Sixth European Business Intelligence & Big 7/4/16
Data Summer School (eBISS 2016)

Roadmap
Big Data Warehouses and ‘ o .
Analytics: AbOUt Scalability and 1. Generic Data Organizations and Architectures

Realtime
2. Spark

Pedro Furtado

Sixth European Business Intelligence & Big Data 3. Lambda Architecture and Realtime
Summer School (eBISS 2016)

4. Analytics and Data Mining with Spark

What types of apps are there? NOSQL?FRAMEWORKS? Relational DBs |
BigData Stores !
Huge data 9 nu Page
Scale Y(JII

Latency < 1 secs

Transactional/operational systems

Always Available 7 e AT PR
ACID :i;l = —
Latency < 100 msecs amagon ‘ - VISA €23 E
Analytlc/DeC|S|on support systems Table Extents ¢
Scale complex relational = Directory X
ops @ 'g == ;
Latency < 5 secs . ; \\ % v
Elastic Data mining \o v
e] \ row-wise: m
i I o1) Name, sex, job, dept . M
Procedural flexibility 252:2:3;,,, A ;‘g!v::. LuLsets_l_I_J_J_[col-wise: .
Scalable, elastic e ?ﬂ :um‘zﬁ ‘“ ““?_ - v
RDBMS Query Plans and D‘Q 1. RDBMS and Beyond:
Optimization / o Optimization
Whatever you may have (key-val, doc, hadoop), m ‘TZ
can you match RDBMS optimization capabilities? Rel Algebra

Explain Select B,D From R join Son C Query Text >‘ Parse Tree‘)

Where R.A="c' and S.E=2

and R.C=S.C PICK STATISTICS
Best e.g. Nr of distinct valies of <

Plan attributes

Eor o

Presentation
Pedro Furtado, U. Coimbra, Portugal 1

Sixth European Business Intelligence & Big
Data Summer School (eBISS 2016)

Critique of Relational DBs

Fallacy:
That it is mostly disk-based
Most Severe Limitation:

Lots of housekeeping overheads:
RDBMS processing profile (time spent)
12% useful work

20% logging

18% locking

10% latching

29% buffer management
11% index management

“OLTP thorugh the Looking Glass, and what we
found there, S. Harizopoulos, D. Abadi, S. Madden
and M. Stonebraker, in ACM SIGMOD 2008”

No-SQL Data Stores

Key-value data stores, Document stores, etc

Do not oblige fixed schemas

Many allow data to be directly in text or xml files

There is frequently no complex loading, compression, opt.
No Joins and no other complex relational algebra operations
Mostly PUT, GET, FILTER AND SCAN

Are usually massively parallelizable

Redis
getlkey)/ putliey,value) == nnASE Cassandra
Hashing of identifier . - o
mongo[)l‘s sriak
Fosh nteras
e B e B e B CouchDB U b
PO s B s I s | U
A | | f)sm.msu
S S o
| = 1~ Y, LTI T J{membase

Key-value Stores

Most basic key-value organization:
Just use filesystem files to keep the data

Text format: keyAttribute, BL-TEXT
234332234,
[“date™:”23/6/2016”,
“title”:”Angry Ronaldo throws microphone to lake”,
“text”:”lore ipsum lore lore....”];
Binary format:
234332234, BinObj:#124332

Parallel Query Processing

Architectural Parallelism
shared-memory (e.g. cores, processors), threading
shared-nothing (nodes with PU, MEM, DISK)
shared-disks (multiple nodes access disks)

Query Parallelism intra-query:

Original Data Sets DS
DS fragm| | DS fragm | | DS fragm

inter-query:

[Join(DS1, Dsl)

Horizontal Vertical or pipelined

Parallelizing Processing

to run it n times faster ... “Divide to conquer”
«Partition large fact

—-small- di

+*Hope for linear speedup

Presentation
Pedro Furtado, U. Coimbra, Portugal

Parallelizing Query Processing

SUM(X)
over 1/n of data

ISuM(X)
SUM(X))
over FACT, dims xegiinicridats SUM(SUMS)

GROUP BY dims

Ex:
Show sales
per brand per month)

SUM(X)
over 1/n of data

for the whole last year

7/4/16

Sixth European Business Intelligence & Big 7/4/16
Data Summer School (eBISS 2016)

_ _ _ Avoid Join Problem => partition
Operations Parallelism - Join

o 10
~ PROBLEM WITH JOINS g —
Conceptually, every Join | Node 1 &1
is: initi ioi 10 25 50 75 100 250
ab n Can we place the data initially so that joins are fastes 1 of nodas
Foreach tuple from A to avoid data shipment on-the-fly on every query
Foreach tuple from B
if (A.a==B.b) ab b2 b3
result=result+ A.a | B.b al a2 a3 ab > 10 V21 234
1w 234 10
2 V2 43 1 0w Low Speedup 2-6
WITHOUT re-SHUFFLE: T an
de 2 ar2
Result should be: Node as
@
Ao Bl a2 a3 b < a b2 b3 o
A(3,...),10 B(v21,...) 3 v23 367 10 1 v23 367 as
o
Result is: R
A(1,..),10 B(v21,...)

Join Processing with Repartitioning

Partitioned Join (NOT ALWAYS POSSIBLE) You MUST PARTITION
each node must have same values of join attribute eve ry blg table
Repartition Join -> lots of overhead, SHUFFLE at PLACEMENT time
| pen

nodes do not have same values of join attribute
assign join attribute hash-intervals to each node

exchange ON-THE-FLY rows between nodes for same hash

NOW JON HOW TO PARTITION?

Broadcast Join -> lots of overhead, SHUFFLE

nodes do not have same values of join attribute

nOdggoadcast ON-THE-FLY full content of one of data sets to all WO rkl Oa d - ba Sed Pa rtltl O n | ng

Pedro Furtado 2015

WKLOAD-BASED PARTITIONING ; ;
Join frequency , table sizes, intermediate resul*s... Proposed SO|Utlon Algorlthm

“Very Small” Dimensions

Replicate = BROADCAST, COPY TO ALL NODES ONCE
Non-small “pure” Dimensions

Hash-Partition by PRIMARY KEY (JOINS)
Large relations / Facts

Find key that minimizes repartitioning costs
Hash-partition by it

Pedro Furtado: Hash-based Placement and Processing for Efficient Node Partitioned
Query-Intensive Databases. ICPADS 2004: 127-134

Pedro Furtado: Experimental evidence on partitioning in parallel data warehouses.
DOLAP 2004: 23-30

Presentation
Pedro Furtado, U. Coimbra, Portugal 3

Sixth European Business Intelligence & Big
Data Summer School (eBISS 2016)

WK-LOAD-BASED PARTITIONING

Relations, Query Joins, Query Intermediate Result Sizes,...

Minimize the number and cost of repartitioning;

8(c3)
[REAT R2.AT
T —
[R3.A3 RS.A3
.
(€2)

From past workload: LINK weight = Frequency of occurrence X size of join

Step y — For each relation R
Pick the link with highest weight containing the relation
The relation R is to be partitioned by the links’ equi-join attribute;

Pedro Furtado: Hash-based Placement and Processing for Efficient Node Partitioned
Query-Intensive Databases. ICPADS 2004: 127-134

Basic VS WKLOAD-based Partitioning 25 nodes

JOIN ALGORITHM: Ship only selected rows from LI ..

Qts Q4
z 2
g al g an
<} <]
a8 Qi9
0 10 20 30 o 5 10 15 20 25
Speedup Speedup
ato |
Q12
Q16 a4
g
R Qs
Qs
0 » 20 30
a7 Speedup
0 30

o 2
Speedup

Merging bottleneck over aggregation

10 GB, aggreg over union

erging Node:
ex: SUM(sums)
GROUPBY a, b, ¢

5

Each Node:
SUM(x)
GROUPBY a, b, ¢

Massive NOSQL Parallelism
e.g. Cassandra in the perspective of Datastax
O ——
Fully distributed, no SPOF

0.0
)

Cassandra in the perspective of

Datastax
e —
Partitioning

Primary key determines placement*

Jim age: 36 |car: camaro| gender: M

carol age: 37 |car: subaru| gender: F

johnny age:12 gender: M

suzy age:10 gender: F

Pedro
Furtado
2015

Presentation
Pedro Furtado, U. Coimbra, Portugal

Cassandra in the perspective of

Datastax
PK MD5 Hash
jim 5e02739678... MDS5 hash
operation yields
carol 2920198010... 2 128-bit
hi faeb27cea?... number for
johnny eb27cea keys
suzy 78b421309... of any size.

7/4/16

Sixth European Business Intelligence & Big 7/4/16
Data Summer School (eBISS 2016)

Modern Scalable Platforms
not only DATA STORE, also process

What is HDFS? HBASE:

Cassandra in the perspective of
Datastax

3 o ke
The t()]((‘l’l I'lng _ hbase > create ‘product’.’characteristics’

Start End

What is Hadoop?

- | x0000000000.. What is Map-Reduce? hbase > put ‘product’, o
.| 0x4000000000.. ‘tvsetphym4567’,’characteristics:size’,’100"
7 What is Hbase?

0x8000000000..
To view the contents of ‘product’:

.| 0xc000000000...
0

hbase > scan ‘product’

I HBase | I Hadoop Map-Reduce ‘ | BigTable ‘ | Google Map-Reduce |
r
\

==

| HadoopDistributed File System ‘ | Google File System |

Furtago

2015

Modern Scalability Platforms
Map-Reduce (hadoop + MR)

Way to parallelize computation

Program
1. THINK OF AN ALGORITHM o o
2. PLACE IT UNDER M/R MODEL 3 :
Input= FLAT file organized as (Key, value) s .

2) assigh’ - -
O @jassign

Map(k,v) --> (k', V') Reduce(k',V[]) -> v"
Group (K, v)s by k'

d o= | :l\

Jerry Zhao, Jelena Pjesivac-Grbovic, MapReduce, The Programming Model and Practice,
In Sigmetrics/Performance 2009, Tutorials, June 19th 2009 MapReduce [

)
2L @ tocatwite & B
Lo o)

Input Map Intermediate files Reduce Output
fles phase (on lacal disks) phase fles

Jerry Zhao, Jelena Pjesivac-Grbovic, MapReduce, The Programming Model and Practice,
In Sigmetrics/Performance 2009, Tutorials, June 19th 2009 MapReduce A

Frtado

015 2

Hadoop and Map-Reduce: specify
algs

. Word Count = count the number of times each word appears in a
Map: input=set of ((key,)value) document

for each line or item of (value)
do whatever

Map and Reduce

Word Count Solution Google

//Pseudo-code for "word counting"
map (String key, String value):

get new k, value from it // key: document name,
N // value: document contents
emit(k, value) for each word w in value:

EmitIntermediate(w, "1");

reduce (String key, Iterator values):

// key: a word
Reduce // values: a list of counts
int word count = 0;
fOI’ eaCh pair(k‘ Vaer) for each v in values:
word_count += ParseInt(v);
merge somehow Emit(key, AsString(word_count));
get new k, value from it No types, just strings”

emit(k, value)

Jerry Zhao, Jelena Pjesivac-Grbovic, MapReduce, The Programming Model and Practice,
In Sigmetrics/Performance 2009, Tutorials, June 19th 2009 MapReduce

Presentation
Pedro Furtado, U. Coimbra, Portugal 5

Sixth European Business Intelligence & Big 7/4/16
Data Summer School (eBISS 2016)

=] Spark

Executor

e Arch

SparkContext [#——> Cluster Manager
Worker Node
Spark Eare

Some Spark ‘
Components [EESREEEE-

learning)

Pedro Furtado

Sixth European Business Intelligence & Big Data
Summer School (eBISS 2016) Apache Spark

Spark Shell

> bin/spark-shell

The Platform and Architecture Scala (according to wikipedia)

Hadoop
Distributed data infrastructure: It distributes massive data
collections across multiple nodes within a cluster of commodity Scala is a programming language for general software applications.
servers;
It also indexes and keeps track of that data, enabling big-data Scala has full support for functional programming and a very strong
processing and analytics; static type system.
Hadoop = Hadoop Distributed File System + MapReduce + ...

Spark Designed to be concise,[8] many of Scala's design decisions were

inspired by criticism of the shortcomings of Java.
Data-processing tool that operates on those distributed data
collections; it doesn't do distributed storage.

Spark = Data processing framework, needs a file management
system, preferably distributed for scalability (e.g. HDFS or cloud)

http: infoworld.com/article/3014440/big-data/five-things-you-need-to-know-
about-hadoop-v-apache-spark.html
Katherine Noyes, IDG News Service | Dec 11, 2015

Resilient Distributed Dataset RDD RDD @) RDD or RDDs

smaller (e.g. filter, count, distinct, sample),
bigger (e.g. flatMap, union, cartesian)

“Resilient Distributed Datasets (RDDs) are a distributed memory same size (e.g. map)
abstraction that lets programmers perform in-memory computations

on large clusters in a fault-tolerant manner.

transformations - lazy operations that return another RDD.

actions - operations that trigger computation and return values. "~ TRANSFORMATIONS

Represents an immutable, partitioned collection of

elements that can be operated on in parallel
ShuffledRDD -~ «Ermuzzdwkw - pairs.educedykey(_+)

ACTION
Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. [val top10words = Aol (.2) ”
Franklin, Scott Shenker, and lon Stoica. 2012. Resilient distributed datasets: a fault-tolerant abstraction for
in-memory cluster computing. In Proceedings of the 9th USENIX conference on Networked Systems Design https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-rdd-
and Implementation (NSDI'12). USENIX Association, Berkeley, CA, USA, 2-2. transformations.html

Presentation
Pedro Furtado, U. Coimbra, Portugal 6

Sixth European Business Intelligence & Big 7/4/16
Data Summer School (eBISS 2016)

[Transformation Meaning
fap unc) Retur a new distributed dataset formed by passing each element of the source through a functi
In-Memory ter func) Return a new dataset formed by selecting those elements of the source on which funcreturns tru
hratapunc) Similar to map, but each input tem can be mapped to 0 or more output tems (so funcshould ret
i i i i LamplewithRepiacement, raction, seed) ‘Sample afraction fraction of the data, with or without replacement, using a given random numbel
data inside RDD is stored in memory as much (size) and long (time) as possible. Erionitrerpatesen R a new dataset tha contaln e nin fth sleentsn e soutc daasetand th argu
fntersection(otherDatase Return a new DD that contains the intersection of elements in the source dataset and the arguni
Immutable or Read-Only i o e e e e e a1 P 5
feduceByKey (func, [numTasks]) When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where the values for eacl
does not change once created and can only be transformed using transformations to bogrogateByKeyizeroValue)seqOp, combOp. [numTasks) When called on a cataset o (K,) pais,returns a dataset of (K, U) pairs where the values for o]
new S. ortByKey((ascending), [numTasks) When called on a dataset of (K, V) pairs where K implements Ordered, returs a dataset of (K, V)
oin(otherDataset, [numTasks]) When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (V, W)) pairs with all paif
Lazy evaluated umTasks) When called o datasets oftype (K, V) and (€. W), return a dataset of (K. (terable<, Herable<
artesian(otherDataset) When called on datasets of types T and U, returns a dataset of (T, U) pais (al pais of elements).
data inside RDD is not available or transformed until an action is executed that triggers ie(command, fenvVars]) Pipe each partition of the RDD through a shell command, e.g. a Perl or bash script. RDD element]
the execution. fcoatesce pumpartitions) Decrease the number of partitions in the RDD to numPartitions. Useful for running operations mol
Cacheabl fopartition(numPertiions) Reshuffie the data in the RDD randomiy to create either more or fewer partiions and balance it a
acheaole
you can hold all the data in a persistent "storage" like memory (default and the most L|St of Actlons
preferred) or disk (the least preferred due to access speed).
frction Meaning
Parallel rcuesiure Nrregn th dmt f h datase using i wich akes o aruments ard ks, T ncon s
Roturn all the alements of the datasat as an aray at the driver program. This is usually useful fter a fiter or other operation
process data in parallel. foount) Return the number of elements in the dataset.
irst) Return the frst slement of the dataset (smilar to take(1)
Typed hakelr) Return an array with the first n elements of the dataset
[seed]) R ‘with a random sample of num elements of the dataset, with or without replacement, optionally pre-specifying|
i i hakeOrdered(n, fordering) Roturn the first n elements of the RDD using aither thei natural order or a custom comparator.
values in a RDD have types, e.g. RDD[Long] or RDD[(Int, String)]. Eovenstonrisca Wi dlomont 1 dataen 8t o st o o s i g Gecary i o o feystm, HOFS o any
Partitioned, Jova and Scala) ihe dataset a5 a HOFS or any other Had
. P . N JsaveAsObijectFile (oath)
the data inside a RDD is partitioned (split into partitions) and then distributed across Java and Scala) Write the elements of the dataset in a simple format using Java serialization, which can then be loaded singsparkContex. o
nodes in a cluster (one partition per JVM that may or may not correspond to a single JeountByKey(Only avaiiable on RDDs of type (K. V). Returns a hashmap of (K, Int) pairs with the count of each key.
node). Run a function func on each element of the dataset. This is usually done for side effects such as updating anAccumulator o i
Note: modifying ther itside of the foreach(may result in undefined behavior.

Some details on operations

Join : Joining two RDDs may lead to either two narrow dependencies (if they are
both hash/range partitioned with the same partitioner), two wide dependencies,
or a mix (if one parent has a partitioner and one does not). In either case, the

RDD Persistence

Each node stores its partitions in memory for re-use next

Caching is a key tool for iterative algorithms and fast interactive use. output RDD has a partitioner (either one inherited from the parents or a default
cache() -> stores in-memory Storagel evel. MEMORY_ONLY hash partitioner). :> Remember that we already talked about this
today, with different names!!!!

. Narrow Dependencies: Wide Dependencies:
Persisted RDD storage level:

On disk,

In-memory but as serialized Java object (to save space)

Replicated across nodes map, filter groupByKey

Off-heap in Tachyon (reduces garbage collection overhead and allows executors to

be smaller and to share a pool of memory)

persist()-> MEMORY_ONLY, MEMORY_AND_DISK,

. join with inputs
MEMORY_ONLY_SER (more space efficient)

co-partitioned
MEMORY_AND_DISK_SER, DISK_ONLY,
OFF_HEAP

join with inputs not

union co-partitioned

Shuffle

The under-the-hood rehashing operations

g Broadcast Variables

Involves disk I/0, data serialization, and network I/0 Give every node a copy of a dataset

Internally, outputs from individual map tasks are kept in memory Spark uses efficient broadcast algorithms to reduce
until they can’t fit communication costs.

When data does not fit in memory Spark will spill these tables Spark already automatically broadcasts the common data needed
to disk (disk 1/0, serialization, garbage collection). by tasks within each stage.

Shuffle operations can consume significant amounts of heap

memory Explicitly creating broadcast variables is only useful when

Shuffle also generates a large number of intermediate files on tasks across multiple stages need the same data
disk.

Shuffle behavior can be configured val broadcastVar = sc.broadcast(Array(1, 2, 3))

Lookup tables and SMALL tables that are joined frequently

Presentation
Pedro Furtado, U. Coimbra, Portugal 7

Sixth European Business Intelligence & Big
Data Summer School (eBISS 2016)

HADOOP YARN: Cluster Resource
Manager

Yet Another Resource Negotiator: 2nd-gen Hadoop, YARN is now a
large-scale, distributed operating system for big data applications ->
manages the resources, with multiple request submitters and so on

BATCH, INTERACTIVE & REAL-TIME DATA ACCESS

Script saL Java NoSQL = Stream |In-Memory| Search Others

Scala
Pig Hive | Cascading| HBase | Stom Spark sarr@
Accumulo

1SV

[Tz J oz B ez [Sicer Y Sicer] Engines
YARN: Data Operating System
(Cluster Resource Management)
HDFS

(Hadoop Distributed File System)

Spark: Examples

Easy to Code (Scala, Python, Java), easy to use

Word count in Spark's Python API

text_file = spark.textFile("hdfs://...”)

text_file.flatMap(lambda line: line.split())
.map(lambda word: (word, 1))
.reduceByKey(lambda a, b: a+b)

Count number of lines with word ‘Spark’ Scala

scala> val textFile = sc.textFile("README.md")
scala> textFile.filter(line => line.contains("Spark")).count()

http://spark.apache.org/docs/latest/quick-start.html

pySpark: Processing Data and
Using Mlib
Read the file, transforming the lines into float fields
inp_file= sc.textFile("'car-data/car-milage.csv")
car_rdd= inp_file.map(lambda : [float(x) for x in line.split(",")])
car_rdd.count()

3
car_rdd.first()

Calculate statistics for the minimum, maximum and average of
each attribute

from pyspark.mllib.stat import Statistics
car_rddA =car_rdd.map(lambda x: [array(y) fory in x])

summary = Statistics.colStats(car_rddA)
print(str(summary)) im0

et e |
for x in summary.min(): print("%4.4f " % x)
for x in summary.mean(): print("%4.4f " % x)
for x in summary.max(): print("%4.4f"9%x)
From: Fast Data Processing with Spark, 2" Edition,
https://github.com/xsankar/fdps-vii Holden Karau, Packt publishing, April 2015

pySpark
Use corr function from pyspark.mllib.stat statistics to
study the correlation between vehicle power (hp -horse
power) and vehicle weight (weight). Get the correlation
based on two alternative methods, "pearson" and
"spearman". What do you conclude about the degree
and form of correlation?

hp= car_rdd.map(lambda x: x[2])

weight= car_rdd.map(lambda x: x[10])

weight.foreach(print)
print('%2.3f' % Statistics.corr(hp, weight, method="pearson"))
print('%2.3f' % Statistics.corr(hp, weight, method="spearman"))

Outputs: 0.888 e 0.874

From: Fast Data Processing with Spark, 2" Edition,
https://github.com/xsankar/fdps-vii | Holden Karau, Packt publishing, April 2015

pySpark

Create code to analyze the speeches of 5 US presidents to determine the most relevant
issues and challenges at the time each of them was president.

The datasets are the speeches of George Washington (GW) , Abe Lincoln (AL) , Franklin
Delano Roosevelt (FDR), Kennedy (JFK) , Bill Clinton (BC) , GW Bush (GB) & Barack
Obama (BO)

POA (Plan of Action)

Read the 7 data sets to 7 RDDS

Create the word vectors

Transform into frequency-of-words vector

Remove common stop words

Inspect the keywords to get top n for each president

Calculate the differences between top wording of two presidents

From: Fast Data Processing with Spark, 2" Edition,
https://github.com/xsankar/fdps-vii Holden Karau, Packt publishing, April 2015

Presentation
Pedro Furtado, U. Coimbra, Portugal

Presidents Wordings (1)

Get the vector of words designated as President BO (Barrack Obama).
Then show the number of words and the frequency of each word.

from operator import add ('terrorists', 10)

lines= sc.textFile("2009-2014-B0.txt") ('liberal;', 1)
lines.foreach(print) ('sense', 15)
('rich’, 3)
word_count_bo = lines.flatMap(lambda x: x.split(' ')).\ (:ﬁmﬂy'r 2)
map(lambda x: (x.lower().rstrip().Istrip().rstrip(",").rstrip("."),1)).\ (‘back’, 53)

(‘prudent’, 1)

('strained’, 1)
word_count_bo.count()

(‘preserve’, 2)
4835 ('realities', 1)
word_count_bo.foreach(print) (‘control', 9)

https://github.com/xsankar/fdps-vii

reduceByKey(add)

7/4/16

Sixth European Business Intelligence & Big
Data Summer School (eBISS 2016)

Presidents Wordings (2)

comman_words = ['c:

Remove common words.

Show ordered by

the most frequent houin

words in speech.

word_count_bo_1 = word_count_bo.\

sortBy(lambda x: x[1],ascending=False)

word_count_bo_1.take(5)

word_count_bo_clean = word_count_bo_1.filter(lambda x: x[0] not in common_words)

word_count_bo_clean.take(10)

('jobs', 148), ('people’, 144), (‘american', 133), (‘america’, 131), ('years', 116),
('work', 108), (‘americans', 105), ('time', 89), ('energy', 87)

https://github.com/xsankar/fdps-v

Presidents Wordings (2)

Detect the top differences between speech of BO and GWB. Do this in two
ways:

1. show the top 5 words of each,

2. compute and print the difference between those speeches.

word_count_bo_clean.take(10)
word_count_gwb_clean.take(10)

for x in
word_count_bo_clean.subtractByKey(word_count_gwb_clean).sortBy(lambda x: x[1],ascending=False).take(15):
print(x) ('banks', 22)
(‘industry', 20)
('trillion', 17)
(‘'middle-class', 13)
('wage', 12)
(‘class', 12)

https://github.con ar/fdpsvii

Spark RDDs, Data Frames and
DataSets

RDDs, DataFrames and Datasets in Apache Spark

Brian Clapper, in NE Scala 2016

Interfaces to SparkSQL and Spark

User Programs
(Java, Scala, Python)

JDBC Console ‘

v v v
Spark SQL
l Catalyst Optimizer |
v
Spark

| Resilient Distributed Datasets |

Figure 5. Interfaces to SparkSQL and interaction with Spark [5]

DataFrame API

Higher-level
Closer to WHAT instead of HOW
Builds a query plan underneath
you can ALSO SPECIFY it with SQL

RDDs, DataFrames and Datasets in Apache Spark
Brian Clapper, in NE Scala 2016

You do not care where the data comes from, it can be
read from a JSON file, DBMS, whatever!!

Transforming the RDD into a DF
project(page,numRequests)

You can read a dataframe from any input file format
Then do a group by, a sum, a limit, and show 100 records (action)

val df =
parsedRDD.toDF("project", "page", "numRequests")

df filter($"project"
groupBy($"page").
agg(sum($"numRequests").as("count")).

="en").

df.registerTempTable("edits")

sqlContext.sql("SELECT page, sum(numRequests)

limit(100). OR AS count FR‘OM e,ditS,
show(100) WHERE project = 'en
GROUP BY page LIMIT
.show(100)

Optimization (catalyzer)

. Logical Physical Code
Abstract syntaxtree

Analysis Optimization Planning Generation
Selected

~ Physical Plan " RPPS

Cost Model

SQLAST
Ui e B G B e
Logical Plan [Logical Plan Plans

DataFrame

/TN

Catalog

From dataBricks
The query plan is optimized just like in a DBMS

It produces a logical plan, then an optimized logical plan, then physical plans
Runs through a cost model, selects the best physical plan based on cost

Presentation
Pedro Furtado, U. Coimbra, Portugal

7/4/16

Sixth European Business Intelligence & Big 7/4/16
Data Summer School (eBISS 2016)

RDDs, DataFrames and Datasets in Apache Spark
Brian Clapper, in NE Scala 2016

Problem of DFs

No Type Safety, types are “lost”
scala> :type df.collect()
Array[org.apache.spark.sgl.Row]

Rows are defined as: Row extends Serializable

Mapping it back to something useful is ugly and error-prone:

df.collect().map { row =>
val project = row(0).asInstanceOf[String] // Yuck.
val numRequests = row(1).asInstanceOf[Long] // Yuck.

}

RDDs, DataFrames and Datasets in Apache Spark
Brian Clapper, in NE Scala 2016

Datasets

It has a type...
read a JSON and say you want to see it as Person

names must match
// Read a DataFrame from a JSON file
val df = sqlContext.read.json("people.json")
// Convert the data to a domain object.
case class Person(name: String, age: Long)

val ds: Dataset[Person] = df.as[Person]
1/

CONCLUSION: DataFrame is a DataSet with a “useless” datatype ROW

RDDs, DataFrames and Datasets in Apache Spark
Brian Clapper, in NE Scala 2016

Datasets VS DataFrames and RDDs

RDDs:

val lines = sc.textFile("hdfs://path/to/some/ebook.txt")

val words = lines.flatMap(_.split("""\s+""")).filter(_.nonEmpty)

val counts = words.groupBy(_.toLowerCase).map { case (w, all) => (w, all.size) }

DataSets:
Easier to understand, look at blue code

val lines = sqlContext.read.text("hdfs://path/to/some/ebook.txt").as[String]
val words = lines.flatMap(_.split("""\s+""")).filter(_.nonEmpty)
val counts = words.groupByKey(_.toLowerCase).count()

More efficient organization = Tungsten
Instead of Java objects, serialized objects on the JVM heap (RDDs)
—~——
Off-heap memory, compact columnar-based storage, operated fast
ENCODERS generated code on-the-fly to serialize/des and operate on serialized

RDDs, DataFrames and Datasets in Apache Spark
Brian Clapper, in NE Scala 2016

rl

Datasets - Memor

Spark has to serialize data... a lot
and Pe rfO rmance send data across the network,
e.g. groub by key=SHUFFLE= SERIALIZE
dump to disk => serialize + deserialize later

Mermory Usage when Caching

Datasets

RDDs

Serialization / Deserialization Performance

]

Java || H
ko [l H
trocers |
0 6 2 18 2

Speed

Caching is important

if you use something more than once, cache it!
Use broadcast variables liberally

Only serialized once

Available to all executors

Extremely fast lookups
Distributed memory maps well parallelized

Nr of partitions should be much larger than nr of nodes
Workload-based partitioning would be great here!

Spark Scalability Experiments
with TPCH

Decision Support Data Analysis in Spark using TPC-H
Benchmark, in Sistemas Gestdo Dados, 2016
R. Rei, P. Furtado FCTUC Coimbra, Portugal

Presentation
Pedro Furtado, U. Coimbra, Portugal

Sixth European Business Intelligence & Big 7/4/16
Data Summer School (eBISS 2016)

TPC-H on Spark/Hive Processing FlowChart

Create a HiveContext using the SparkContext as input: ShOW ACT'ON

val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc)

Spark passes the query in method “sql" to optimizer

SQL computations in Spark can be done by applying transformations and actions on DataFrames. Optimizer turns query into Spark code
The HiveContext object is used to create DataFrames via loading data stored in hive tables. The L.
method .sql next is a TRANSFORMATION (lazy evaluation, not run immediately) The 0pt|m|ze|" = Catalyst

val DF_query6 = hiveContext.sql(""” . . .
fuery ot compiles the operations applied to DataFrame

select sum(|_extendedprice * |_discount) as revenue

from linitem Applies optimizations
where I_shipdate >= '1993-01-01" and L_shipdate < '1994-01-01' .
and I_discount between 0.06 - 001 and 0.0 + 0.01 and |_quantity < 25 Creates a physical plan
oy

Lazy evaluation using ACTION show on DataFrame: ‘D’

scala> DF_query6.show | revenue| 18.20361

Computation is performed by the Executors residing
Workers processes in slaves.

. Tempo de execugdo das queries do TPC-H (1 e 3 nés)
Experimental Setup =
180
180
Decision Support Data Analysis in Spark using TPC-H 5 10
Benchmark, in Sistemas Gestdo Dados, 2016 ‘E 120
R. Rei, P. Furtado FCTUC Coimbra, Portugal 10GB g ’g e
1 node: K
T
12 cores, 32GB de RAM, 70GB disk » ks L whelikb bk
3 d . Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 QZZ
nodes: Queries
each with 12 cores, 32GB de RAM and 70GB disk . Spark Speedup para 3 Nos
OS Ubuntu 14.04 LTS versao 64 bits. !
3
Hadoop versao 2.7.1, Hive verséo 1.2.1, o Spark verséo 1.6.1 s 25
MySQL as Metastore of Hive. f? 1;
1
TPC-H data by DBGEN with scale factor 10GB. " I I I I I I
Stored as Hive tables in HDFS. SIFE IS S PPPFT P TP I P
Queries ﬁ“
HIVG on b| er Query Groups speedup values with datasize growth
g g (IN->4N)
d o
ata (Rafael, Furtado, Bernardino, 350 -
2014) 3,00 - .
Streaming, Lambda
150 .
Architecture
Execution Time / Node Number Z'Z:)
(24GB) "000 300 600 900 1200 1500 1800 2100 2400
000,00 Dataset size (GB)
g”‘“’“ Nr. Of nodes Pedro Furtado
§ woom Intel core i7 920 2.67 GHz
£ oo 40 GB of RAM Sixth European Business Intelligence & Big Data
= 4 SATA disks of 465 GB, 7,500 RPM.
£ oo All nodes created in HyperV 2012 virtual Summer School (eBISS 2016)
g platform, in a host with Microsoft Windows
2 om0 Operating System version 8.1 64 bit,
*® 1 7a11 [a21 | @31 | aaa data node = 2 virtual processors,
1IN 904,78 | 337268 | 211766 503917 ~ B8GBRAM
m2N| 527,39 | 1581,88 | 111306 | 271882 — 12568 disk)
— CentOS 6.5 64-bit operating system
aN| 31812 | 921,13 | 650,27 | 1682,77 dro Furtad
2016

Presentation
Pedro Furtado, U. Coimbra, Portugal 11

Sixth European Business Intelligence & Big
Data Summer School (eBISS 2016)

Lambda Architecture, Streaming

» Analytics in realtime
e.g. recommendation engine which
recommends in realtime
recomputes recommendation model very often to
reflect changes
e.g. pricing model
changes in context, competition, sales, reflected ASAP
+ Requires operating on streams of data
rebuilding the model
deploy model that runs quickly
scale, tolerate faults

Lambda Architecture

Allows us to handle streaming data efficiently

New data coming in
A (egemals)

Batch Layer
All Data Models

. (e.g. recommendation, pricing, classifier)
Builder of Models e.g. classifier for INTRUSION DETECTION

¥ ¥

Serving Layer

Speed Layer

Services, using the models/data
e.g. detect intrusion, alert

Lambda Architecture

Batch layer allows you to always go back to correct state, because you have
everything always

Since you have all data in the batch layer, you can
create new models
create an updated model
correct a model
incorporate new things in a model
incorporate new data to rebuild the model

Batch layer + streaming layer alows you to answer all types of queries, forget
about OLTP + OLAP duality form the point of view of using the data

Lambda Architecture with SPARK

Apache Spark
you have Spark (batch layer) and Spark Streaming (streaming data)
spark streaming is integrated into spark
same programming and model as spark, same code runs, completely integrated
can use any input data (streams, logs, files, from ports, subscribe to kafka)
has rich machine learning library
has a lot other capabilities

is totally scalable
Apache Kafka

pub/sub messaging system

Lambda Architecture

Spo#(z L[nadalap Spaik’
et (bl /7 5 streaming
e R

S

Presentation
Pedro Furtado, U. Coimbra, Portugal

You can build Lambda with spark
alone!!

Batch, Service SPEED SIDE Models

e e =

BATCH SIDE

7/4/16

12

Sixth European Business Intelligence & Big 7/4/16
Data Summer School (eBISS 2016)

Kafka example - Producer

§g kGka Kafka decouples data-pipelines

f—_— Call: boot_strapservers:localhost:QOQZ
PUBLISH-SUBSCRIBE acks=all
Producer.main(args); block.on.buffer.full=true
Brokers
topic message
[[osnor | [romer | [oo |
Consumers producer = new KafkaProducer(properties);
While(whatever)
producer.send(new ProducerRecord("fast-messages", "This is a dummy message"));
Topiet | [consumer
[omomer | [| [omorer | = il
producer.close();
—— consumer }

producer

Toplel | T consumer
Partition-2
Zookeeper ~ (= |

|
e
s e s st Kafca Cluster p ple-prog: 1 i p p Jjava

Kafka example - Consumer

bootstrap.servers=localhost:9092
group.id=test
enable.auto.commit=true

Spark Streaming

input data batches of batches of
stream Spark input data Spark processed data
max.partition.fetch.bytes=2097152 . N
P g4 Streaming Engine [
topic 1 topic 2
Kafka
consumer = new KafkaConsumer(properties); a
lume
. . . RS/ SPC’fK m
consumer.subscribe(Arrays.asList("fast-messages", "summary-markers"));
Kinesis. Stfeomlng Dashboards
Twitter

while (true) {
ConsumerRecords records = consumer.poll(200);
DStream RDD batches

! input data moews moewm: meewess batches of
stream Spark amtom] o=y [aan - Spark | processed data
‘ watom | =] daton |~ smatiom
Streaming || umcowo: | | smeitoz | | smezio \ Engine |1
" pl 1. i D java

Discretized Streams (Dstreams) Spark Streaming

Basic abstraction provided by Spark Streaming. . . .
' fon provi v op 9 How many twitter twits contain the word Spark on every 5

Represents a continuous stream of data, either the input seconds:
data stream received from source, or the processed data
stream generated by transforming the input stream.

Internally, a DStream is represented by a continuous series of

RDDs, which i K’ ion of an i I . .
distrsiblﬁelg d;ggg s abstraction of an immutable, TwitterUtils.createStream(...)

filter(_.getText.contains("Spark"))
RDD @ time 1 RDD @ time 2 RDD @ time 3 RDD @ time 4

DStream ——/ datafom | _ | datafrom | _| datafrom | _| datafrom | o .countByWindow(Seconds(5))
timeOto 1 time 1to 2 time 2to 3 time3to4

Presentation
Pedro Furtado, U. Coimbra, Portugal 13

Sixth European Business Intelligence & Big

7/4/16
Data Summer School (eBISS 2016)

Wordcount... Spark Streaming - Wordcount app

Create a DStream that represents streaming data
from a TCP source

lines lines from lines from lines from lines from .
DStream timeOto1 fime 1to2 time2to3 time3to 4 (val ssc = new StreamingContext(conf, Seconds(1)))
flatMap
operation SCALA:
words words from words from } | words from) I words from) // Create a DStream that will connect to hostname:port, like localhost:9999
DStream timeOto 1 time 1to 2 time 2to 3 time 3 to 4 val lines = ssc.socketTextStream("localhost", 9999)

PYTHON:

Create a DStream that will connect to hostname:port, like localhost:9999
lines = ssc.socketTextStream("localhost", 9999)

Spark Streaming - Wordcount app Spark Streaming - Wordcount app

Split the lines by space characters into words To start the processing after all the transformations

Each line will be split into multiple words and the have been setup, call
stream of words is represented as the words
Dstream

// Split each line into words .
val words = lines.flatMap(_.split(" ")) ssc.start() // Start the computation

ssc.awaitTermination() // Wait for the computation to terminate
// Count each word in each batch

val pairs = words.map(word => (word, 1))
val wordCounts = pairs.reduceBykey(_+_) (val ssc = new StreamingContext(conf, Seconds(1)))

// Print the first ten elements of each RDD generated in this DStream to the console
wordCounts.print()

Spark Streaming - Vordcount

app Fast + Streaming + Historical
input data batches of batches of CAN ALL BE PROGRAMMED |N SCALA

stream Spark input data Spark | processed data
Streaming Engine |1 Fast access to Spoikt ZTZ cassandra
: Historical data streaming
Need to feed port with phrases... he Kafka
Spoﬁ;(
run Netcat (a small utility found in most Unix-like systems) as a data For on-the-fly, & akka
server
predictive
$ nc -k 9999 modeling

in a different terminal, you can start the example

TERMINAL 1:

Realtime, streaming

Running Netcat

TERMTIAL 2 RUMMING NetworkbordCount data, All kinds
of Apps
0 o3 T3 D) $./bin/run-example streaning.NetworkWordCount localhost 9999 from streams i'(
G sak’ {m
hello world
Tine: 1357008430000 ns
(hetto,)
(world, 1)
Note: Akka 15 toolkt and rntime fo bulding highly concurrent,
distributed, and resilient message-driven applications on the JVM.

Pedro Furtado, U. Coimbra, Portugal 14

Sixth European Business Intelligence & Big
Data Summer School (eBISS 2016)

Qualities needed

Location independence -

Scalability Spark
fast, distributed,
Partition scalable, FT,
low latencies,
Replicate for fault Tolerance complex analytics
B Kafka
Share-Nothing high-throughput,

distributed messaging

Asynchronous Message Passing (™~ supports massive # consumers

partition on cluster

Parallelism auto-recovery node fail
I . Cassandra
ISO ation massively scalable
. database
Data Locality high-performance
masterless

PERSIST IN Casandra Tables

CREATE TABLE raw_weather_data

wsid text, // Composite of Air Force Datsav3 station number and NCDC WBAN number
year int, // Year collected

month int, // Month collected

dayint, // Day collected

hour int, 1/ Hour collected

temperature double, // Air temperature (degrees Celsius)

dewpoint double, // Dew point temperature (degrees Celsius)

pressure double, //Sea level pressure (hectopascals)

wind_direction int, // Wind direction in degrees. 0-359

wind_speed double, // Wind speed (meters per second)
sky_conditionint, // Total cloud cover (coded, see format documentation)
sky_condition_text text, // Non-coded sky conditions

one_hour_precip double, // One-hour liquid

six_hour_precip double, // Six-hour liquid

PRIMARY KEY ((wsid), year, month, day, hour)

)WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC, hour
DESC);

Retrieve from commits table... select and where is pushed to Cassandra for efficiency
Type= CassandraRDD[CassandraRow]

val rdd=sc.cassandraTable(“github”,”commits”)
.select(“user”,”count”,”year”,”month”)

.where(“commits >= ? and year = ?”, 1000, 2015)
Now retrieve from commits_aggregate into a streaming rdd:
Convert CassandraRow into MonthlyCommits case class
val rdd=scc.cassandraTable[MonthlyCommits](“github”,”commits_aggregate”)

.where(“user >= 7 and project_name = ? and year=?", “Helena”,
“spark-cassandra-connector”, 2015)

Basic Spark + Cassandra

Kafka Streaming Word Count

As soon as data starts coming into kafka topics, computation starts:

sparkConf.set(“spark.cassandra.connection.host”,”10.20.3.45”)
val streamingContext = new StreamContext(conf, Seconds(30))

KafkaUtils. createStream[, StringDecoder, StringDecoder]
(streamingContext, kafkaParams,
topicMap, StoragelLevel. MEMORY_ONLY)
.map(_._2)
.countByValue()
.saveToCassandra()

AND ANALYSIS

Pedro Furtad;
2016

REALTIME DATA WAREHOUSING

Presentation
Pedro Furtado, U. Coimbra, Portugal

Under Load...

A database engine should not STALL while processing
a “normal” query.... Should it?

1000000
120025
100000 aasst
3
228 3
27 11
10000 5
1000
£l
2 w06
10 o ezl
B3 E)
2 2
N 1
0 2
o168 0568 168 568 1068
oaasee
mViokioad 1(105,50) mWokoad 2(505,50) < Werkload 3(105,13Q) Worload 8 505, 130) pedro
Furtado
2016

7/4/16

15

Sixth European Business Intelligence & Big
Data Summer School (eBISS 2016)

What if there are 1000 queries, even on
smaller data?

One-query-at-a-time model is a problem

e
—\ -
" A

From traditional to realtime DW:
FRESHNESS
[

One day, oneAweek e day, oneAweek

B@'—> Intearated
New Data Inteérated

Integrated
Integrated

Pedro
Furtado
2016

From traditiondl to reqiturme Dvv.
10 minutes INTERACTIVE

A 2 hours

[Quel answer i

Qu

query |
Queg
Quey P answer

answer
[query B answer I,

2016

[query P answer

(near)Realtime DWs

What if we need/want fresh data?

- Incorporate events into analysis quickly

- (e.g. Detect fraud or react quickly to events)
Why is it difficult in traditional DWs?
Which factors influence those near-realtime
capabilities?

Are there solutions to make existing DW near-
realtime?

Transform

Experimental Setup

Oracle DBMS
SSB star schema benchmark + REALTIME LOADING
The Query Workload had 13 queries

Two computers used in tests

Intel(R) Core(TM) 2 Quad 2.5GHz with 4GB of RAM
Intel(R) Core(TM) i5 3.40GHz with 16GB of RAM

Each test (15 runs, average 10) (<+-5%)

Test 1: effect of simultaneous
loading on query performance

500000
B without Load and Refresh

450000 .
LOW-MEDIUM W WithLoad
EFFECT 400000
350000

o
§ 300000

]

@
4250000

With Refresh

€ 200000 -}
150000 -
100000 -
50000 -

Ql Q2 @3 Q4 Q5 @6 Q7 08 0% Q10Q11Q12Q13
Pedro Furtado
2015

Presentation
Pedro Furtado, U. Coimbra, Portugal

7/4/16

16

Sixth European Business Intelligence & Big 7/4/16
Data Summer School (eBISS 2016)

Test 3: Effect on loading of
increse in nr of query sessions

Effect of number of simultaneous query sessions on
loading 10 rows of data (shown in seconds)

Test 2: Online loading vs Offline
loading

Loading performanceg is severely impacted

high EFFECT!!!
30000

HUGE EFFECT 25000

—@— Offline redo Indexes

—#&— Online with QW 20000

u
H
§ 15000
2

10000

/
e

0

QG‘} .@’} \"}'Sé \Q% N3 '&‘a L 0 5 10 50 100
I Number of Sessions

Log File Sizg a0 Pedro Furtado
2016 2015

RealTime-Data Warehouse

Totally separate DW from RT
Component

500000

RT-DW Realtime results

B Traditional DW

W RTDW without Load

Merge DW and RT query results on-the-fly

Still need to load RT data into DW periodically,
offline

M RTDW with Load
400000

liseconds

= 300000

m

200000

100000

o

mmmmm

urtado
2015 2015

MONITOR to detect problems: Results - Auto-scaling

Ext+transform

PIPCLISIEEIIPSIIIIIIIIISS

Query time

Automated Scaler

Presentation
Pedro Furtado, U. Coimbra, Portugal 17

Sixth European Business Intelligence & Big

Data Summer School (eBISS 2016)

De-normalize
TOTALLY Parallelize

Traditional Parallel DBMS seem complex,
and they can fail to run FAST...

[1] Jotio Pedro Costa, J. Cecilio, P. Martins, and P. Furtado, “ONE: A Predictable and Scalable DW Model,” DaWak'11

[N (|
(D1_key, D1_att1, D1_att2, ...) F
\ (Dn_key, Dn_att1, Dn_att2, ...)
(o ¥ (ol /

(D1_key, D2_Key, .oce, Dn_key, measures)

—I——

(D1_attl, D1_att2,, Dn_attx, measures)

SALES (denormalized)

There are no deletes or updates

(except for input typo undos)

ONE is just a huge denormalized log of data

ONE’s data is always correct

rewritten to work on ONE

Immutable, append-only

The ONE repository is completely IMMUTABLE, append-only

Querying and other data management are automatically

Parallel ONE (ONE-P) v,

Simpler deployment

ONE relation fully partitioned among nodes
Partition size fitting node’s capabilities
No repartitioning is required

ALWAYS!

Now you can finally say:

| want any query to take at most X

| WANT x (m)seconds GUARANTEE,

Ahnd the system will get you X... if you have machines for
that

P-ONE does just that,

because execution time is totally predictable

ts X (tss +t
s X (tss + tsg) % 10
blockg;ze

A Execution Time

Presentation
Pedro Furtado, U. Coimbra, Portugal

SPIN: But what about dealing
with 1000 Concurrent
Queries ?

7/4/16

18

Sixth European Business Intelligence & Big
Data Summer School (eBISS 2016)

SPIN: Providing Scalable concur
query loads
o

Ve

query-to-dim
bimaps.

dm1 Q0Q162

Share intermedia

@ =

rent

query-odim
bitmaps.
Q0Q102 dim2

Combine similar predicates

te results

q,=SUM (g, ., (sales)
Gy =SUM (0, (sales))
Q5 = SUM (0,09 - (S01€5))

Analytics

Pedro Furtado

Sixth European Business Intelligence & Big Data
Summer School (eBISS 2016)

Adult, 57, bad food quality, 3days/week 30 mins exerci
he in risk of obesity or diabetes?

Ex: Dataset Diabetes and Obesity

se... is

person quality| ~ exercise | IMC | IMCClass i diabetes|
pressure| _disease

v [aofadut2 [F| w [3rd Low | VeryUnhealthy | 41 [Morbidlyob: HU N Y

61] Adults [M| SE [ighest| Low |Veryunhealthy| 38 Obese. HU N N

53 [Adult2 M| w [ath Low | VeryUnhealthy| 27 | Overweight | NU N Y

85 [Veryoid [M| N[3rd Low | VeryUnhealthy | 34 Obese NC Y N
2 |52 aduitz [m] sw | ath Low 28 | overweight | NU N Y
s J66] old [m[Nw [towest] Low 28 | overweight | NU N N
s J70] old [m] sw | ath Low 36 Obese HU N Y
= 173] od [m] c | 3 High | VeryHealthy [2235] Normal NU N N
s |8s|veryold|[M| W |ighest| Low 36 Obese. HC Y Y
s 66| old [M[Nw [lowest| High [QuiteHealthy [19.27] Normal NU N N
14 57 [Aduts [F| N [rowest| Low 43_[Morbidlyob HU N Y
15 |36 Adults [F | Nw |Highest| High | VeryHealthy [22.4] Normal NU N N
150 [8alveyod[m| c [3rd Low | VeryUnhealthy| 26 | Overweight | NU Y Y
51 17] Teen [mM] E Jiowest| High [Veryealthy [17.37] Underweight | Nu N N
s 116 Teen [M] N | ath High | VeryHealthy [1975] Normal NU N v
19 [22] Teen [F| sw [Lowest| High [Veryealthy [21.29] Normal NY N N
25 [e6] od [mM[N [rowest| high 2363[Normal NU N Y

Data mining, m-dim Datasets

1. Collect Cases 2. Extract 3. Create m-dim 4. Train
Feature Vector .
Features) Classifier,
with Class/value
Regressor,
Recommender,
4. Call Model
1. Get features from 2. Extract 3. Create m-dim to determine
new CASE Features Feature Vector ™ Output:
Class, value,
choice

Massive Processing

Divide and Conquer on every step

Parallel Feature Extraction;

Matrix Computations can be partitioned over nodes

Algorithms execute over parts of the m-dim dataset;

Presentation
Pedro Furtado, U. Coimbra, Portugal

Titanic (binary classification)

We are given details of Titanic passengers (e.g. name, gender, fare, cabin)
We are told whether the person survived the Titanic disaster.
Build a Model that can predict if any passenger is likely to survive.

ATTRIBUTES:

ATTRIBUTES:

0 pclass,
. g 9 fare,
) IS'“'VWe g 10 cabin,

f.ﬂa me, 11 embarked,
i, -name, 12 boat,

sex, 13 body,
5 age, 14 home.dest
6 sibsp,
7 parch,
8 ticket,

https://github.com/xsankar/fdps-vii

7/4/16

19

Sixth European Business Intelligence & Big
Data Summer School (eBISS 2016)

Tintanic: load and analyze data

$ head train.csv

Passengerld, Survived,Pclass,Name, Sex, Age,SibSp,Parch, Ticket,Fare,Cabin, Embarked

1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,

2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C
3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/02. 3101282,7.925,,S

4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,5

5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S

6,0,3,"Moran, Mr. James",male, 0,0,330877,8.4583,,Q

7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625E46,5

8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,

9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,S

Titanic Parse Passenger Data
To LabeledPoint

LabeledPoint(survived,Vectors.dense(pclass,sex,age,sibsp,parch,fare))

def main(args: Array[String]): Unit = {
val sc = new SparkContext(,) val predictions =
val dataFile= sc.textFile() mdITree.predict(titanicRDDLP.map(x=>x.features))
val labelsAndPreds =
titanicRDDLP.map(x=>x.label).zip(predictions)

val titanicRDDLP = dataFile.map(_.trim).
filter(_.length > 1).
map(line => parsePassengerDataToLP(line))
val mse = labelsAndPreds.map(vp =>
math.pow((vp._1 -vp._2),2)).
reduce(_+_) / labelsAndPreds.count()

titanicRDDLP.foreach(printin)

printIn(titanicRDDLP.first().label)
printin(titanicRDDLP.first().features)
printin("Mean Squared Error = " + "%6f".format(mse))
val categoricalFeaturesinfo = Map[int, Int]()

val dlTree = DecisionTree,trainClassifer(ttanicRODLP, labelsAndPreds.foreach(printin)
) UM

featu e col OUS }
"gini", // impus
5, // Ma
32) //max

printin(mdiTree)

https://github.com/xsankar/fdps-vii/

Recommendation Example

ratings.dat: (1::1193::5::978300760)
(UserID i ing::Ti)
/ Movie(MovielD::Title::Genres)

User(UserlD:: der::Age:: ion::Zip-code) movles.dat:
(1::Toy Story (1995)::Animation| Children's| Comedy)

Load the files

movies_file = sc.textFile("movies.dat")

movies_rdd = movies_file.map(lambda line: line.split('::"))
movies_rdd.count()

movies_rdd.first()

ratings_file = sc.textFile("ratings.dat")

ratings_rdd = ratings_file.map(lambda line: line.split('::"))
ratings_rdd.count()

ratings_rdd.first()

ratings_file = sc.textFile("users.dat")

ratings_rdd = ratings_file.map(lambda line: line.split('::"))
ratings_rdd.count()

ratings_rdd.first()

Transform fields

Create a function to transform columns user_id, movie_id, rating and timestamp into
int. int, float and int respectively.

Create an RDD ratings_rdd_01 with those values

def parse_ratings(x):
user_id = int(x[0])
movie_id = int(x[1])
rating = float(x[2])
timestamp = int(x[3])/10
return [user_id, movie_id, rating, timestamp]

ratings_rdd_01 = ratings_rdd.map(lambda x: parse_ratings(x))
ratings_rdd_01.count()
ratings_rdd_01.first()

Presentation
Pedro Furtado, U. Coimbra, Portugal

Create DS train, test, validation

Divide the dataset into three datasets : training , validation and test , as follows:
timestamp % 10 <6 -> training ;
timestamp 10 % > = 6 to < 8 -> validation ;
timestamp % 10 > = 8 - > test ;

Count the number of records of each of the resulting datasets.

training = ratings_rdd_01 filter(lambda x: (x[3] % 10) < 6)
validation = ratings_rdd_01.filter(lambda x: (x[3] % 10) >= 6 and (x[3] % 10) < 8)
test = ratings_rdd_01.filter(lambda x: (x[3] % 10) >= 8)

numTraining = training.count()
numValidation = validation.count()

numTest = test.count()

print "Training: %d, validation: %d, test: %d”

7/4/16

20

Sixth European Business Intelligence & Big
Data Summer School (eBISS 2016)

Train model - Alternating Least
Squares

Train the model using 20 iterations, with variable rank = 10.

from pyspark.mllib.recommendation import ALS

rank = 10

numlterations = 20

Build the model on training data (useriD, movie, rating)

rank is the number of latent factors in the model.

iterations is the number of iterations to run.

train_data = training.map(lambda p: (p[0], p[1], p[2]))
model = ALS.train(train_data, rank, numlterations)

rk, 2 Edition,
12015

Evaluate model

Evaluate the model in the training data . Show the first recommendation, the first line of

testdata and the first real rating (test).

Evaluate the model on test data (useriD, movie)

testdata = test.map(lambda p: (p[0], p[1]))

predictions = model.predictAll(testdata).map(lambda r: ((r[0], r[1]), r[2]))
predictions.count()

predictions.first()
testdata.first()
test.first()

Practical Cases: Synset

Practical Case 1: Synset “dish” of Imagenet

Use Machine Learning algorithms for annotation and classification of
images

Multi-class classifier (decision trees, naive bayes, rand forests)
Dishes Synset contains 313 classes of recipes

We had to decrease the nr of classes in practical testbed (10 to 50)
Later we will do it for all classes

We added a customized SVM algorithm (two classes 1/all)
We optimized pre-processing + analyzed partitioning scalability
Compared accuracy and runtime
Future work (very much looking forward to it)
Deep Learning approach
M. Freitas, J. Alves, P. Furtado, Classificagdo de imagens do synset “dish” do

ImageNet usando Apache Spark, in Sistemas de Gestdo de Dados, U. Coimbra, 2016
UC-DEI TechReport1010

Proposed Roadmap

Pre-processing

Reduce images + toGrayScale (python cv2 binding to OpenCV)
Transfer all images to HDFS \Synsets\~~\sushi, etc

Feature extraction

SIFT features-> keypoints->bagofwords->k-means->pooling
Using OpenCV+pySpark
All intermediate files in Parquet format

Creation of train and test datasets

10 to 15% of images = test
Train Spark classifier OFF-THE-SHELF

Naive Bayes, Logistic Regression, Decision Trees, Random Forests,
SVMs -> there is no multi-class SVM, therefore created a hier. one
Validate Spark Classifier using test dataset

M. Freitas, J. Alves, P. Furtado, Classificagdo de imagens do synset “dish” do
ImageNet usando Apache Spark, in Sistemas de Gestdo de Dados, U. Coimbra, 2016
UC-DEI TechReport1010

Summary of Steps

Extragio de features Feature Descriptors Clusering Pooling - Vocabulary creation Bag of Words

Wonl Index

Feaues SIFT (OpenCV) Features vectors - De
2 Python module for cach SIFT keypoint (n X 128) data o generute K chters

scriptors Train Spark Kneans on the featunes

1xK vector describing cach
image

—

M. Freitas, J. Alves, P. Furtado, Classificagdo de imagens do synset “dish” do
ImageNet usando Apache Spark, in Sistemas de Gestdo de Dados, U. Coimbra, 2016
UC-DEI TechReport1010

Presentation
Pedro Furtado, U. Coimbra, Portugal

Results SS Load time to HDFS:

Nr Classes | nrimages MB load time (secs)|
10 6524 875 252.1
50 29326 3500 492.61

BELOW: Maximum speed-ups of 1.62 for 2 machines, 2.30 for 3 machines.

Note: one of the machines is simultaneously master and slave

10 CLASSES maquina XPTO 50 CLASSES

.1
= 2 maquinas XPTO
3 0

£ maniraxero 5 8 Timane
= Jmadinas xato z g
5 g | 3haqunasxeo R
- H
g g s
| g e
H 3
is LI
g g °
£ s 8
deciionress randomforests naivebayes mltpesvns decisontrees randomforests naivebayes mulplesyms
Classfeador Classifcador

M. Freitas, J. Alves, P. Furtado, Classificagdo de imagens do synset “dish” do
ImageNet usando Apache Spark, in Sistemas de Gestdo de Dados, U. Coimbra, 2016
UC-DEI TechReport1010

7/4/16

21

Sixth European Business Intelligence & Big
Data Summer School (eBISS 2016)

Some References

Furtado P., “Nod d Data Evidence and)
DOLAP 2004,
Journal of Database Management, Ideas Group, April-June 2006.

Furtado P., Model and Procedure for and Availabil Parallel
Volume 25, Issue 1 (2009), Page 71, Springer-Verlag.

In Journal of Data

Furtado P., A Survey on Parallel and Distributed Data
Chief D. Taniar, (Editor) IGI Publishing ~ Vol 5, N. 2, April-Jlune 2009.

Jodo Costa, Pedro Martins, José Cecilio, Pedro Furtado, "Providing Timely Results with an Elastic Parallel
Symposium on for Intelligent Systems, 4-7 December, 2012, Macau.

Joao Pedro Costa, Pedro Furtado: SPIN, in Dawak 2013.
Nickerson Ferreira, Pedro Furtado: RTDW, in IDEAS 2013.

Expect to publish book by September 2016 (Amazon):
BigData: Concepts, analytics and programming

Spark, Spark Streaming, Realtime, NoSQL and Integration
Pedro Furtado

http://eden.dei.uc.pt/~pnf/
* Thank you all!
Pedro Furtado
pnf@dei.uc.pt

In Distributed and Parallel Databases:

ing and Mining, Ed.-in-

DW", in The 20th

The END...questions?

pnf@dei.uc.pt

Take-away:
- Concepts are more useful/relevant than systems

Presentation
Pedro Furtado, U. Coimbra, Portugal

7/4/16

22

