnected computing,
{ Watchdog scheme and system monitoring,
{ Mechanisms for resource control,
{ Logging and pro�ling of agent activity,
{ GUI interface to allow the remote control of agents,
{ Interface with CORBA,
{ Integration of a Java-based SNMP stack into the platform,
{ Inter-agent communication (through JavaSpaces [12]),
{ Multi-paradigms for agent execution (simple agent, migratory agents and
Master/Worker model).

Fig. 2. The Graphical User Interface

The explanation of all these mechanisms is out of scope of this paper, but we
will give some emphasis to some of the issues that have been considered as
more important for our domain of applications: high-performance, exible code
distribution, remote software upgrading, reliability and robustness.

2.1 Flexible Code Distribution

Each Mobile Agent has a speci�c Itinerarywith a set of tasks (Missions) to be
executed across the JAMES Agencies. The agent is usually created and dispatched
by the JAMES Manager.

The code classes of the JAMES agents are grouped in JAR �les - there is one
unique JAR �le per agent. The �rst step is to register the agents in the platform.
All the JAR �les that have been registered are stored in the Code Store.

To enable a more e�cient migration of the agents we have implemented
a exible distribution of their code. The Agencies have their own local disk
repository of agent JAR �les (disk cache) and there is also a local memory cache
of agent classes per Agency. The memory cache is further separated between the
di�erent agents running on the same Agency. The disk and the memory cache
make use of a LRU policy to replace the JAR �les when the cache is full. The
cache size can be customized by the platform administrator.

Every time an agent arrives at an Agency there is a hierarchical progressive
scheme to fetch the classes of the agent: �rst, the agent classes are searched in
the memory cache; then, in the local disk cache. If the JAR �le, associated to
the agent, is not in the local cache the Agency tries to get it from the previous
Agency of the Itinerary. If the classes could not be fetched from this machine
then the Agency contacts the central Code Store.

This hierarchical search scheme provides great exibility in the code distri-
bution. There is always a central point where all the code is stored but there are
multiple choices that can be used to improve performance and scalability.

2.2 Code Prefetching for High-Performance

The caching of JAR �les tries to exploit the locality of code of the mobile agents.
However, we have improved even further the performance of the agent system
by optimizing the inner parts of the migration protocol and by implementing a
code prefetching technique to speed up the execution of migratory agents.

When an agent is created and launched to the JAMES platform it has its own
Itinerary of Agencies. There is always an overhead in the startup time when the
classes of the agent are not in the local caches of the Agencies. This startup time
corresponds to the time that is spent to fetch the classes from the local disk
repository, or from another Agency or from the Code Store.

We can reduce this stratup time by informing all the Agencies that some
particular agent is going to execute there. The JAMES Manager sends some in-
formation to all the Agencies (except the �rst one) of the Itinerary. With this
information the remaining Agencies can load in advance the class �les while the
agent is still executing in the �rst Agency of the Itinerary.

The JAMES Manager maintains a global information about the caching infor-
mation of the Agencies and it can even send the JAR �le in advance to some
Agency, if it that �le does not exist in the remote cache.

2.3 Remote Software Upgrading

The JAMES platform provides a exible mechanism for the remote upgrading of
mobile agents, as well as Agencies. Each Agency is seen as a stationary agent: it
cannot move around the network once installed in a machine, but it should be
easy to upgrade, customize and install by a central host.

The JAMES Agency is composed by two modules: a small jrexec daemon and
the Agency itself. The jrexec daemon is a static piece of software; once installed
it does not need to be constantly upgraded. The Agency itself is a more dynamic
module, since it can be changed whenever required.

The Java jrexec daemon implements an instance of the Class Loader and
receives some network commands regarding the installation and control of the
JAMES Agency. This daemon will be instantiated every time the machine is
booted. The daemon can receive a JAR �le containing a JAMES Agency and
it will perform its local installation. After this �rst step, the JAMESManager can
send some remote commands to the jrexec Daemon:

{ Refresh the local memory by calling the Java garbage collector;
{ Kill the local Agency;
{ Install a new Agency on the local machine;
{ Upgrade the local Agency with a new set of classes.

This scheme will be useful in dynamic environments since it provides a exible
way to upgrade remote software.

2.4 Fault-Tolerance

The JAMES platform has some special support for fault-tolerance. The �rst ver-
sion includes a checkpoint-and-restart mechanism, a failure detection scheme, an
atomic migration protocol and some support for fault-management. The plat-
form should be able to tolerate any failure of a mobile agent, a JAMES Agency
or the JAMES Manager.

Fault-Tolerance at the Agencies. Periodically, the internal state of the JAMES
Manager and Agencies are saved as a checkpoint in persistent storage. The inter-
nal state consists of all the internal objects that keep all the relevant state about
the platform and the execution of the agents. If any of the servers (Agency or
Manager) fails or is simply shut down the system should have enough informa-
tion to recover the server to a previous consistent state. This state is retrieved
from persistent storage and all the internal state can be reconstructed. The
checkpointing mechanism makes use of the Java object serialization facility and
is completely transparent to the application programmer.

Fault-Tolerance at the Mobile Agents. If there is a communication or node
failure that a�ects the execution of the agent the system should have some way
to assure a forward progress of the mobile agent. This is also achieved through
a checkpointing mechanism. When a mobile agent �nishes a task in a JAMES

Agency its internal state is saved to stable storage before being transmitted
to the next destination. The agent is migrated to another host but its data
will remain in stable storage until it has been successfully restarted in the next
Agency. When it is restarted in the new place the system takes a new checkpoint
of the agent and the previous place is informed. The previous checkpoint of the
agent can then be removed from stable storage. This checkpointing mechanism
is transparent to the application developer and is incorporated in the migration
protocol to assure the atomicity of the agent transfer. This means that or the
agent is completely migrated to its destination or whenever is a failure the agent
is not lost and the system is able to recover the agent in the previous Agency. We
have used a conventional two-phase commit protocol to achieve the exactly-once
property in the migration of the agents.

When there is a failure in the migration protocol or if one of the Agencies
in the Itinerary is not available the agent can execute one of the three following
procedures:

1. go back to the JAMES Manager;

2. jump to the next available Agency in the itinerary;

3. or just wait until the destination Agency is back alive.

The procedure to follow by a mobile agent in the occurrence of a failure can be
customized by the application programmer.

Resource Control. One important feature in a platform of mobile agents is
a good set of mechanisms for resource control. In the JAMES platform we have
included some schemes to control the use of some important resources of the
underlying operating system, namely: the use of threads, sockets, memory, disk
space and CPU load.

These schemes have proved to be very e�ective when we were doing some
stress testing. In some situations when the Agencies are running almost out
of any of those resources it was still possible to maintain the platform up and
running. Without such mechanisms the Agencies would normally hang up. With
resource control the platform has become much more robust and this is a crucial
step if we want to use it in production codes.

3 Some Performance Results

In this small section we would like to show the e�ectiveness of some of the
techniques that we have implemented in the JAMES platform.

We decided to compare the performance of our platform with the Aglets
Workbench from IBM Tokyo [6]. We used a simple mobile agent that roams a
network of �ve computers to get a report about the free memory of each machine.
These machines were running Windows NT and JDK 1.1.5 and were connected
through a dedicated 10 Mbit/sec Ethernet network. Each machine was executing
a JAMESAgency, while the JAMESManager was installed in a separated computer.

In Fig. 3 we present the results that were taken when executing by the �rst
time the mobile agent with the JAMES platform and with the Aglets system.
The results were taken with two versions of JAMES: one that makes use of the
prefetching techniques (JAMES-Pref) and another one that uses the normal code
distribution procedure. We increased the internal size of the agent to see its
relevance in the migration time. We used three di�erent sizes: 1 Kb, 100 kb and
1 Mbytes.

In both cases the JAMES platform presented a better performance than the
Aglets system. When using the prefetching technique we were able to improve
the performance against the normal version of JAMES by a factor of 1.8. Also,
the JAMES platform with the prefetching technique was 4 times faster than the
Aglets system. It can also be seen that the performance gap between JAMES and
Aglets increases directly when we augment the size of the mobile agent.

JAMES is being developed with high-performance in mind since this is an
important issue in our target domain of applications while the Aglets Workbench
is mainly oriented for Enterprise computing and Internet applications. In these
two areas performance is not a so crucial aspect.

In the previous experiment we were executing the mobile agent by the �rst
time in the network. The experiment was useful to measure the importance of the
prefetching technique but the application did not make any use of the caching
scheme. In the next experiment, whose results are presented in Fig. 4, we present
the second execution of the mobile agent using JAMES and Aglets. This time the
class �les of the agent were residing in the local caches of the Agencies in the

0

2

4

6

8

10

12

1 Kb 100 Kb 1 Mb

Size of the Agent

E
xe

cu
tio

n
T

im
e

(s
ec

)

JAMES(Pref)

JAMES

AGLETS

Fig. 3. Comparing the performance of JAMES with Aglets Workbench (the use of
prefetching)

network. The JAMES platform was in average 4.3 times faster than the Aglets
system for the second execution of the agent. The interesting aspect is the fact
that Aglets also has a caching mechanism inside its platform, but apparently it
was not so e�cient as the scheme implemented on JAMES.

Although this section did not present a comprehensive study, the performance
results of the JAMES platform seem to be quite promising when compared with
a general-purpose system of mobile agents.

4 Integration of SNMP

In this section we describe in some detail the support we have included in JAMES

platform for SNMP-based network management.

4.1 SNMP and Mobile Agents

Classic management applications use protocols like SNMP [13] and CMIP [14]
to interface with management services in heterogeneous environments. Mobile
Agents will not replace these protocols. Instead, they will complement them with
powerful programming metaphors allowing more e�cient solutions for network
management.

Mobile agents provide a very attractive approach to incorporate mobile code
into the existing local management services, in order to perform intelligent tasks
closer to management data [15]. However, some management protocols are still
necessary to retrieve and process the management information. This is the case
when some of the managed NEs are unable to host mobile agents, the manage-
ment services of NEs are not directly available to the hosted mobile agents or
the interfaces with management services are non-standardised.

0

0,5

1

1,5

2

2,5

3

1 Kb 100 Kb 1 Mb

Size of the Agent

E
xe

cu
tio

n
T

im
e

(s
ec

)

JAMES

Aglets

Fig. 4. Comparing the performance of JAMES with Aglets Workbench (the use of
caching)

Integration of management protocols with mobile agents can be relegated
to the applications' developer, eventually using the same "general-purpose" li-
braries used by static management systems. However, code mobility, security
constraints and resource usage control imposed on mobile agents' applications
seriously limit the usage of these protocols without explicit support from the
underlying infrastructure. This is why JAMES includes explicit support for inter-
operability with SNMP devices and applications.

There are now several worthwhile projects mixing SNMP with mobile agents,
like the Perpetuum Mobile Procura Project [16, 17], the Discovery platform [18],
the Astrolog/Magenta platform [19] and the INCA Architecture [20]. Some of
these projects relegate SNMP support to applications' developers whilst others
integrate SNMP within the mobile agents' infrastructure. The JAMES platform
also integrates SNMP within the platform, but departs from these projects for
the following reasons:

{ it provides maximum interoperability, since it covers three di�erent service
ranges: interaction with local and remote SNMP-agents; interaction between
SNMP-managers and mobile agents; and infrastructure management using
SNMP;

{ it provides full support for agents mobility;

{ it is a completely optional feature of JAMES, imposing no additional overheads
when turned-o�;

{ it does not require any intervention on existing SNMP devices and SNMP
Managers, preserving the overall portability.

 CORBA, Java RMI, . . .

NE with JVM

JAMES

SNMP JAMES
Administration

services provided
by mobile agents

Ag. XAg. P

Legacy SNMP-based
Management Appl icat ions

(not aware of Mobile Agents)

SNMP as a front-end for services
provided to legacy SNMP-based
applications (by Mobile Agents
and by JAMES itself)

SNMP as a tool to access
management services on NEs

not hosting JAMES or not
offering direct access to

mgmt. services)

Management Appl icat ions
based on Mobile Agents

NE without JVM

SNMP Agent

NE without JVM

SNMP Agent

NE with JVM

JAMES

SNMP JAMES
Administration

services provided
by mobile agents

Ag. Z

Ag. P

Remote API Remote API

 SNMP based-communicat ion

S
N

M
P

S
N

M
P

Fig. 5. Proposed Integration Framework

4.2 SNMP Services Provided by JAMES

JAMES includes a framework of full-edged SNMP services already integrated
and available to the NM-application developer, resulting in broader application
�elds and reduced development costs. As represented in Fig. 5, three nuclear
SNMP services were considered:

{ a service allowing mobile agents to interact with SNMP-agents, acting as
SNMP-managers;

{ support for communication between SNMP-managers and mobile (or sta-
tionary1) agents;

{ a management service allowing legacy management platforms to administer
the JAMES infrastructure itself using SNMP.

These services provide the following features:

{ management of NEs not supporting JAMES Agencies but equipped with
SNMP-agents;

{ management of NEs supporting JAMES Agencies but restricting direct access
to management information for security or architecture reasons;

{ management of the JAMES infrastructure itself as an SNMP-service;
{ usage of mobile agents to deploy intermediary management services layered
between NEs (SNMP capable or not) and legacy SNMP-managers. These
could be new services or just management information processing closer to
the NEs;

{ usage of mobile or stationary agents for fast development and deployment
of SNMP services.

1 JAMES supports "stationary agents" in the sense that agents can make little or no
use at all of their migration capability.

JAMES Agency

Plat form Management
SNMP Serv ice

Mobi le Agents Provided
SNMP Serv ices

JAMES SNMP-agent
Core

SNMP-Manager
Service

JAMES Nat ive Administrat ion API

Legacy SNMP-based
Management Appl icat ion

Legacy SNMP Agent

S
N

M
P

 D
at

a
H

an
dl

in
g

S
er

vi
ce

s

JAMES Remote API
(CORBA, RMI,

Enterpr ise Java Beans)

JAMES-aware
Management Appl icat ion

Mobi le
Agent

Mobi le
Agent

Mobi le
Agent

S N M P

S N M P

CORBA, RMI. . .

Fig. 6. High-Level Structure of SNMP Services of JAMES

4.3 Design of SNMP Services

Since SNMP is just one of several protocols to be used by network management
applications, the following design constraints were de�ned:

{ SNMP support must be optional, not increasing resource usage when turned-
o�;

{ SNMP support should not increase the complexity of the platform;

{ design of SNMP support may not compromise the platform scalability and
functionality;

{ SNMP support must be portable across di�erent hosts without conicting
with SNMP services already installed in the hosts, like native SNMP agents.

These resulted in a modular design Fig. 6 where SNMP services are placed out-
side the platform core and can be dynamically installed and removed, without
imposing a permanent overhead in the JAMES infrastructure. Most services con-
sist themselves of mobile agents (the "Service Agents", granted with exceptional
permissions to access necessary resources) providing services to common agents
through inter-agent communication. The Agency o�ers a directory service where
common mobile agents can locate the Service Agents (or implicitly require their
installation). This solution provides an elegant lightweight framework to support
speci�c services. In the future, new kinds of services can be easily integrated into
the JAMES platform.

SNMP Data Handling Services. These services include all the tools needed
to handle SNMP data and SNMP Protocol Data Units. These tools are available
as a set of Java classes for high level representation of SNMP data types and
PDUs, and for ASN.1/BER encoding [21]. Mobile agents impose no particular
requirements to this Service, meaning general purpose Java-based SNMP tools,
like [22], could have been used without prior adaptation.

SNMP Manager Service. This service allows mobile agents to interact with
SNMP Agents using a manager-API, to query SNMP-agents, and a Trap Listener
that receives SNMP Traps and redirects them to the interested mobile agents.
When compared with similar Services integrated in classical management appli-
cations, this Service presents two key di�erences: support for mobility - mobile
agents receive SNMP Traps independently of their present location and migrate
without abandoning ongoing SNMP queries - and the service location within the
platform - based on the already mentioned "Service Agents".

The SNMP Manager-API is based on the traditional concepts in most high-
level SNMP stacks (sessions or contexts, request operations and event handlers),
with protocol details being handled in a transparent way. This Service, located
in "Service Agents", might be replaced with a third-party "classic" SNMP stack
integrated in the Agent's code2, trading-o� mobility support.

The Trap Listener also uses traditional concepts found on other Trap Multi-
plexers. Mobile agents register their interest on the reception of certain SNMP
Traps. Registrations may be valid just while the agent remains at the Agency,
for a pre-de�ned period of time or for the agent's entire lifetime (in the last two
options, the Trap Listener may have to forward the Trap Arrival Noti�cation to
the new location of the agent). The arriving SNMP Traps produce Trap Arrival
Noti�cations.

Services for Interoperability with Legacy SNMP Managers. While the
Service described in the previous section covers communication between mobile
agents and SNMP agents, there three other services providing interoperability
with legacy SNMP Managers (Fig. 7).

The SNMP-agent Core maintains an SNMP-agent with data being supplied
by the two underlying services. The present interface used to register new vari-
ables or groups at the MIB-table, to issue Traps and to reply to SNMP requests
is proprietary, although future use of standard protocols for expansible SNMP
agents like DPI [23], as proposed by [24] is not excluded.

The JAMES SNMP-agent is independent of eventually existing native SNMP
Agents, although integration would be more in the spirit of SNMP. Since native

2 This is based assumption that since JAMES mobile agents implicitly control their
migration, they can delay migration whenever completion of on-going SNMP trans-
actions is crucial. This degrades performance and a�ects the programming model
(agent migration has to become aware of SNMP transactions) but still allows for
some mobility.

Legacy SNMP
Management Stat ion

SNMP Requests

SNMP Responses & Traps

Agency Management
SNMP Service

SNMP Services Provided
by Mobile Agents

Mobile
Agent

JAMES Native Administrat ion APIMobi le
Agent

Registration &
deregistration of
SNMP Objects

Request for
Values, Actions

and Results
Request Trap

Generation

JAMES Remote API
(server side)

Platform Administration,
Mobi le Agents Execution

Control,
Communicat ion with Mobi le

Agents

Management Application
aware of Mobile Agents

Remote API
(Corba, RMI...)

SNMP Services Provided
by Mobile Agents

Fig. 7. JAMES Services for Integration with Management Applications

agents are either monolithic or based on a wide diversity of agent-expansion
mechanisms, like SMUX [25] or DPI, there is no truly portable and non-intrusive
integration method.

The JAMES SNMP-agent allows SNMP communication between legacy appli-
cations and mobile agents, opening the way for easy installation of new manage-
ment services (corresponding to one or several mobile agents) available to legacy
SNMP-based network management systems.

In such a scenario mobile agents can be used to pre-process data gathered
from existing management services (thus o�ering higher level functionality), op-
erate as SNMP proxies for NEs using proprietary management interfaces and
dynamically install new management services.

The use of stationary or mobile agents for fast deployment of management
services available to legacy applications is not new. The JDMK toolkit [26], al-
though not based on mobile agents, shares the vision of a fast and exible scheme
to develop and deploy management services. It includes a complete set of tools to
create and remotely install these services using Java and push/pull techniques.
The Perpetuum Mobile Procura Project [16, 17] presents a framework where
mobile agents use DPI to provide services to SNMP Managers.

The JAMES approach consists of a "service agent" where mobile agents inter-
ested on providing an SNMP interface must register their SNMP objects. Later
on, SNMP requests from outside applications result in events passed to mobile
agents. These events will then trigger prede�ned management actions resulting
in SNMP responses.

The JAMES SNMP agent also allows SNMP-based management of the JAMES
platform itself. Although a richer interface is available to dedicated applica-
tions using Java RMI and CORBA, a subset of management functions has been
"translated" into an SNMP MIB that provides monitoring, fault-management
and performance management. This is implemented using a "Service Agent"
(the Agency SNMP Management Service) that acts as a translator between the
SNMP-agent Core and the internal JAMES administration API (Figure 7). The
intention is not to use SNMP to fully administer JAMES but to provide a simple
SNMP-based management service.

5 Prototype Application for Performance Management

The software for TMN Performance Management is currently dominated by
systems based on Client/Server technologies. In most cases, this approach results
in monolithic, not scalable and hardly exible solutions.

Typically, there are several network devices distributed across the network.
In each device it is installed a static server (or agent) that is responsible for
collecting raw data the local device, with little or even no pre-processing at
all. At the manager host there is a client process that interacts with all the
servers in the network devices, collects the information from them and provides
the information required to the end-user. These servers (or agents) are static
and proprietary processes. They are very di�cult to upgrade or to customize.
Some of the current solutions also su�er from an information bottleneck at the
manager host due to its centralized nature. Some of the applications are very
ine�cient in the use of the network bandwidth, since most of the data has to be
sent from the network devices to the manager site in order to be processed.

Additionally, raw data information generated in the TMN Network Elements
has some "troublesome" characteristics, like:

{ proprietary raw data formats;

{ huge amount of raw data produced at a daily basis;

{ variation of data formats depending on customer and/or software version
installed.

Given this scenario, the use of Mobile Agents for TMN data collection provides
several potential bene�ts. First of all, mobile agents allow some processing at
the data sources which increases the scalability and reduces the tra�c in the
network. The robustness of the application is also improved through the use of
autonomous mobile agents and the application provider will have a more exible
paradigm to deal with the diversity of network con�gurations. The application
developer can create diverse collector agent versions, each one matching the
proprietary raw data format involved, the software versions involved and the
customer involved. Software upgrading is another important issue that comes
from the use of mobile agents. The upgrade of an application requires only the
coding of new agents or the automatic deployment of new agent versions over the

managed network. This way, the extension of the functionality or the installation
of new software versions becomes more exible and e�ortless.

In order to evaluate the use of mobile agents and the JAMES platform in real
PM/TMN environments we have designed a prototype application to provide
O&M Destinations Reporting, a component of TMN Performance Management
Tra�c measurements [27].

A commercial TMN application from Siemens S.A. already addresses this
problem, making it possible to evaluate the advantages/disadvantages of Mobile
Agents versus the use of the client/server paradigm in a real TMN environment.

5.1 Overview of the Application

The TMN application from Siemens collects and processes performance data
from the NEs in order to produce a set of global reports about the performance
of the network. This can be applied to the mobile and switched network. Right
now, data collection and report building are two dissociated tasks: data is col-
lected through �le-transfer and is organized in a centralized relational database.
This database is later queried to produce the performance reports. This two-step
approach is based on a traditional client/server approach and presents some tech-
nical limitations: the data collection introduces too much tra�c in the network
and the overall system has some problems of scalability.

The benchmark application, designated as "EWSD Destination Reporting
Application", is designed to reproduce a representative subset of the TMN ap-
plication reports using mobile agents to collect and process the management
data. This new version of the application is supposed to overcome some of the
problems of the existing client/server version. It is structured into three di�erent
modules:

{ an application GUI that handles the end-user requests and outputs the re-
ports;

{ a mobile agents handler, responsible for the control of the reporting features;
{ the application speci�c mobile agents which are assigned to ful�l the required
reports.

The benchmark application produces two di�erent types of reports: on-demand
and prede�ned/scheduled reports. On-demand reports correspond to requests to
be immediately executed over the tra�c destination raw data �les stored in the
remote NEs. Fig. 8 presents a snapshot from an on-demand report that shows
the evolution of two combined tra�c destination counters.

Prede�ned reports are a sort of report templates with a pre-de�ned behavior.
This report templates can be used at a later time with user provided attributes
like time window to be evaluated, NEs to be considered, type of tra�c destination
to be analyzed, etc.

5.2 Benchmark Study

The development of the benchmark application is already complete and a bench-
marking study is being conducted, focusing on the following metrics:

Fig. 8. Snapshot from the Prototype Application: a Time Behavior Report in Raw
Table Format

{ scalability and tra�c bottlenecks;
{ dynamic execution of mobile agents;
{ performance and mobility;
{ network tra�c;
{ persistency of the applications;
{ robustness under stress testing;
{ upgrading mechanisms for both agents and agencies;
{ easiness to use and develop applications using the JAMES API;
{ exibility of customization.

The complete results of this benchmarking study should be complete within a
couple of months.

6 Conclusions

The JAMES Project exploits the paradigm of mobile agents in the �eld of man-
agement of telecommunication networks: the use of Mobile Agents. We are de-
veloping a Java-based platform of mobile agents and we have some important
goals in mind, like: high-performance, exible code distribution, remote software
upgrading, reliability, robustness and exible support for SNMP and network
management. The preliminary results about the performance of the platform
seem to be quite promising.

The JAMES platform will be used in two software products: one in the area of
TMN and another for data network management. Within this project we expect
to show that Mobile Agents can overcome some of the problems that exist with
traditional Client/Server solutions.

Acknowledgements

This project is partially supported by Agência de Inovac~ao and was accepted
in the Eureka Program (�!1921). Special thanks to the rest of the team that
is working in the project: Luis Santos, Fernando Bernardino and Rodrigo Reis
(from the University of Coimbra), Jochen Reban, Patricia Monteiro and Jo~ao
Boavida (from Siemens S.A.) and Norbert Baumgart (from Siemens A.G.).

References

1. Agent Product and Research Activities. http://www.agent.org/pub/activity.html
2. Intelligent Agents. Communications of the ACM. Vol. 37, No. 7, July 1994
3. Hermans, B.: Intelligent Software Agents on the Internet.

http://www.hermans.org/agents/index.html
4. Magedanz, T., Rothermel, K., Krause, S.: Intelligent Agents: An Emerging

Technology for Next Generation Telecommunications. Proc. INFOCOM'96, San-
Francisco (1996)

5. Pham, V.A., Karmouch, A.: Mobile Software Agents: An Overview. IEEE Com-
munications Magazine, pp. 26-37, July 1998

6. IBM Aglets Workbench, http://www.trl.ibm.co.jp/aglets/
7. Concordia, http://www.meitca.com/HSL/Projects/Concordia/
8. General Magic Odyssey, http://www.genmagic.com/agents/
9. Voyager, http://www.objectspace.com/voyager/
10. Jumping Beans, http://www.JumpingBeans.com/
11. OMG: The Common Object Request Broker Architecture and Speci�cation. (1995)
12. JavaSpaces, http://java.sun.com/products/javaspaces
13. Rose, M.: The Simple Book - An Introduction to Management of TCP/IP-based

Internets, 2nd Edition. Prentice-Hall International Inc. (1994)
14. ISO/IEC 9595: Information technology - Open Systems Interconnection - Com-

mon management information Service de�nition. International Organization for
Standardization, International Electrotechnical Commission (1990)

15. Goldzmith, G., Yemini, Y.: Decentralizing Control and Intelligence in Network
Management. Proceedings of 4th International Symposium on Integrated Network
Management, Santa Barbara (1995)

16. Perpetuum Mobile Procura Project, Carlton University,
http://www.sce.carleton.ca/netmanage/perpetum.shtml

17. Bieszczad, A.: Advanced Network Management in the Network Management Per-
petuum Mobile Procura Project. Technical Report SCE-97-07, Systems and Com-
puter Engineering, Carleton University (1997)

18. Lazar, S., Sidhu, D.: Discovery, A Mobile Agent Framework for Distributed Appli-
cation Development, Technical Report, Maryland Center for Telecommunications
Research, University of Maryland Baltimore County (1997)

19. Sahai, A., Morin, C.: Enabling a Mobile Network manager (MNM) Through Mobile
Agents. Proceedings of Mobile Agents, Second International Workshop MA'98,
Stuttgart, Germany (1998)

20. Nicklish, Quittek, J., Kind, A., Arao, S.: INCA: an Agent-based Network Control
Architecture. Proceedings of IATA'98, Paris (1998)

21. Information Processing, Open Systems Interconnection: Speci�cation of Basic En-
coding Rules for Abstract Syntax Notation One. ISO (1987)

22. AdventNet SNMP, http://www.adventnet.com/products/snmpbeans
23. Wijnen, B., Carpenter, G., Curran, K., Sehgal, A., Waters, G.: Simple Network

Management Protocol Distributed Protocol Interface Version 2.0, RFC 1592 (1994)
24. Susilo, G., Bieszczad, A. and Pagurek, B.: Infrastructure for Advanced Network

Management based on Mobile Code. Proceedings of the IEEE/IFIP Network Op-
erations and Management Symposium NOMS'98, New Orleans (1998)

25. Rose, M.: SNMP MUX protocol and MIB. RFC 1227 (1991)
26. Java Dynamic Management Kit, http//www.sun.com/software/java-dynamic
27. ITU-T Recommendation M.3010: Principles for a Telecommunications Manage-

ment Network. (1992)

